code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def UpperCAmelCase_( ) -> Optional[int]: """simple docstring""" return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )] a__ : Optional[Any] = generate_large_matrix() a__ : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase_( a__ ) -> str: """simple docstring""" assert all(row == sorted(__a , reverse=__a ) for row in grid ) assert all(list(__a ) == sorted(__a , reverse=__a ) for col in zip(*__a ) ) def UpperCAmelCase_( a__ ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Tuple = len(__a ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE : Union[str, Any] = (left + right) // 2 SCREAMING_SNAKE_CASE : int = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE : Dict = mid + 1 else: SCREAMING_SNAKE_CASE : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__a ) def UpperCAmelCase_( a__ ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : List[Any] = len(grid[0] ) for i in range(len(__a ) ): SCREAMING_SNAKE_CASE : Optional[int] = find_negative_index(grid[i][:bound] ) total += bound return (len(__a ) * len(grid[0] )) - total def UpperCAmelCase_( a__ ) -> Dict: """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase_( a__ ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Any = 0 for row in grid: for i, number in enumerate(__a ): if number < 0: total += len(__a ) - i break return total def UpperCAmelCase_( ) -> str: """simple docstring""" from timeit import timeit print('''Running benchmarks''' ) SCREAMING_SNAKE_CASE : List[str] = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE : str = timeit(F"""{func}(grid=grid)""" , setup=__a , number=500 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
371
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = proj_size SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase ) for _ in range(_lowerCamelCase ) ] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: for block in self.blocks: SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase ) return hidden_states
19
0
import argparse import copy def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = {} with open(__lowerCamelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: SCREAMING_SNAKE_CASE : Optional[Any] = [] _list.append([line.split()[1], line.split()[2]] ) SCREAMING_SNAKE_CASE : int = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: SCREAMING_SNAKE_CASE : str = [] _list.append([line.split()[0], line.split()[2]] ) SCREAMING_SNAKE_CASE : List[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def UpperCAmelCase_( a__ , a__ ): """simple docstring""" with open(__lowerCamelCase ) as f: SCREAMING_SNAKE_CASE : List[str] = f.read(1 ) SCREAMING_SNAKE_CASE : str = start_node SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : str = start_node SCREAMING_SNAKE_CASE : List[str] = 0 while visiting not in first_solution: SCREAMING_SNAKE_CASE : Union[str, Any] = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__lowerCamelCase ) and k[0] not in first_solution: SCREAMING_SNAKE_CASE : Union[str, Any] = k[1] SCREAMING_SNAKE_CASE : int = k[0] first_solution.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = distance_of_first_solution + int(__lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = best_node first_solution.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 SCREAMING_SNAKE_CASE : Dict = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [] for n in solution[1:-1]: SCREAMING_SNAKE_CASE : List[str] = solution.index(__lowerCamelCase ) for kn in solution[1:-1]: SCREAMING_SNAKE_CASE : Union[str, Any] = solution.index(__lowerCamelCase ) if n == kn: continue SCREAMING_SNAKE_CASE : Tuple = copy.deepcopy(__lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = kn SCREAMING_SNAKE_CASE : List[Any] = n SCREAMING_SNAKE_CASE : List[Any] = 0 for k in _tmp[:-1]: SCREAMING_SNAKE_CASE : Optional[int] = _tmp[_tmp.index(__lowerCamelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: SCREAMING_SNAKE_CASE : List[Any] = distance + int(i[1] ) _tmp.append(__lowerCamelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) SCREAMING_SNAKE_CASE : Union[str, Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda a__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 1 SCREAMING_SNAKE_CASE : Optional[int] = first_solution SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : str = distance_of_first_solution SCREAMING_SNAKE_CASE : int = solution while count <= iters: SCREAMING_SNAKE_CASE : Optional[int] = find_neighborhood(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : int = neighborhood[index_of_best_solution] SCREAMING_SNAKE_CASE : List[str] = len(__lowerCamelCase ) - 1 SCREAMING_SNAKE_CASE : Optional[int] = False while not found: SCREAMING_SNAKE_CASE : Dict = 0 while i < len(__lowerCamelCase ): if best_solution[i] != solution[i]: SCREAMING_SNAKE_CASE : List[Any] = best_solution[i] SCREAMING_SNAKE_CASE : Dict = solution[i] break SCREAMING_SNAKE_CASE : Optional[int] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : int = best_solution[:-1] SCREAMING_SNAKE_CASE : List[str] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: SCREAMING_SNAKE_CASE : int = cost SCREAMING_SNAKE_CASE : Union[str, Any] = solution else: SCREAMING_SNAKE_CASE : List[Any] = index_of_best_solution + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = neighborhood[index_of_best_solution] if len(__lowerCamelCase ) >= size: tabu_list.pop(0 ) SCREAMING_SNAKE_CASE : Any = count + 1 return best_solution_ever, best_cost def UpperCAmelCase_( a__=None ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = generate_neighbours(args.File ) SCREAMING_SNAKE_CASE : str = generate_first_solution( args.File , __lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = tabu_search( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , args.Iterations , args.Size , ) print(F"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": a__ : str = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
350
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Tuple = '''▁''' a__ : List[Any] = {'''vocab_file''': '''spiece.model'''} a__ : Optional[Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } a__ : str = { '''google/pegasus-xsum''': 512, } a__ : str = logging.get_logger(__name__) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<mask_2>" , _lowerCamelCase="<mask_1>" , _lowerCamelCase=None , _lowerCamelCase=103 , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : Dict = offset if additional_special_tokens is not None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(_lowerCamelCase )}, but is""" F""" {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_lowerCamelCase ) , self.offset - 1 ) ] if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) SCREAMING_SNAKE_CASE : Dict = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : List[str] = mask_token_sent SCREAMING_SNAKE_CASE : Optional[int] = vocab_file SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) # add special tokens to encoder dict SCREAMING_SNAKE_CASE : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def __lowerCAmelCase ( self ) ->int: return len(self.sp_model ) + self.offset def __lowerCAmelCase ( self ) ->Dict[str, int]: SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE : str = None return state def __setstate__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] SCREAMING_SNAKE_CASE : List[str] = self.sp_model.piece_to_id(_lowerCamelCase ) return sp_id + self.offset def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: SCREAMING_SNAKE_CASE : Dict = self.sp_model.IdToPiece(index - self.offset ) return token def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : int = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->str: return 1 def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Dict = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return self._special_token_mask(_lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(_lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : int = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
19
0
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal a__ : Tuple = logging.get_logger(__name__) a__ : Optional[Any] = TypeVar('''DatasetType''', Dataset, IterableDataset) def UpperCAmelCase_( a__ , a__ = None , a__ = None , a__ = None , a__ = None , a__ = "first_exhausted" , ): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(_snake_case ): if not isinstance(_snake_case , (Dataset, IterableDataset) ): if isinstance(_snake_case , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ '''is an empty dataset dictionary.''' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(_snake_case )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_snake_case ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_snake_case ).__name__}.""" ) if i == 0: SCREAMING_SNAKE_CASE : Union[str, Any] = ( (Dataset, IterableDataset) if isinstance(_snake_case , _snake_case ) else (IterableDataset, Dataset) ) elif not isinstance(_snake_case , _snake_case ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( _snake_case , _snake_case , _snake_case , info=_snake_case , split=_snake_case , stopping_strategy=_snake_case ) else: return _interleave_iterable_datasets( _snake_case , _snake_case , _snake_case , info=_snake_case , split=_snake_case , stopping_strategy=_snake_case ) def UpperCAmelCase_( a__ , a__ = None , a__ = None , a__ = 0 , ): """simple docstring""" if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(_snake_case ): if not isinstance(_snake_case , (Dataset, IterableDataset) ): if isinstance(_snake_case , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ '''is an empty dataset dictionary.''' ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(_snake_case )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_snake_case ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_snake_case ).__name__}.""" ) if i == 0: SCREAMING_SNAKE_CASE : Dict = ( (Dataset, IterableDataset) if isinstance(_snake_case , _snake_case ) else (IterableDataset, Dataset) ) elif not isinstance(_snake_case , _snake_case ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_snake_case , info=_snake_case , split=_snake_case , axis=_snake_case ) else: return _concatenate_iterable_datasets(_snake_case , info=_snake_case , split=_snake_case , axis=_snake_case )
351
def UpperCAmelCase_( a__ ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Tuple = 1 while repunit: SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_( a__ = 1_000_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"{solution() = }")
19
0
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case__ , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(snake_case__ , '''neck_hidden_sizes''' ) ) self.parent.assertTrue(hasattr(snake_case__ , '''num_attention_heads''' ) ) class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=640 , _lowerCamelCase=4 , _lowerCamelCase="silu" , _lowerCamelCase=3 , _lowerCamelCase=32 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=10 , _lowerCamelCase=None , ) ->int: SCREAMING_SNAKE_CASE : Union[str, Any] = parent SCREAMING_SNAKE_CASE : Dict = batch_size SCREAMING_SNAKE_CASE : Tuple = image_size SCREAMING_SNAKE_CASE : Optional[int] = patch_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = last_hidden_size SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : Dict = conv_kernel_size SCREAMING_SNAKE_CASE : str = output_stride SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Any = classifier_dropout_prob SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : List[str] = is_training SCREAMING_SNAKE_CASE : List[str] = num_labels SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : Dict = scope def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels, pixel_labels def __lowerCAmelCase ( self ) ->List[Any]: return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : str = MobileViTModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE : str = model(snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Tuple = MobileViTForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->str: SCREAMING_SNAKE_CASE : Tuple = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = MobileViTForSemanticSegmentation(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE : Any = model(snake_case__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) SCREAMING_SNAKE_CASE : Tuple = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : List[Any] = ( { 'feature-extraction': MobileViTModel, 'image-classification': MobileViTForImageClassification, 'image-segmentation': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Optional[Any] = False def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Tuple = MobileViTModelTester(self ) SCREAMING_SNAKE_CASE : List[Any] = MobileViTConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def __lowerCAmelCase ( self ) ->List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViT does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip(reason='''MobileViT does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass @unittest.skip(reason='''MobileViT does not output attentions''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = model_class(snake_case__ ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->Optional[int]: pass def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __lowerCAmelCase ( self ) ->Optional[int]: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Optional[int] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) SCREAMING_SNAKE_CASE : List[str] = outputs.hidden_states SCREAMING_SNAKE_CASE : Union[str, Any] = 5 self.assertEqual(len(snake_case__ ) , snake_case__ ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE : Tuple = 2 for i in range(len(snake_case__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Any = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ ) @slow def __lowerCAmelCase ( self ) ->Optional[Any]: for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : str = MobileViTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ) ->Dict: return MobileViTImageProcessor.from_pretrained('''apple/mobilevit-xx-small''' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = MobileViTForImageClassification.from_pretrained('''apple/mobilevit-xx-small''' ).to(snake_case__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : List[Any] = image_processor(images=snake_case__ , return_tensors='''pt''' ).to(snake_case__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(**snake_case__ ) # verify the logits SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) SCREAMING_SNAKE_CASE : str = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) ) @slow def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) SCREAMING_SNAKE_CASE : Any = model.to(snake_case__ ) SCREAMING_SNAKE_CASE : List[Any] = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) SCREAMING_SNAKE_CASE : List[Any] = prepare_img() SCREAMING_SNAKE_CASE : Dict = image_processor(images=snake_case__ , return_tensors='''pt''' ).to(snake_case__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**snake_case__ ) SCREAMING_SNAKE_CASE : Any = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : Dict = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , snake_case__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [ [[6.9_7_1_3, 6.9_7_8_6, 7.2_4_2_2], [7.2_8_9_3, 7.2_8_2_5, 7.4_4_4_6], [7.6_5_8_0, 7.8_7_9_7, 7.9_4_2_0]], [[-1_0.6_8_6_9, -1_0.3_2_5_0, -1_0.3_4_7_1], [-1_0.4_2_2_8, -9.9_8_6_8, -9.7_1_3_2], [-1_1.0_4_0_5, -1_1.0_2_2_1, -1_0.7_3_1_8]], [[-3.3_0_8_9, -2.8_5_3_9, -2.6_7_4_0], [-3.2_7_0_6, -2.5_6_2_1, -2.5_1_0_8], [-3.2_5_3_4, -2.6_6_1_5, -2.6_6_5_1]], ] , device=snake_case__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) SCREAMING_SNAKE_CASE : Optional[int] = model.to(snake_case__ ) SCREAMING_SNAKE_CASE : Optional[Any] = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=snake_case__ , return_tensors='''pt''' ).to(snake_case__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(**snake_case__ ) SCREAMING_SNAKE_CASE : List[str] = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE : Dict = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(50, 60)] ) SCREAMING_SNAKE_CASE : Any = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , snake_case__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=snake_case__ ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , snake_case__ )
352
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict: SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Any = num_stages SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : int = out_features SCREAMING_SNAKE_CASE : List[str] = num_labels SCREAMING_SNAKE_CASE : int = scope SCREAMING_SNAKE_CASE : Optional[Any] = num_stages def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->List[Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowerCAmelCase ( self ) ->Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[str] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = UperNetModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->str: return def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->str: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowerCAmelCase ( self ) ->str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->Tuple: pass def __lowerCAmelCase ( self ) ->int: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = _config_zero_init(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass @slow def __lowerCAmelCase ( self ) ->List[Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) SCREAMING_SNAKE_CASE : Any = Image.open(a__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
19
0
import os from datetime import datetime as dt from github import Github a__ : List[str] = [ '''good first issue''', '''feature request''', '''wip''', ] def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = Github(os.environ['''GITHUB_TOKEN'''] ) SCREAMING_SNAKE_CASE : Optional[Any] = g.get_repo('''huggingface/accelerate''' ) SCREAMING_SNAKE_CASE : int = repo.get_issues(state='''open''' ) for issue in open_issues: SCREAMING_SNAKE_CASE : Tuple = sorted([comment for comment in issue.get_comments()] , key=lambda a__ : i.created_at , reverse=a__ ) SCREAMING_SNAKE_CASE : Tuple = comments[0] if len(a__ ) > 0 else None SCREAMING_SNAKE_CASE : List[Any] = dt.utcnow() SCREAMING_SNAKE_CASE : Optional[Any] = (current_time - issue.updated_at).days SCREAMING_SNAKE_CASE : List[Any] = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
353
import datasets from .evaluate import evaluate a__ : Dict = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' a__ : List[str] = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' a__ : List[Any] = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
19
0
def UpperCAmelCase_( a__ , a__ , a__ , a__=None ): """simple docstring""" SCREAMING_SNAKE_CASE : str = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: SCREAMING_SNAKE_CASE : Any = True, True SCREAMING_SNAKE_CASE : Optional[Any] = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) return path def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Any = -1 for i in range(snake_case_ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 SCREAMING_SNAKE_CASE : int = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] SCREAMING_SNAKE_CASE : int = check_circuit_or_path(snake_case_ , snake_case_ ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return SCREAMING_SNAKE_CASE : str = 1 if check == 2: SCREAMING_SNAKE_CASE : Optional[Any] = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) SCREAMING_SNAKE_CASE : Tuple = dfs(snake_case_ , snake_case_ , snake_case_ ) print(snake_case_ ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} SCREAMING_SNAKE_CASE : int = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} SCREAMING_SNAKE_CASE : Union[str, Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} SCREAMING_SNAKE_CASE : List[Any] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} SCREAMING_SNAKE_CASE : int = { 1: [], 2: [] # all degree is zero } SCREAMING_SNAKE_CASE : Any = 10 check_euler(snake_case_ , snake_case_ ) check_euler(snake_case_ , snake_case_ ) check_euler(snake_case_ , snake_case_ ) check_euler(snake_case_ , snake_case_ ) check_euler(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
354
from sklearn.metrics import matthews_corrcoef import datasets a__ : Optional[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' a__ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' a__ : Union[str, Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]: return { "matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ), }
19
0
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) a__ : str = logging.getLogger(__name__) @dataclass(frozen=__UpperCamelCase ) class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : str __SCREAMING_SNAKE_CASE : str __SCREAMING_SNAKE_CASE : Optional[str] = None __SCREAMING_SNAKE_CASE : Optional[str] = None __SCREAMING_SNAKE_CASE : Optional[str] = None @dataclass(frozen=__UpperCamelCase ) class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : List[int] __SCREAMING_SNAKE_CASE : Optional[List[int]] = None __SCREAMING_SNAKE_CASE : Optional[List[int]] = None __SCREAMING_SNAKE_CASE : Optional[Union[int, float]] = None __SCREAMING_SNAKE_CASE : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class a_ ( __UpperCamelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[InputFeatures] def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase=False , _lowerCamelCase = False , ) ->int: SCREAMING_SNAKE_CASE : int = hans_processors[task]() SCREAMING_SNAKE_CASE : int = os.path.join( _lowerCamelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(_lowerCamelCase ) , _lowerCamelCase , ) , ) SCREAMING_SNAKE_CASE : Any = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE : int = label_list[2], label_list[1] SCREAMING_SNAKE_CASE : List[str] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE : Tuple = cached_features_file + """.lock""" with FileLock(_lowerCamelCase ): if os.path.exists(_lowerCamelCase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) SCREAMING_SNAKE_CASE : str = torch.load(_lowerCamelCase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) SCREAMING_SNAKE_CASE : Optional[int] = ( processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) ) logger.info('''Training examples: %s''' , len(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Any = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) logger.info('''Saving features into cached file %s''' , _lowerCamelCase ) torch.save(self.features , _lowerCamelCase ) def __len__( self ) ->int: return len(self.features ) def __getitem__( self , _lowerCamelCase ) ->Tuple: return self.features[i] def __lowerCAmelCase ( self ) ->List[str]: return self.label_list if is_tf_available(): import tensorflow as tf class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : List[InputFeatures] def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 128 , _lowerCamelCase=False , _lowerCamelCase = False , ) ->str: SCREAMING_SNAKE_CASE : Union[str, Any] = hans_processors[task]() SCREAMING_SNAKE_CASE : str = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE : Any = label_list[2], label_list[1] SCREAMING_SNAKE_CASE : Dict = label_list SCREAMING_SNAKE_CASE : Any = processor.get_dev_examples(_lowerCamelCase ) if evaluate else processor.get_train_examples(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = hans_convert_examples_to_features(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_0000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(_lowerCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) SCREAMING_SNAKE_CASE : List[Any] = tf.data.Dataset.from_generator( _lowerCamelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def __lowerCAmelCase ( self ) ->Tuple: return self.dataset def __len__( self ) ->Optional[Any]: return len(self.features ) def __getitem__( self , _lowerCamelCase ) ->List[str]: return self.features[i] def __lowerCAmelCase ( self ) ->List[Any]: return self.label_list class a_ ( __UpperCamelCase ): """simple docstring""" def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[int]: return self._create_examples(self._read_tsv(os.path.join(_lowerCamelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def __lowerCAmelCase ( self ) ->int: return ["contradiction", "entailment", "neutral"] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : int = [] for i, line in enumerate(_lowerCamelCase ): if i == 0: continue SCREAMING_SNAKE_CASE : Optional[int] = """%s-%s""" % (set_type, line[0]) SCREAMING_SNAKE_CASE : Any = line[5] SCREAMING_SNAKE_CASE : Union[str, Any] = line[6] SCREAMING_SNAKE_CASE : Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7] SCREAMING_SNAKE_CASE : List[Any] = line[0] examples.append(InputExample(guid=_lowerCamelCase , text_a=_lowerCamelCase , text_b=_lowerCamelCase , label=_lowerCamelCase , pairID=_lowerCamelCase ) ) return examples def UpperCAmelCase_( a__ , a__ , a__ , a__ , ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = {label: i for i, label in enumerate(lowercase__ )} SCREAMING_SNAKE_CASE : str = [] for ex_index, example in tqdm.tqdm(enumerate(lowercase__ ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d''' % (ex_index) ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=lowercase__ , max_length=lowercase__ , padding='''max_length''' , truncation=lowercase__ , return_overflowing_tokens=lowercase__ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = label_map[example.label] if example.label in label_map else 0 SCREAMING_SNAKE_CASE : Optional[Any] = int(example.pairID ) features.append(InputFeatures(**lowercase__ , label=lowercase__ , pairID=lowercase__ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features a__ : Optional[Any] = { '''hans''': 3, } a__ : List[Any] = { '''hans''': HansProcessor, }
355
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a__ ) SCREAMING_SNAKE_CASE : int = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=a__ ) env_command_parser(subparsers=a__ ) launch_command_parser(subparsers=a__ ) tpu_command_parser(subparsers=a__ ) test_command_parser(subparsers=a__ ) # Let's go SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if not hasattr(a__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(a__ ) if __name__ == "__main__": main()
19
0
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = torch.load(A__ , map_location='''cpu''' ) SCREAMING_SNAKE_CASE : List[str] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository SCREAMING_SNAKE_CASE : Optional[Any] = {} for k, v in state_dict.items(): if "pred_layer" in k: SCREAMING_SNAKE_CASE : Union[str, Any] = v else: SCREAMING_SNAKE_CASE : List[str] = v SCREAMING_SNAKE_CASE : List[str] = chkpt['''params'''] SCREAMING_SNAKE_CASE : str = {n: v for n, v in config.items() if not isinstance(A__ , (torch.FloatTensor, numpy.ndarray) )} SCREAMING_SNAKE_CASE : List[str] = chkpt['''dico_word2id'''] SCREAMING_SNAKE_CASE : Tuple = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model SCREAMING_SNAKE_CASE : List[str] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME SCREAMING_SNAKE_CASE : List[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME SCREAMING_SNAKE_CASE : int = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(A__ , A__ ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(A__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(A__ , indent=2 ) + '''\n''' ) print(F"""Save vocab file to {pytorch_config_dump_path}""" ) with open(A__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(A__ , indent=2 ) + '''\n''' ) if __name__ == "__main__": a__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a__ : Optional[int] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
356
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : str = logging.get_logger(__name__) a__ : Optional[Any] = {'''vocab_file''': '''vocab.json'''} a__ : str = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } a__ : Tuple = {'''mgp-str''': 27} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) ->Dict: super().__init__( unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , pad_token=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.vocab.items()} @property def __lowerCAmelCase ( self ) ->List[Any]: return len(self.vocab ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return dict(self.vocab , **self.added_tokens_encoder ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for s in text: char_tokens.extend(_lowerCamelCase ) return char_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: return self.decoder.get(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) ) return SCREAMING_SNAKE_CASE : str = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' ) return (vocab_file,)
19
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=10 , _lowerCamelCase=3 , _lowerCamelCase=2 , _lowerCamelCase=2 , _lowerCamelCase=2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=0.9 , _lowerCamelCase=None , ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = parent SCREAMING_SNAKE_CASE : Dict = batch_size SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : List[Any] = patch_size SCREAMING_SNAKE_CASE : str = tubelet_size SCREAMING_SNAKE_CASE : Optional[int] = num_frames SCREAMING_SNAKE_CASE : List[str] = is_training SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : int = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Any = type_sequence_label_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = mask_ratio SCREAMING_SNAKE_CASE : List[str] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame SCREAMING_SNAKE_CASE : Dict = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE : List[str] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos SCREAMING_SNAKE_CASE : int = int(mask_ratio * self.seq_length ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Any = None if self.use_labels: SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->List[Any]: return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : int = VideoMAEModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = VideoMAEForPreTraining(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch SCREAMING_SNAKE_CASE : Optional[int] = torch.ones((self.num_masks,) ) SCREAMING_SNAKE_CASE : Tuple = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) SCREAMING_SNAKE_CASE : int = mask.expand(self.batch_size , -1 ).bool() SCREAMING_SNAKE_CASE : Optional[Any] = model(__lowerCAmelCase , __lowerCAmelCase ) # model only returns predictions for masked patches SCREAMING_SNAKE_CASE : Optional[Any] = mask.sum().item() SCREAMING_SNAKE_CASE : Optional[Any] = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : Any = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Dict = False def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = VideoMAEModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) ->str: SCREAMING_SNAKE_CASE : Union[str, Any] = copy.deepcopy(__lowerCAmelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch SCREAMING_SNAKE_CASE : List[str] = torch.ones((self.model_tester.num_masks,) ) SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) SCREAMING_SNAKE_CASE : Optional[Any] = mask.expand(self.model_tester.batch_size , -1 ).bool() SCREAMING_SNAKE_CASE : int = bool_masked_pos.to(__lowerCAmelCase ) if return_labels: if model_class in [ *get_values(__lowerCAmelCase ), ]: SCREAMING_SNAKE_CASE : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def __lowerCAmelCase ( self ) ->Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Optional[Any]: pass def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = model_class(__lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCAmelCase , nn.Linear ) ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = model_class(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Union[str, Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCAmelCase ) @slow def __lowerCAmelCase ( self ) ->Optional[int]: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : str = VideoMAEModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def __lowerCAmelCase ( self ) ->int: if not self.has_attentions: pass else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Dict = True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = self.model_tester.seq_length - self.model_tester.num_masks SCREAMING_SNAKE_CASE : List[Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Dict = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) SCREAMING_SNAKE_CASE : Dict = outputs.attentions self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : List[Any] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) SCREAMING_SNAKE_CASE : Dict = outputs.attentions self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) SCREAMING_SNAKE_CASE : str = len(__lowerCAmelCase ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Tuple = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertEqual(out_len + 1 , len(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE : int = outputs.attentions self.assertEqual(len(__lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __lowerCAmelCase ( self ) ->List[str]: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Tuple = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = self.model_tester.seq_length - self.model_tester.num_masks SCREAMING_SNAKE_CASE : int = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->str: pass def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) SCREAMING_SNAKE_CASE : Dict = np.load(a__ ) return list(a__ ) @require_torch @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ) ->int: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( __lowerCAmelCase ) SCREAMING_SNAKE_CASE : Tuple = self.default_image_processor SCREAMING_SNAKE_CASE : List[Any] = prepare_video() SCREAMING_SNAKE_CASE : int = image_processor(__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(**__lowerCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE : Optional[int] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) SCREAMING_SNAKE_CASE : Any = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) ) @slow def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE : str = prepare_video() SCREAMING_SNAKE_CASE : str = image_processor(__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # add boolean mask, indicating which patches to mask SCREAMING_SNAKE_CASE : List[str] = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) SCREAMING_SNAKE_CASE : Dict = torch.load(__lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**__lowerCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE : Any = torch.Size([1, 1408, 1536] ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] , device=__lowerCAmelCase ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([0.5_1_4_2] , device=__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , __lowerCAmelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) SCREAMING_SNAKE_CASE : Union[str, Any] = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=__lowerCAmelCase ).to( __lowerCAmelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor(torch.tensor([0.6_4_6_9] ) , device=__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , __lowerCAmelCase , atol=1e-4 ) )
357
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''DeiTFeatureExtractor'''] a__ : Any = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a__ : Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def UpperCAmelCase_( a__ , a__ , a__ = 16_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = int(round(sample_rate * max_length ) ) if len(_UpperCamelCase ) <= sample_length: return wav SCREAMING_SNAKE_CASE : str = randint(0 , len(_UpperCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name of a dataset from the datasets package'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the training audio paths and labels.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A file containing the validation audio paths and labels.'} ) __SCREAMING_SNAKE_CASE : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) __SCREAMING_SNAKE_CASE : str = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) __SCREAMING_SNAKE_CASE : str = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) __SCREAMING_SNAKE_CASE : str = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''} ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) __SCREAMING_SNAKE_CASE : float = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : str = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'} ) __SCREAMING_SNAKE_CASE : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name or path of preprocessor config.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __SCREAMING_SNAKE_CASE : Optional[bool] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def __lowerCAmelCase ( self ) ->List[str]: if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , a_ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''' ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Optional[int] = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE : int = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. SCREAMING_SNAKE_CASE : Optional[Any] = DatasetDict() SCREAMING_SNAKE_CASE : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. """ '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' F"""{", ".join(raw_datasets["train"].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. """ '''Make sure to set `--label_column_name` to the correct text column - one of ''' F"""{", ".join(raw_datasets["train"].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. SCREAMING_SNAKE_CASE : List[str] = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) SCREAMING_SNAKE_CASE : Dict = feature_extractor.model_input_names[0] def train_transforms(a__ ): SCREAMING_SNAKE_CASE : str = [] for audio in batch[data_args.audio_column_name]: SCREAMING_SNAKE_CASE : Union[str, Any] = random_subsample( audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(_UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) SCREAMING_SNAKE_CASE : str = {model_input_name: inputs.get(_UpperCamelCase )} SCREAMING_SNAKE_CASE : List[str] = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(a__ ): SCREAMING_SNAKE_CASE : Optional[Any] = [audio['''array'''] for audio in batch[data_args.audio_column_name]] SCREAMING_SNAKE_CASE : Tuple = feature_extractor(_UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) SCREAMING_SNAKE_CASE : Any = {model_input_name: inputs.get(_UpperCamelCase )} SCREAMING_SNAKE_CASE : Optional[int] = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. SCREAMING_SNAKE_CASE : Union[str, Any] = raw_datasets['''train'''].features[data_args.label_column_name].names SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = {}, {} for i, label in enumerate(_UpperCamelCase ): SCREAMING_SNAKE_CASE : str = str(_UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = label # Load the accuracy metric from the datasets package SCREAMING_SNAKE_CASE : Union[str, Any] = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(a__ ): SCREAMING_SNAKE_CASE : Optional[Any] = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=_UpperCamelCase , references=eval_pred.label_ids ) SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_UpperCamelCase ) , labelaid=_UpperCamelCase , idalabel=_UpperCamelCase , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE : int = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE : str = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE : Tuple = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(_UpperCamelCase , output_all_columns=_UpperCamelCase ) # Initialize our trainer SCREAMING_SNAKE_CASE : List[Any] = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE : Optional[int] = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE : Optional[int] = last_checkpoint SCREAMING_SNAKE_CASE : int = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE : Dict = trainer.evaluate() trainer.log_metrics('''eval''' , _UpperCamelCase ) trainer.save_metrics('''eval''' , _UpperCamelCase ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE : Any = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
358
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
0
def UpperCAmelCase_( a__ = 1_000 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
359
import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase_( a__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2 while True: if is_prime(a__ ): yield num num += 1 def UpperCAmelCase_( a__ = 2_000_000 ): """simple docstring""" return sum(takewhile(lambda a__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
19
0
from typing import TYPE_CHECKING from ...utils import _LazyModule a__ : Any = {'tokenization_byt5': ['ByT5Tokenizer']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys a__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
360
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( a__ ): """simple docstring""" def __init__( self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int: super().__init__(*_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = eval_examples SCREAMING_SNAKE_CASE : Optional[int] = post_process_function def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ) ->Dict[str, float]: SCREAMING_SNAKE_CASE : Any = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE : Dict = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE : Any = gen_kwargs SCREAMING_SNAKE_CASE : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE : str = self.get_eval_dataloader(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_metrics SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Optional[Any] = time.time() SCREAMING_SNAKE_CASE : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Tuple = eval_loop( _lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Dict = compute_metrics SCREAMING_SNAKE_CASE : Tuple = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : Optional[int] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase ) return metrics def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : str = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(_lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Dict = self.compute_metrics SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : List[str] = time.time() SCREAMING_SNAKE_CASE : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Any = eval_loop( _lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics SCREAMING_SNAKE_CASE : List[Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' ) SCREAMING_SNAKE_CASE : Dict = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
19
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a__ : List[str] = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''CLIPFeatureExtractor'''] a__ : Union[str, Any] = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys a__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
361
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = DDIMPipeline __SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = False def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler() SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) SCREAMING_SNAKE_CASE : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) def __lowerCAmelCase ( self ) ->Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_save_load_local(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32''' SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler() SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddim.to(_lowerCamelCase ) ddim.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256''' SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddpm.to(_lowerCamelCase ) ddpm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
19
0
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class a_ ( a__ ): """simple docstring""" def __get__( self , _lowerCamelCase , _lowerCamelCase=None ) ->Tuple: # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError('''unreadable attribute''' ) SCREAMING_SNAKE_CASE : Dict = '''__cached_''' + self.fget.__name__ SCREAMING_SNAKE_CASE : Dict = getattr(_a , _a , _a ) if cached is None: SCREAMING_SNAKE_CASE : Optional[int] = self.fget(_a ) setattr(_a , _a , _a ) return cached def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"""invalid truth value {val!r}""" ) def UpperCAmelCase_( a__ ): """simple docstring""" if is_torch_fx_proxy(UpperCamelCase__ ): return True if is_torch_available(): import torch if isinstance(UpperCamelCase__ , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(UpperCamelCase__ , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(UpperCamelCase__ , (jnp.ndarray, Tracer) ): return True return isinstance(UpperCamelCase__ , np.ndarray ) def UpperCAmelCase_( a__ ): """simple docstring""" return isinstance(UpperCamelCase__ , np.ndarray ) def UpperCAmelCase_( a__ ): """simple docstring""" return _is_numpy(UpperCamelCase__ ) def UpperCAmelCase_( a__ ): """simple docstring""" import torch return isinstance(UpperCamelCase__ , torch.Tensor ) def UpperCAmelCase_( a__ ): """simple docstring""" return False if not is_torch_available() else _is_torch(UpperCamelCase__ ) def UpperCAmelCase_( a__ ): """simple docstring""" import torch return isinstance(UpperCamelCase__ , torch.device ) def UpperCAmelCase_( a__ ): """simple docstring""" return False if not is_torch_available() else _is_torch_device(UpperCamelCase__ ) def UpperCAmelCase_( a__ ): """simple docstring""" import torch if isinstance(UpperCamelCase__ , UpperCamelCase__ ): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE : Dict = getattr(UpperCamelCase__ , UpperCamelCase__ ) else: return False return isinstance(UpperCamelCase__ , torch.dtype ) def UpperCAmelCase_( a__ ): """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(UpperCamelCase__ ) def UpperCAmelCase_( a__ ): """simple docstring""" import tensorflow as tf return isinstance(UpperCamelCase__ , tf.Tensor ) def UpperCAmelCase_( a__ ): """simple docstring""" return False if not is_tf_available() else _is_tensorflow(UpperCamelCase__ ) def UpperCAmelCase_( a__ ): """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(UpperCamelCase__ , '''is_symbolic_tensor''' ): return tf.is_symbolic_tensor(UpperCamelCase__ ) return type(UpperCamelCase__ ) == tf.Tensor def UpperCAmelCase_( a__ ): """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCamelCase__ ) def UpperCAmelCase_( a__ ): """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(UpperCamelCase__ , jnp.ndarray ) def UpperCAmelCase_( a__ ): """simple docstring""" return False if not is_flax_available() else _is_jax(UpperCamelCase__ ) def UpperCAmelCase_( a__ ): """simple docstring""" if isinstance(UpperCamelCase__ , (dict, UserDict) ): return {k: to_py_obj(UpperCamelCase__ ) for k, v in obj.items()} elif isinstance(UpperCamelCase__ , (list, tuple) ): return [to_py_obj(UpperCamelCase__ ) for o in obj] elif is_tf_tensor(UpperCamelCase__ ): return obj.numpy().tolist() elif is_torch_tensor(UpperCamelCase__ ): return obj.detach().cpu().tolist() elif is_jax_tensor(UpperCamelCase__ ): return np.asarray(UpperCamelCase__ ).tolist() elif isinstance(UpperCamelCase__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def UpperCAmelCase_( a__ ): """simple docstring""" if isinstance(UpperCamelCase__ , (dict, UserDict) ): return {k: to_numpy(UpperCamelCase__ ) for k, v in obj.items()} elif isinstance(UpperCamelCase__ , (list, tuple) ): return np.array(UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): return obj.numpy() elif is_torch_tensor(UpperCamelCase__ ): return obj.detach().cpu().numpy() elif is_jax_tensor(UpperCamelCase__ ): return np.asarray(UpperCamelCase__ ) else: return obj class a_ ( a__ ): """simple docstring""" def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Any = fields(self ) # Safety and consistency checks if not len(_a ): raise ValueError(F"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F"""{self.__class__.__name__} should not have more than one required field.""" ) SCREAMING_SNAKE_CASE : Optional[Any] = getattr(self , class_fields[0].name ) SCREAMING_SNAKE_CASE : List[Any] = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(_a ): if isinstance(_a , _a ): SCREAMING_SNAKE_CASE : Union[str, Any] = first_field.items() SCREAMING_SNAKE_CASE : List[str] = True else: try: SCREAMING_SNAKE_CASE : Union[str, Any] = iter(_a ) SCREAMING_SNAKE_CASE : List[str] = True except TypeError: SCREAMING_SNAKE_CASE : Union[str, Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_a ): if ( not isinstance(_a , (list, tuple) ) or not len(_a ) == 2 or not isinstance(element[0] , _a ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute SCREAMING_SNAKE_CASE : Any = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self , element[0] , element[1] ) if element[1] is not None: SCREAMING_SNAKE_CASE : Tuple = element[1] elif first_field is not None: SCREAMING_SNAKE_CASE : Dict = first_field else: for field in class_fields: SCREAMING_SNAKE_CASE : Dict = getattr(self , field.name ) if v is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = v def __delitem__( self , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[int]: raise Exception(F"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Dict: raise Exception(F"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[int]: raise Exception(F"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->List[Any]: raise Exception(F"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self , _lowerCamelCase ) ->str: if isinstance(_a , _a ): SCREAMING_SNAKE_CASE : Optional[int] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , _lowerCamelCase , _lowerCamelCase ) ->Optional[Any]: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_a , _a ) super().__setattr__(_a , _a ) def __setitem__( self , _lowerCamelCase , _lowerCamelCase ) ->str: # Will raise a KeyException if needed super().__setitem__(_a , _a ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_a , _a ) def __lowerCAmelCase ( self ) ->Dict: return tuple(self[k] for k in self.keys() ) class a_ ( a__ , a__ ): """simple docstring""" @classmethod def __lowerCAmelCase ( cls , _lowerCamelCase ) ->List[Any]: raise ValueError( F"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = '''longest''' __SCREAMING_SNAKE_CASE : str = '''max_length''' __SCREAMING_SNAKE_CASE : List[str] = '''do_not_pad''' class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = '''pt''' __SCREAMING_SNAKE_CASE : List[Any] = '''tf''' __SCREAMING_SNAKE_CASE : int = '''np''' __SCREAMING_SNAKE_CASE : Any = '''jax''' class a_ : """simple docstring""" def __init__( self , _lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE : Tuple = context_managers SCREAMING_SNAKE_CASE : Any = ExitStack() def __enter__( self ) ->Union[str, Any]: for context_manager in self.context_managers: self.stack.enter_context(_a ) def __exit__( self , *_lowerCamelCase , **_lowerCamelCase ) ->Any: self.stack.__exit__(*_a , **_a ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = infer_framework(UpperCamelCase__ ) if framework == "tf": SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": SCREAMING_SNAKE_CASE : Dict = inspect.signature(model_class.forward ) # PyTorch models else: SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = model_class.__name__ SCREAMING_SNAKE_CASE : List[str] = infer_framework(UpperCamelCase__ ) if framework == "tf": SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model_class.forward ) # PyTorch models else: SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def UpperCAmelCase_( a__ , a__ = "" , a__ = "." ): """simple docstring""" def _flatten_dict(a__ , a__="" , a__="." ): for k, v in d.items(): SCREAMING_SNAKE_CASE : int = str(UpperCamelCase__ ) + delimiter + str(UpperCamelCase__ ) if parent_key else k if v and isinstance(UpperCamelCase__ , UpperCamelCase__ ): yield from flatten_dict(UpperCamelCase__ , UpperCamelCase__ , delimiter=UpperCamelCase__ ).items() else: yield key, v return dict(_flatten_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) @contextmanager def UpperCAmelCase_( a__ , a__ = False ): """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def UpperCAmelCase_( a__ , a__=None ): """simple docstring""" if is_numpy_array(UpperCamelCase__ ): return np.transpose(UpperCamelCase__ , axes=UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.T if axes is None else array.permute(*UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.transpose(UpperCamelCase__ , perm=UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.transpose(UpperCamelCase__ , axes=UpperCamelCase__ ) else: raise ValueError(F"""Type not supported for transpose: {type(UpperCamelCase__ )}.""" ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if is_numpy_array(UpperCamelCase__ ): return np.reshape(UpperCamelCase__ , UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.reshape(*UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.reshape(UpperCamelCase__ , UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.reshape(UpperCamelCase__ , UpperCamelCase__ ) else: raise ValueError(F"""Type not supported for reshape: {type(UpperCamelCase__ )}.""" ) def UpperCAmelCase_( a__ , a__=None ): """simple docstring""" if is_numpy_array(UpperCamelCase__ ): return np.squeeze(UpperCamelCase__ , axis=UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.squeeze() if axis is None else array.squeeze(dim=UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.squeeze(UpperCamelCase__ , axis=UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.squeeze(UpperCamelCase__ , axis=UpperCamelCase__ ) else: raise ValueError(F"""Type not supported for squeeze: {type(UpperCamelCase__ )}.""" ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if is_numpy_array(UpperCamelCase__ ): return np.expand_dims(UpperCamelCase__ , UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.unsqueeze(dim=UpperCamelCase__ ) elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.expand_dims(UpperCamelCase__ , axis=UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return jnp.expand_dims(UpperCamelCase__ , axis=UpperCamelCase__ ) else: raise ValueError(F"""Type not supported for expand_dims: {type(UpperCamelCase__ )}.""" ) def UpperCAmelCase_( a__ ): """simple docstring""" if is_numpy_array(UpperCamelCase__ ): return np.size(UpperCamelCase__ ) elif is_torch_tensor(UpperCamelCase__ ): return array.numel() elif is_tf_tensor(UpperCamelCase__ ): import tensorflow as tf return tf.size(UpperCamelCase__ ) elif is_jax_tensor(UpperCamelCase__ ): return array.size else: raise ValueError(F"""Type not supported for expand_dims: {type(UpperCamelCase__ )}.""" ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" for key, value in auto_map.items(): if isinstance(UpperCamelCase__ , (tuple, list) ): SCREAMING_SNAKE_CASE : Optional[int] = [F"""{repo_id}--{v}""" if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: SCREAMING_SNAKE_CASE : List[str] = F"""{repo_id}--{value}""" return auto_map def UpperCAmelCase_( a__ ): """simple docstring""" for base_class in inspect.getmro(UpperCamelCase__ ): SCREAMING_SNAKE_CASE : str = base_class.__module__ SCREAMING_SNAKE_CASE : List[Any] = base_class.__name__ if module.startswith('''tensorflow''' ) or module.startswith('''keras''' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('''torch''' ) or name == "PreTrainedModel": return "pt" elif module.startswith('''flax''' ) or module.startswith('''jax''' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"""Could not infer framework from class {model_class}.""" )
362
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self ) ->Dict: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = '''[PAD]''' SCREAMING_SNAKE_CASE : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowerCamelCase ) , 1012 ) def __lowerCAmelCase ( self ) ->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self ) ->List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!''' SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def __lowerCAmelCase ( self ) ->int: # fmt: off SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
19
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Optional[int]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. SCREAMING_SNAKE_CASE : Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE : int = DisjunctiveConstraint(_SCREAMING_SNAKE_CASE ) self.assertTrue(isinstance(dc.token_ids , _SCREAMING_SNAKE_CASE ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __lowerCAmelCase ( self ) ->str: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). SCREAMING_SNAKE_CASE : Tuple = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_SCREAMING_SNAKE_CASE ): DisjunctiveConstraint(_SCREAMING_SNAKE_CASE ) # fails here def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE : Optional[int] = DisjunctiveConstraint(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = dc.update(1 ) SCREAMING_SNAKE_CASE : Optional[Any] = stepped is True and completed is False and reset is False self.assertTrue(_SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE : Any = dc.update(2 ) SCREAMING_SNAKE_CASE : List[str] = stepped is True and completed is False and reset is False self.assertTrue(_SCREAMING_SNAKE_CASE ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE : Tuple = dc.update(3 ) SCREAMING_SNAKE_CASE : Optional[Any] = stepped is True and completed is True and reset is False self.assertTrue(_SCREAMING_SNAKE_CASE ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE : List[Any] = DisjunctiveConstraint(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE : str = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) SCREAMING_SNAKE_CASE : List[str] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() SCREAMING_SNAKE_CASE : Optional[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE : str = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE : int = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
363
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''.''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
19
0
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class a_ ( snake_case__ ): """simple docstring""" def __init__( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , **_lowerCamelCase , ) ->Any: SCREAMING_SNAKE_CASE : Dict = path_or_paths SCREAMING_SNAKE_CASE : Union[str, Any] = split if split or isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else "train" SCREAMING_SNAKE_CASE : List[Any] = features SCREAMING_SNAKE_CASE : Any = cache_dir SCREAMING_SNAKE_CASE : Tuple = keep_in_memory SCREAMING_SNAKE_CASE : List[Any] = streaming SCREAMING_SNAKE_CASE : Optional[int] = num_proc SCREAMING_SNAKE_CASE : Tuple = kwargs @abstractmethod def __lowerCAmelCase ( self ) ->List[Any]: pass class a_ ( snake_case__ ): """simple docstring""" def __init__( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , **_lowerCamelCase , ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[Any] = features SCREAMING_SNAKE_CASE : Any = cache_dir SCREAMING_SNAKE_CASE : List[Any] = keep_in_memory SCREAMING_SNAKE_CASE : Dict = streaming SCREAMING_SNAKE_CASE : str = num_proc SCREAMING_SNAKE_CASE : Optional[Any] = kwargs @abstractmethod def __lowerCAmelCase ( self ) ->Optional[Any]: pass
364
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Tuple = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } a__ : Optional[Any] = {'''mobilebert-uncased''': 512} a__ : List[Any] = {} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE : Optional[int] = strip_accents SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = do_lower_case def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
19
0
from typing import TYPE_CHECKING from ....utils import _LazyModule a__ : Optional[Any] = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys a__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
365
import math a__ : List[str] = 10 a__ : Optional[int] = 7 a__ : int = BALLS_PER_COLOUR * NUM_COLOURS def UpperCAmelCase_( a__ = 20 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
19
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Dict = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ 'OPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OPTForCausalLM', 'OPTModel', 'OPTPreTrainedModel', 'OPTForSequenceClassification', 'OPTForQuestionAnswering', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ 'FlaxOPTForCausalLM', 'FlaxOPTModel', 'FlaxOPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys a__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
366
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig a__ : List[str] = logging.get_logger(__name__) # General docstring a__ : Tuple = '''MobileNetV1Config''' # Base docstring a__ : Optional[Any] = '''google/mobilenet_v1_1.0_224''' a__ : Tuple = [1, 1_024, 7, 7] # Image classification docstring a__ : Optional[int] = '''google/mobilenet_v1_1.0_224''' a__ : int = '''tabby, tabby cat''' a__ : List[Any] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCAmelCase_( a__ , a__ , a__=None ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[str] = model.mobilenet_va else: SCREAMING_SNAKE_CASE : Union[str, Any] = model SCREAMING_SNAKE_CASE : Optional[int] = '''MobilenetV1/Conv2d_0/''' SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE : Union[str, Any] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE : Any = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE : Dict = i + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2 SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.bias SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE : Any = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" SCREAMING_SNAKE_CASE : Dict = pointer.convolution.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : str = pointer.normalization.running_var if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' SCREAMING_SNAKE_CASE : List[str] = model.classifier.weight SCREAMING_SNAKE_CASE : List[str] = model.classifier.bias return tf_to_pt_map def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : List[Any] = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE : int = _build_tf_to_pytorch_map(a__ , a__ , a__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue SCREAMING_SNAKE_CASE : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) SCREAMING_SNAKE_CASE : Tuple = np.transpose(a__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE : Union[str, Any] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE : Optional[int] = np.transpose(a__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ ) tf_weights.pop(a__ , a__ ) tf_weights.pop(name + '''/RMSProp''' , a__ ) tf_weights.pop(name + '''/RMSProp_1''' , a__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ ) logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = conv_layer.stride SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE : List[str] = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE : int = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE : Tuple = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE : List[str] = pad_along_width // 2 SCREAMING_SNAKE_CASE : Any = pad_along_width - pad_left SCREAMING_SNAKE_CASE : str = pad_along_height // 2 SCREAMING_SNAKE_CASE : Optional[int] = pad_along_height - pad_top SCREAMING_SNAKE_CASE : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 ) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = True , ) ->None: super().__init__() SCREAMING_SNAKE_CASE : Any = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) SCREAMING_SNAKE_CASE : List[str] = nn.Convad( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='''zeros''' , ) if use_normalization: SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad( num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , ) else: SCREAMING_SNAKE_CASE : Dict = None if use_activation: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE : List[Any] = config.hidden_act else: SCREAMING_SNAKE_CASE : Optional[Any] = None def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor: if self.config.tf_padding: SCREAMING_SNAKE_CASE : List[Any] = apply_tf_padding(_lowerCamelCase , self.convolution ) SCREAMING_SNAKE_CASE : Dict = self.convolution(_lowerCamelCase ) if self.normalization is not None: SCREAMING_SNAKE_CASE : int = self.normalization(_lowerCamelCase ) if self.activation is not None: SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase ) return features class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = MobileNetVaConfig __SCREAMING_SNAKE_CASE : List[Any] = load_tf_weights_in_mobilenet_va __SCREAMING_SNAKE_CASE : int = 'mobilenet_v1' __SCREAMING_SNAKE_CASE : int = 'pixel_values' __SCREAMING_SNAKE_CASE : List[str] = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) a__ : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ : Union[str, Any] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True ) ->Dict: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = config SCREAMING_SNAKE_CASE : Dict = 32 SCREAMING_SNAKE_CASE : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) SCREAMING_SNAKE_CASE : str = MobileNetVaConvLayer( _lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE : Any = nn.ModuleList() for i in range(13 ): SCREAMING_SNAKE_CASE : int = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) ) SCREAMING_SNAKE_CASE : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_stem(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): SCREAMING_SNAKE_CASE : Optional[int] = layer_module(_lowerCamelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE : List[str] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 ) else: SCREAMING_SNAKE_CASE : List[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->None: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels SCREAMING_SNAKE_CASE : str = MobileNetVaModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification''' else: SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : Any = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE : Dict = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : List[Any] = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
19
0
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel a__ : Dict = False a__ : Optional[Any] = True a__ : str = False if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--repo_path''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') a__ : Tuple = parser.parse_args() a__ : int = { '''image_size''': '''sample_size''', '''num_res_blocks''': '''layers_per_block''', '''block_channels''': '''block_out_channels''', '''down_blocks''': '''down_block_types''', '''up_blocks''': '''up_block_types''', '''downscale_freq_shift''': '''freq_shift''', '''resnet_num_groups''': '''norm_num_groups''', '''resnet_act_fn''': '''act_fn''', '''resnet_eps''': '''norm_eps''', '''num_head_channels''': '''attention_head_dim''', } a__ : Any = { '''time_steps''': '''time_proj''', '''mid''': '''mid_block''', '''downsample_blocks''': '''down_blocks''', '''upsample_blocks''': '''up_blocks''', } a__ : Dict = '''''' if has_file(args.repo_path, '''config.json''') else '''unet''' with open(os.path.join(args.repo_path, subfolder, '''config.json'''), '''r''', encoding='''utf-8''') as reader: a__ : str = reader.read() a__ : Optional[Any] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, '''config.json'''): a__ : str = UNetaDModel(**config) else: a__ : List[str] = UNetaDConditionModel if '''ldm-text2im-large-256''' in args.repo_path else UNetaDModel a__ : Union[str, Any] = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) a__ : Union[str, Any] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: a__ : List[str] = config[key] del config[key] a__ : Dict = [k.replace('''UNetRes''', '''''') for k in config['''down_block_types''']] a__ : int = [k.replace('''UNetRes''', '''''') for k in config['''up_block_types''']] if do_only_weights: a__ : List[str] = torch.load(os.path.join(args.repo_path, subfolder, '''diffusion_pytorch_model.bin''')) a__ : Union[str, Any] = {} for param_key, param_value in state_dict.items(): if param_key.endswith('''.op.bias''') or param_key.endswith('''.op.weight'''): continue a__ : Optional[Any] = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('''.''')[0] == key: a__ : Union[str, Any] = param_value a__ : Union[str, Any] = True if not has_changed: a__ : List[str] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
367
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def UpperCAmelCase_( a__ = 1 / 12_345 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : int = 3 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): SCREAMING_SNAKE_CASE : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
19
0
def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : List[str] = len(_snake_case ) for i in range(n - 1 ): for j in range(i + 1 , _snake_case ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def UpperCAmelCase_( a__ ): """simple docstring""" if len(_snake_case ) <= 1: return arr, 0 SCREAMING_SNAKE_CASE : int = len(_snake_case ) // 2 SCREAMING_SNAKE_CASE : Any = arr[0:mid] SCREAMING_SNAKE_CASE : Optional[int] = arr[mid:] SCREAMING_SNAKE_CASE : str = count_inversions_recursive(_snake_case ) SCREAMING_SNAKE_CASE : int = count_inversions_recursive(_snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = _count_cross_inversions(_snake_case , _snake_case ) SCREAMING_SNAKE_CASE : Dict = inversion_p + inversions_q + cross_inversions return c, num_inversions def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : List[Any] = 0 while i < len(_snake_case ) and j < len(_snake_case ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_snake_case ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_snake_case ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) SCREAMING_SNAKE_CASE : List[str] = count_inversions_bf(_snake_case ) SCREAMING_SNAKE_CASE : Any = count_inversions_recursive(_snake_case ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , _snake_case ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() SCREAMING_SNAKE_CASE : str = count_inversions_bf(_snake_case ) SCREAMING_SNAKE_CASE : Dict = count_inversions_recursive(_snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , _snake_case ) # an empty list should also have zero inversions SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : List[Any] = count_inversions_bf(_snake_case ) SCREAMING_SNAKE_CASE : Dict = count_inversions_recursive(_snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , _snake_case ) if __name__ == "__main__": main()
368
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ : Any = TypeVar('''T''') def UpperCAmelCase_( a__ ): """simple docstring""" return (position - 1) // 2 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 1 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 2 class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : list[tuple[T, int]] = [] SCREAMING_SNAKE_CASE : dict[T, int] = {} SCREAMING_SNAKE_CASE : int = 0 def __len__( self ) ->int: return self.elements def __repr__( self ) ->str: return str(self.heap ) def __lowerCAmelCase ( self ) ->bool: # Check if the priority queue is empty return self.elements == 0 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE : Tuple = self.elements self.elements += 1 self._bubble_up(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[0] self._bubble_down(_lowerCamelCase ) return elem def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Update the weight of the given key SCREAMING_SNAKE_CASE : List[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE : Any = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE : List[Any] = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (upward movement) [to be used internally # only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE : str = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.heap[curr_pos] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_up(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (downward movement) [to be used # internally only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[curr_pos] SCREAMING_SNAKE_CASE : List[str] = get_child_left_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = get_child_right_position(_lowerCamelCase ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[child_left_position] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Swap the nodes at the given positions SCREAMING_SNAKE_CASE : Optional[int] = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE : Any = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE : Optional[int] = nodea_pos SCREAMING_SNAKE_CASE : List[str] = nodea_pos class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {} SCREAMING_SNAKE_CASE : int = 0 def __repr__( self ) ->str: return str(self.connections ) def __len__( self ) ->int: return self.nodes def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Add a node in the graph if it is not in the graph if node not in self.connections: SCREAMING_SNAKE_CASE : Any = {} self.nodes += 1 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an edge between 2 nodes in the graph self.add_node(_lowerCamelCase ) self.add_node(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = weight SCREAMING_SNAKE_CASE : str = weight def UpperCAmelCase_( a__ , ): """simple docstring""" SCREAMING_SNAKE_CASE : dict[T, int] = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE : dict[T, T | None] = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE : List[Any] = priority_queue.extract_min() SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : Any = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node return dist, parent
19
0
def UpperCAmelCase_( a__ = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = set() # Replace all the whitespace in our sentence SCREAMING_SNAKE_CASE : Optional[int] = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(a__ ) == 26 def UpperCAmelCase_( a__ = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [False] * 26 for char in input_str: if char.islower(): SCREAMING_SNAKE_CASE : Union[str, Any] = True elif char.isupper(): SCREAMING_SNAKE_CASE : Optional[int] = True return all(a__ ) def UpperCAmelCase_( a__ = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCAmelCase_( ): """simple docstring""" from timeit import timeit SCREAMING_SNAKE_CASE : Optional[Any] = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit('''is_pangram()''' , setup=a__ ) ) print(timeit('''is_pangram_faster()''' , setup=a__ ) ) print(timeit('''is_pangram_fastest()''' , setup=a__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
369
from math import pi, sqrt, tan def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) SCREAMING_SNAKE_CASE : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(a__ , 2 ) * torus_radius * tube_radius def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) SCREAMING_SNAKE_CASE : int = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : List[str] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not isinstance(a__ , a__ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F"Rectangle: {area_rectangle(10, 20) = }") print(F"Square: {area_square(10) = }") print(F"Triangle: {area_triangle(10, 10) = }") print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(F"Parallelogram: {area_parallelogram(10, 20) = }") print(F"Rhombus: {area_rhombus(10, 20) = }") print(F"Trapezium: {area_trapezium(10, 20, 30) = }") print(F"Circle: {area_circle(20) = }") print(F"Ellipse: {area_ellipse(10, 20) = }") print('''\nSurface Areas of various geometric shapes: \n''') print(F"Cube: {surface_area_cube(20) = }") print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(F"Sphere: {surface_area_sphere(20) = }") print(F"Hemisphere: {surface_area_hemisphere(20) = }") print(F"Cone: {surface_area_cone(10, 20) = }") print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(F"Cylinder: {surface_area_cylinder(10, 20) = }") print(F"Torus: {surface_area_torus(20, 10) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(F"Square: {area_reg_polygon(4, 10) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
19
0
a__ : str = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip a__ : Optional[Any] = concatenate_datasets a__ : Optional[int] = DownloadConfig a__ : str = DownloadManager a__ : List[str] = DownloadMode a__ : Optional[int] = DownloadConfig a__ : Tuple = DownloadMode a__ : str = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
370
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a__ : List[str] = None a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Dict = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a__ : str = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off a__ : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->List[Any]: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : int = { lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX''' SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCAmelCase ( self ) ->str: return self._src_lang @src_lang.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[str] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang_id return inputs def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[str] = src_lang SCREAMING_SNAKE_CASE : List[str] = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self ) ->List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : str = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Any = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
19
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : int = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} a__ : List[str] = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } a__ : Dict = { '''allenai/longformer-base-4096''': 4_096, '''allenai/longformer-large-4096''': 4_096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4_096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4_096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCAmelCase_( ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) SCREAMING_SNAKE_CASE : List[Any] = bs[:] SCREAMING_SNAKE_CASE : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE : Any = [chr(__lowerCAmelCase ) for n in cs] return dict(zip(__lowerCAmelCase , __lowerCAmelCase ) ) def UpperCAmelCase_( a__ ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = set() SCREAMING_SNAKE_CASE : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE : str = char return pairs class a_ ( __lowerCamelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Any = ["""input_ids""", """attention_mask"""] def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , **_lowerCamelCase , ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else bos_token SCREAMING_SNAKE_CASE : Dict = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else eos_token SCREAMING_SNAKE_CASE : str = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else sep_token SCREAMING_SNAKE_CASE : Union[str, Any] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else cls_token SCREAMING_SNAKE_CASE : str = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else unk_token SCREAMING_SNAKE_CASE : Tuple = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : int = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token super().__init__( errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , ) with open(__lowercase , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE : int = json.load(__lowercase ) SCREAMING_SNAKE_CASE : Any = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE : Tuple = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE : List[str] = bytes_to_unicode() SCREAMING_SNAKE_CASE : Any = {v: k for k, v in self.byte_encoder.items()} with open(__lowercase , encoding='''utf-8''' ) as merges_handle: SCREAMING_SNAKE_CASE : Optional[int] = merges_handle.read().split('''\n''' )[1:-1] SCREAMING_SNAKE_CASE : Optional[Any] = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE : Dict = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) SCREAMING_SNAKE_CASE : Dict = {} SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE : List[str] = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def __lowerCAmelCase ( self ) ->Optional[Any]: return len(self.encoder ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE : int = tuple(__lowercase ) SCREAMING_SNAKE_CASE : List[Any] = get_pairs(__lowercase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE : Optional[Any] = min(__lowercase , key=lambda _lowerCamelCase : self.bpe_ranks.get(__lowercase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE : Optional[Any] = bigram SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : Tuple = 0 while i < len(__lowercase ): try: SCREAMING_SNAKE_CASE : Any = word.index(__lowercase , __lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE : str = j if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE : Tuple = tuple(__lowercase ) SCREAMING_SNAKE_CASE : List[str] = new_word if len(__lowercase ) == 1: break else: SCREAMING_SNAKE_CASE : List[Any] = get_pairs(__lowercase ) SCREAMING_SNAKE_CASE : Any = ''' '''.join(__lowercase ) SCREAMING_SNAKE_CASE : Tuple = word return word def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : List[Any] = [] for token in re.findall(self.pat , __lowercase ): SCREAMING_SNAKE_CASE : Dict = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowercase ).split(''' ''' ) ) return bpe_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: return self.decoder.get(__lowercase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE : Optional[int] = ''''''.join(__lowercase ) SCREAMING_SNAKE_CASE : List[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Optional[int]: if not os.path.isdir(__lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase ) + '''\n''' ) SCREAMING_SNAKE_CASE : Tuple = 0 with open(__lowercase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowerCamelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) SCREAMING_SNAKE_CASE : List[Any] = token_index writer.write(''' '''.join(__lowercase ) + '''\n''' ) index += 1 return vocab_file, merge_file def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Any: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE : Optional[int] = [self.cls_token_id] SCREAMING_SNAKE_CASE : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->Any: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) + [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->str: SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False , **_lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowercase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE : Optional[Any] = ''' ''' + text return (text, kwargs)
371
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = proj_size SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase ) for _ in range(_lowerCamelCase ) ] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: for block in self.blocks: SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase ) return hidden_states
19
0
import logging import os from .state import PartialState class a_ ( logging.LoggerAdapter ): """simple docstring""" @staticmethod def __lowerCAmelCase ( _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) ->Any: if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) SCREAMING_SNAKE_CASE : str = kwargs.pop('''main_process_only''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop('''in_order''' , _lowerCamelCase ) if self.isEnabledFor(_lowerCamelCase ): if self._should_log(_lowerCamelCase ): SCREAMING_SNAKE_CASE : int = self.process(_lowerCamelCase , _lowerCamelCase ) self.logger.log(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) elif in_order: SCREAMING_SNAKE_CASE : Optional[Any] = PartialState() for i in range(state.num_processes ): if i == state.process_index: SCREAMING_SNAKE_CASE : Dict = self.process(_lowerCamelCase , _lowerCamelCase ) self.logger.log(_lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) state.wait_for_everyone() def UpperCAmelCase_( a__ , a__ = None ): """simple docstring""" if log_level is None: SCREAMING_SNAKE_CASE : Optional[Any] = os.environ.get('''ACCELERATE_LOG_LEVEL''' , _UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = logging.getLogger(_UpperCAmelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_UpperCAmelCase , {} )
350
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Tuple = '''▁''' a__ : List[Any] = {'''vocab_file''': '''spiece.model'''} a__ : Optional[Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } a__ : str = { '''google/pegasus-xsum''': 512, } a__ : str = logging.get_logger(__name__) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<mask_2>" , _lowerCamelCase="<mask_1>" , _lowerCamelCase=None , _lowerCamelCase=103 , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : Dict = offset if additional_special_tokens is not None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(_lowerCamelCase )}, but is""" F""" {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_lowerCamelCase ) , self.offset - 1 ) ] if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) SCREAMING_SNAKE_CASE : Dict = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : List[str] = mask_token_sent SCREAMING_SNAKE_CASE : Optional[int] = vocab_file SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) # add special tokens to encoder dict SCREAMING_SNAKE_CASE : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def __lowerCAmelCase ( self ) ->int: return len(self.sp_model ) + self.offset def __lowerCAmelCase ( self ) ->Dict[str, int]: SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE : str = None return state def __setstate__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] SCREAMING_SNAKE_CASE : List[str] = self.sp_model.piece_to_id(_lowerCamelCase ) return sp_id + self.offset def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: SCREAMING_SNAKE_CASE : Dict = self.sp_model.IdToPiece(index - self.offset ) return token def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : int = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->str: return 1 def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Dict = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return self._special_token_mask(_lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(_lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : int = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
19
0
def UpperCAmelCase_( a__ ): """simple docstring""" def merge(a__ , a__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(a__ ) <= 1: return collection SCREAMING_SNAKE_CASE : Optional[int] = len(a__ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() a__ : Any = input('''Enter numbers separated by a comma:\n''').strip() a__ : Optional[int] = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
351
def UpperCAmelCase_( a__ ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Tuple = 1 while repunit: SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_( a__ = 1_000_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"{solution() = }")
19
0
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=64 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=64 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ) ->Optional[int]: SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = seq_length SCREAMING_SNAKE_CASE : Union[str, Any] = is_training SCREAMING_SNAKE_CASE : Any = use_input_mask SCREAMING_SNAKE_CASE : str = use_token_type_ids SCREAMING_SNAKE_CASE : List[str] = use_labels SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : str = num_attention_heads SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : Any = type_sequence_label_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : List[str] = num_labels SCREAMING_SNAKE_CASE : Tuple = num_choices SCREAMING_SNAKE_CASE : List[Any] = scope def __lowerCAmelCase ( self ) ->Optional[Any]: return MPNetConfig.from_pretrained('''microsoft/mpnet-base''' ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : int = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ) ->Union[str, Any]: return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : int = MPNetModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : str = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[str] = MPNetForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : Optional[Any] = MPNetForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : int = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : str = self.num_choices SCREAMING_SNAKE_CASE : Optional[Any] = MPNetForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : int = model( _lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : List[Any] = self.num_labels SCREAMING_SNAKE_CASE : List[Any] = MPNetForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : Tuple = ( { 'feature-extraction': MPNetModel, 'fill-mask': MPNetForMaskedLM, 'question-answering': MPNetForQuestionAnswering, 'text-classification': MPNetForSequenceClassification, 'token-classification': MPNetForTokenClassification, 'zero-shot': MPNetForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : int = True def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Tuple = MPNetModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->List[str]: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*_lowerCamelCase ) @require_torch class a_ ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[Any] = MPNetModel.from_pretrained('''microsoft/mpnet-base''' ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase )[0] SCREAMING_SNAKE_CASE : Any = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[[-0.0_5_5_0, 0.1_9_4_3, -0.0_7_4_0], [-0.0_5_6_2, 0.2_2_1_1, -0.0_5_7_9], [-0.0_4_3_7, 0.3_3_3_7, -0.0_6_4_1]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
352
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict: SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Any = num_stages SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : int = out_features SCREAMING_SNAKE_CASE : List[str] = num_labels SCREAMING_SNAKE_CASE : int = scope SCREAMING_SNAKE_CASE : Optional[Any] = num_stages def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->List[Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowerCAmelCase ( self ) ->Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[str] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = UperNetModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->str: return def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->str: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowerCAmelCase ( self ) ->str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->Tuple: pass def __lowerCAmelCase ( self ) ->int: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = _config_zero_init(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass @slow def __lowerCAmelCase ( self ) ->List[Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) SCREAMING_SNAKE_CASE : Any = Image.open(a__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
19
0
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__ = None , a__ = None , a__ = None , ): """simple docstring""" if config_name_or_path is None: SCREAMING_SNAKE_CASE : Any = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE : Dict = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE : Dict = question_encoder_name_or_path SCREAMING_SNAKE_CASE : Any = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. SCREAMING_SNAKE_CASE : List[str] = RagConfig.from_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = gen_config SCREAMING_SNAKE_CASE : Tuple = question_encoder_config SCREAMING_SNAKE_CASE : Any = model_class.from_pretrained_question_encoder_generator( _lowerCAmelCase , _lowerCAmelCase , config=_lowerCAmelCase ) rag_model.save_pretrained(_lowerCAmelCase ) # Sanity check. model_class.from_pretrained(_lowerCAmelCase ) # Save tokenizers. SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained(_lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": a__ : str = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) a__ : List[str] = parser.parse_args() a__ : Optional[int] = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
353
import datasets from .evaluate import evaluate a__ : Dict = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' a__ : List[str] = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' a__ : List[Any] = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
19
0
from __future__ import annotations import pandas as pd def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [0] * no_of_processes SCREAMING_SNAKE_CASE : str = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(_A ): SCREAMING_SNAKE_CASE : List[str] = burst_time[i] SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Tuple = 999_999_999 SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : str = False # Process until all processes are completed while complete != no_of_processes: for j in range(_A ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: SCREAMING_SNAKE_CASE : str = remaining_time[j] SCREAMING_SNAKE_CASE : Optional[Any] = j SCREAMING_SNAKE_CASE : Union[str, Any] = True if not check: increment_time += 1 continue remaining_time[short] -= 1 SCREAMING_SNAKE_CASE : List[Any] = remaining_time[short] if minm == 0: SCREAMING_SNAKE_CASE : Optional[int] = 999_999_999 if remaining_time[short] == 0: complete += 1 SCREAMING_SNAKE_CASE : List[Any] = False # Find finish time of current process SCREAMING_SNAKE_CASE : Tuple = increment_time + 1 # Calculate waiting time SCREAMING_SNAKE_CASE : int = finish_time - arrival_time[short] SCREAMING_SNAKE_CASE : int = finar - burst_time[short] if waiting_time[short] < 0: SCREAMING_SNAKE_CASE : Tuple = 0 # Increment time increment_time += 1 return waiting_time def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [0] * no_of_processes for i in range(_A ): SCREAMING_SNAKE_CASE : Optional[int] = burst_time[i] + waiting_time[i] return turn_around_time def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i in range(_A ): SCREAMING_SNAKE_CASE : int = total_waiting_time + waiting_time[i] SCREAMING_SNAKE_CASE : List[Any] = total_turn_around_time + turn_around_time[i] print(F"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print('''Average turn around time =''' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') a__ : Optional[Any] = int(input()) a__ : str = [0] * no_of_processes a__ : Tuple = [0] * no_of_processes a__ : Dict = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) a__ : Any = map(int, input().split()) a__ : List[str] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) a__ : List[Any] = burst_time a__ : List[Any] = no_of_processes a__ : int = waiting_time a__ : int = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) a__ : List[Any] = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
354
from sklearn.metrics import matthews_corrcoef import datasets a__ : Optional[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' a__ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' a__ : Union[str, Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]: return { "matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ), }
19
0
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = checkpoints.load_tax_checkpoint(a__ ) SCREAMING_SNAKE_CASE : List[str] = flatten_dict(a__ ) return flax_params def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = {} SCREAMING_SNAKE_CASE : str = { 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } SCREAMING_SNAKE_CASE : List[Any] = { 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key SCREAMING_SNAKE_CASE : Any = '.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): SCREAMING_SNAKE_CASE : Union[str, Any] = new_key.replace(a__ , a__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): SCREAMING_SNAKE_CASE : int = new_key.replace(a__ , a__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number SCREAMING_SNAKE_CASE : Any = re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , a__ ) SCREAMING_SNAKE_CASE : int = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number SCREAMING_SNAKE_CASE : Optional[Any] = re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , a__ ) SCREAMING_SNAKE_CASE : int = flax_dict[key] SCREAMING_SNAKE_CASE : Union[str, Any] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): SCREAMING_SNAKE_CASE : str = torch.from_numpy(converted_dict[key].T ) else: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def UpperCAmelCase_( a__ , a__ , a__=False , a__=False ): """simple docstring""" SCREAMING_SNAKE_CASE : int = get_flax_param(a__ ) if not use_large: SCREAMING_SNAKE_CASE : Optional[int] = PixaStructVisionConfig() SCREAMING_SNAKE_CASE : Union[str, Any] = PixaStructTextConfig() else: SCREAMING_SNAKE_CASE : List[str] = PixaStructVisionConfig( hidden_size=1_536 , d_ff=3_968 , num_attention_heads=24 , num_hidden_layers=18 ) SCREAMING_SNAKE_CASE : List[str] = PixaStructTextConfig(hidden_size=1_536 , d_ff=3_968 , num_heads=24 , num_layers=18 ) SCREAMING_SNAKE_CASE : List[Any] = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = PixaStructForConditionalGeneration(a__ ) SCREAMING_SNAKE_CASE : Any = rename_and_convert_flax_params(a__ ) model.load_state_dict(a__ ) SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) SCREAMING_SNAKE_CASE : Optional[int] = PixaStructImageProcessor() SCREAMING_SNAKE_CASE : List[str] = PixaStructProcessor(image_processor=a__ , tokenizer=a__ ) if use_large: SCREAMING_SNAKE_CASE : List[Any] = 4_096 SCREAMING_SNAKE_CASE : Dict = True # mkdir if needed os.makedirs(a__ , exist_ok=a__ ) model.save_pretrained(a__ ) processor.save_pretrained(a__ ) print('''Model saved in {}'''.format(a__ ) ) if __name__ == "__main__": a__ : Any = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') a__ : Optional[Any] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
355
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a__ ) SCREAMING_SNAKE_CASE : int = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=a__ ) env_command_parser(subparsers=a__ ) launch_command_parser(subparsers=a__ ) tpu_command_parser(subparsers=a__ ) test_command_parser(subparsers=a__ ) # Let's go SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if not hasattr(a__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(a__ ) if __name__ == "__main__": main()
19
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class a_ ( __lowerCAmelCase ): __SCREAMING_SNAKE_CASE : UNetaDModel __SCREAMING_SNAKE_CASE : ScoreSdeVeScheduler def __init__( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: super().__init__() self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) @torch.no_grad() def __call__( self , _lowerCamelCase = 1 , _lowerCamelCase = 2000 , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , **_lowerCamelCase , ) ->Union[ImagePipelineOutput, Tuple]: SCREAMING_SNAKE_CASE : str = self.unet.config.sample_size SCREAMING_SNAKE_CASE : str = (batch_size, 3, img_size, img_size) SCREAMING_SNAKE_CASE : Optional[int] = self.unet SCREAMING_SNAKE_CASE : Optional[int] = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ ) * self.scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase__ ) self.scheduler.set_sigmas(lowerCamelCase__ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample SCREAMING_SNAKE_CASE : int = self.scheduler.step_correct(lowerCamelCase__ , lowerCamelCase__ , generator=lowerCamelCase__ ).prev_sample # prediction step SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase__ , lowerCamelCase__ ).sample SCREAMING_SNAKE_CASE : List[str] = self.scheduler.step_pred(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , generator=lowerCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.prev_sample, output.prev_sample_mean SCREAMING_SNAKE_CASE : Union[str, Any] = sample_mean.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Optional[Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : Any = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCamelCase__ )
356
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : str = logging.get_logger(__name__) a__ : Optional[Any] = {'''vocab_file''': '''vocab.json'''} a__ : str = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } a__ : Tuple = {'''mgp-str''': 27} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) ->Dict: super().__init__( unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , pad_token=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.vocab.items()} @property def __lowerCAmelCase ( self ) ->List[Any]: return len(self.vocab ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return dict(self.vocab , **self.added_tokens_encoder ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for s in text: char_tokens.extend(_lowerCamelCase ) return char_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: return self.decoder.get(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) ) return SCREAMING_SNAKE_CASE : str = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' ) return (vocab_file,)
19
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__=True , a__="pt" ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = {'''add_prefix_space''': True} if isinstance(A__ , A__ ) and not line.startswith(''' ''' ) else {} SCREAMING_SNAKE_CASE : Optional[Any] = padding_side return tokenizer( [line] , max_length=A__ , padding='''max_length''' if pad_to_max_length else None , truncation=A__ , return_tensors=A__ , add_special_tokens=A__ , **A__ , ) def UpperCAmelCase_( a__ , a__ , a__=None , ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = input_ids.ne(A__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class a_ ( lowerCamelCase__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="train" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="" , ) ->Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE : Dict = Path(lowercase__ ).joinpath(type_path + '''.source''' ) SCREAMING_SNAKE_CASE : Optional[Any] = Path(lowercase__ ).joinpath(type_path + '''.target''' ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_char_lens(self.src_file ) SCREAMING_SNAKE_CASE : Optional[int] = max_source_length SCREAMING_SNAKE_CASE : str = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" SCREAMING_SNAKE_CASE : Dict = tokenizer SCREAMING_SNAKE_CASE : int = prefix if n_obs is not None: SCREAMING_SNAKE_CASE : Dict = self.src_lens[:n_obs] SCREAMING_SNAKE_CASE : Any = src_lang SCREAMING_SNAKE_CASE : int = tgt_lang def __len__( self ) ->List[Any]: return len(self.src_lens ) def __getitem__( self , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : Dict = index + 1 # linecache starts at 1 SCREAMING_SNAKE_CASE : Tuple = self.prefix + linecache.getline(str(self.src_file ) , lowercase__ ).rstrip('''\n''' ) SCREAMING_SNAKE_CASE : int = linecache.getline(str(self.tgt_file ) , lowercase__ ).rstrip('''\n''' ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowercase__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right SCREAMING_SNAKE_CASE : int = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowercase__ ) else self.tokenizer ) SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.generator if isinstance(self.tokenizer , lowercase__ ) else self.tokenizer SCREAMING_SNAKE_CASE : Any = encode_line(lowercase__ , lowercase__ , self.max_source_length , '''right''' ) SCREAMING_SNAKE_CASE : int = encode_line(lowercase__ , lowercase__ , self.max_target_length , '''right''' ) SCREAMING_SNAKE_CASE : Optional[Any] = source_inputs['''input_ids'''].squeeze() SCREAMING_SNAKE_CASE : Union[str, Any] = target_inputs['''input_ids'''].squeeze() SCREAMING_SNAKE_CASE : List[Any] = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __lowerCAmelCase ( _lowerCamelCase ) ->Dict: return [len(lowercase__ ) for x in Path(lowercase__ ).open().readlines()] def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE : Optional[int] = torch.stack([x['''input_ids'''] for x in batch] ) SCREAMING_SNAKE_CASE : str = torch.stack([x['''attention_mask'''] for x in batch] ) SCREAMING_SNAKE_CASE : Tuple = torch.stack([x['''decoder_input_ids'''] for x in batch] ) SCREAMING_SNAKE_CASE : List[Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowercase__ ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowercase__ ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE : List[Any] = trim_batch(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = trim_batch(lowercase__ , lowercase__ , attention_mask=lowercase__ ) SCREAMING_SNAKE_CASE : List[str] = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch a__ : Union[str, Any] = getLogger(__name__) def UpperCAmelCase_( a__ ): """simple docstring""" return list(itertools.chain.from_iterable(A__ ) ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = get_git_info() save_json(A__ , os.path.join(A__ , '''git_log.json''' ) ) def UpperCAmelCase_( a__ , a__ , a__=4 , **a__ ): """simple docstring""" with open(A__ , '''w''' ) as f: json.dump(A__ , A__ , indent=A__ , **A__ ) def UpperCAmelCase_( a__ ): """simple docstring""" with open(A__ ) as f: return json.load(A__ ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = git.Repo(search_parent_directories=A__ ) SCREAMING_SNAKE_CASE : Any = { '''repo_id''': str(A__ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return list(map(A__ , A__ ) ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" with open(A__ , '''wb''' ) as f: return pickle.dump(A__ , A__ ) def UpperCAmelCase_( a__ ): """simple docstring""" def remove_articles(a__ ): return re.sub(r'''\b(a|an|the)\b''' , ''' ''' , A__ ) def white_space_fix(a__ ): return " ".join(text.split() ) def remove_punc(a__ ): SCREAMING_SNAKE_CASE : Any = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(a__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(A__ ) ) ) ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = normalize_answer(A__ ).split() SCREAMING_SNAKE_CASE : List[Any] = normalize_answer(A__ ).split() SCREAMING_SNAKE_CASE : Optional[Any] = Counter(A__ ) & Counter(A__ ) SCREAMING_SNAKE_CASE : List[str] = sum(common.values() ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE : Tuple = 1.0 * num_same / len(A__ ) SCREAMING_SNAKE_CASE : str = 1.0 * num_same / len(A__ ) SCREAMING_SNAKE_CASE : Optional[Any] = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return normalize_answer(A__ ) == normalize_answer(A__ ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" assert len(A__ ) == len(A__ ) SCREAMING_SNAKE_CASE : Any = 0 for hypo, pred in zip(A__ , A__ ): em += exact_match_score(A__ , A__ ) if len(A__ ) > 0: em /= len(A__ ) return {"em": em} def UpperCAmelCase_( a__ ): """simple docstring""" return model_prefix.startswith('''rag''' ) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead SCREAMING_SNAKE_CASE : str = '''dropout_rate''' for p in extra_params: if getattr(A__ , A__ , A__ ): if not hasattr(A__ , A__ ) and not hasattr(A__ , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(A__ ) ) delattr(A__ , A__ ) continue SCREAMING_SNAKE_CASE : List[Any] = p if hasattr(A__ , A__ ) else equivalent_param[p] setattr(A__ , A__ , getattr(A__ , A__ ) ) delattr(A__ , A__ ) return hparams, config
357
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''DeiTFeatureExtractor'''] a__ : Any = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
import unittest import numpy as np def UpperCAmelCase_( a__ , a__ , a__ , a__ = None , ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = np.shape(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : int = np.shape(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : Dict = np.shape(_UpperCAmelCase ) if shape_a[0] != shape_b[0]: SCREAMING_SNAKE_CASE : Optional[int] = ( 'Expected the same number of rows for A and B. ' F"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(_UpperCAmelCase ) if shape_b[1] != shape_c[1]: SCREAMING_SNAKE_CASE : List[Any] = ( 'Expected the same number of columns for B and C. ' F"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = pseudo_inv if a_inv is None: try: SCREAMING_SNAKE_CASE : Union[str, Any] = np.linalg.inv(_UpperCAmelCase ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) SCREAMING_SNAKE_CASE : Dict = np.array([[0, 3], [3, 0], [2, 3]] ) SCREAMING_SNAKE_CASE : str = np.array([[2, 1], [6, 3]] ) SCREAMING_SNAKE_CASE : str = schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.block([[a, b], [b.T, c]] ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.linalg.det(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = np.linalg.det(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = np.linalg.det(_lowerCamelCase ) self.assertAlmostEqual(_lowerCamelCase , det_a * det_s ) def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : List[str] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) SCREAMING_SNAKE_CASE : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) SCREAMING_SNAKE_CASE : Optional[Any] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_lowerCamelCase ): schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->None: SCREAMING_SNAKE_CASE : Dict = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) SCREAMING_SNAKE_CASE : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) SCREAMING_SNAKE_CASE : List[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_lowerCamelCase ): schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
358
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
0
import sys def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = len(a__ ) SCREAMING_SNAKE_CASE : Tuple = [[0 for x in range(a__ )] for x in range(a__ )] SCREAMING_SNAKE_CASE : Optional[Any] = [[0 for x in range(a__ )] for x in range(a__ )] for chain_length in range(2 , a__ ): for a in range(1 , n - chain_length + 1 ): SCREAMING_SNAKE_CASE : Dict = a + chain_length - 1 SCREAMING_SNAKE_CASE : Optional[int] = sys.maxsize for c in range(a__ , a__ ): SCREAMING_SNAKE_CASE : Union[str, Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: SCREAMING_SNAKE_CASE : Union[str, Any] = cost SCREAMING_SNAKE_CASE : List[Any] = c return matrix, sol def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if i == j: print('''A''' + str(a__ ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(a__ , a__ , optimal_solution[i][j] ) print_optiomal_solution(a__ , optimal_solution[i][j] + 1 , a__ ) print(''')''' , end=''' ''' ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [30, 35, 15, 5, 10, 20, 25] SCREAMING_SNAKE_CASE : Dict = len(a__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = matrix_chain_order(a__ ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(a__ , 1 , n - 1 ) if __name__ == "__main__": main()
359
import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase_( a__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2 while True: if is_prime(a__ ): yield num num += 1 def UpperCAmelCase_( a__ = 2_000_000 ): """simple docstring""" return sum(takewhile(lambda a__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
19
0
from math import sqrt def UpperCAmelCase_( a__ ): """simple docstring""" assert isinstance(a__ , a__ ) and ( number >= 0 ), "'number' must been an int and positive" SCREAMING_SNAKE_CASE : int = True # 0 and 1 are none primes. if number <= 1: SCREAMING_SNAKE_CASE : Dict = False for divisor in range(2 , int(round(sqrt(a__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: SCREAMING_SNAKE_CASE : List[str] = False break # precondition assert isinstance(a__ , a__ ), "'status' must been from type bool" return status def UpperCAmelCase_( a__ ): """simple docstring""" assert isinstance(a__ , a__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N SCREAMING_SNAKE_CASE : Tuple = list(range(2 , n + 1 ) ) SCREAMING_SNAKE_CASE : Any = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(a__ ) ): for j in range(i + 1 , len(a__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): SCREAMING_SNAKE_CASE : Optional[int] = 0 # filters actual prime numbers. SCREAMING_SNAKE_CASE : Tuple = [x for x in begin_list if x != 0] # precondition assert isinstance(a__ , a__ ), "'ans' must been from type list" return ans def UpperCAmelCase_( a__ ): """simple docstring""" assert isinstance(a__ , a__ ) and (n > 2), "'N' must been an int and > 2" SCREAMING_SNAKE_CASE : Union[str, Any] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(a__ ): ans.append(a__ ) # precondition assert isinstance(a__ , a__ ), "'ans' must been from type list" return ans def UpperCAmelCase_( a__ ): """simple docstring""" assert isinstance(a__ , a__ ) and number >= 0, "'number' must been an int and >= 0" SCREAMING_SNAKE_CASE : Union[str, Any] = [] # this list will be returns of the function. # potential prime number factors. SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : Optional[Any] = number if number == 0 or number == 1: ans.append(a__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(a__ ): while quotient != 1: if is_prime(a__ ) and (quotient % factor == 0): ans.append(a__ ) quotient /= factor else: factor += 1 else: ans.append(a__ ) # precondition assert isinstance(a__ , a__ ), "'ans' must been from type list" return ans def UpperCAmelCase_( a__ ): """simple docstring""" assert isinstance(a__ , a__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" SCREAMING_SNAKE_CASE : Dict = 0 # prime factorization of 'number' SCREAMING_SNAKE_CASE : List[str] = prime_factorization(a__ ) SCREAMING_SNAKE_CASE : str = max(a__ ) # precondition assert isinstance(a__ , a__ ), "'ans' must been from type int" return ans def UpperCAmelCase_( a__ ): """simple docstring""" assert isinstance(a__ , a__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" SCREAMING_SNAKE_CASE : int = 0 # prime factorization of 'number' SCREAMING_SNAKE_CASE : Optional[Any] = prime_factorization(a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = min(a__ ) # precondition assert isinstance(a__ , a__ ), "'ans' must been from type int" return ans def UpperCAmelCase_( a__ ): """simple docstring""" assert isinstance(a__ , a__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , a__ ), "compare bust been from type bool" return number % 2 == 0 def UpperCAmelCase_( a__ ): """simple docstring""" assert isinstance(a__ , a__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , a__ ), "compare bust been from type bool" return number % 2 != 0 def UpperCAmelCase_( a__ ): """simple docstring""" assert ( isinstance(a__ , a__ ) and (number > 2) and is_even(a__ ) ), "'number' must been an int, even and > 2" SCREAMING_SNAKE_CASE : str = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' SCREAMING_SNAKE_CASE : Optional[int] = get_prime_numbers(a__ ) SCREAMING_SNAKE_CASE : str = len(a__ ) # run variable for while-loops. SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = None # exit variable. for break up the loops SCREAMING_SNAKE_CASE : str = True while i < len_pn and loop: SCREAMING_SNAKE_CASE : Any = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: SCREAMING_SNAKE_CASE : List[Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(a__ , a__ ) and (len(a__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def UpperCAmelCase_( a__ , a__ ): """simple docstring""" assert ( isinstance(a__ , a__ ) and isinstance(a__ , a__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." SCREAMING_SNAKE_CASE : List[str] = 0 while numbera != 0: SCREAMING_SNAKE_CASE : Any = numbera % numbera SCREAMING_SNAKE_CASE : List[Any] = numbera SCREAMING_SNAKE_CASE : Union[str, Any] = rest # precondition assert isinstance(a__ , a__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def UpperCAmelCase_( a__ , a__ ): """simple docstring""" assert ( isinstance(a__ , a__ ) and isinstance(a__ , a__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." SCREAMING_SNAKE_CASE : str = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' SCREAMING_SNAKE_CASE : Union[str, Any] = prime_factorization(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = prime_factorization(a__ ) elif numbera == 1 or numbera == 1: SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Tuple = max(a__ , a__ ) SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : Optional[int] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: SCREAMING_SNAKE_CASE : Optional[int] = prime_fac_a.count(a__ ) SCREAMING_SNAKE_CASE : int = prime_fac_a.count(a__ ) for _ in range(max(a__ , a__ ) ): ans *= n else: SCREAMING_SNAKE_CASE : Union[str, Any] = prime_fac_a.count(a__ ) for _ in range(a__ ): ans *= n done.append(a__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: SCREAMING_SNAKE_CASE : str = prime_fac_a.count(a__ ) for _ in range(a__ ): ans *= n done.append(a__ ) # precondition assert isinstance(a__ , a__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def UpperCAmelCase_( a__ ): """simple docstring""" assert isinstance(a__ , a__ ) and (n >= 0), "'number' must been a positive int" SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : str = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(a__ ): ans += 1 # precondition assert isinstance(a__ , a__ ) and is_prime( a__ ), "'ans' must been a prime number and from type int" return ans def UpperCAmelCase_( a__ , a__ ): """simple docstring""" assert ( is_prime(a__ ) and is_prime(a__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" SCREAMING_SNAKE_CASE : Optional[int] = p_number_a + 1 # jump to the next number SCREAMING_SNAKE_CASE : int = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(a__ ): number += 1 while number < p_number_a: ans.append(a__ ) number += 1 # fetch the next prime number. while not is_prime(a__ ): number += 1 # precondition assert ( isinstance(a__ , a__ ) and ans[0] != p_number_a and ans[len(a__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def UpperCAmelCase_( a__ ): """simple docstring""" assert isinstance(a__ , a__ ) and (n >= 1), "'n' must been int and >= 1" SCREAMING_SNAKE_CASE : Tuple = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(a__ ) # precondition assert ans[0] == 1 and ans[len(a__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def UpperCAmelCase_( a__ ): """simple docstring""" assert isinstance(a__ , a__ ) and ( number > 1 ), "'number' must been an int and >= 1" SCREAMING_SNAKE_CASE : Tuple = get_divisors(a__ ) # precondition assert ( isinstance(a__ , a__ ) and (divisors[0] == 1) and (divisors[len(a__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def UpperCAmelCase_( a__ , a__ ): """simple docstring""" assert ( isinstance(a__ , a__ ) and isinstance(a__ , a__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. SCREAMING_SNAKE_CASE : Dict = gcd(abs(a__ ) , abs(a__ ) ) # precondition assert ( isinstance(a__ , a__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def UpperCAmelCase_( a__ ): """simple docstring""" assert isinstance(a__ , a__ ) and (n >= 0), "'n' must been a int and >= 0" SCREAMING_SNAKE_CASE : Union[str, Any] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def UpperCAmelCase_( a__ ): """simple docstring""" assert isinstance(a__ , a__ ) and (n >= 0), "'n' must been an int and >= 0" SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = 1 SCREAMING_SNAKE_CASE : Tuple = 1 # this will be return for _ in range(n - 1 ): SCREAMING_SNAKE_CASE : Tuple = ans ans += fiba SCREAMING_SNAKE_CASE : Dict = tmp return ans
360
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( a__ ): """simple docstring""" def __init__( self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int: super().__init__(*_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = eval_examples SCREAMING_SNAKE_CASE : Optional[int] = post_process_function def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ) ->Dict[str, float]: SCREAMING_SNAKE_CASE : Any = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE : Dict = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE : Any = gen_kwargs SCREAMING_SNAKE_CASE : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE : str = self.get_eval_dataloader(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_metrics SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Optional[Any] = time.time() SCREAMING_SNAKE_CASE : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Tuple = eval_loop( _lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Dict = compute_metrics SCREAMING_SNAKE_CASE : Tuple = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : Optional[int] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase ) return metrics def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : str = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(_lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Dict = self.compute_metrics SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : List[str] = time.time() SCREAMING_SNAKE_CASE : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Any = eval_loop( _lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics SCREAMING_SNAKE_CASE : List[Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' ) SCREAMING_SNAKE_CASE : Dict = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
19
0
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) a__ : Tuple = logging.getLogger(__name__) a__ : Any = "Hello world! cécé herlolip" a__ : str = namedtuple( '''BertAbsConfig''', [ '''temp_dir''', '''large''', '''use_bert_emb''', '''finetune_bert''', '''encoder''', '''share_emb''', '''max_pos''', '''enc_layers''', '''enc_hidden_size''', '''enc_heads''', '''enc_ff_size''', '''enc_dropout''', '''dec_layers''', '''dec_hidden_size''', '''dec_heads''', '''dec_ff_size''', '''dec_dropout''', ], ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = BertAbsConfig( temp_dir='''.''' , finetune_bert=__lowerCAmelCase , large=__lowerCAmelCase , share_emb=__lowerCAmelCase , use_bert_emb=__lowerCAmelCase , encoder='''bert''' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2_048 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE : int = torch.load(__lowerCAmelCase , lambda a__ , a__ : storage ) SCREAMING_SNAKE_CASE : Dict = AbsSummarizer(__lowerCAmelCase , torch.device('''cpu''' ) , __lowerCAmelCase ) original.eval() SCREAMING_SNAKE_CASE : Optional[Any] = BertAbsSummarizer(__lowerCAmelCase , torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__lowerCAmelCase )) ) SCREAMING_SNAKE_CASE : int = torch.tensor(__lowerCAmelCase ).unsqueeze(0 ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(__lowerCAmelCase )) ) SCREAMING_SNAKE_CASE : Dict = torch.tensor(__lowerCAmelCase ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass SCREAMING_SNAKE_CASE : str = encoder_input_ids SCREAMING_SNAKE_CASE : Dict = decoder_input_ids SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : str = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE : Dict = original(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )[0] SCREAMING_SNAKE_CASE : List[str] = original.generator(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Dict = new_model( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )[0] SCREAMING_SNAKE_CASE : Optional[Any] = new_model.generator(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Optional[int] = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE : List[str] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(__lowerCAmelCase ) ) SCREAMING_SNAKE_CASE : Optional[int] = torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1e-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict() , '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": a__ : str = argparse.ArgumentParser() parser.add_argument( '''--bertabs_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''', ) a__ : Any = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
361
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = DDIMPipeline __SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = False def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler() SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) SCREAMING_SNAKE_CASE : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) def __lowerCAmelCase ( self ) ->Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_save_load_local(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32''' SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler() SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddim.to(_lowerCamelCase ) ddim.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256''' SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddpm.to(_lowerCamelCase ) ddpm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
19
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
362
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self ) ->Dict: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = '''[PAD]''' SCREAMING_SNAKE_CASE : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowerCamelCase ) , 1012 ) def __lowerCAmelCase ( self ) ->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self ) ->List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!''' SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def __lowerCAmelCase ( self ) ->int: # fmt: off SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
19
0
def UpperCAmelCase_( a__ = 1_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 1, 1 SCREAMING_SNAKE_CASE : str = [] for i in range(1 , n + 1 ): SCREAMING_SNAKE_CASE : Any = prev_numerator + 2 * prev_denominator SCREAMING_SNAKE_CASE : Tuple = prev_numerator + prev_denominator if len(str(__snake_case ) ) > len(str(__snake_case ) ): result.append(__snake_case ) SCREAMING_SNAKE_CASE : Dict = numerator SCREAMING_SNAKE_CASE : List[Any] = denominator return len(__snake_case ) if __name__ == "__main__": print(F"{solution() = }")
363
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''.''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
19
0
from __future__ import annotations def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : list[list[int]] = [] SCREAMING_SNAKE_CASE : list[int] = [] SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Optional[int] = sum(_a ) create_state_space_tree(_a , _a , _a , _a , _a , _a ) return result def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__ , a__ , ): """simple docstring""" if sum(_a ) > max_sum or (remaining_nums_sum + sum(_a )) < max_sum: return if sum(_a ) == max_sum: result.append(_a ) return for index in range(_a , len(_a ) ): create_state_space_tree( _a , _a , index + 1 , [*path, nums[index]] , _a , remaining_nums_sum - nums[index] , ) a__ : int = [3, 34, 4, 12, 5, 2] a__ : Tuple = 9 a__ : Dict = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
364
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Tuple = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } a__ : Optional[Any] = {'''mobilebert-uncased''': 512} a__ : List[Any] = {} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE : Optional[int] = strip_accents SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = do_lower_case def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
19
0
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCAmelCase_( a__): """simple docstring""" return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items()) def UpperCAmelCase_( a__ , a__): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue SCREAMING_SNAKE_CASE : List[str] = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''') SCREAMING_SNAKE_CASE : Tuple = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''') SCREAMING_SNAKE_CASE : Optional[Any] = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''') SCREAMING_SNAKE_CASE : Optional[int] = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''') SCREAMING_SNAKE_CASE : Any = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''') SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''') SCREAMING_SNAKE_CASE : Optional[Any] = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''') SCREAMING_SNAKE_CASE : Optional[Any] = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''') SCREAMING_SNAKE_CASE : Optional[int] = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''') SCREAMING_SNAKE_CASE : Optional[int] = key.replace('''image_encoder.module''' , '''flava.image_model''') SCREAMING_SNAKE_CASE : List[Any] = key.replace('''text_encoder.module''' , '''flava.text_model''') SCREAMING_SNAKE_CASE : int = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''') SCREAMING_SNAKE_CASE : Optional[Any] = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''') SCREAMING_SNAKE_CASE : Any = key.replace('''text_projection''' , '''flava.text_projection''') SCREAMING_SNAKE_CASE : int = key.replace('''image_projection''' , '''flava.image_projection''') SCREAMING_SNAKE_CASE : List[str] = value.float() for key, value in codebook_state_dict.items(): SCREAMING_SNAKE_CASE : List[Any] = value return upgrade @torch.no_grad() def UpperCAmelCase_( a__ , a__ , a__ , a__=None): """simple docstring""" if config_path is not None: SCREAMING_SNAKE_CASE : Optional[int] = FlavaConfig.from_pretrained(SCREAMING_SNAKE_CASE_) else: SCREAMING_SNAKE_CASE : Optional[int] = FlavaConfig() SCREAMING_SNAKE_CASE : int = FlavaForPreTraining(SCREAMING_SNAKE_CASE_).eval() SCREAMING_SNAKE_CASE : Optional[Any] = convert_dalle_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , save_checkpoint=SCREAMING_SNAKE_CASE_) if os.path.exists(SCREAMING_SNAKE_CASE_): SCREAMING_SNAKE_CASE : str = torch.load(SCREAMING_SNAKE_CASE_ , map_location='''cpu''') else: SCREAMING_SNAKE_CASE : Any = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location='''cpu''') SCREAMING_SNAKE_CASE : Any = upgrade_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) hf_model.load_state_dict(SCREAMING_SNAKE_CASE_) SCREAMING_SNAKE_CASE : List[str] = hf_model.state_dict() SCREAMING_SNAKE_CASE : Any = count_parameters(SCREAMING_SNAKE_CASE_) SCREAMING_SNAKE_CASE : List[Any] = count_parameters(SCREAMING_SNAKE_CASE_) + count_parameters(SCREAMING_SNAKE_CASE_) assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3) hf_model.save_pretrained(SCREAMING_SNAKE_CASE_) if __name__ == "__main__": a__ : Any = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--codebook_path''', default=None, type=str, help='''Path to flava codebook checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') a__ : Union[str, Any] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
365
import math a__ : List[str] = 10 a__ : Optional[int] = 7 a__ : int = BALLS_PER_COLOUR * NUM_COLOURS def UpperCAmelCase_( a__ = 20 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
19
0
a__ : Tuple = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100_000)] def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100_000] number //= 100_000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution a__ : Union[str, Any] = [None] * 10_000_000 a__ : Dict = True a__ : List[str] = False def UpperCAmelCase_( a__ ): """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore SCREAMING_SNAKE_CASE : Tuple = chain(next_number(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE : Any = number_chain while number < 10_000_000: SCREAMING_SNAKE_CASE : Dict = number_chain number *= 10 return number_chain def UpperCAmelCase_( a__ = 10_000_000 ): """simple docstring""" for i in range(1 , SCREAMING_SNAKE_CASE__ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod() print(F"{solution() = }")
366
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig a__ : List[str] = logging.get_logger(__name__) # General docstring a__ : Tuple = '''MobileNetV1Config''' # Base docstring a__ : Optional[Any] = '''google/mobilenet_v1_1.0_224''' a__ : Tuple = [1, 1_024, 7, 7] # Image classification docstring a__ : Optional[int] = '''google/mobilenet_v1_1.0_224''' a__ : int = '''tabby, tabby cat''' a__ : List[Any] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCAmelCase_( a__ , a__ , a__=None ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[str] = model.mobilenet_va else: SCREAMING_SNAKE_CASE : Union[str, Any] = model SCREAMING_SNAKE_CASE : Optional[int] = '''MobilenetV1/Conv2d_0/''' SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE : Union[str, Any] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE : Any = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE : Dict = i + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2 SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.bias SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE : Any = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" SCREAMING_SNAKE_CASE : Dict = pointer.convolution.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : str = pointer.normalization.running_var if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' SCREAMING_SNAKE_CASE : List[str] = model.classifier.weight SCREAMING_SNAKE_CASE : List[str] = model.classifier.bias return tf_to_pt_map def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : List[Any] = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE : int = _build_tf_to_pytorch_map(a__ , a__ , a__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue SCREAMING_SNAKE_CASE : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) SCREAMING_SNAKE_CASE : Tuple = np.transpose(a__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE : Union[str, Any] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE : Optional[int] = np.transpose(a__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ ) tf_weights.pop(a__ , a__ ) tf_weights.pop(name + '''/RMSProp''' , a__ ) tf_weights.pop(name + '''/RMSProp_1''' , a__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ ) logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = conv_layer.stride SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE : List[str] = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE : int = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE : Tuple = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE : List[str] = pad_along_width // 2 SCREAMING_SNAKE_CASE : Any = pad_along_width - pad_left SCREAMING_SNAKE_CASE : str = pad_along_height // 2 SCREAMING_SNAKE_CASE : Optional[int] = pad_along_height - pad_top SCREAMING_SNAKE_CASE : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 ) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = True , ) ->None: super().__init__() SCREAMING_SNAKE_CASE : Any = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) SCREAMING_SNAKE_CASE : List[str] = nn.Convad( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='''zeros''' , ) if use_normalization: SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad( num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , ) else: SCREAMING_SNAKE_CASE : Dict = None if use_activation: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE : List[Any] = config.hidden_act else: SCREAMING_SNAKE_CASE : Optional[Any] = None def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor: if self.config.tf_padding: SCREAMING_SNAKE_CASE : List[Any] = apply_tf_padding(_lowerCamelCase , self.convolution ) SCREAMING_SNAKE_CASE : Dict = self.convolution(_lowerCamelCase ) if self.normalization is not None: SCREAMING_SNAKE_CASE : int = self.normalization(_lowerCamelCase ) if self.activation is not None: SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase ) return features class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = MobileNetVaConfig __SCREAMING_SNAKE_CASE : List[Any] = load_tf_weights_in_mobilenet_va __SCREAMING_SNAKE_CASE : int = 'mobilenet_v1' __SCREAMING_SNAKE_CASE : int = 'pixel_values' __SCREAMING_SNAKE_CASE : List[str] = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) a__ : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ : Union[str, Any] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True ) ->Dict: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = config SCREAMING_SNAKE_CASE : Dict = 32 SCREAMING_SNAKE_CASE : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) SCREAMING_SNAKE_CASE : str = MobileNetVaConvLayer( _lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE : Any = nn.ModuleList() for i in range(13 ): SCREAMING_SNAKE_CASE : int = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) ) SCREAMING_SNAKE_CASE : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_stem(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): SCREAMING_SNAKE_CASE : Optional[int] = layer_module(_lowerCamelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE : List[str] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 ) else: SCREAMING_SNAKE_CASE : List[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->None: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels SCREAMING_SNAKE_CASE : str = MobileNetVaModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification''' else: SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : Any = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE : Dict = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : List[Any] = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
19
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = filter(lambda a__ : p.requires_grad , model.parameters() ) SCREAMING_SNAKE_CASE : List[str] = sum([np.prod(p.size() ) for p in model_parameters] ) return params a__ : List[Any] = logging.getLogger(__name__) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if metric == "rouge2": SCREAMING_SNAKE_CASE : str = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": SCREAMING_SNAKE_CASE : Dict = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": SCREAMING_SNAKE_CASE : List[Any] = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) SCREAMING_SNAKE_CASE : Any = ModelCheckpoint( dirpath=a__ , filename=a__ , monitor=F"""val_{metric}""" , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return EarlyStopping( monitor=F"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=a__ , verbose=a__ , ) class a_ ( pl.Callback ): """simple docstring""" def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = {F"""lr_group_{i}""": param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__lowerCamelCase ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=True ) ->List[str]: logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) SCREAMING_SNAKE_CASE : Optional[Any] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results SCREAMING_SNAKE_CASE : int = Path(pl_module.hparams.output_dir ) if type_path == "test": SCREAMING_SNAKE_CASE : List[Any] = od / """test_results.txt""" SCREAMING_SNAKE_CASE : Tuple = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. SCREAMING_SNAKE_CASE : Optional[int] = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" SCREAMING_SNAKE_CASE : Any = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=__lowerCamelCase ) generations_file.parent.mkdir(exist_ok=__lowerCamelCase ) with open(__lowerCamelCase , '''a+''' ) as writer: for key in sorted(__lowerCamelCase ): if key in ["log", "progress_bar", "preds"]: continue SCREAMING_SNAKE_CASE : Any = metrics[key] if isinstance(__lowerCamelCase , torch.Tensor ): SCREAMING_SNAKE_CASE : int = val.item() SCREAMING_SNAKE_CASE : Union[str, Any] = F"""{key}: {val:.6f}\n""" writer.write(__lowerCamelCase ) if not save_generations: return if "preds" in metrics: SCREAMING_SNAKE_CASE : Optional[int] = """\n""".join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(__lowerCamelCase ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Any: try: SCREAMING_SNAKE_CASE : Any = pl_module.model.model.num_parameters() except AttributeError: SCREAMING_SNAKE_CASE : List[str] = pl_module.model.num_parameters() SCREAMING_SNAKE_CASE : List[Any] = count_trainable_parameters(__lowerCamelCase ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Any: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__lowerCamelCase , __lowerCamelCase , '''test''' ) @rank_zero_only def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Union[str, Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
367
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def UpperCAmelCase_( a__ = 1 / 12_345 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : int = 3 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): SCREAMING_SNAKE_CASE : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
19
0
from __future__ import annotations def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = set(a__ ), [start] while stack: SCREAMING_SNAKE_CASE : List[Any] = stack.pop() explored.add(a__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(a__ ) return explored a__ : str = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
368
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ : Any = TypeVar('''T''') def UpperCAmelCase_( a__ ): """simple docstring""" return (position - 1) // 2 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 1 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 2 class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : list[tuple[T, int]] = [] SCREAMING_SNAKE_CASE : dict[T, int] = {} SCREAMING_SNAKE_CASE : int = 0 def __len__( self ) ->int: return self.elements def __repr__( self ) ->str: return str(self.heap ) def __lowerCAmelCase ( self ) ->bool: # Check if the priority queue is empty return self.elements == 0 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE : Tuple = self.elements self.elements += 1 self._bubble_up(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[0] self._bubble_down(_lowerCamelCase ) return elem def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Update the weight of the given key SCREAMING_SNAKE_CASE : List[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE : Any = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE : List[Any] = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (upward movement) [to be used internally # only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE : str = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.heap[curr_pos] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_up(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (downward movement) [to be used # internally only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[curr_pos] SCREAMING_SNAKE_CASE : List[str] = get_child_left_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = get_child_right_position(_lowerCamelCase ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[child_left_position] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Swap the nodes at the given positions SCREAMING_SNAKE_CASE : Optional[int] = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE : Any = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE : Optional[int] = nodea_pos SCREAMING_SNAKE_CASE : List[str] = nodea_pos class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {} SCREAMING_SNAKE_CASE : int = 0 def __repr__( self ) ->str: return str(self.connections ) def __len__( self ) ->int: return self.nodes def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Add a node in the graph if it is not in the graph if node not in self.connections: SCREAMING_SNAKE_CASE : Any = {} self.nodes += 1 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an edge between 2 nodes in the graph self.add_node(_lowerCamelCase ) self.add_node(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = weight SCREAMING_SNAKE_CASE : str = weight def UpperCAmelCase_( a__ , ): """simple docstring""" SCREAMING_SNAKE_CASE : dict[T, int] = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE : dict[T, T | None] = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE : List[Any] = priority_queue.extract_min() SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : Any = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node return dist, parent
19
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Dict = { '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = ['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys a__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
369
from math import pi, sqrt, tan def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) SCREAMING_SNAKE_CASE : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(a__ , 2 ) * torus_radius * tube_radius def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) SCREAMING_SNAKE_CASE : int = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : List[str] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not isinstance(a__ , a__ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F"Rectangle: {area_rectangle(10, 20) = }") print(F"Square: {area_square(10) = }") print(F"Triangle: {area_triangle(10, 10) = }") print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(F"Parallelogram: {area_parallelogram(10, 20) = }") print(F"Rhombus: {area_rhombus(10, 20) = }") print(F"Trapezium: {area_trapezium(10, 20, 30) = }") print(F"Circle: {area_circle(20) = }") print(F"Ellipse: {area_ellipse(10, 20) = }") print('''\nSurface Areas of various geometric shapes: \n''') print(F"Cube: {surface_area_cube(20) = }") print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(F"Sphere: {surface_area_sphere(20) = }") print(F"Hemisphere: {surface_area_hemisphere(20) = }") print(F"Cone: {surface_area_cone(10, 20) = }") print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(F"Cylinder: {surface_area_cylinder(10, 20) = }") print(F"Torus: {surface_area_torus(20, 10) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(F"Square: {area_reg_polygon(4, 10) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
19
0
from math import ceil def lowercase__( a__ = 1_001 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): SCREAMING_SNAKE_CASE : List[str] = 2 * i + 1 SCREAMING_SNAKE_CASE : Optional[Any] = 2 * i SCREAMING_SNAKE_CASE : Tuple = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: a__ : Optional[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
370
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a__ : List[str] = None a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Dict = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a__ : str = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off a__ : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->List[Any]: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : int = { lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX''' SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCAmelCase ( self ) ->str: return self._src_lang @src_lang.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[str] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang_id return inputs def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[str] = src_lang SCREAMING_SNAKE_CASE : List[str] = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self ) ->List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : str = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Any = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
19
0
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=16 , _lowerCamelCase=[1, 2, 1] , _lowerCamelCase=[2, 2, 4] , _lowerCamelCase=2 , _lowerCamelCase=2.0 , _lowerCamelCase=True , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-5 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=10 , _lowerCamelCase=8 , _lowerCamelCase=["stage1", "stage2", "stage3"] , _lowerCamelCase=[1, 2, 3] , ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : Tuple = batch_size SCREAMING_SNAKE_CASE : Dict = image_size SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Dict = embed_dim SCREAMING_SNAKE_CASE : List[Any] = depths SCREAMING_SNAKE_CASE : Dict = num_heads SCREAMING_SNAKE_CASE : Optional[Any] = window_size SCREAMING_SNAKE_CASE : Optional[int] = mlp_ratio SCREAMING_SNAKE_CASE : Any = qkv_bias SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : int = drop_path_rate SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = use_absolute_embeddings SCREAMING_SNAKE_CASE : int = patch_norm SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : List[str] = is_training SCREAMING_SNAKE_CASE : Optional[Any] = scope SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : str = type_sequence_label_size SCREAMING_SNAKE_CASE : Any = encoder_stride SCREAMING_SNAKE_CASE : str = out_features SCREAMING_SNAKE_CASE : Dict = out_indices def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : str = MaskFormerSwinModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) SCREAMING_SNAKE_CASE : int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->str: SCREAMING_SNAKE_CASE : Dict = MaskFormerSwinBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = ['''stem'''] SCREAMING_SNAKE_CASE : Optional[int] = MaskFormerSwinBackbone(config=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a_ , a_ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : Tuple = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Tuple = False def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = MaskFormerSwinModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=_lowerCamelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass def __lowerCAmelCase ( self ) ->int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->Dict: return def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowerCamelCase ) @unittest.skip('''Swin does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->str: pass @unittest.skip('''Swin does not support feedforward chunking''' ) def __lowerCAmelCase ( self ) ->Optional[Any]: pass def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Dict = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def __lowerCAmelCase ( self ) ->Tuple: pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def __lowerCAmelCase ( self ) ->Any: pass def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = outputs.hidden_states SCREAMING_SNAKE_CASE : List[Any] = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # Swin has a different seq_length SCREAMING_SNAKE_CASE : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Dict = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Any = 3 SCREAMING_SNAKE_CASE : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Union[str, Any] = True self.check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def __lowerCAmelCase ( self ) ->Tuple: pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def __lowerCAmelCase ( self ) ->Optional[Any]: pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def __lowerCAmelCase ( self ) ->str: pass def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_lowerCamelCase ): SCREAMING_SNAKE_CASE : Optional[Any] = 0 return t def check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase={} ): with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(**_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = model(**_lowerCamelCase , return_dict=_lowerCamelCase , **_lowerCamelCase ).to_tuple() def recursive_check(_lowerCamelCase , _lowerCamelCase ): if isinstance(_lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowerCamelCase , _lowerCamelCase ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowerCamelCase , _lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowerCamelCase ) , set_nan_tensor_to_zero(_lowerCamelCase ) , atol=1e-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(_lowerCamelCase ).any()} and `inf`: {torch.isinf(_lowerCamelCase )}. Dict has""" F""" `nan`: {torch.isnan(_lowerCamelCase ).any()} and `inf`: {torch.isinf(_lowerCamelCase )}.""" ) , ) recursive_check(_lowerCamelCase , _lowerCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {'''output_hidden_states''': True} ) SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) check_equivalence(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , {'''output_hidden_states''': True} ) @require_torch class a_ ( unittest.TestCase , a_ ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = (MaskFormerSwinBackbone,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Optional[int] = MaskFormerSwinConfig def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Optional[Any] = MaskFormerSwinModelTester(self ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[str] = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = backbone_class(_lowerCamelCase ) backbone.to(_lowerCamelCase ) backbone.eval() SCREAMING_SNAKE_CASE : Dict = backbone(**_lowerCamelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowerCamelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True SCREAMING_SNAKE_CASE : List[str] = backbone(**_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: SCREAMING_SNAKE_CASE : str = backbone(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertIsNotNone(outputs.attentions )
371
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = proj_size SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase ) for _ in range(_lowerCamelCase ) ] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: for block in self.blocks: SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase ) return hidden_states
19
0
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class a_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = "EncodecFeatureExtractor" __SCREAMING_SNAKE_CASE : int = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , _lowerCamelCase , _lowerCamelCase ) ->List[str]: super().__init__(_snake_case , _snake_case ) SCREAMING_SNAKE_CASE : List[Any] = self.feature_extractor SCREAMING_SNAKE_CASE : str = False def __lowerCAmelCase ( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True ) ->List[str]: return self.tokenizer.get_decoder_prompt_ids(task=_snake_case , language=_snake_case , no_timestamps=_snake_case ) def __call__( self , *_lowerCamelCase , **_lowerCamelCase ) ->List[str]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_snake_case , **_snake_case ) SCREAMING_SNAKE_CASE : Any = kwargs.pop('''audio''' , _snake_case ) SCREAMING_SNAKE_CASE : str = kwargs.pop('''sampling_rate''' , _snake_case ) SCREAMING_SNAKE_CASE : Any = kwargs.pop('''text''' , _snake_case ) if len(_snake_case ) > 0: SCREAMING_SNAKE_CASE : Optional[int] = args[0] SCREAMING_SNAKE_CASE : str = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: SCREAMING_SNAKE_CASE : str = self.tokenizer(_snake_case , **_snake_case ) if audio is not None: SCREAMING_SNAKE_CASE : List[str] = self.feature_extractor(_snake_case , *_snake_case , sampling_rate=_snake_case , **_snake_case ) if audio is None: return inputs elif text is None: return audio_inputs else: SCREAMING_SNAKE_CASE : Tuple = audio_inputs["input_values"] if "padding_mask" in audio_inputs: SCREAMING_SNAKE_CASE : Optional[int] = audio_inputs["padding_mask"] return inputs def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop('''audio''' , _snake_case ) SCREAMING_SNAKE_CASE : Dict = kwargs.pop('''padding_mask''' , _snake_case ) if len(_snake_case ) > 0: SCREAMING_SNAKE_CASE : Optional[int] = args[0] SCREAMING_SNAKE_CASE : Any = args[1:] if audio_values is not None: return self._decode_audio(_snake_case , padding_mask=_snake_case ) else: return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->int: return self.tokenizer.decode(*_snake_case , **_snake_case ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = to_numpy(_snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = audio_values.shape if padding_mask is None: return list(_snake_case ) SCREAMING_SNAKE_CASE : int = to_numpy(_snake_case ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) SCREAMING_SNAKE_CASE : Tuple = seq_len - padding_mask.shape[-1] SCREAMING_SNAKE_CASE : Union[str, Any] = 1 - self.feature_extractor.padding_value SCREAMING_SNAKE_CASE : int = np.pad(_snake_case , ((0, 0), (0, difference)) , '''constant''' , constant_values=_snake_case ) SCREAMING_SNAKE_CASE : int = audio_values.tolist() for i in range(_snake_case ): SCREAMING_SNAKE_CASE : Any = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] SCREAMING_SNAKE_CASE : List[Any] = sliced_audio.reshape(_snake_case , -1 ) return audio_values
350
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Tuple = '''▁''' a__ : List[Any] = {'''vocab_file''': '''spiece.model'''} a__ : Optional[Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } a__ : str = { '''google/pegasus-xsum''': 512, } a__ : str = logging.get_logger(__name__) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<mask_2>" , _lowerCamelCase="<mask_1>" , _lowerCamelCase=None , _lowerCamelCase=103 , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : Dict = offset if additional_special_tokens is not None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(_lowerCamelCase )}, but is""" F""" {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_lowerCamelCase ) , self.offset - 1 ) ] if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) SCREAMING_SNAKE_CASE : Dict = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : List[str] = mask_token_sent SCREAMING_SNAKE_CASE : Optional[int] = vocab_file SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) # add special tokens to encoder dict SCREAMING_SNAKE_CASE : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def __lowerCAmelCase ( self ) ->int: return len(self.sp_model ) + self.offset def __lowerCAmelCase ( self ) ->Dict[str, int]: SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE : str = None return state def __setstate__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] SCREAMING_SNAKE_CASE : List[str] = self.sp_model.piece_to_id(_lowerCamelCase ) return sp_id + self.offset def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: SCREAMING_SNAKE_CASE : Dict = self.sp_model.IdToPiece(index - self.offset ) return token def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : int = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->str: return 1 def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Dict = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return self._special_token_mask(_lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(_lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : int = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
19
0
import datasets from .evaluate import evaluate a__ : int = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' a__ : int = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' a__ : str = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE : Optional[Any] = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Union[str, Any] = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
351
def UpperCAmelCase_( a__ ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Tuple = 1 while repunit: SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_( a__ = 1_000_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"{solution() = }")
19
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Tuple = '▁' a__ : int = {'vocab_file': 'sentencepiece.bpe.model'} a__ : Dict = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } a__ : str = { 'facebook/nllb-200-distilled-600M': 1_024, } # fmt: off a__ : Dict = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class a_ ( _lowerCamelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[str] = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Optional[int] = [] __SCREAMING_SNAKE_CASE : Tuple = [] def __init__( self , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase=False , **_lowerCamelCase , ) ->str: SCREAMING_SNAKE_CASE : List[Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token SCREAMING_SNAKE_CASE : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE : Tuple = legacy_behaviour super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenizer_file=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE : str = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE : List[str] = 1 SCREAMING_SNAKE_CASE : Union[str, Any] = len(self.sp_model ) SCREAMING_SNAKE_CASE : Optional[int] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_lowerCamelCase ) } SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in self.lang_code_to_id.items()} SCREAMING_SNAKE_CASE : List[str] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} SCREAMING_SNAKE_CASE : List[Any] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) SCREAMING_SNAKE_CASE : Dict = src_lang if src_lang is not None else '''eng_Latn''' SCREAMING_SNAKE_CASE : int = self.lang_code_to_id[self._src_lang] SCREAMING_SNAKE_CASE : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) ->str: SCREAMING_SNAKE_CASE : Any = self.__dict__.copy() SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : str = self.sp_model.serialized_model_proto() return state def __setstate__( self , _lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __lowerCAmelCase ( self ) ->int: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __lowerCAmelCase ( self ) ->Optional[Any]: return self._src_lang @src_lang.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->int: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = [1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Optional[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Any: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple: SCREAMING_SNAKE_CASE : List[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->Union[str, Any]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE : List[str] = src_lang SCREAMING_SNAKE_CASE : int = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = tgt_lang_id return inputs def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Dict = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.PieceToId(_lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : int = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Optional[int]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : Tuple = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : int = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "eng_Latn" , _lowerCamelCase = None , _lowerCamelCase = "fra_Latn" , **_lowerCamelCase , ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[str] = src_lang SCREAMING_SNAKE_CASE : Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self ) ->Any: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : str = self.lang_code_to_id[src_lang] if self.legacy_behaviour: SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE : Optional[Any] = [self.cur_lang_code] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE : List[Any] = [self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = [self.eos_token_id]
352
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict: SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Any = num_stages SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : int = out_features SCREAMING_SNAKE_CASE : List[str] = num_labels SCREAMING_SNAKE_CASE : int = scope SCREAMING_SNAKE_CASE : Optional[Any] = num_stages def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->List[Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowerCAmelCase ( self ) ->Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[str] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = UperNetModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->str: return def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->str: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowerCAmelCase ( self ) ->str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->Tuple: pass def __lowerCAmelCase ( self ) ->int: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = _config_zero_init(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass @slow def __lowerCAmelCase ( self ) ->List[Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) SCREAMING_SNAKE_CASE : Any = Image.open(a__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
19
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = LEDTokenizer __SCREAMING_SNAKE_CASE : Dict = LEDTokenizerFast __SCREAMING_SNAKE_CASE : List[str] = True def __lowerCAmelCase ( self ) ->Optional[Any]: super().setUp() SCREAMING_SNAKE_CASE : Any = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] SCREAMING_SNAKE_CASE : Any = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] SCREAMING_SNAKE_CASE : int = {"unk_token": "<unk>"} SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowerCamelCase ) ) def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Optional[int]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Tuple: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Any: return "lower newer", "lower newer" @cached_property def __lowerCAmelCase ( self ) ->Optional[int]: return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def __lowerCAmelCase ( self ) ->Optional[Any]: return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = ["A long paragraph for summarization.", "Another paragraph for summarization."] SCREAMING_SNAKE_CASE : Tuple = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(_lowerCamelCase , max_length=len(_lowerCamelCase ) , padding=_lowerCamelCase , return_tensors='''pt''' ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) @require_torch def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE : int = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors='''pt''' ) self.assertIn('''input_ids''' , _lowerCamelCase ) self.assertIn('''attention_mask''' , _lowerCamelCase ) self.assertNotIn('''labels''' , _lowerCamelCase ) self.assertNotIn('''decoder_attention_mask''' , _lowerCamelCase ) @require_torch def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE : str = tokenizer(text_target=_lowerCamelCase , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def __lowerCAmelCase ( self ) ->str: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE : Optional[int] = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=_lowerCamelCase , truncation=_lowerCamelCase , return_tensors='''pt''' ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = ["A long paragraph for summarization."] SCREAMING_SNAKE_CASE : Tuple = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE : Dict = tokenizer(_lowerCamelCase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(text_target=_lowerCamelCase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Any = inputs["input_ids"] SCREAMING_SNAKE_CASE : List[Any] = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __lowerCAmelCase ( self ) ->Any: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: SCREAMING_SNAKE_CASE : Union[str, Any] = ["Summary of the text.", "Another summary."] SCREAMING_SNAKE_CASE : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] SCREAMING_SNAKE_CASE : str = tokenizer(_lowerCamelCase , padding=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = [[0] * len(_lowerCamelCase ) for x in encoded_output["input_ids"]] SCREAMING_SNAKE_CASE : List[Any] = tokenizer.pad(_lowerCamelCase ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[str]: pass def __lowerCAmelCase ( self ) ->Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE : Dict = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = "A, <mask> AllenNLP sentence." SCREAMING_SNAKE_CASE : int = tokenizer_r.encode_plus(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_token_type_ids=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_p.encode_plus(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_token_type_ids=_lowerCamelCase ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( _lowerCamelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( _lowerCamelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
353
import datasets from .evaluate import evaluate a__ : Dict = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' a__ : List[str] = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' a__ : List[Any] = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
19
0
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ) ->str: SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : List[Any] = batch_size SCREAMING_SNAKE_CASE : str = seq_length SCREAMING_SNAKE_CASE : List[str] = is_training SCREAMING_SNAKE_CASE : Tuple = use_input_mask SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Dict = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = type_sequence_label_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : List[Any] = num_choices SCREAMING_SNAKE_CASE : Union[str, Any] = scope def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : List[str] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Any = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Any = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ) ->str: return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = LlamaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) ->Dict: SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Optional[int] = LlamaModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[Any] = LlamaForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) ->Any: SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : str = LlamaForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE : int = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , use_cache=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE : str = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE : str = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE : str = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , )['''hidden_states'''][0] SCREAMING_SNAKE_CASE : Dict = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , encoder_attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , )['''hidden_states'''][0] # select random slice SCREAMING_SNAKE_CASE : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a_ ( a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __SCREAMING_SNAKE_CASE : str = (LlamaForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Optional[Any] = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = LlamaModelTester(self ) SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE : Optional[Any] = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Optional[Any] = 3 SCREAMING_SNAKE_CASE : List[str] = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE : Tuple = input_ids.ne(1 ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[str] = LlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Optional[Any] = 3 SCREAMING_SNAKE_CASE : int = '''single_label_classification''' SCREAMING_SNAKE_CASE : Optional[int] = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids.ne(1 ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Optional[int] = LlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : int = 3 SCREAMING_SNAKE_CASE : int = '''multi_label_classification''' SCREAMING_SNAKE_CASE : Tuple = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids.ne(1 ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE : int = LlamaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def __lowerCAmelCase ( self ) ->Optional[Any]: pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : int = ids_tensor([1, 10] , config.vocab_size ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE : Any = LlamaModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = original_model(lowerCamelCase_ ).last_hidden_state SCREAMING_SNAKE_CASE : Optional[Any] = original_model(lowerCamelCase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights SCREAMING_SNAKE_CASE : Optional[int] = {'''type''': scaling_type, '''factor''': 1_0.0} SCREAMING_SNAKE_CASE : Optional[Any] = LlamaModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() SCREAMING_SNAKE_CASE : Any = scaled_model(lowerCamelCase_ ).last_hidden_state SCREAMING_SNAKE_CASE : Any = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-5 ) ) @require_torch class a_ ( unittest.TestCase ): """simple docstring""" @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE : int = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) SCREAMING_SNAKE_CASE : Optional[int] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE : Tuple = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Tuple = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE : int = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) SCREAMING_SNAKE_CASE : List[Any] = model(torch.tensor(lowerCamelCase_ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE : Dict = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE : Tuple = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE : Dict = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) SCREAMING_SNAKE_CASE : Any = model(torch.tensor(lowerCamelCase_ ) ) # Expected mean on dim = -1 SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off SCREAMING_SNAKE_CASE : str = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = [1, 306, 4658, 278, 6593, 310, 2834, 338] SCREAMING_SNAKE_CASE : List[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) SCREAMING_SNAKE_CASE : int = model(torch.tensor(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , lowerCamelCase_ , atol=1e-2 , rtol=1e-2 ) # fmt: off SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , lowerCamelCase_ , atol=1e-5 , rtol=1e-5 ) @unittest.skip('''Model is curently gated''' ) @slow def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[int] = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi''' SCREAMING_SNAKE_CASE : Any = '''Simply put, the theory of relativity states that ''' SCREAMING_SNAKE_CASE : Optional[int] = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) SCREAMING_SNAKE_CASE : Any = tokenizer.encode(lowerCamelCase_ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : int = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=lowerCamelCase_ ) # greedy generation outputs SCREAMING_SNAKE_CASE : Optional[int] = model.generate(lowerCamelCase_ , max_new_tokens=64 , top_p=lowerCamelCase_ , temperature=1 , do_sample=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ )
354
from sklearn.metrics import matthews_corrcoef import datasets a__ : Optional[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' a__ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' a__ : Union[str, Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]: return { "matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ), }
19
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a__ : Optional[int] = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys a__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
355
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a__ ) SCREAMING_SNAKE_CASE : int = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=a__ ) env_command_parser(subparsers=a__ ) launch_command_parser(subparsers=a__ ) tpu_command_parser(subparsers=a__ ) test_command_parser(subparsers=a__ ) # Let's go SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if not hasattr(a__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(a__ ) if __name__ == "__main__": main()
19
0
import logging import os import threading import time try: import warnings except ImportError: a__ : List[str] = None try: import msvcrt except ImportError: a__ : Optional[Any] = None try: import fcntl except ImportError: a__ : Union[str, Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: a__ : Dict = OSError # Data # ------------------------------------------------ a__ : Union[str, Any] = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] a__ : Dict = '''3.0.12''' a__ : Optional[Any] = None def UpperCAmelCase_( ): """simple docstring""" global _logger SCREAMING_SNAKE_CASE : List[str] = _logger or logging.getLogger(__name__ ) return _logger class a_ ( A__ ): def __init__( self , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = lock_file return None def __str__( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = F"""The file lock '{self.lock_file}' could not be acquired.""" return temp class a_ : def __init__( self , _lowerCamelCase ) ->str: SCREAMING_SNAKE_CASE : Optional[int] = lock return None def __enter__( self ) ->Optional[int]: return self.lock def __exit__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[int]: self.lock.release() return None class a_ : def __init__( self , _lowerCamelCase , _lowerCamelCase=-1 , _lowerCamelCase=None ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long SCREAMING_SNAKE_CASE : Tuple = self.hash_filename_if_too_long(lowerCamelCase__ , lowerCamelCase__ ) # The path to the lock file. SCREAMING_SNAKE_CASE : Union[str, Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. SCREAMING_SNAKE_CASE : Dict = None # The default timeout value. SCREAMING_SNAKE_CASE : Any = timeout # We use this lock primarily for the lock counter. SCREAMING_SNAKE_CASE : Union[str, Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. SCREAMING_SNAKE_CASE : Dict = 0 return None @property def __lowerCAmelCase ( self ) ->List[Any]: return self._lock_file @property def __lowerCAmelCase ( self ) ->Any: return self._timeout @timeout.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Tuple = float(lowerCamelCase__ ) return None def __lowerCAmelCase ( self ) ->Optional[int]: raise NotImplementedError() def __lowerCAmelCase ( self ) ->List[str]: raise NotImplementedError() @property def __lowerCAmelCase ( self ) ->Dict: return self._lock_file_fd is not None def __lowerCAmelCase ( self , _lowerCamelCase=None , _lowerCamelCase=0.0_5 ) ->List[Any]: # Use the default timeout, if no timeout is provided. if timeout is None: SCREAMING_SNAKE_CASE : Optional[int] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 SCREAMING_SNAKE_CASE : Any = id(self ) SCREAMING_SNAKE_CASE : Any = self._lock_file SCREAMING_SNAKE_CASE : Dict = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(lowerCamelCase__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: SCREAMING_SNAKE_CASE : str = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->Tuple: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: SCREAMING_SNAKE_CASE : Any = id(self ) SCREAMING_SNAKE_CASE : Any = self._lock_file logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() SCREAMING_SNAKE_CASE : Optional[int] = 0 logger().debug(F"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self ) ->Tuple: self.acquire() return self def __exit__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[str]: self.release() return None def __del__( self ) ->List[str]: self.release(force=lowerCamelCase__ ) return None def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : str = os.path.basename(lowerCamelCase__ ) if len(lowerCamelCase__ ) > max_length and max_length > 0: SCREAMING_SNAKE_CASE : str = os.path.dirname(lowerCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = str(hash(lowerCamelCase__ ) ) SCREAMING_SNAKE_CASE : Tuple = filename[: max_length - len(lowerCamelCase__ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(lowerCamelCase__ , lowerCamelCase__ ) else: return path class a_ ( A__ ): def __init__( self , _lowerCamelCase , _lowerCamelCase=-1 , _lowerCamelCase=None ) ->List[str]: from .file_utils import relative_to_absolute_path super().__init__(lowerCamelCase__ , timeout=lowerCamelCase__ , max_filename_length=lowerCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : int = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: SCREAMING_SNAKE_CASE : Union[str, Any] = os.open(self._lock_file , lowerCamelCase__ ) except OSError: pass else: try: msvcrt.locking(lowerCamelCase__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(lowerCamelCase__ ) else: SCREAMING_SNAKE_CASE : Optional[Any] = fd return None def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Any = self._lock_file_fd SCREAMING_SNAKE_CASE : Optional[int] = None msvcrt.locking(lowerCamelCase__ , msvcrt.LK_UNLCK , 1 ) os.close(lowerCamelCase__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class a_ ( A__ ): def __init__( self , _lowerCamelCase , _lowerCamelCase=-1 , _lowerCamelCase=None ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Dict = os.statvfs(os.path.dirname(lowerCamelCase__ ) ).f_namemax super().__init__(lowerCamelCase__ , timeout=lowerCamelCase__ , max_filename_length=lowerCamelCase__ ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = os.O_RDWR | os.O_CREAT | os.O_TRUNC SCREAMING_SNAKE_CASE : Optional[Any] = os.open(self._lock_file , lowerCamelCase__ ) try: fcntl.flock(lowerCamelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowerCamelCase__ ) else: SCREAMING_SNAKE_CASE : Optional[int] = fd return None def __lowerCAmelCase ( self ) ->List[str]: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition SCREAMING_SNAKE_CASE : Union[str, Any] = self._lock_file_fd SCREAMING_SNAKE_CASE : str = None fcntl.flock(lowerCamelCase__ , fcntl.LOCK_UN ) os.close(lowerCamelCase__ ) return None class a_ ( A__ ): def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[str] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: SCREAMING_SNAKE_CASE : Dict = os.open(self._lock_file , lowerCamelCase__ ) except OSError: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = fd return None def __lowerCAmelCase ( self ) ->Tuple: os.close(self._lock_file_fd ) SCREAMING_SNAKE_CASE : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None a__ : List[str] = None if msvcrt: a__ : Optional[int] = WindowsFileLock elif fcntl: a__ : List[str] = UnixFileLock else: a__ : Any = SoftFileLock if warnings is not None: warnings.warn('''only soft file lock is available''')
356
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : str = logging.get_logger(__name__) a__ : Optional[Any] = {'''vocab_file''': '''vocab.json'''} a__ : str = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } a__ : Tuple = {'''mgp-str''': 27} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) ->Dict: super().__init__( unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , pad_token=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.vocab.items()} @property def __lowerCAmelCase ( self ) ->List[Any]: return len(self.vocab ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return dict(self.vocab , **self.added_tokens_encoder ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for s in text: char_tokens.extend(_lowerCamelCase ) return char_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: return self.decoder.get(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) ) return SCREAMING_SNAKE_CASE : str = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' ) return (vocab_file,)
19
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : int = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class a_ ( a_ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 'gpt_bigcode' __SCREAMING_SNAKE_CASE : Dict = ['past_key_values'] __SCREAMING_SNAKE_CASE : List[str] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowerCamelCase=5_0257 , _lowerCamelCase=1024 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=None , _lowerCamelCase="gelu_pytorch_tanh" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=1e-5 , _lowerCamelCase=0.0_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=5_0256 , _lowerCamelCase=5_0256 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , **_lowerCamelCase , ) ->int: SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Dict = n_positions SCREAMING_SNAKE_CASE : Union[str, Any] = n_embd SCREAMING_SNAKE_CASE : Dict = n_layer SCREAMING_SNAKE_CASE : int = n_head SCREAMING_SNAKE_CASE : str = n_inner SCREAMING_SNAKE_CASE : Optional[Any] = activation_function SCREAMING_SNAKE_CASE : List[Any] = resid_pdrop SCREAMING_SNAKE_CASE : Dict = embd_pdrop SCREAMING_SNAKE_CASE : int = attn_pdrop SCREAMING_SNAKE_CASE : Tuple = layer_norm_epsilon SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : Dict = scale_attn_weights SCREAMING_SNAKE_CASE : Tuple = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = attention_softmax_in_fpaa SCREAMING_SNAKE_CASE : Optional[Any] = scale_attention_softmax_in_fpaa SCREAMING_SNAKE_CASE : Optional[int] = multi_query SCREAMING_SNAKE_CASE : Union[str, Any] = bos_token_id SCREAMING_SNAKE_CASE : Union[str, Any] = eos_token_id super().__init__(bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
357
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''DeiTFeatureExtractor'''] a__ : Any = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : List[Any] = logging.get_logger(__name__) a__ : Optional[Any] = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 'dpr' def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=0 , _lowerCamelCase="absolute" , _lowerCamelCase = 0 , **_lowerCamelCase , ) ->Optional[Any]: super().__init__(pad_token_id=__A , **__A ) SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE : Any = num_hidden_layers SCREAMING_SNAKE_CASE : str = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : int = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[int] = projection_dim SCREAMING_SNAKE_CASE : List[str] = position_embedding_type
358
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
0
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class a_ ( UpperCAmelCase__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = ['vqvae'] def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) ->Any: super().__init__() self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , mel=_SCREAMING_SNAKE_CASE , vqvae=_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) ->int: return 50 if isinstance(self.scheduler , _SCREAMING_SNAKE_CASE ) else 1000 @torch.no_grad() def __call__( self , _lowerCamelCase = 1 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 0 , _lowerCamelCase = 0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 0 , _lowerCamelCase = 0 , _lowerCamelCase = None , _lowerCamelCase = 0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase=True , ) ->Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: SCREAMING_SNAKE_CASE : List[str] = steps or self.get_default_steps() self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: SCREAMING_SNAKE_CASE : Optional[int] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: SCREAMING_SNAKE_CASE : List[str] = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=_SCREAMING_SNAKE_CASE , device=self.device , ) SCREAMING_SNAKE_CASE : List[str] = noise SCREAMING_SNAKE_CASE : Tuple = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.mel.audio_slice_to_image(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) SCREAMING_SNAKE_CASE : str = (input_image / 255) * 2 - 1 SCREAMING_SNAKE_CASE : List[str] = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: SCREAMING_SNAKE_CASE : List[str] = self.vqvae.encode(torch.unsqueeze(_SCREAMING_SNAKE_CASE , 0 ) ).latent_dist.sample( generator=_SCREAMING_SNAKE_CASE )[0] SCREAMING_SNAKE_CASE : List[str] = self.vqvae.config.scaling_factor * input_images if start_step > 0: SCREAMING_SNAKE_CASE : int = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.scheduler.timesteps[start_step - 1] ) SCREAMING_SNAKE_CASE : Optional[int] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) SCREAMING_SNAKE_CASE : Optional[int] = int(mask_start_secs * pixels_per_second ) SCREAMING_SNAKE_CASE : Tuple = int(mask_end_secs * pixels_per_second ) SCREAMING_SNAKE_CASE : Dict = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : Tuple = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )["""sample"""] else: SCREAMING_SNAKE_CASE : int = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )["""sample"""] if isinstance(self.scheduler , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step( model_output=_SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , sample=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , )["""prev_sample"""] else: SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.step( model_output=_SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , sample=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , )["""prev_sample"""] if mask is not None: if mask_start > 0: SCREAMING_SNAKE_CASE : Union[str, Any] = mask[:, step, :, :mask_start] if mask_end > 0: SCREAMING_SNAKE_CASE : int = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance SCREAMING_SNAKE_CASE : List[Any] = 1 / self.vqvae.config.scaling_factor * images SCREAMING_SNAKE_CASE : Dict = self.vqvae.decode(_SCREAMING_SNAKE_CASE )["""sample"""] SCREAMING_SNAKE_CASE : Any = (images / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() SCREAMING_SNAKE_CASE : int = (images * 255).round().astype('''uint8''' ) SCREAMING_SNAKE_CASE : Optional[Any] = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_SCREAMING_SNAKE_CASE , mode='''RGB''' ).convert('''L''' ) for _ in images) ) SCREAMING_SNAKE_CASE : List[Any] = [self.mel.image_to_audio(_SCREAMING_SNAKE_CASE ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_SCREAMING_SNAKE_CASE )[:, np.newaxis, :] ) , **ImagePipelineOutput(_SCREAMING_SNAKE_CASE ) ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 50 ) ->np.ndarray: assert isinstance(self.scheduler , _SCREAMING_SNAKE_CASE ) self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) SCREAMING_SNAKE_CASE : str = (sample / 255) * 2 - 1 SCREAMING_SNAKE_CASE : int = torch.Tensor(_SCREAMING_SNAKE_CASE ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): SCREAMING_SNAKE_CASE : Any = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps SCREAMING_SNAKE_CASE : Tuple = self.scheduler.alphas_cumprod[t] SCREAMING_SNAKE_CASE : int = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) SCREAMING_SNAKE_CASE : List[str] = 1 - alpha_prod_t SCREAMING_SNAKE_CASE : Dict = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )["""sample"""] SCREAMING_SNAKE_CASE : str = (1 - alpha_prod_t_prev) ** 0.5 * model_output SCREAMING_SNAKE_CASE : List[str] = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) SCREAMING_SNAKE_CASE : Optional[Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __lowerCAmelCase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->torch.Tensor: SCREAMING_SNAKE_CASE : Optional[int] = acos(torch.dot(torch.flatten(_SCREAMING_SNAKE_CASE ) , torch.flatten(_SCREAMING_SNAKE_CASE ) ) / torch.norm(_SCREAMING_SNAKE_CASE ) / torch.norm(_SCREAMING_SNAKE_CASE ) ) return sin((1 - alpha) * theta ) * xa / sin(_SCREAMING_SNAKE_CASE ) + sin(alpha * theta ) * xa / sin(_SCREAMING_SNAKE_CASE )
359
import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase_( a__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2 while True: if is_prime(a__ ): yield num num += 1 def UpperCAmelCase_( a__ = 2_000_000 ): """simple docstring""" return sum(takewhile(lambda a__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
19
0
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=3 , _lowerCamelCase=0.6 , _lowerCamelCase=None , ) ->List[str]: SCREAMING_SNAKE_CASE : Union[str, Any] = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : List[Any] = patch_size SCREAMING_SNAKE_CASE : Dict = num_channels SCREAMING_SNAKE_CASE : Optional[int] = is_training SCREAMING_SNAKE_CASE : List[Any] = use_labels SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = mask_ratio SCREAMING_SNAKE_CASE : Optional[int] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE : List[str] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE : Optional[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Dict = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->List[str]: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : Optional[int] = TFViTMAEModel(config=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ , training=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = TFViTMAEForPreTraining(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ , training=lowerCamelCase_ ) # expected sequence length = num_patches SCREAMING_SNAKE_CASE : Tuple = (self.image_size // self.patch_size) ** 2 SCREAMING_SNAKE_CASE : Any = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images SCREAMING_SNAKE_CASE : List[Any] = 1 SCREAMING_SNAKE_CASE : Optional[int] = TFViTMAEForPreTraining(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ , training=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __SCREAMING_SNAKE_CASE : Optional[int] = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {} __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Tuple = False def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Dict = TFViTMAEModelTester(self ) SCREAMING_SNAKE_CASE : str = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self ) ->Tuple: self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->List[str]: pass def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) SCREAMING_SNAKE_CASE : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , tf.keras.layers.Layer ) ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase_ ) def __lowerCAmelCase ( self ) ->Optional[Any]: # make the mask reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , noise=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = copy.deepcopy(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Dict = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = outputs_dict[0].numpy() SCREAMING_SNAKE_CASE : Dict = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 ) def __lowerCAmelCase ( self ) ->Tuple: # make the mask reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_lowerCamelCase ): SCREAMING_SNAKE_CASE : Dict = {} for k, v in inputs_dict.items(): if tf.is_tensor(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Any = v.numpy() else: SCREAMING_SNAKE_CASE : Optional[int] = np.array(lowerCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = prepare_numpy_arrays(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , noise=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[str]: # make masks reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE : int = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) SCREAMING_SNAKE_CASE : Union[str, Any] = tf.constant(lowerCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument SCREAMING_SNAKE_CASE : Tuple = tf_noise super().check_pt_tf_models(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __lowerCAmelCase ( self ) ->Union[str, Any]: # make mask reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[str] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(lowerCamelCase_ ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(lowerCamelCase_ , lowerCamelCase_ ),) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(lowerCamelCase_ , '''_keras_serializable''' , lowerCamelCase_ ) } SCREAMING_SNAKE_CASE : Any = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE : Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) SCREAMING_SNAKE_CASE : str = tf.convert_to_tensor(lowerCamelCase_ ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = main_layer_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } SCREAMING_SNAKE_CASE : Dict = tf.keras.Model(lowerCamelCase_ , outputs=main_layer(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : List[Any] = os.path.join(lowerCamelCase_ , '''keras_model.h5''' ) model.save(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = tf.keras.models.load_model( lowerCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(lowerCamelCase_ , tf.keras.Model ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) @slow def __lowerCAmelCase ( self ) ->List[Any]: # make mask reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE : Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ , noise=lowerCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": SCREAMING_SNAKE_CASE : int = outputs.last_hidden_state.numpy() SCREAMING_SNAKE_CASE : Optional[int] = 0 else: SCREAMING_SNAKE_CASE : Any = outputs.logits.numpy() SCREAMING_SNAKE_CASE : List[str] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = model_class.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ , noise=lowerCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": SCREAMING_SNAKE_CASE : Any = after_outputs['''last_hidden_state'''].numpy() SCREAMING_SNAKE_CASE : Dict = 0 else: SCREAMING_SNAKE_CASE : str = after_outputs['''logits'''].numpy() SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase_ , 1e-5 ) def __lowerCAmelCase ( self ) ->Dict: # make mask reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , noise=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config SCREAMING_SNAKE_CASE : Union[str, Any] = model_class.from_config(model.config ) SCREAMING_SNAKE_CASE : Optional[Any] = new_model(lowerCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) SCREAMING_SNAKE_CASE : str = new_model(lowerCamelCase_ , noise=lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __lowerCAmelCase ( self ) ->Tuple: pass @slow def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(lowerCamelCase_ ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ) ->Optional[Any]: return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self ) ->str: # make random mask reproducible across the PT and TF model np.random.seed(2 ) SCREAMING_SNAKE_CASE : Union[str, Any] = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) SCREAMING_SNAKE_CASE : Dict = self.default_image_processor SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(images=lowerCamelCase_ , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) SCREAMING_SNAKE_CASE : Dict = ViTMAEConfig() SCREAMING_SNAKE_CASE : str = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE : int = np.random.uniform(size=(1, num_patches) ) # forward pass SCREAMING_SNAKE_CASE : Any = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) # verify the logits SCREAMING_SNAKE_CASE : int = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , lowerCamelCase_ , atol=1e-4 )
360
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( a__ ): """simple docstring""" def __init__( self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int: super().__init__(*_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = eval_examples SCREAMING_SNAKE_CASE : Optional[int] = post_process_function def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ) ->Dict[str, float]: SCREAMING_SNAKE_CASE : Any = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE : Dict = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE : Any = gen_kwargs SCREAMING_SNAKE_CASE : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE : str = self.get_eval_dataloader(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_metrics SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Optional[Any] = time.time() SCREAMING_SNAKE_CASE : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Tuple = eval_loop( _lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Dict = compute_metrics SCREAMING_SNAKE_CASE : Tuple = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : Optional[int] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase ) return metrics def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : str = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(_lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Dict = self.compute_metrics SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : List[str] = time.time() SCREAMING_SNAKE_CASE : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Any = eval_loop( _lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics SCREAMING_SNAKE_CASE : List[Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' ) SCREAMING_SNAKE_CASE : Dict = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
19
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig a__ : Any = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class a_ ( lowerCamelCase__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = """albert""" def __init__( self , _lowerCamelCase=3_0000 , _lowerCamelCase=128 , _lowerCamelCase=4096 , _lowerCamelCase=12 , _lowerCamelCase=1 , _lowerCamelCase=64 , _lowerCamelCase=1_6384 , _lowerCamelCase=1 , _lowerCamelCase="gelu_new" , _lowerCamelCase=0 , _lowerCamelCase=0 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=0.1 , _lowerCamelCase="absolute" , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=3 , **_lowerCamelCase , ) ->Optional[int]: super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : int = embedding_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_groups SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : Any = inner_group_num SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = classifier_dropout_prob SCREAMING_SNAKE_CASE : str = position_embedding_type class a_ ( lowerCamelCase__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[int] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
361
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = DDIMPipeline __SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = False def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler() SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) SCREAMING_SNAKE_CASE : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) def __lowerCAmelCase ( self ) ->Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_save_load_local(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32''' SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler() SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddim.to(_lowerCamelCase ) ddim.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256''' SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddpm.to(_lowerCamelCase ) ddpm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
19
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : UNetaDModel __SCREAMING_SNAKE_CASE : ScoreSdeVeScheduler def __init__( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: super().__init__() self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) @torch.no_grad() def __call__( self , _lowerCamelCase = 1 , _lowerCamelCase = 2000 , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , **_lowerCamelCase , ) ->Union[ImagePipelineOutput, Tuple]: SCREAMING_SNAKE_CASE : List[Any] = self.unet.config.sample_size SCREAMING_SNAKE_CASE : str = (batch_size, 3, img_size, img_size) SCREAMING_SNAKE_CASE : Optional[int] = self.unet SCREAMING_SNAKE_CASE : Optional[Any] = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ ) * self.scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Dict = sample.to(self.device ) self.scheduler.set_timesteps(lowerCAmelCase__ ) self.scheduler.set_sigmas(lowerCAmelCase__ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE : str = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): SCREAMING_SNAKE_CASE : List[str] = self.unet(lowerCAmelCase__ , lowerCAmelCase__ ).sample SCREAMING_SNAKE_CASE : List[str] = self.scheduler.step_correct(lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample # prediction step SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , lowerCAmelCase__ ).sample SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step_pred(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = output.prev_sample, output.prev_sample_mean SCREAMING_SNAKE_CASE : List[str] = sample_mean.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : List[str] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : Optional[Any] = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCAmelCase__ )
362
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self ) ->Dict: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = '''[PAD]''' SCREAMING_SNAKE_CASE : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowerCamelCase ) , 1012 ) def __lowerCAmelCase ( self ) ->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self ) ->List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!''' SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def __lowerCAmelCase ( self ) ->int: # fmt: off SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
19
0
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder a__ : str = """base_with_context""" def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['''token_embedder''']['''embedding'''] ) ) SCREAMING_SNAKE_CASE : Any = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=a__ ) for lyr_num, lyr in enumerate(model.encoders ): SCREAMING_SNAKE_CASE : List[str] = weights[F"""layers_{lyr_num}"""] SCREAMING_SNAKE_CASE : str = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) SCREAMING_SNAKE_CASE : Tuple = ly_weight['''attention'''] SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(weights['''input_proj''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : int = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=a__ ) for lyr_num, lyr in enumerate(model.encoders ): SCREAMING_SNAKE_CASE : Union[str, Any] = weights[F"""layers_{lyr_num}"""] SCREAMING_SNAKE_CASE : Dict = ly_weight['''attention'''] SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : int = nn.Parameter( torch.FloatTensor(ly_weight['''pre_attention_layer_norm''']['''scale'''] ) ) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(weights['''encoder_norm''']['''scale'''] ) ) return model def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense0''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(weights['''time_emb_dense1''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights['''Embed_0''']['''embedding'''] ) , requires_grad=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter( torch.FloatTensor(weights['''continuous_inputs_projection''']['''kernel'''].T ) ) for lyr_num, lyr in enumerate(model.decoders ): SCREAMING_SNAKE_CASE : Tuple = weights[F"""layers_{lyr_num}"""] SCREAMING_SNAKE_CASE : int = nn.Parameter( torch.FloatTensor(ly_weight['''pre_self_attention_layer_norm''']['''scale'''] ) ) SCREAMING_SNAKE_CASE : str = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_0''']['''DenseGeneral_0''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : str = ly_weight['''self_attention'''] SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : List[str] = ly_weight['''MultiHeadDotProductAttention_0'''] SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights['''query''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(attention_weights['''key''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(attention_weights['''value''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(attention_weights['''out''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight['''pre_cross_attention_layer_norm''']['''scale'''] ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['''pre_mlp_layer_norm''']['''scale'''] ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight['''FiLMLayer_1''']['''DenseGeneral_0''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_0''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wi_1''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(ly_weight['''mlp''']['''wo''']['''kernel'''].T ) ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(weights['''decoder_norm''']['''scale'''] ) ) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(weights['''spec_out_dense''']['''kernel'''].T ) ) return model def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = checkpoints.load_tax_checkpoint(args.checkpoint_path ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.tree_util.tree_map(onp.array , a__ ) SCREAMING_SNAKE_CASE : List[Any] = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] SCREAMING_SNAKE_CASE : Dict = os.path.join(args.checkpoint_path , '''..''' , '''config.gin''' ) SCREAMING_SNAKE_CASE : Optional[Any] = inference.parse_training_gin_file(a__ , a__ ) SCREAMING_SNAKE_CASE : List[str] = inference.InferenceModel(args.checkpoint_path , a__ ) SCREAMING_SNAKE_CASE : Any = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' , variance_type='''fixed_large''' ) SCREAMING_SNAKE_CASE : Tuple = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['''inputs'''] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) SCREAMING_SNAKE_CASE : Optional[Any] = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['''targets_context'''] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='''gated-gelu''' , ) SCREAMING_SNAKE_CASE : str = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['''targets_context'''] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) SCREAMING_SNAKE_CASE : List[Any] = load_notes_encoder(ta_checkpoint['''target''']['''token_encoder'''] , a__ ) SCREAMING_SNAKE_CASE : Tuple = load_continuous_encoder(ta_checkpoint['''target''']['''continuous_encoder'''] , a__ ) SCREAMING_SNAKE_CASE : Tuple = load_decoder(ta_checkpoint['''target''']['''decoder'''] , a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxRuntimeModel.from_pretrained('''kashif/soundstream_mel_decoder''' ) SCREAMING_SNAKE_CASE : Dict = SpectrogramDiffusionPipeline( notes_encoder=a__ , continuous_encoder=a__ , decoder=a__ , scheduler=a__ , melgan=a__ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=F"{MODEL}/checkpoint_500000", type=str, required=False, help='''Path to the original jax model checkpoint.''', ) a__ : List[str] = parser.parse_args() main(args)
363
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''.''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
19
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[int] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys a__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
364
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Tuple = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } a__ : Optional[Any] = {'''mobilebert-uncased''': 512} a__ : List[Any] = {} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE : Optional[int] = strip_accents SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = do_lower_case def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
19
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } SCREAMING_SNAKE_CASE : Optional[int] = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE_ ) , x.transpose() ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE_ , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : List[str] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : str = torch.tensor(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE_ ) , transpose(SCREAMING_SNAKE_CASE_ ).numpy() ) ) SCREAMING_SNAKE_CASE : int = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE_ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE_ , axes=(1, 2, 0) ).numpy() ) ) @require_tf def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Dict = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Tuple = tf.constant(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE_ ) , transpose(SCREAMING_SNAKE_CASE_ ).numpy() ) ) SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.constant(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE_ , axes=(1, 2, 0) ) , transpose(SCREAMING_SNAKE_CASE_ , axes=(1, 2, 0) ).numpy() ) ) @require_flax def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : str = jnp.array(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE_ ) , np.asarray(transpose(SCREAMING_SNAKE_CASE_ ) ) ) ) SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : str = jnp.array(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(transpose(SCREAMING_SNAKE_CASE_ , axes=(1, 2, 0) ) , np.asarray(transpose(SCREAMING_SNAKE_CASE_ , axes=(1, 2, 0) ) ) ) ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE_ , (4, 3) ) , np.reshape(SCREAMING_SNAKE_CASE_ , (4, 3) ) ) ) SCREAMING_SNAKE_CASE : List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE_ , (12, 5) ) , np.reshape(SCREAMING_SNAKE_CASE_ , (12, 5) ) ) ) @require_torch def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : int = torch.tensor(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE_ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE_ , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE : List[str] = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : str = torch.tensor(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE_ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE_ , (12, 5) ).numpy() ) ) @require_tf def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Tuple = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Tuple = tf.constant(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE_ , (4, 3) ) , reshape(SCREAMING_SNAKE_CASE_ , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE : Dict = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : List[Any] = tf.constant(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE_ , (12, 5) ) , reshape(SCREAMING_SNAKE_CASE_ , (12, 5) ).numpy() ) ) @require_flax def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Dict = jnp.array(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE_ , (4, 3) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE_ , (4, 3) ) ) ) ) SCREAMING_SNAKE_CASE : Any = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Dict = jnp.array(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(reshape(SCREAMING_SNAKE_CASE_ , (12, 5) ) , np.asarray(reshape(SCREAMING_SNAKE_CASE_ , (12, 5) ) ) ) ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Tuple = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE_ ) , np.squeeze(SCREAMING_SNAKE_CASE_ ) ) ) SCREAMING_SNAKE_CASE : Tuple = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE_ , axis=2 ) , np.squeeze(SCREAMING_SNAKE_CASE_ , axis=2 ) ) ) @require_torch def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE_ ) , squeeze(SCREAMING_SNAKE_CASE_ ).numpy() ) ) SCREAMING_SNAKE_CASE : Any = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE : int = torch.tensor(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE_ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE_ , axis=2 ).numpy() ) ) @require_tf def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Any = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE : int = tf.constant(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE_ ) , squeeze(SCREAMING_SNAKE_CASE_ ).numpy() ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE : int = tf.constant(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE_ , axis=2 ) , squeeze(SCREAMING_SNAKE_CASE_ , axis=2 ).numpy() ) ) @require_flax def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Optional[int] = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE : int = jnp.array(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE_ ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE_ ) ) ) ) SCREAMING_SNAKE_CASE : Tuple = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE : Dict = jnp.array(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(squeeze(SCREAMING_SNAKE_CASE_ , axis=2 ) , np.asarray(squeeze(SCREAMING_SNAKE_CASE_ , axis=2 ) ) ) ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE_ , axis=1 ) , np.expand_dims(SCREAMING_SNAKE_CASE_ , axis=1 ) ) ) @require_torch def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Dict = torch.tensor(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE_ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE_ , axis=1 ).numpy() ) ) @require_tf def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : List[Any] = tf.constant(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE_ , axis=1 ) , expand_dims(SCREAMING_SNAKE_CASE_ , axis=1 ).numpy() ) ) @require_flax def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Optional[int] = jnp.array(SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.allclose(expand_dims(SCREAMING_SNAKE_CASE_ , axis=1 ) , np.asarray(expand_dims(SCREAMING_SNAKE_CASE_ , axis=1 ) ) ) )
365
import math a__ : List[str] = 10 a__ : Optional[int] = 7 a__ : int = BALLS_PER_COLOUR * NUM_COLOURS def UpperCAmelCase_( a__ = 20 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
19
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : List[Any] = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
366
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig a__ : List[str] = logging.get_logger(__name__) # General docstring a__ : Tuple = '''MobileNetV1Config''' # Base docstring a__ : Optional[Any] = '''google/mobilenet_v1_1.0_224''' a__ : Tuple = [1, 1_024, 7, 7] # Image classification docstring a__ : Optional[int] = '''google/mobilenet_v1_1.0_224''' a__ : int = '''tabby, tabby cat''' a__ : List[Any] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCAmelCase_( a__ , a__ , a__=None ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[str] = model.mobilenet_va else: SCREAMING_SNAKE_CASE : Union[str, Any] = model SCREAMING_SNAKE_CASE : Optional[int] = '''MobilenetV1/Conv2d_0/''' SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE : Union[str, Any] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE : Any = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE : Dict = i + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2 SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.bias SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE : Any = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" SCREAMING_SNAKE_CASE : Dict = pointer.convolution.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : str = pointer.normalization.running_var if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' SCREAMING_SNAKE_CASE : List[str] = model.classifier.weight SCREAMING_SNAKE_CASE : List[str] = model.classifier.bias return tf_to_pt_map def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : List[Any] = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE : int = _build_tf_to_pytorch_map(a__ , a__ , a__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue SCREAMING_SNAKE_CASE : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) SCREAMING_SNAKE_CASE : Tuple = np.transpose(a__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE : Union[str, Any] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE : Optional[int] = np.transpose(a__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ ) tf_weights.pop(a__ , a__ ) tf_weights.pop(name + '''/RMSProp''' , a__ ) tf_weights.pop(name + '''/RMSProp_1''' , a__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ ) logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = conv_layer.stride SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE : List[str] = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE : int = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE : Tuple = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE : List[str] = pad_along_width // 2 SCREAMING_SNAKE_CASE : Any = pad_along_width - pad_left SCREAMING_SNAKE_CASE : str = pad_along_height // 2 SCREAMING_SNAKE_CASE : Optional[int] = pad_along_height - pad_top SCREAMING_SNAKE_CASE : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 ) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = True , ) ->None: super().__init__() SCREAMING_SNAKE_CASE : Any = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) SCREAMING_SNAKE_CASE : List[str] = nn.Convad( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='''zeros''' , ) if use_normalization: SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad( num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , ) else: SCREAMING_SNAKE_CASE : Dict = None if use_activation: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE : List[Any] = config.hidden_act else: SCREAMING_SNAKE_CASE : Optional[Any] = None def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor: if self.config.tf_padding: SCREAMING_SNAKE_CASE : List[Any] = apply_tf_padding(_lowerCamelCase , self.convolution ) SCREAMING_SNAKE_CASE : Dict = self.convolution(_lowerCamelCase ) if self.normalization is not None: SCREAMING_SNAKE_CASE : int = self.normalization(_lowerCamelCase ) if self.activation is not None: SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase ) return features class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = MobileNetVaConfig __SCREAMING_SNAKE_CASE : List[Any] = load_tf_weights_in_mobilenet_va __SCREAMING_SNAKE_CASE : int = 'mobilenet_v1' __SCREAMING_SNAKE_CASE : int = 'pixel_values' __SCREAMING_SNAKE_CASE : List[str] = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) a__ : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ : Union[str, Any] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True ) ->Dict: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = config SCREAMING_SNAKE_CASE : Dict = 32 SCREAMING_SNAKE_CASE : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) SCREAMING_SNAKE_CASE : str = MobileNetVaConvLayer( _lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE : Any = nn.ModuleList() for i in range(13 ): SCREAMING_SNAKE_CASE : int = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) ) SCREAMING_SNAKE_CASE : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_stem(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): SCREAMING_SNAKE_CASE : Optional[int] = layer_module(_lowerCamelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE : List[str] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 ) else: SCREAMING_SNAKE_CASE : List[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->None: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels SCREAMING_SNAKE_CASE : str = MobileNetVaModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification''' else: SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : Any = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE : Dict = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : List[Any] = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
19
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def UpperCAmelCase_( a__ , a__ , a__ , a__="attention" ): """simple docstring""" SCREAMING_SNAKE_CASE : int = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) SCREAMING_SNAKE_CASE : str = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) SCREAMING_SNAKE_CASE : List[Any] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) SCREAMING_SNAKE_CASE : Tuple = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) SCREAMING_SNAKE_CASE : Optional[int] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) SCREAMING_SNAKE_CASE : Any = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def UpperCAmelCase_( a__ , a__ , a__ , a__=False ): """simple docstring""" if split_mlp_wi: SCREAMING_SNAKE_CASE : List[Any] = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] SCREAMING_SNAKE_CASE : Tuple = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] SCREAMING_SNAKE_CASE : Tuple = (wi_a, wi_a) else: SCREAMING_SNAKE_CASE : str = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] SCREAMING_SNAKE_CASE : Optional[int] = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def UpperCAmelCase_( a__ , a__ , a__ , a__ ): """simple docstring""" return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def UpperCAmelCase_( a__ , *, a__ , a__ , a__ = False ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = traverse_util.flatten_dict(variables['''target'''] ) SCREAMING_SNAKE_CASE : Tuple = {'/'.join(lowerCamelCase_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi SCREAMING_SNAKE_CASE : Any = 'encoder/encoder/mlp/wi_0/kernel' in old print('''Split MLP:''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = collections.OrderedDict() # Shared embeddings. SCREAMING_SNAKE_CASE : Dict = old['token_embedder/embedding'] # Encoder. for i in range(lowerCamelCase_ ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE : int = tax_layer_norm_lookup(lowerCamelCase_ , lowerCamelCase_ , '''encoder''' , '''pre_attention_layer_norm''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = tax_attention_lookup(lowerCamelCase_ , lowerCamelCase_ , '''encoder''' , '''attention''' ) SCREAMING_SNAKE_CASE : int = layer_norm SCREAMING_SNAKE_CASE : Optional[int] = k.T SCREAMING_SNAKE_CASE : Any = o.T SCREAMING_SNAKE_CASE : Dict = q.T SCREAMING_SNAKE_CASE : Any = v.T # Block i, layer 1 (MLP). SCREAMING_SNAKE_CASE : List[str] = tax_layer_norm_lookup(lowerCamelCase_ , lowerCamelCase_ , '''encoder''' , '''pre_mlp_layer_norm''' ) SCREAMING_SNAKE_CASE : Optional[int] = tax_mlp_lookup(lowerCamelCase_ , lowerCamelCase_ , '''encoder''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE : Union[str, Any] = wi[0].T SCREAMING_SNAKE_CASE : List[Any] = wi[1].T else: SCREAMING_SNAKE_CASE : str = wi.T SCREAMING_SNAKE_CASE : List[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer SCREAMING_SNAKE_CASE : Optional[Any] = tax_relpos_bias_lookup( lowerCamelCase_ , lowerCamelCase_ , '''encoder''' ).T SCREAMING_SNAKE_CASE : List[str] = old['encoder/encoder_norm/scale'] if not scalable_attention: SCREAMING_SNAKE_CASE : Optional[int] = tax_relpos_bias_lookup( lowerCamelCase_ , 0 , '''encoder''' ).T SCREAMING_SNAKE_CASE : Tuple = tax_relpos_bias_lookup( lowerCamelCase_ , 0 , '''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(lowerCamelCase_ ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE : Optional[Any] = tax_layer_norm_lookup(lowerCamelCase_ , lowerCamelCase_ , '''decoder''' , '''pre_self_attention_layer_norm''' ) SCREAMING_SNAKE_CASE : List[Any] = tax_attention_lookup(lowerCamelCase_ , lowerCamelCase_ , '''decoder''' , '''self_attention''' ) SCREAMING_SNAKE_CASE : Dict = layer_norm SCREAMING_SNAKE_CASE : List[str] = k.T SCREAMING_SNAKE_CASE : str = o.T SCREAMING_SNAKE_CASE : Optional[Any] = q.T SCREAMING_SNAKE_CASE : Tuple = v.T # Block i, layer 1 (Cross Attention). SCREAMING_SNAKE_CASE : Tuple = tax_layer_norm_lookup(lowerCamelCase_ , lowerCamelCase_ , '''decoder''' , '''pre_cross_attention_layer_norm''' ) SCREAMING_SNAKE_CASE : List[str] = tax_attention_lookup(lowerCamelCase_ , lowerCamelCase_ , '''decoder''' , '''encoder_decoder_attention''' ) SCREAMING_SNAKE_CASE : Optional[int] = layer_norm SCREAMING_SNAKE_CASE : Union[str, Any] = k.T SCREAMING_SNAKE_CASE : Optional[Any] = o.T SCREAMING_SNAKE_CASE : Optional[int] = q.T SCREAMING_SNAKE_CASE : Optional[int] = v.T # Block i, layer 2 (MLP). SCREAMING_SNAKE_CASE : Any = tax_layer_norm_lookup(lowerCamelCase_ , lowerCamelCase_ , '''decoder''' , '''pre_mlp_layer_norm''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = tax_mlp_lookup(lowerCamelCase_ , lowerCamelCase_ , '''decoder''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE : int = wi[0].T SCREAMING_SNAKE_CASE : Optional[int] = wi[1].T else: SCREAMING_SNAKE_CASE : int = wi.T SCREAMING_SNAKE_CASE : Union[str, Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer SCREAMING_SNAKE_CASE : Tuple = tax_relpos_bias_lookup(lowerCamelCase_ , lowerCamelCase_ , '''decoder''' ).T SCREAMING_SNAKE_CASE : Tuple = old['decoder/decoder_norm/scale'] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: SCREAMING_SNAKE_CASE : List[str] = old['decoder/logits_dense/kernel'].T return new def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE : List[Any] = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) SCREAMING_SNAKE_CASE : Optional[int] = state_dict['shared.weight'] return state_dict def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = checkpoints.load_tax_checkpoint(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = convert_tax_to_pytorch( lowerCamelCase_ , num_layers=config.num_layers , is_encoder_only=lowerCamelCase_ , scalable_attention=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = make_state_dict(lowerCamelCase_ , lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) def UpperCAmelCase_( a__ , a__ , a__ , a__ = False , a__ = False , ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = MTaConfig.from_json_file(lowerCamelCase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: SCREAMING_SNAKE_CASE : Optional[int] = UMTaEncoderModel(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = UMTaForConditionalGeneration(lowerCamelCase_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase_ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCamelCase_ ) print('''Done''' ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) a__ : Optional[int] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
367
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def UpperCAmelCase_( a__ = 1 / 12_345 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : int = 3 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): SCREAMING_SNAKE_CASE : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
19
0
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin a__ : Tuple = ''' Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] ''' class a_ ( unittest.TestCase , __a ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[str] = load_tool('''text-question-answering''' ) self.tool.setup() SCREAMING_SNAKE_CASE : Optional[Any] = load_tool('''text-question-answering''' , remote=UpperCamelCase__ ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Dict = self.tool(UpperCamelCase__ , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(UpperCamelCase__ , '''launched the BigScience Research Workshop''' ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : str = self.remote_tool(UpperCamelCase__ , '''What did Hugging Face do in April 2021?''' ) self.assertEqual(UpperCamelCase__ , '''launched the BigScience Research Workshop''' ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Dict = self.tool(text=UpperCamelCase__ , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(UpperCamelCase__ , '''launched the BigScience Research Workshop''' ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Optional[int] = self.remote_tool(text=UpperCamelCase__ , question='''What did Hugging Face do in April 2021?''' ) self.assertEqual(UpperCamelCase__ , '''launched the BigScience Research Workshop''' )
368
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ : Any = TypeVar('''T''') def UpperCAmelCase_( a__ ): """simple docstring""" return (position - 1) // 2 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 1 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 2 class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : list[tuple[T, int]] = [] SCREAMING_SNAKE_CASE : dict[T, int] = {} SCREAMING_SNAKE_CASE : int = 0 def __len__( self ) ->int: return self.elements def __repr__( self ) ->str: return str(self.heap ) def __lowerCAmelCase ( self ) ->bool: # Check if the priority queue is empty return self.elements == 0 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE : Tuple = self.elements self.elements += 1 self._bubble_up(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[0] self._bubble_down(_lowerCamelCase ) return elem def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Update the weight of the given key SCREAMING_SNAKE_CASE : List[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE : Any = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE : List[Any] = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (upward movement) [to be used internally # only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE : str = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.heap[curr_pos] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_up(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (downward movement) [to be used # internally only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[curr_pos] SCREAMING_SNAKE_CASE : List[str] = get_child_left_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = get_child_right_position(_lowerCamelCase ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[child_left_position] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Swap the nodes at the given positions SCREAMING_SNAKE_CASE : Optional[int] = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE : Any = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE : Optional[int] = nodea_pos SCREAMING_SNAKE_CASE : List[str] = nodea_pos class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {} SCREAMING_SNAKE_CASE : int = 0 def __repr__( self ) ->str: return str(self.connections ) def __len__( self ) ->int: return self.nodes def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Add a node in the graph if it is not in the graph if node not in self.connections: SCREAMING_SNAKE_CASE : Any = {} self.nodes += 1 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an edge between 2 nodes in the graph self.add_node(_lowerCamelCase ) self.add_node(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = weight SCREAMING_SNAKE_CASE : str = weight def UpperCAmelCase_( a__ , ): """simple docstring""" SCREAMING_SNAKE_CASE : dict[T, int] = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE : dict[T, T | None] = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE : List[Any] = priority_queue.extract_min() SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : Any = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node return dist, parent
19
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a__ : Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') a__ : Dict = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) a__ : Optional[int] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=_lowerCAmelCase , metadata={'help': 'A folder containing the training data.'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field(default=_lowerCAmelCase , metadata={'help': 'A folder containing the validation data.'} ) __SCREAMING_SNAKE_CASE : Optional[float] = field( default=0.1_5 , metadata={'help': 'Percent to split off of train for validation.'} ) __SCREAMING_SNAKE_CASE : int = field(default=32 , metadata={'help': 'The size of the square patches to use for masking.'} ) __SCREAMING_SNAKE_CASE : float = field( default=0.6 , metadata={'help': 'Percentage of patches to mask.'} , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : str = {} if self.train_dir is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = self.train_dir if self.validation_dir is not None: SCREAMING_SNAKE_CASE : str = self.validation_dir SCREAMING_SNAKE_CASE : int = data_files if data_files else None @dataclass class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : str = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ' 'checkpoint identifier on the hub. ' 'Don\'t set if you want to train a model from scratch.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'} , ) __SCREAMING_SNAKE_CASE : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __SCREAMING_SNAKE_CASE : str = field(default=_lowerCAmelCase , metadata={'help': 'Name or path of preprocessor config.'} ) __SCREAMING_SNAKE_CASE : bool = field( default=_lowerCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The size (resolution) of each image. If not specified, will use `image_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[int] = field( default=_lowerCAmelCase , metadata={'help': 'Stride to use for the encoder.'} , ) class a_ : """simple docstring""" def __init__( self , _lowerCamelCase=192 , _lowerCamelCase=32 , _lowerCamelCase=4 , _lowerCamelCase=0.6 ) ->List[str]: SCREAMING_SNAKE_CASE : Dict = input_size SCREAMING_SNAKE_CASE : Optional[Any] = mask_patch_size SCREAMING_SNAKE_CASE : Union[str, Any] = model_patch_size SCREAMING_SNAKE_CASE : Any = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError('''Input size must be divisible by mask patch size''' ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError('''Mask patch size must be divisible by model patch size''' ) SCREAMING_SNAKE_CASE : List[Any] = self.input_size // self.mask_patch_size SCREAMING_SNAKE_CASE : Optional[int] = self.mask_patch_size // self.model_patch_size SCREAMING_SNAKE_CASE : int = self.rand_size**2 SCREAMING_SNAKE_CASE : Optional[int] = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = np.random.permutation(self.token_count )[: self.mask_count] SCREAMING_SNAKE_CASE : List[Any] = np.zeros(self.token_count , dtype=_lowercase ) SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : int = mask.reshape((self.rand_size, self.rand_size) ) SCREAMING_SNAKE_CASE : str = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = torch.stack([example['''pixel_values'''] for example in examples] ) SCREAMING_SNAKE_CASE : Tuple = torch.stack([example['''mask'''] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_mim''' , snake_case_ , snake_case_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Optional[Any] = training_args.get_process_log_level() logger.setLevel(snake_case_ ) transformers.utils.logging.set_verbosity(snake_case_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset. SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE : Tuple = None if '''validation''' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , snake_case_ ) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE : str = ds['''train'''].train_test_split(data_args.train_val_split ) SCREAMING_SNAKE_CASE : Dict = split['''train'''] SCREAMING_SNAKE_CASE : Tuple = split['''test'''] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : Dict = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name_or_path: SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(model_args.config_name_or_path , **snake_case_ ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(model_args.model_name_or_path , **snake_case_ ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(snake_case_ , '''decoder_type''' ): SCREAMING_SNAKE_CASE : List[str] = '''simmim''' # adapt config SCREAMING_SNAKE_CASE : List[str] = model_args.image_size if model_args.image_size is not None else config.image_size SCREAMING_SNAKE_CASE : Union[str, Any] = model_args.patch_size if model_args.patch_size is not None else config.patch_size SCREAMING_SNAKE_CASE : Dict = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { '''image_size''': model_args.image_size, '''patch_size''': model_args.patch_size, '''encoder_stride''': model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: SCREAMING_SNAKE_CASE : List[Any] = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **snake_case_ ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **snake_case_ ) else: SCREAMING_SNAKE_CASE : str = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } SCREAMING_SNAKE_CASE : Tuple = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForMaskedImageModeling.from_config(snake_case_ ) if training_args.do_train: SCREAMING_SNAKE_CASE : Optional[Any] = ds['''train'''].column_names else: SCREAMING_SNAKE_CASE : Tuple = ds['''validation'''].column_names if data_args.image_column_name is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = data_args.image_column_name elif "image" in column_names: SCREAMING_SNAKE_CASE : List[Any] = '''image''' elif "img" in column_names: SCREAMING_SNAKE_CASE : Union[str, Any] = '''img''' else: SCREAMING_SNAKE_CASE : Optional[Any] = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py SCREAMING_SNAKE_CASE : str = Compose( [ Lambda(lambda a__ : img.convert('''RGB''' ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator SCREAMING_SNAKE_CASE : List[Any] = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(a__ ): SCREAMING_SNAKE_CASE : Optional[int] = [transforms(snake_case_ ) for image in examples[image_column_name]] SCREAMING_SNAKE_CASE : Optional[int] = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE : Tuple = ds['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(snake_case_ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE : List[str] = ( ds['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(snake_case_ ) # Initialize our trainer SCREAMING_SNAKE_CASE : Optional[int] = Trainer( model=snake_case_ , args=snake_case_ , train_dataset=ds['''train'''] if training_args.do_train else None , eval_dataset=ds['''validation'''] if training_args.do_eval else None , tokenizer=snake_case_ , data_collator=snake_case_ , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE : str = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE : Optional[Any] = last_checkpoint SCREAMING_SNAKE_CASE : int = trainer.train(resume_from_checkpoint=snake_case_ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE : Optional[Any] = trainer.evaluate() trainer.log_metrics('''eval''' , snake_case_ ) trainer.save_metrics('''eval''' , snake_case_ ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE : int = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''masked-image-modeling''', '''dataset''': data_args.dataset_name, '''tags''': ['''masked-image-modeling'''], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case_ ) else: trainer.create_model_card(**snake_case_ ) if __name__ == "__main__": main()
369
from math import pi, sqrt, tan def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) SCREAMING_SNAKE_CASE : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(a__ , 2 ) * torus_radius * tube_radius def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) SCREAMING_SNAKE_CASE : int = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : List[str] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not isinstance(a__ , a__ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F"Rectangle: {area_rectangle(10, 20) = }") print(F"Square: {area_square(10) = }") print(F"Triangle: {area_triangle(10, 10) = }") print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(F"Parallelogram: {area_parallelogram(10, 20) = }") print(F"Rhombus: {area_rhombus(10, 20) = }") print(F"Trapezium: {area_trapezium(10, 20, 30) = }") print(F"Circle: {area_circle(20) = }") print(F"Ellipse: {area_ellipse(10, 20) = }") print('''\nSurface Areas of various geometric shapes: \n''') print(F"Cube: {surface_area_cube(20) = }") print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(F"Sphere: {surface_area_sphere(20) = }") print(F"Hemisphere: {surface_area_hemisphere(20) = }") print(F"Cone: {surface_area_cone(10, 20) = }") print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(F"Cylinder: {surface_area_cylinder(10, 20) = }") print(F"Torus: {surface_area_torus(20, 10) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(F"Square: {area_reg_polygon(4, 10) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
19
0
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging a__ : List[str] = logging.get_logger(__name__) class a_ ( _a ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = """linear""" __SCREAMING_SNAKE_CASE : List[Any] = """cosine""" __SCREAMING_SNAKE_CASE : Union[str, Any] = """cosine_with_restarts""" __SCREAMING_SNAKE_CASE : Union[str, Any] = """polynomial""" __SCREAMING_SNAKE_CASE : List[Any] = """constant""" __SCREAMING_SNAKE_CASE : int = """constant_with_warmup""" __SCREAMING_SNAKE_CASE : Any = """piecewise_constant""" def lowercase__( a__ , a__ = -1 ): """simple docstring""" return LambdaLR(a__ , lambda a__ : 1 , last_epoch=a__ ) def lowercase__( a__ , a__ , a__ = -1 ): """simple docstring""" def lr_lambda(a__ ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1.0 , a__ ) ) return 1.0 return LambdaLR(a__ , a__ , last_epoch=a__ ) def lowercase__( a__ , a__ , a__ = -1 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : Dict = step_rules.split(''',''' ) for rule_str in rule_list[:-1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = rule_str.split(''':''' ) SCREAMING_SNAKE_CASE : Optional[int] = int(a__ ) SCREAMING_SNAKE_CASE : Dict = float(a__ ) SCREAMING_SNAKE_CASE : str = value SCREAMING_SNAKE_CASE : Dict = float(rule_list[-1] ) def create_rules_function(a__ , a__ ): def rule_func(a__ ) -> float: SCREAMING_SNAKE_CASE : int = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(a__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func SCREAMING_SNAKE_CASE : Union[str, Any] = create_rules_function(a__ , a__ ) return LambdaLR(a__ , a__ , last_epoch=a__ ) def lowercase__( a__ , a__ , a__ , a__=-1 ): """simple docstring""" def lr_lambda(a__ ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(a__ , a__ , a__ ) def lowercase__( a__ , a__ , a__ , a__ = 0.5 , a__ = -1 ): """simple docstring""" def lr_lambda(a__ ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(a__ ) * 2.0 * progress )) ) return LambdaLR(a__ , a__ , a__ ) def lowercase__( a__ , a__ , a__ , a__ = 1 , a__ = -1 ): """simple docstring""" def lr_lambda(a__ ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) SCREAMING_SNAKE_CASE : List[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(a__ ) * progress) % 1.0) )) ) return LambdaLR(a__ , a__ , a__ ) def lowercase__( a__ , a__ , a__ , a__=1e-7 , a__=1.0 , a__=-1 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = optimizer.defaults['''lr'''] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(a__ ): if current_step < num_warmup_steps: return float(a__ ) / float(max(1 , a__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: SCREAMING_SNAKE_CASE : Union[str, Any] = lr_init - lr_end SCREAMING_SNAKE_CASE : Tuple = num_training_steps - num_warmup_steps SCREAMING_SNAKE_CASE : List[str] = 1 - (current_step - num_warmup_steps) / decay_steps SCREAMING_SNAKE_CASE : Any = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(a__ , a__ , a__ ) a__ : str = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowercase__( a__ , a__ , a__ = None , a__ = None , a__ = None , a__ = 1 , a__ = 1.0 , a__ = -1 , ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = SchedulerType(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(a__ , last_epoch=a__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(a__ , step_rules=a__ , last_epoch=a__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(a__ , num_warmup_steps=a__ , last_epoch=a__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( a__ , num_warmup_steps=a__ , num_training_steps=a__ , num_cycles=a__ , last_epoch=a__ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( a__ , num_warmup_steps=a__ , num_training_steps=a__ , power=a__ , last_epoch=a__ , ) return schedule_func( a__ , num_warmup_steps=a__ , num_training_steps=a__ , last_epoch=a__ )
370
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a__ : List[str] = None a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Dict = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a__ : str = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off a__ : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->List[Any]: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : int = { lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX''' SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCAmelCase ( self ) ->str: return self._src_lang @src_lang.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[str] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang_id return inputs def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[str] = src_lang SCREAMING_SNAKE_CASE : List[str] = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self ) ->List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : str = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Any = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
19
0
def UpperCAmelCase_( a__ ) -> List[str]: """simple docstring""" return 10 - x * x def UpperCAmelCase_( a__ , a__ ) -> Dict: """simple docstring""" if equation(__a ) * equation(__a ) >= 0: raise ValueError('''Wrong space!''' ) SCREAMING_SNAKE_CASE : Optional[Any] = a while (b - a) >= 0.01: # Find middle point SCREAMING_SNAKE_CASE : str = (a + b) / 2 # Check if middle point is root if equation(__a ) == 0.0: break # Decide the side to repeat the steps if equation(__a ) * equation(__a ) < 0: SCREAMING_SNAKE_CASE : List[Any] = c else: SCREAMING_SNAKE_CASE : List[Any] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
371
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = proj_size SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase ) for _ in range(_lowerCamelCase ) ] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: for block in self.blocks: SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase ) return hidden_states
19
0
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a_ ( unittest.TestCase ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->List[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Tuple = PNDMScheduler() SCREAMING_SNAKE_CASE : List[Any] = PNDMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) pndm.to(_lowerCamelCase ) pndm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = pndm(generator=_lowerCamelCase , num_inference_steps=20 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = pndm(generator=_lowerCamelCase , num_inference_steps=20 , output_type='''numpy''' , return_dict=_lowerCamelCase )[0] SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : int = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : str = """google/ddpm-cifar10-32""" SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = PNDMScheduler() SCREAMING_SNAKE_CASE : Union[str, Any] = PNDMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) pndm.to(_lowerCamelCase ) pndm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = pndm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.1_5_6_4, 0.1_4_6_4_5, 0.1_4_0_6, 0.1_4_7_1_5, 0.1_2_4_2_5, 0.1_4_0_4_5, 0.1_3_1_1_5, 0.1_2_1_7_5, 0.1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
350
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Tuple = '''▁''' a__ : List[Any] = {'''vocab_file''': '''spiece.model'''} a__ : Optional[Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } a__ : str = { '''google/pegasus-xsum''': 512, } a__ : str = logging.get_logger(__name__) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<mask_2>" , _lowerCamelCase="<mask_1>" , _lowerCamelCase=None , _lowerCamelCase=103 , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : Dict = offset if additional_special_tokens is not None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(_lowerCamelCase )}, but is""" F""" {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_lowerCamelCase ) , self.offset - 1 ) ] if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) SCREAMING_SNAKE_CASE : Dict = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : List[str] = mask_token_sent SCREAMING_SNAKE_CASE : Optional[int] = vocab_file SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) # add special tokens to encoder dict SCREAMING_SNAKE_CASE : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def __lowerCAmelCase ( self ) ->int: return len(self.sp_model ) + self.offset def __lowerCAmelCase ( self ) ->Dict[str, int]: SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE : str = None return state def __setstate__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] SCREAMING_SNAKE_CASE : List[str] = self.sp_model.piece_to_id(_lowerCamelCase ) return sp_id + self.offset def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: SCREAMING_SNAKE_CASE : Dict = self.sp_model.IdToPiece(index - self.offset ) return token def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : int = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->str: return 1 def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Dict = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return self._special_token_mask(_lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(_lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : int = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
19
0
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def UpperCAmelCase_( a__ ): """simple docstring""" if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False def UpperCAmelCase_( a__ ): """simple docstring""" for char in word: SCREAMING_SNAKE_CASE : Tuple = ord(lowerCAmelCase__ ) if not _is_chinese_char(lowerCAmelCase__ ): return 0 return 1 def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = set() for token in tokens: SCREAMING_SNAKE_CASE : List[Any] = len(lowerCAmelCase__ ) > 1 and is_chinese(lowerCAmelCase__ ) if chinese_word: word_set.add(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = list(lowerCAmelCase__ ) return word_list def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not chinese_word_set: return bert_tokens SCREAMING_SNAKE_CASE : str = max([len(lowerCAmelCase__ ) for w in chinese_word_set] ) SCREAMING_SNAKE_CASE : Optional[int] = bert_tokens SCREAMING_SNAKE_CASE : Optional[int] = 0, len(lowerCAmelCase__ ) while start < end: SCREAMING_SNAKE_CASE : Tuple = True if is_chinese(bert_word[start] ): SCREAMING_SNAKE_CASE : int = min(end - start , lowerCAmelCase__ ) for i in range(lowerCAmelCase__ , 1 , -1 ): SCREAMING_SNAKE_CASE : Optional[int] = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): SCREAMING_SNAKE_CASE : List[str] = '''##''' + bert_word[j] SCREAMING_SNAKE_CASE : Dict = start + i SCREAMING_SNAKE_CASE : int = False break if single_word: start += 1 return bert_word def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = [] for i in range(0 , len(lowerCAmelCase__ ) , 100 ): SCREAMING_SNAKE_CASE : Dict = ltp_tokenizer.seg(lines[i : i + 100] )[0] SCREAMING_SNAKE_CASE : str = [get_chinese_word(lowerCAmelCase__ ) for r in res] ltp_res.extend(lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = [] for i in range(0 , len(lowerCAmelCase__ ) , 100 ): SCREAMING_SNAKE_CASE : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = [] for input_ids, chinese_word in zip(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE : Union[str, Any] = [] for id in input_ids: SCREAMING_SNAKE_CASE : Union[str, Any] = bert_tokenizer._convert_id_to_token(lowerCAmelCase__ ) input_tokens.append(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = add_sub_symbol(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowerCAmelCase__ ): if token[:2] == "##": SCREAMING_SNAKE_CASE : Any = token[2:] # save chinese tokens' pos if len(lowerCAmelCase__ ) == 1 and _is_chinese_char(ord(lowerCAmelCase__ ) ): ref_id.append(lowerCAmelCase__ ) ref_ids.append(lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) return ref_ids def UpperCAmelCase_( a__ ): """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : Optional[Any] = f.readlines() SCREAMING_SNAKE_CASE : Tuple = [line.strip() for line in data if len(lowerCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' SCREAMING_SNAKE_CASE : str = LTP(args.ltp ) # faster in GPU device SCREAMING_SNAKE_CASE : Optional[int] = BertTokenizer.from_pretrained(args.bert ) SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_ref(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : Dict = [json.dumps(lowerCAmelCase__ ) + '''\n''' for ref in ref_ids] f.writelines(lowerCAmelCase__ ) if __name__ == "__main__": a__ : Tuple = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') a__ : Any = parser.parse_args() main(args)
351
def UpperCAmelCase_( a__ ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Tuple = 1 while repunit: SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_( a__ = 1_000_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"{solution() = }")
19
0
def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : List[str] = len(a__ ) for i in range(n - 1 ): for j in range(i + 1 , a__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def UpperCAmelCase_( a__ ): """simple docstring""" if len(a__ ) <= 1: return arr, 0 SCREAMING_SNAKE_CASE : str = len(a__ ) // 2 SCREAMING_SNAKE_CASE : str = arr[0:mid] SCREAMING_SNAKE_CASE : Any = arr[mid:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = count_inversions_recursive(a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = count_inversions_recursive(a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = _count_cross_inversions(a__ , a__ ) SCREAMING_SNAKE_CASE : List[str] = inversion_p + inversions_q + cross_inversions return c, num_inversions def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Dict = 0 while i < len(a__ ) and j < len(a__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(a__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(a__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) SCREAMING_SNAKE_CASE : List[Any] = count_inversions_bf(a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = count_inversions_recursive(a__ ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , a__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() SCREAMING_SNAKE_CASE : List[str] = count_inversions_bf(a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = count_inversions_recursive(a__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , a__ ) # an empty list should also have zero inversions SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Dict = count_inversions_bf(a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = count_inversions_recursive(a__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , a__ ) if __name__ == "__main__": main()
352
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict: SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Any = num_stages SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : int = out_features SCREAMING_SNAKE_CASE : List[str] = num_labels SCREAMING_SNAKE_CASE : int = scope SCREAMING_SNAKE_CASE : Optional[Any] = num_stages def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->List[Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowerCAmelCase ( self ) ->Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[str] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = UperNetModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->str: return def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->str: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowerCAmelCase ( self ) ->str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->Tuple: pass def __lowerCAmelCase ( self ) ->int: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = _config_zero_init(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass @slow def __lowerCAmelCase ( self ) ->List[Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) SCREAMING_SNAKE_CASE : Any = Image.open(a__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
19
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process a__ : Dict = logging.getLogger(__name__) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return (preds == labels).mean() @dataclass class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowercase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowercase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowercase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) __SCREAMING_SNAKE_CASE : str = field(metadata={'help': 'Should contain the data files for the task.'} ) __SCREAMING_SNAKE_CASE : int = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __SCREAMING_SNAKE_CASE : bool = field( default=lowercase_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , a__ ) # Set seed set_seed(training_args.seed ) try: SCREAMING_SNAKE_CASE : str = processors[data_args.task_name]() SCREAMING_SNAKE_CASE : Any = processor.get_labels() SCREAMING_SNAKE_CASE : Dict = len(a__ ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=a__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=a__ , cache_dir=model_args.cache_dir , ) # Get datasets SCREAMING_SNAKE_CASE : List[Any] = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=a__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) SCREAMING_SNAKE_CASE : Any = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=a__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(a__ ) -> Dict: SCREAMING_SNAKE_CASE : Dict = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(a__ , p.label_ids )} # Data collator SCREAMING_SNAKE_CASE : Dict = DataCollatorWithPadding(a__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer SCREAMING_SNAKE_CASE : List[str] = Trainer( model=a__ , args=a__ , train_dataset=a__ , eval_dataset=a__ , compute_metrics=a__ , data_collator=a__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation SCREAMING_SNAKE_CASE : str = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) SCREAMING_SNAKE_CASE : Optional[Any] = trainer.evaluate() SCREAMING_SNAKE_CASE : int = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(a__ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , a__ , a__ ) writer.write('''%s = %s\n''' % (key, value) ) results.update(a__ ) return results def UpperCAmelCase_( a__ ): """simple docstring""" main() if __name__ == "__main__": main()
353
import datasets from .evaluate import evaluate a__ : Dict = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' a__ : List[str] = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' a__ : List[Any] = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
19
0
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : int __SCREAMING_SNAKE_CASE : TreeNode | None = None __SCREAMING_SNAKE_CASE : TreeNode | None = None a__ : Union[str, Any] = namedtuple('''CoinsDistribResult''', '''moves excess''') def UpperCAmelCase_( a__ ): """simple docstring""" if root is None: return 0 # Validation def count_nodes(a__ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(a__ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(a__ ) != count_coins(a__ ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(a__ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = get_distrib(node.left ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = get_distrib(node.right ) SCREAMING_SNAKE_CASE : Any = 1 - left_distrib_excess SCREAMING_SNAKE_CASE : Optional[Any] = 1 - right_distrib_excess SCREAMING_SNAKE_CASE : Tuple = ( left_distrib_moves + right_distrib_moves + abs(a__ ) + abs(a__ ) ) SCREAMING_SNAKE_CASE : int = node.data - coins_to_left - coins_to_right return CoinsDistribResult(a__ , a__ ) return get_distrib(a__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
354
from sklearn.metrics import matthews_corrcoef import datasets a__ : Optional[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' a__ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' a__ : Union[str, Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]: return { "matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ), }
19
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a__ : List[Any] = logging.get_logger(__name__) class a_ ( lowerCamelCase__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = ['pixel_values'] def __init__( self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PIL.Image.BICUBIC , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: super().__init__(**__lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = size if size is not None else {'''height''': 256, '''width''': 256} SCREAMING_SNAKE_CASE : Dict = get_size_dict(__lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} SCREAMING_SNAKE_CASE : Any = get_size_dict(__lowerCamelCase , param_name='''crop_size''' ) SCREAMING_SNAKE_CASE : str = do_resize SCREAMING_SNAKE_CASE : Any = size SCREAMING_SNAKE_CASE : Optional[Any] = resample SCREAMING_SNAKE_CASE : Dict = do_center_crop SCREAMING_SNAKE_CASE : int = crop_size SCREAMING_SNAKE_CASE : List[Any] = do_rescale SCREAMING_SNAKE_CASE : Optional[Any] = rescale_factor SCREAMING_SNAKE_CASE : Union[str, Any] = do_normalize SCREAMING_SNAKE_CASE : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PIL.Image.BICUBIC , _lowerCamelCase = None , **_lowerCamelCase , ) ->np.ndarray: SCREAMING_SNAKE_CASE : int = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( __lowerCamelCase , size=(size['''height'''], size['''width''']) , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ) ->np.ndarray: SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(__lowerCamelCase , size=(size['''height'''], size['''width''']) , data_format=__lowerCamelCase , **__lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ) ->Optional[int]: return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ) ->np.ndarray: return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ) ->PIL.Image.Image: SCREAMING_SNAKE_CASE : Union[str, Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : List[Any] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE : Dict = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : Dict = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : List[str] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : Optional[Any] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : str = size if size is not None else self.size SCREAMING_SNAKE_CASE : Optional[Any] = get_size_dict(__lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(__lowerCamelCase , param_name='''crop_size''' ) SCREAMING_SNAKE_CASE : Optional[Any] = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : List[str] = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : List[str] = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE : str = [self.center_crop(image=__lowerCamelCase , size=__lowerCamelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : Tuple = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE : List[Any] = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images] SCREAMING_SNAKE_CASE : Optional[int] = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] SCREAMING_SNAKE_CASE : Optional[Any] = {'''pixel_values''': images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
355
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a__ ) SCREAMING_SNAKE_CASE : int = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=a__ ) env_command_parser(subparsers=a__ ) launch_command_parser(subparsers=a__ ) tpu_command_parser(subparsers=a__ ) test_command_parser(subparsers=a__ ) # Let's go SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if not hasattr(a__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(a__ ) if __name__ == "__main__": main()
19
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class a_ : __SCREAMING_SNAKE_CASE : Optional[Union[str, Path]] = None __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : Optional[Dict] = None __SCREAMING_SNAKE_CASE : Optional[str] = None __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : int = 1 __SCREAMING_SNAKE_CASE : Optional[Union[str, bool]] = None __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : Optional[Dict] = None __SCREAMING_SNAKE_CASE : Optional[str] = None def __lowerCAmelCase ( self ) ->"DownloadConfig": return self.__class__(**{k: copy.deepcopy(_A ) for k, v in self.__dict__.items()} )
356
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : str = logging.get_logger(__name__) a__ : Optional[Any] = {'''vocab_file''': '''vocab.json'''} a__ : str = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } a__ : Tuple = {'''mgp-str''': 27} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) ->Dict: super().__init__( unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , pad_token=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.vocab.items()} @property def __lowerCAmelCase ( self ) ->List[Any]: return len(self.vocab ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return dict(self.vocab , **self.added_tokens_encoder ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for s in text: char_tokens.extend(_lowerCamelCase ) return char_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: return self.decoder.get(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) ) return SCREAMING_SNAKE_CASE : str = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' ) return (vocab_file,)
19
0
import gc import threading import time import psutil import torch class a_ : """simple docstring""" def __init__( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Optional[int] = psutil.Process() SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Optional[int] = -1 while True: SCREAMING_SNAKE_CASE : List[str] = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Optional[int] = threading.Thread(target=self.peak_monitor ) SCREAMING_SNAKE_CASE : Optional[int] = True self.thread.start() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = False self.thread.join() return self.cpu_memory_peak a__ : Any = PeakCPUMemory() def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = {'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE : Optional[Any] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): SCREAMING_SNAKE_CASE : int = torch.cuda.memory_allocated(_A ) torch.cuda.reset_peak_memory_stats() return measures def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = {'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE : int = (psutil.Process().memory_info().rss - start_measures['cpu']) / 2**20 SCREAMING_SNAKE_CASE : Tuple = (cpu_peak_tracker.stop() - start_measures['cpu']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): SCREAMING_SNAKE_CASE : str = (torch.cuda.memory_allocated(_A ) - start_measures[str(_A )]) / 2**20 SCREAMING_SNAKE_CASE : int = (torch.cuda.max_memory_allocated(_A ) - start_measures[str(_A )]) / 2**20 return measures def UpperCAmelCase_( a__ , a__ ): """simple docstring""" print(F"""{description}:""" ) print(F"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(_A )]:.2f}MiB""" ) SCREAMING_SNAKE_CASE : List[str] = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
357
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''DeiTFeatureExtractor'''] a__ : Any = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def UpperCAmelCase_( a__="" ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = tempfile.mkdtemp() return os.path.join(lowerCAmelCase__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Dict = torch.rand(12 , dtype=torch.floataa ) - 0.5 SCREAMING_SNAKE_CASE : Any = AgentAudio(A__ ) SCREAMING_SNAKE_CASE : Any = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(A__ , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(A__ ) ) # Ensure that the file contains the same value as the original tensor SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = sf.read(A__ ) self.assertTrue(torch.allclose(A__ , torch.tensor(A__ ) , atol=1e-4 ) ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : int = torch.rand(12 , dtype=torch.floataa ) - 0.5 SCREAMING_SNAKE_CASE : Any = get_new_path(suffix='''.wav''' ) sf.write(A__ , A__ , 1_6000 ) SCREAMING_SNAKE_CASE : Union[str, Any] = AgentAudio(A__ ) self.assertTrue(torch.allclose(A__ , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , A__ ) @require_vision @require_torch class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randint(0 , 256 , (64, 64, 3) ) SCREAMING_SNAKE_CASE : Any = AgentImage(A__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(A__ , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(A__ ) ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : int = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' SCREAMING_SNAKE_CASE : Dict = Image.open(A__ ) SCREAMING_SNAKE_CASE : Optional[int] = AgentImage(A__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(A__ ) ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : int = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' SCREAMING_SNAKE_CASE : Optional[Any] = Image.open(A__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = AgentImage(A__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(A__ ) ) class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[Any] = '''Hey!''' SCREAMING_SNAKE_CASE : Dict = AgentText(A__ ) self.assertEqual(A__ , agent_type.to_string() ) self.assertEqual(A__ , agent_type.to_raw() ) self.assertEqual(A__ , A__ )
358
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class a_ ( __a ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = """""" __SCREAMING_SNAKE_CASE : Optional[int] = """hf-legacy""" # "hf://"" is reserved for hffs def __init__( self , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ) ->str: super().__init__(self , **a__ ) SCREAMING_SNAKE_CASE : List[str] = repo_info SCREAMING_SNAKE_CASE : Union[str, Any] = token SCREAMING_SNAKE_CASE : Dict = None def __lowerCAmelCase ( self ) ->List[str]: if self.dir_cache is None: SCREAMING_SNAKE_CASE : int = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes SCREAMING_SNAKE_CASE : Union[str, Any] = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(a__ ): {'''name''': str(a__ ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "rb" , **_lowerCamelCase , ) ->int: if not isinstance(self.repo_info , a__ ): raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) SCREAMING_SNAKE_CASE : Any = hf_hub_url(self.repo_info.id , a__ , revision=self.repo_info.sha ) return fsspec.open( a__ , mode=a__ , headers=get_authentication_headers_for_url(a__ , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def __lowerCAmelCase ( self , _lowerCamelCase , **_lowerCamelCase ) ->int: self._get_dirs() SCREAMING_SNAKE_CASE : List[str] = self._strip_protocol(a__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(a__ ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False , **_lowerCamelCase ) ->Tuple: self._get_dirs() SCREAMING_SNAKE_CASE : Optional[Any] = PurePosixPath(path.strip('''/''' ) ) SCREAMING_SNAKE_CASE : Tuple = {} for p, f in self.dir_cache.items(): SCREAMING_SNAKE_CASE : Optional[Any] = PurePosixPath(p.strip('''/''' ) ) SCREAMING_SNAKE_CASE : Optional[Any] = p.parent if root == path: SCREAMING_SNAKE_CASE : Any = f SCREAMING_SNAKE_CASE : List[str] = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
359
import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase_( a__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2 while True: if is_prime(a__ ): yield num num += 1 def UpperCAmelCase_( a__ = 2_000_000 ): """simple docstring""" return sum(takewhile(lambda a__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
19
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = BlipImageProcessor() SCREAMING_SNAKE_CASE : Dict = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) SCREAMING_SNAKE_CASE : Any = BlipaProcessor(__A , __A ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **_lowerCamelCase ) ->List[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **__A ).tokenizer def __lowerCAmelCase ( self , **_lowerCamelCase ) ->str: return AutoProcessor.from_pretrained(self.tmpdirname , **__A ).image_processor def __lowerCAmelCase ( self ) ->Any: shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE : Union[str, Any] = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_image_processor(do_normalize=__A , padding_value=1.0 ) SCREAMING_SNAKE_CASE : Dict = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __A ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Tuple = self.get_image_processor() SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Any = BlipaProcessor(tokenizer=__A , image_processor=__A ) SCREAMING_SNAKE_CASE : Tuple = self.prepare_image_inputs() SCREAMING_SNAKE_CASE : str = image_processor(__A , return_tensors='''np''' ) SCREAMING_SNAKE_CASE : Any = processor(images=__A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE : str = self.get_tokenizer() SCREAMING_SNAKE_CASE : Union[str, Any] = BlipaProcessor(tokenizer=__A , image_processor=__A ) SCREAMING_SNAKE_CASE : Optional[int] = '''lower newer''' SCREAMING_SNAKE_CASE : Any = processor(text=__A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer(__A , return_token_type_ids=__A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = self.get_image_processor() SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Optional[Any] = BlipaProcessor(tokenizer=__A , image_processor=__A ) SCREAMING_SNAKE_CASE : str = '''lower newer''' SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE : Any = processor(text=__A , images=__A ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Tuple = self.get_image_processor() SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE : List[str] = BlipaProcessor(tokenizer=__A , image_processor=__A ) SCREAMING_SNAKE_CASE : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE : Any = processor.batch_decode(__A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(__A ) self.assertListEqual(__A , __A ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Dict = BlipaProcessor(tokenizer=__A , image_processor=__A ) SCREAMING_SNAKE_CASE : List[str] = '''lower newer''' SCREAMING_SNAKE_CASE : str = self.prepare_image_inputs() SCREAMING_SNAKE_CASE : Tuple = processor(text=__A , images=__A ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''input_ids''', '''attention_mask'''] )
360
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( a__ ): """simple docstring""" def __init__( self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int: super().__init__(*_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = eval_examples SCREAMING_SNAKE_CASE : Optional[int] = post_process_function def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ) ->Dict[str, float]: SCREAMING_SNAKE_CASE : Any = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE : Dict = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE : Any = gen_kwargs SCREAMING_SNAKE_CASE : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE : str = self.get_eval_dataloader(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_metrics SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Optional[Any] = time.time() SCREAMING_SNAKE_CASE : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Tuple = eval_loop( _lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Dict = compute_metrics SCREAMING_SNAKE_CASE : Tuple = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : Optional[int] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase ) return metrics def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : str = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(_lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Dict = self.compute_metrics SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : List[str] = time.time() SCREAMING_SNAKE_CASE : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Any = eval_loop( _lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics SCREAMING_SNAKE_CASE : List[Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' ) SCREAMING_SNAKE_CASE : Dict = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
19
0
from collections import defaultdict from math import gcd def UpperCAmelCase_( a__ = 1_500_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = defaultdict(__snake_case ) SCREAMING_SNAKE_CASE : int = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __snake_case , 2 ): if gcd(__snake_case , __snake_case ) > 1: continue SCREAMING_SNAKE_CASE : List[Any] = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__snake_case , limit + 1 , __snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"{solution() = }")
361
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = DDIMPipeline __SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = False def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler() SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) SCREAMING_SNAKE_CASE : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) def __lowerCAmelCase ( self ) ->Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_save_load_local(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32''' SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler() SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddim.to(_lowerCamelCase ) ddim.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256''' SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddpm.to(_lowerCamelCase ) ddpm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
19
0
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Dict = logging.get_logger(__name__) # TODO Update this a__ : Union[str, Any] = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class a_ ( _snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = 'esm' def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=1026 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase="absolute" , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->Any: super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Dict = layer_norm_eps SCREAMING_SNAKE_CASE : str = position_embedding_type SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : List[str] = emb_layer_norm_before SCREAMING_SNAKE_CASE : Tuple = token_dropout SCREAMING_SNAKE_CASE : List[str] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) SCREAMING_SNAKE_CASE : List[Any] = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE : List[str] = EsmFoldConfig(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) SCREAMING_SNAKE_CASE : List[Any] = get_default_vocab_list() else: SCREAMING_SNAKE_CASE : str = vocab_list else: SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Tuple = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCamelCase__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Any = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): SCREAMING_SNAKE_CASE : str = self.esmfold_config.to_dict() return output @dataclass class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = None __SCREAMING_SNAKE_CASE : str = True __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : str = 0 __SCREAMING_SNAKE_CASE : Optional[Any] = True __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : Optional[Any] = 128 __SCREAMING_SNAKE_CASE : str = None def __lowerCAmelCase ( self ) ->Union[str, Any]: if self.trunk is None: SCREAMING_SNAKE_CASE : Tuple = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): SCREAMING_SNAKE_CASE : Optional[int] = TrunkConfig(**self.trunk ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : str = asdict(self ) SCREAMING_SNAKE_CASE : List[Any] = self.trunk.to_dict() return output @dataclass class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 48 __SCREAMING_SNAKE_CASE : Tuple = 1024 __SCREAMING_SNAKE_CASE : Tuple = 128 __SCREAMING_SNAKE_CASE : Union[str, Any] = 32 __SCREAMING_SNAKE_CASE : Tuple = 32 __SCREAMING_SNAKE_CASE : List[Any] = 32 __SCREAMING_SNAKE_CASE : str = 0 __SCREAMING_SNAKE_CASE : List[str] = 0 __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : str = 4 __SCREAMING_SNAKE_CASE : Optional[int] = 128 __SCREAMING_SNAKE_CASE : Optional[Any] = None def __lowerCAmelCase ( self ) ->int: if self.structure_module is None: SCREAMING_SNAKE_CASE : Union[str, Any] = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): SCREAMING_SNAKE_CASE : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) SCREAMING_SNAKE_CASE : Optional[Any] = self.sequence_state_dim // self.sequence_head_width SCREAMING_SNAKE_CASE : Dict = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = asdict(self ) SCREAMING_SNAKE_CASE : str = self.structure_module.to_dict() return output @dataclass class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = 384 __SCREAMING_SNAKE_CASE : str = 128 __SCREAMING_SNAKE_CASE : Optional[int] = 16 __SCREAMING_SNAKE_CASE : int = 128 __SCREAMING_SNAKE_CASE : List[Any] = 12 __SCREAMING_SNAKE_CASE : Optional[Any] = 4 __SCREAMING_SNAKE_CASE : str = 8 __SCREAMING_SNAKE_CASE : Any = 0.1 __SCREAMING_SNAKE_CASE : int = 8 __SCREAMING_SNAKE_CASE : Tuple = 1 __SCREAMING_SNAKE_CASE : List[Any] = 2 __SCREAMING_SNAKE_CASE : str = 7 __SCREAMING_SNAKE_CASE : int = 10 __SCREAMING_SNAKE_CASE : Optional[int] = 1E-8 __SCREAMING_SNAKE_CASE : Dict = 1E5 def __lowerCAmelCase ( self ) ->List[str]: return asdict(self ) def UpperCAmelCase_( ): """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
362
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self ) ->Dict: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = '''[PAD]''' SCREAMING_SNAKE_CASE : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowerCamelCase ) , 1012 ) def __lowerCAmelCase ( self ) ->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self ) ->List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!''' SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def __lowerCAmelCase ( self ) ->int: # fmt: off SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
19
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Union[str, Any] = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys a__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
363
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''.''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
19
0
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker a__ : Optional[int] = '''CompVis/stable-diffusion-v1-1''' a__ : Dict = '''CompVis/stable-diffusion-v1-2''' a__ : int = '''CompVis/stable-diffusion-v1-3''' a__ : Optional[Any] = '''CompVis/stable-diffusion-v1-4''' class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , ) ->Dict: super()._init_() SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : List[str] = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : str = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , requires_safety_checker=SCREAMING_SNAKE_CASE_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __lowerCAmelCase ( self ) ->Dict[str, Any]: return {k: getattr(self , SCREAMING_SNAKE_CASE_ ) for k in self.config.keys() if not k.startswith('''_''' )} def __lowerCAmelCase ( self , _lowerCamelCase = "auto" ) ->Optional[int]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( self ) ->Tuple: self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Optional[Any]: return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Optional[int]: return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Optional[Any]: return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Optional[int]: return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' self.to(SCREAMING_SNAKE_CASE_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE : Any = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE : str = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE : Union[str, Any] = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE : Optional[Any] = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
364
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Tuple = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } a__ : Optional[Any] = {'''mobilebert-uncased''': 512} a__ : List[Any] = {} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE : Optional[int] = strip_accents SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = do_lower_case def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
19
0
def UpperCAmelCase_( a__): """simple docstring""" if edge <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__): raise ValueError('''Length must be a positive.''') return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def UpperCAmelCase_( a__): """simple docstring""" if edge <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__): raise ValueError('''Length must be a positive.''') return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
365
import math a__ : List[str] = 10 a__ : Optional[int] = 7 a__ : int = BALLS_PER_COLOUR * NUM_COLOURS def UpperCAmelCase_( a__ = 20 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
19
0
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a_ : """simple docstring""" @staticmethod def __lowerCAmelCase ( *_lowerCamelCase , **_lowerCamelCase ) ->int: pass @is_pipeline_test @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @require_torch def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) SCREAMING_SNAKE_CASE : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = image_classifier(__lowercase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowercase ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) SCREAMING_SNAKE_CASE : Tuple = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, ], ] , ) @require_tf def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : int = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) SCREAMING_SNAKE_CASE : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = image_classifier(__lowercase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__lowercase ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) SCREAMING_SNAKE_CASE : str = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, {'''score''': 0.3_3_3, '''label''': ANY(__lowercase )}, ], ] , ) @slow @require_torch def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = image_classifier(__lowercase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowercase ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) SCREAMING_SNAKE_CASE : int = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE : Any = image_classifier(__lowercase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__lowercase ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) SCREAMING_SNAKE_CASE : Optional[int] = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
366
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig a__ : List[str] = logging.get_logger(__name__) # General docstring a__ : Tuple = '''MobileNetV1Config''' # Base docstring a__ : Optional[Any] = '''google/mobilenet_v1_1.0_224''' a__ : Tuple = [1, 1_024, 7, 7] # Image classification docstring a__ : Optional[int] = '''google/mobilenet_v1_1.0_224''' a__ : int = '''tabby, tabby cat''' a__ : List[Any] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCAmelCase_( a__ , a__ , a__=None ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[str] = model.mobilenet_va else: SCREAMING_SNAKE_CASE : Union[str, Any] = model SCREAMING_SNAKE_CASE : Optional[int] = '''MobilenetV1/Conv2d_0/''' SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE : Union[str, Any] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE : Any = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE : Dict = i + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2 SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.bias SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE : Any = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" SCREAMING_SNAKE_CASE : Dict = pointer.convolution.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : str = pointer.normalization.running_var if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' SCREAMING_SNAKE_CASE : List[str] = model.classifier.weight SCREAMING_SNAKE_CASE : List[str] = model.classifier.bias return tf_to_pt_map def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : List[Any] = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE : int = _build_tf_to_pytorch_map(a__ , a__ , a__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue SCREAMING_SNAKE_CASE : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) SCREAMING_SNAKE_CASE : Tuple = np.transpose(a__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE : Union[str, Any] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE : Optional[int] = np.transpose(a__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ ) tf_weights.pop(a__ , a__ ) tf_weights.pop(name + '''/RMSProp''' , a__ ) tf_weights.pop(name + '''/RMSProp_1''' , a__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ ) logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = conv_layer.stride SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE : List[str] = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE : int = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE : Tuple = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE : List[str] = pad_along_width // 2 SCREAMING_SNAKE_CASE : Any = pad_along_width - pad_left SCREAMING_SNAKE_CASE : str = pad_along_height // 2 SCREAMING_SNAKE_CASE : Optional[int] = pad_along_height - pad_top SCREAMING_SNAKE_CASE : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 ) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = True , ) ->None: super().__init__() SCREAMING_SNAKE_CASE : Any = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) SCREAMING_SNAKE_CASE : List[str] = nn.Convad( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='''zeros''' , ) if use_normalization: SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad( num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , ) else: SCREAMING_SNAKE_CASE : Dict = None if use_activation: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE : List[Any] = config.hidden_act else: SCREAMING_SNAKE_CASE : Optional[Any] = None def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor: if self.config.tf_padding: SCREAMING_SNAKE_CASE : List[Any] = apply_tf_padding(_lowerCamelCase , self.convolution ) SCREAMING_SNAKE_CASE : Dict = self.convolution(_lowerCamelCase ) if self.normalization is not None: SCREAMING_SNAKE_CASE : int = self.normalization(_lowerCamelCase ) if self.activation is not None: SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase ) return features class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = MobileNetVaConfig __SCREAMING_SNAKE_CASE : List[Any] = load_tf_weights_in_mobilenet_va __SCREAMING_SNAKE_CASE : int = 'mobilenet_v1' __SCREAMING_SNAKE_CASE : int = 'pixel_values' __SCREAMING_SNAKE_CASE : List[str] = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) a__ : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ : Union[str, Any] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True ) ->Dict: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = config SCREAMING_SNAKE_CASE : Dict = 32 SCREAMING_SNAKE_CASE : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) SCREAMING_SNAKE_CASE : str = MobileNetVaConvLayer( _lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE : Any = nn.ModuleList() for i in range(13 ): SCREAMING_SNAKE_CASE : int = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) ) SCREAMING_SNAKE_CASE : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_stem(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): SCREAMING_SNAKE_CASE : Optional[int] = layer_module(_lowerCamelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE : List[str] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 ) else: SCREAMING_SNAKE_CASE : List[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->None: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels SCREAMING_SNAKE_CASE : str = MobileNetVaModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification''' else: SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : Any = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE : Dict = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : List[Any] = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
19
0
from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES a__ : Union[str, Any] = 'tiny-wmt19-en-ru' # Build # borrowed from a test a__ : Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] a__ : List[Any] = dict(zip(vocab, range(len(vocab)))) a__ : Tuple = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] with tempfile.TemporaryDirectory() as tmpdirname: a__ : List[str] = Path(tmpdirname) a__ : int = build_dir / VOCAB_FILES_NAMES['src_vocab_file'] a__ : Tuple = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file'] a__ : Optional[int] = build_dir / VOCAB_FILES_NAMES['merges_file'] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) a__ : List[str] = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) a__ : int = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) a__ : int = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test a__ : int = tokenizer(['''Making tiny model'''], return_tensors='''pt''') a__ : Optional[Any] = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-ru
367
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def UpperCAmelCase_( a__ = 1 / 12_345 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : int = 3 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): SCREAMING_SNAKE_CASE : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
19
0
from decimal import Decimal, getcontext from math import ceil, factorial def UpperCAmelCase_( a__ ): """simple docstring""" if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) SCREAMING_SNAKE_CASE : Tuple = precision SCREAMING_SNAKE_CASE : int = ceil(precision / 14 ) SCREAMING_SNAKE_CASE : List[Any] = 426_880 * Decimal(10_005 ).sqrt() SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : Tuple = 13_591_409 SCREAMING_SNAKE_CASE : Optional[Any] = Decimal(lowerCAmelCase_ ) for k in range(1 , lowerCAmelCase_ ): SCREAMING_SNAKE_CASE : List[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowerCAmelCase_ ) ** 3) linear_term += 545_140_134 exponential_term *= -262_537_412_640_768_000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": a__ : Optional[int] = 50 print(F"The first {n} digits of pi is: {pi(n)}")
368
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ : Any = TypeVar('''T''') def UpperCAmelCase_( a__ ): """simple docstring""" return (position - 1) // 2 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 1 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 2 class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : list[tuple[T, int]] = [] SCREAMING_SNAKE_CASE : dict[T, int] = {} SCREAMING_SNAKE_CASE : int = 0 def __len__( self ) ->int: return self.elements def __repr__( self ) ->str: return str(self.heap ) def __lowerCAmelCase ( self ) ->bool: # Check if the priority queue is empty return self.elements == 0 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE : Tuple = self.elements self.elements += 1 self._bubble_up(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[0] self._bubble_down(_lowerCamelCase ) return elem def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Update the weight of the given key SCREAMING_SNAKE_CASE : List[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE : Any = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE : List[Any] = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (upward movement) [to be used internally # only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE : str = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.heap[curr_pos] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_up(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (downward movement) [to be used # internally only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[curr_pos] SCREAMING_SNAKE_CASE : List[str] = get_child_left_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = get_child_right_position(_lowerCamelCase ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[child_left_position] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Swap the nodes at the given positions SCREAMING_SNAKE_CASE : Optional[int] = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE : Any = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE : Optional[int] = nodea_pos SCREAMING_SNAKE_CASE : List[str] = nodea_pos class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {} SCREAMING_SNAKE_CASE : int = 0 def __repr__( self ) ->str: return str(self.connections ) def __len__( self ) ->int: return self.nodes def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Add a node in the graph if it is not in the graph if node not in self.connections: SCREAMING_SNAKE_CASE : Any = {} self.nodes += 1 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an edge between 2 nodes in the graph self.add_node(_lowerCamelCase ) self.add_node(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = weight SCREAMING_SNAKE_CASE : str = weight def UpperCAmelCase_( a__ , ): """simple docstring""" SCREAMING_SNAKE_CASE : dict[T, int] = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE : dict[T, T | None] = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE : List[Any] = priority_queue.extract_min() SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : Any = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node return dist, parent
19
0
from ..utils import DummyObject, requires_backends class a_ ( metaclass=__snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = ["""transformers""", """torch""", """note_seq"""] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) ->Dict: requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCamelCase , **_lowerCamelCase ) ->Union[str, Any]: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __lowerCAmelCase ( cls , *_lowerCamelCase , **_lowerCamelCase ) ->Dict: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
369
from math import pi, sqrt, tan def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) SCREAMING_SNAKE_CASE : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(a__ , 2 ) * torus_radius * tube_radius def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) SCREAMING_SNAKE_CASE : int = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : List[str] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not isinstance(a__ , a__ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F"Rectangle: {area_rectangle(10, 20) = }") print(F"Square: {area_square(10) = }") print(F"Triangle: {area_triangle(10, 10) = }") print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(F"Parallelogram: {area_parallelogram(10, 20) = }") print(F"Rhombus: {area_rhombus(10, 20) = }") print(F"Trapezium: {area_trapezium(10, 20, 30) = }") print(F"Circle: {area_circle(20) = }") print(F"Ellipse: {area_ellipse(10, 20) = }") print('''\nSurface Areas of various geometric shapes: \n''') print(F"Cube: {surface_area_cube(20) = }") print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(F"Sphere: {surface_area_sphere(20) = }") print(F"Hemisphere: {surface_area_hemisphere(20) = }") print(F"Cone: {surface_area_cone(10, 20) = }") print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(F"Cylinder: {surface_area_cylinder(10, 20) = }") print(F"Torus: {surface_area_torus(20, 10) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(F"Square: {area_reg_polygon(4, 10) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
19
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Any = logging.get_logger(__name__) a__ : Any = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class a_ ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = '''informer''' __SCREAMING_SNAKE_CASE : Tuple = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "student_t" , _lowerCamelCase = "nll" , _lowerCamelCase = 1 , _lowerCamelCase = None , _lowerCamelCase = "mean" , _lowerCamelCase = 0 , _lowerCamelCase = 0 , _lowerCamelCase = 0 , _lowerCamelCase = 0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 64 , _lowerCamelCase = 32 , _lowerCamelCase = 32 , _lowerCamelCase = 2 , _lowerCamelCase = 2 , _lowerCamelCase = 2 , _lowerCamelCase = 2 , _lowerCamelCase = True , _lowerCamelCase = "gelu" , _lowerCamelCase = 0.0_5 , _lowerCamelCase = 0.1 , _lowerCamelCase = 0.1 , _lowerCamelCase = 0.1 , _lowerCamelCase = 0.1 , _lowerCamelCase = 100 , _lowerCamelCase = 0.0_2 , _lowerCamelCase=True , _lowerCamelCase = "prob" , _lowerCamelCase = 5 , _lowerCamelCase = True , **_lowerCamelCase , ) ->Any: # time series specific configuration SCREAMING_SNAKE_CASE : int = prediction_length SCREAMING_SNAKE_CASE : Optional[Any] = context_length or prediction_length SCREAMING_SNAKE_CASE : List[Any] = distribution_output SCREAMING_SNAKE_CASE : List[Any] = loss SCREAMING_SNAKE_CASE : str = input_size SCREAMING_SNAKE_CASE : Any = num_time_features SCREAMING_SNAKE_CASE : Dict = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE : str = scaling SCREAMING_SNAKE_CASE : Tuple = num_dynamic_real_features SCREAMING_SNAKE_CASE : Optional[Any] = num_static_real_features SCREAMING_SNAKE_CASE : Optional[int] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) SCREAMING_SNAKE_CASE : str = cardinality else: SCREAMING_SNAKE_CASE : int = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) SCREAMING_SNAKE_CASE : List[Any] = embedding_dimension else: SCREAMING_SNAKE_CASE : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] SCREAMING_SNAKE_CASE : List[str] = num_parallel_samples # Transformer architecture configuration SCREAMING_SNAKE_CASE : Dict = input_size * len(self.lags_sequence ) + self._number_of_features SCREAMING_SNAKE_CASE : int = d_model SCREAMING_SNAKE_CASE : Optional[int] = encoder_attention_heads SCREAMING_SNAKE_CASE : int = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = encoder_ffn_dim SCREAMING_SNAKE_CASE : str = decoder_ffn_dim SCREAMING_SNAKE_CASE : List[Any] = encoder_layers SCREAMING_SNAKE_CASE : int = decoder_layers SCREAMING_SNAKE_CASE : Optional[int] = dropout SCREAMING_SNAKE_CASE : List[Any] = attention_dropout SCREAMING_SNAKE_CASE : Dict = activation_dropout SCREAMING_SNAKE_CASE : Any = encoder_layerdrop SCREAMING_SNAKE_CASE : Any = decoder_layerdrop SCREAMING_SNAKE_CASE : str = activation_function SCREAMING_SNAKE_CASE : List[Any] = init_std SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache # Informer SCREAMING_SNAKE_CASE : str = attention_type SCREAMING_SNAKE_CASE : List[Any] = sampling_factor SCREAMING_SNAKE_CASE : str = distil super().__init__(is_encoder_decoder=__snake_case , **__snake_case ) @property def __lowerCAmelCase ( self ) ->int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
370
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a__ : List[str] = None a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Dict = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a__ : str = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off a__ : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->List[Any]: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : int = { lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX''' SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCAmelCase ( self ) ->str: return self._src_lang @src_lang.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[str] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang_id return inputs def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[str] = src_lang SCREAMING_SNAKE_CASE : List[str] = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self ) ->List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : str = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Any = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
19
0
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Optional[int]: super().tearDown() gc.collect() def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) SCREAMING_SNAKE_CASE : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) SCREAMING_SNAKE_CASE : List[Any] = '''xvjiarui/stable-diffusion-2-inpainting''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = FlaxStableDiffusionInpaintPipeline.from_pretrained(A_ , safety_checker=A_ ) SCREAMING_SNAKE_CASE : int = '''Face of a yellow cat, high resolution, sitting on a park bench''' SCREAMING_SNAKE_CASE : Union[str, Any] = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE : Any = 50 SCREAMING_SNAKE_CASE : str = jax.device_count() SCREAMING_SNAKE_CASE : List[Any] = num_samples * [prompt] SCREAMING_SNAKE_CASE : Optional[int] = num_samples * [init_image] SCREAMING_SNAKE_CASE : List[str] = num_samples * [mask_image] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = pipeline.prepare_inputs(A_ , A_ , A_ ) # shard inputs and rng SCREAMING_SNAKE_CASE : Any = replicate(A_ ) SCREAMING_SNAKE_CASE : List[str] = jax.random.split(A_ , jax.device_count() ) SCREAMING_SNAKE_CASE : Union[str, Any] = shard(A_ ) SCREAMING_SNAKE_CASE : Any = shard(A_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = shard(A_ ) SCREAMING_SNAKE_CASE : Tuple = pipeline( A_ , A_ , A_ , A_ , A_ , A_ , jit=A_ ) SCREAMING_SNAKE_CASE : Optional[Any] = output.images.reshape(A_ , 512 , 512 , 3 ) SCREAMING_SNAKE_CASE : int = images[0, 253:256, 253:256, -1] SCREAMING_SNAKE_CASE : Any = jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE : Any = jnp.array( [0.3_6_1_1_3_0_7, 0.3_7_6_4_9_7_3_6, 0.3_7_5_7_4_0_8, 0.3_8_2_1_3_9_5_3, 0.3_9_2_9_5_1_6_7, 0.3_8_4_1_6_3_1, 0.4_1_5_5_4_9_7_8, 0.4_1_3_7_4_7_5, 0.4_2_1_7_0_8_4] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
371
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = proj_size SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase ) for _ in range(_lowerCamelCase ) ] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: for block in self.blocks: SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase ) return hidden_states
19
0
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : str = field( metadata={'help': 'The output directory where the model will be written.'} , ) __SCREAMING_SNAKE_CASE : str = field( metadata={ 'help': ( 'The encoder model checkpoint for weights initialization.' 'Don\'t set if you want to train an encoder model from scratch.' ) } , ) __SCREAMING_SNAKE_CASE : str = field( metadata={ 'help': ( 'The decoder model checkpoint for weights initialization.' 'Don\'t set if you want to train a decoder model from scratch.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=a__ , metadata={'help': 'Pretrained encoder config name or path if not the same as encoder_model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=a__ , metadata={'help': 'Pretrained decoder config name or path if not the same as decoder_model_name'} ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = HfArgumentParser((ModelArguments,) ) (SCREAMING_SNAKE_CASE ) : List[str] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=a__ , decoder_config=a__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens SCREAMING_SNAKE_CASE : str = decoder_config.decoder_start_token_id SCREAMING_SNAKE_CASE : Any = decoder_config.pad_token_id if decoder_start_token_id is None: SCREAMING_SNAKE_CASE : Any = decoder_config.bos_token_id if pad_token_id is None: SCREAMING_SNAKE_CASE : str = decoder_config.eos_token_id # This is necessary to make Flax's generate() work SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_config.eos_token_id SCREAMING_SNAKE_CASE : Any = decoder_start_token_id SCREAMING_SNAKE_CASE : int = pad_token_id SCREAMING_SNAKE_CASE : Any = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
350
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Tuple = '''▁''' a__ : List[Any] = {'''vocab_file''': '''spiece.model'''} a__ : Optional[Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } a__ : str = { '''google/pegasus-xsum''': 512, } a__ : str = logging.get_logger(__name__) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<mask_2>" , _lowerCamelCase="<mask_1>" , _lowerCamelCase=None , _lowerCamelCase=103 , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : Dict = offset if additional_special_tokens is not None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(_lowerCamelCase )}, but is""" F""" {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_lowerCamelCase ) , self.offset - 1 ) ] if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) SCREAMING_SNAKE_CASE : Dict = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : List[str] = mask_token_sent SCREAMING_SNAKE_CASE : Optional[int] = vocab_file SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) # add special tokens to encoder dict SCREAMING_SNAKE_CASE : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def __lowerCAmelCase ( self ) ->int: return len(self.sp_model ) + self.offset def __lowerCAmelCase ( self ) ->Dict[str, int]: SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE : str = None return state def __setstate__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] SCREAMING_SNAKE_CASE : List[str] = self.sp_model.piece_to_id(_lowerCamelCase ) return sp_id + self.offset def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: SCREAMING_SNAKE_CASE : Dict = self.sp_model.IdToPiece(index - self.offset ) return token def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : int = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->str: return 1 def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Dict = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return self._special_token_mask(_lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(_lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : int = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
19
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer a__ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Any = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } a__ : List[Any] = { '''unc-nlp/lxmert-base-uncased''': 512, } a__ : List[str] = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Tuple = LxmertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->int: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : List[Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE : str = strip_accents SCREAMING_SNAKE_CASE : Tuple = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[Any] = normalizer_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = do_lower_case def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Union[str, Any] = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
351
def UpperCAmelCase_( a__ ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Tuple = 1 while repunit: SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_( a__ = 1_000_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"{solution() = }")
19
0
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->int: # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE : Optional[int] = mock.Mock() SCREAMING_SNAKE_CASE : Tuple = 500 SCREAMING_SNAKE_CASE : int = {} SCREAMING_SNAKE_CASE : Union[str, Any] = HTTPError SCREAMING_SNAKE_CASE : List[Any] = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE : List[Any] = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_lowerCamelCase ) as mock_head: SCREAMING_SNAKE_CASE : Optional[int] = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def __lowerCAmelCase ( self ) ->int: # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE : str = mock.Mock() SCREAMING_SNAKE_CASE : Tuple = 500 SCREAMING_SNAKE_CASE : Optional[Any] = {} SCREAMING_SNAKE_CASE : int = HTTPError SCREAMING_SNAKE_CASE : str = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE : List[str] = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_lowerCamelCase ) as mock_head: SCREAMING_SNAKE_CASE : Dict = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # This check we did call the fake head request mock_head.assert_called() def __lowerCAmelCase ( self ) ->Optional[Any]: # This test is for deprecated behavior and can be removed in v5 try: SCREAMING_SNAKE_CASE : Dict = tempfile.mktemp() with open(_lowerCamelCase , '''wb''' ) as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = AlbertTokenizer.from_pretrained(_lowerCamelCase ) finally: os.remove(_lowerCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json''' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''' , '''wb''' ) as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''' ) def __lowerCAmelCase ( self ) ->Any: # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE : str = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' ) @is_staging_test class a_ ( unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def __lowerCAmelCase ( cls ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[Any] = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def __lowerCAmelCase ( cls ) ->int: try: delete_repo(token=cls._token , repo_id='''test-tokenizer''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''' ) except HTTPError: pass def __lowerCAmelCase ( self ) ->Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : Tuple = os.path.join(_lowerCamelCase , '''vocab.txt''' ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE : str = BertTokenizer(_lowerCamelCase ) tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : str = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''test-tokenizer''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCamelCase , repo_id='''test-tokenizer''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : List[Any] = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def __lowerCAmelCase ( self ) ->List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : List[Any] = os.path.join(_lowerCamelCase , '''vocab.txt''' ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE : Dict = BertTokenizer(_lowerCamelCase ) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Union[str, Any] = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( _lowerCamelCase , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : str = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def __lowerCAmelCase ( self ) ->int: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : Tuple = os.path.join(_lowerCamelCase , '''vocab.txt''' ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE : Optional[Any] = CustomTokenizer(_lowerCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(_lowerCamelCase , '''vocab.txt''' ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE : Dict = BertTokenizerFast.from_pretrained(_lowerCamelCase ) bert_tokenizer.save_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = CustomTokenizerFast.from_pretrained(_lowerCamelCase ) tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : str = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''' ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained( F"""{USER}/test-dynamic-tokenizer""" , use_fast=_lowerCamelCase , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Optional[int] = Trie() trie.add('''Hello 友達''' ) self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) trie.add('''Hello''' ) trie.data self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : List[Any] = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS] This is a extra_id_100'''] ) trie.add('''[CLS]''' ) trie.add('''extra_id_1''' ) trie.add('''extra_id_100''' ) self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = Trie() trie.add('''A''' ) self.assertEqual(trie.split('''ABC''' ) , ['''A''', '''BC'''] ) self.assertEqual(trie.split('''BCA''' ) , ['''BC''', '''A'''] ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = Trie() trie.add('''TOKEN]''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Tuple = Trie() trie.add('''A''' ) trie.add('''P''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = Trie() trie.add('''AB''' ) trie.add('''B''' ) trie.add('''C''' ) self.assertEqual(trie.split('''ABC''' ) , ['''AB''', '''C'''] ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : str = Trie() trie.add('''ABC''' ) trie.add('''B''' ) trie.add('''CD''' ) self.assertEqual(trie.split('''ABCD''' ) , ['''ABC''', '''D'''] ) def __lowerCAmelCase ( self ) ->Any: # Even if the offsets are wrong, we necessarily output correct string # parts. SCREAMING_SNAKE_CASE : int = Trie() SCREAMING_SNAKE_CASE : Optional[int] = trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(_lowerCamelCase , ['''AB''', '''C'''] )
352
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict: SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Any = num_stages SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : int = out_features SCREAMING_SNAKE_CASE : List[str] = num_labels SCREAMING_SNAKE_CASE : int = scope SCREAMING_SNAKE_CASE : Optional[Any] = num_stages def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->List[Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowerCAmelCase ( self ) ->Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[str] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = UperNetModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->str: return def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->str: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowerCAmelCase ( self ) ->str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->Tuple: pass def __lowerCAmelCase ( self ) ->int: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = _config_zero_init(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass @slow def __lowerCAmelCase ( self ) ->List[Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) SCREAMING_SNAKE_CASE : Any = Image.open(a__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
19
0
def UpperCAmelCase_( a__ ): """simple docstring""" return 10 - x * x def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if equation(a__ ) * equation(a__ ) >= 0: raise ValueError('''Wrong space!''' ) SCREAMING_SNAKE_CASE : Optional[Any] = a while (b - a) >= 0.01: # Find middle point SCREAMING_SNAKE_CASE : Any = (a + b) / 2 # Check if middle point is root if equation(a__ ) == 0.0: break # Decide the side to repeat the steps if equation(a__ ) * equation(a__ ) < 0: SCREAMING_SNAKE_CASE : List[str] = c else: SCREAMING_SNAKE_CASE : Any = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
353
import datasets from .evaluate import evaluate a__ : Dict = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' a__ : List[str] = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' a__ : List[Any] = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
19
0
import math def UpperCAmelCase_( a__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_( a__ = 0.1 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 3 SCREAMING_SNAKE_CASE : int = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(a__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
354
from sklearn.metrics import matthews_corrcoef import datasets a__ : Optional[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' a__ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' a__ : Union[str, Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]: return { "matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ), }
19
0
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) a__ : Tuple = logging.getLogger(__name__) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = git.Repo(search_parent_directories=a__ ) SCREAMING_SNAKE_CASE : List[str] = { '''repo_id''': str(a__ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(a__ , '''git_log.json''' ) , '''w''' ) as f: json.dump(a__ , a__ , indent=4 ) def UpperCAmelCase_( a__ ): """simple docstring""" if params.n_gpu <= 0: SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Optional[int] = -1 SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Optional[Any] = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 SCREAMING_SNAKE_CASE : Tuple = int(os.environ['''WORLD_SIZE'''] ) SCREAMING_SNAKE_CASE : Optional[int] = int(os.environ['''N_GPU_NODE'''] ) SCREAMING_SNAKE_CASE : List[Any] = int(os.environ['''RANK'''] ) # number of nodes / node ID SCREAMING_SNAKE_CASE : List[Any] = params.world_size // params.n_gpu_per_node SCREAMING_SNAKE_CASE : Optional[int] = params.global_rank // params.n_gpu_per_node SCREAMING_SNAKE_CASE : Optional[Any] = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 SCREAMING_SNAKE_CASE : List[str] = 1 SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : List[str] = 1 SCREAMING_SNAKE_CASE : Dict = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode SCREAMING_SNAKE_CASE : str = params.node_id == 0 and params.local_rank == 0 SCREAMING_SNAKE_CASE : Union[str, Any] = params.n_nodes > 1 # summary SCREAMING_SNAKE_CASE : Optional[Any] = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def UpperCAmelCase_( a__ ): """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
355
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a__ ) SCREAMING_SNAKE_CASE : int = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=a__ ) env_command_parser(subparsers=a__ ) launch_command_parser(subparsers=a__ ) tpu_command_parser(subparsers=a__ ) test_command_parser(subparsers=a__ ) # Let's go SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if not hasattr(a__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(a__ ) if __name__ == "__main__": main()
19
0
from __future__ import annotations from typing import TypedDict class a_ ( a__ ): __SCREAMING_SNAKE_CASE : str __SCREAMING_SNAKE_CASE : int def UpperCAmelCase_( a__ ): """simple docstring""" if not isinstance(a__ , a__ ): raise TypeError('''The parameter s type must be str.''' ) return [s[i:] + s[:i] for i in range(len(a__ ) )] def UpperCAmelCase_( a__ ): """simple docstring""" if not isinstance(a__ , a__ ): raise TypeError('''The parameter s type must be str.''' ) if not s: raise ValueError('''The parameter s must not be empty.''' ) SCREAMING_SNAKE_CASE : List[Any] = all_rotations(a__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(a__ ), } return response def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not isinstance(a__ , a__ ): raise TypeError('''The parameter bwt_string type must be str.''' ) if not bwt_string: raise ValueError('''The parameter bwt_string must not be empty.''' ) try: SCREAMING_SNAKE_CASE : List[Any] = int(a__ ) except ValueError: raise TypeError( '''The parameter idx_original_string type must be int or passive''' ''' of cast to int.''' ) if idx_original_string < 0: raise ValueError('''The parameter idx_original_string must not be lower than 0.''' ) if idx_original_string >= len(a__ ): raise ValueError( '''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''' ) SCREAMING_SNAKE_CASE : Optional[int] = [''''''] * len(a__ ) for _ in range(len(a__ ) ): for i in range(len(a__ ) ): SCREAMING_SNAKE_CASE : Any = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ : Optional[int] = '''Provide a string that I will generate its BWT transform: ''' a__ : Dict = input(entry_msg).strip() a__ : Optional[Any] = bwt_transform(s) print( F"Burrows Wheeler transform for string '{s}' results " F"in '{result['bwt_string']}'" ) a__ : Union[str, Any] = reverse_bwt(result['''bwt_string'''], result['''idx_original_string''']) print( F"Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' " F"we get original string '{original_string}'" )
356
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : str = logging.get_logger(__name__) a__ : Optional[Any] = {'''vocab_file''': '''vocab.json'''} a__ : str = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } a__ : Tuple = {'''mgp-str''': 27} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) ->Dict: super().__init__( unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , pad_token=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.vocab.items()} @property def __lowerCAmelCase ( self ) ->List[Any]: return len(self.vocab ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return dict(self.vocab , **self.added_tokens_encoder ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for s in text: char_tokens.extend(_lowerCamelCase ) return char_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: return self.decoder.get(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) ) return SCREAMING_SNAKE_CASE : str = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' ) return (vocab_file,)
19
0
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a__ : str = logging.get_logger(__name__) a__ : List[Any] = {'''vocab_file''': '''spiece.model'''} a__ : Tuple = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } a__ : Optional[int] = { '''google/bigbird-roberta-base''': 4_096, '''google/bigbird-roberta-large''': 4_096, '''google/bigbird-base-trivia-itc''': 4_096, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : int = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , _lowerCamelCase , _lowerCamelCase="<unk>" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<pad>" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[MASK]" , _lowerCamelCase="[CLS]" , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE : Dict = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE : List[Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else pad_token SCREAMING_SNAKE_CASE : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : Any = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token SCREAMING_SNAKE_CASE : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , sep_token=_lowerCamelCase , mask_token=_lowerCamelCase , cls_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Tuple = vocab_file SCREAMING_SNAKE_CASE : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->Optional[int]: return self.sp_model.get_piece_size() def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Dict: SCREAMING_SNAKE_CASE : int = self.__dict__.copy() SCREAMING_SNAKE_CASE : List[Any] = None return state def __setstate__( self , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : Tuple = {} SCREAMING_SNAKE_CASE : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: return self.sp_model.piece_to_id(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = self.sp_model.IdToPiece(_lowerCamelCase ) return token def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : List[Any] = '''''' SCREAMING_SNAKE_CASE : List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCamelCase ) + token SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Dict = [] else: current_sub_tokens.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = False out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = True , **_lowerCamelCase , ) ->str: SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('''use_source_tokenizer''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.convert_ids_to_tokens(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Any = [] sub_texts.append(_lowerCamelCase ) else: current_sub_text.append(_lowerCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: SCREAMING_SNAKE_CASE : List[str] = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(_lowerCamelCase ) ) else: SCREAMING_SNAKE_CASE : Any = ''''''.join(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: SCREAMING_SNAKE_CASE : Union[str, Any] = self.clean_up_tokenization(_lowerCamelCase ) return clean_text else: return text def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : List[Any] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE : int = [self.cls_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
357
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''DeiTFeatureExtractor'''] a__ : Any = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
import argparse import struct import unittest class a_ : """simple docstring""" def __init__( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Tuple = data # Initialize hash values SCREAMING_SNAKE_CASE : Tuple = [ 0x6a_09e_667, 0xbb_67a_e85, 0x3c_6ef_372, 0xa5_4ff_53a, 0x51_0e5_27f, 0x9b_056_88c, 0x1f_83d_9ab, 0x5b_e0c_d19, ] # Initialize round constants SCREAMING_SNAKE_CASE : Any = [ 0x42_8a2_f98, 0x71_374_491, 0xb5_c0f_bcf, 0xe9_b5d_ba5, 0x39_56c_25b, 0x59_f11_1f1, 0x92_3f8_2a4, 0xab_1c5_ed5, 0xd8_07a_a98, 0x12_835_b01, 0x24_318_5be, 0x55_0c7_dc3, 0x72_be5_d74, 0x80_deb_1fe, 0x9b_dc0_6a7, 0xc1_9bf_174, 0xe4_9b6_9c1, 0xef_be4_786, 0x0f_c19_dc6, 0x24_0ca_1cc, 0x2d_e92_c6f, 0x4a_748_4aa, 0x5c_b0a_9dc, 0x76_f98_8da, 0x98_3e5_152, 0xa8_31c_66d, 0xb0_032_7c8, 0xbf_597_fc7, 0xc6_e00_bf3, 0xd5_a79_147, 0x06_ca6_351, 0x14_292_967, 0x27_b70_a85, 0x2e_1b2_138, 0x4d_2c6_dfc, 0x53_380_d13, 0x65_0a7_354, 0x76_6a0_abb, 0x81_c2c_92e, 0x92_722_c85, 0xa2_bfe_8a1, 0xa8_1a6_64b, 0xc2_4b8_b70, 0xc7_6c5_1a3, 0xd1_92e_819, 0xd6_990_624, 0xf4_0e3_585, 0x10_6aa_070, 0x19_a4c_116, 0x1e_376_c08, 0x27_487_74c, 0x34_b0b_cb5, 0x39_1c0_cb3, 0x4e_d8a_a4a, 0x5b_9cc_a4f, 0x68_2e6_ff3, 0x74_8f8_2ee, 0x78_a56_36f, 0x84_c87_814, 0x8c_c70_208, 0x90_bef_ffa, 0xa4_506_ceb, 0xbe_f9a_3f7, 0xc6_717_8f2, ] SCREAMING_SNAKE_CASE : Union[str, Any] = self.preprocessing(self.data ) self.final_hash() @staticmethod def __lowerCAmelCase ( _lowerCamelCase ) ->bytes: SCREAMING_SNAKE_CASE : Optional[int] = B'''\x80''' + (B'''\x00''' * (63 - (len(_lowerCamelCase ) + 8) % 64)) SCREAMING_SNAKE_CASE : str = struct.pack('''>Q''' , (len(_lowerCamelCase ) * 8) ) return data + padding + big_endian_integer def __lowerCAmelCase ( self ) ->None: # Convert into blocks of 64 bytes SCREAMING_SNAKE_CASE : Optional[int] = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers SCREAMING_SNAKE_CASE : int = list(struct.unpack('''>16L''' , _lowerCamelCase ) ) # add 48 0-ed integers words += [0] * 48 SCREAMING_SNAKE_CASE : Dict = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array SCREAMING_SNAKE_CASE : List[Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) SCREAMING_SNAKE_CASE : Optional[int] = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) SCREAMING_SNAKE_CASE : Dict = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100_000_000 # Compression SCREAMING_SNAKE_CASE : List[str] = self.ror(_lowerCamelCase , 6 ) ^ self.ror(_lowerCamelCase , 11 ) ^ self.ror(_lowerCamelCase , 25 ) SCREAMING_SNAKE_CASE : int = (e & f) ^ ((~e & 0xff_fff_fff) & g) SCREAMING_SNAKE_CASE : Union[str, Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100_000_000 SCREAMING_SNAKE_CASE : Any = self.ror(_lowerCamelCase , 2 ) ^ self.ror(_lowerCamelCase , 13 ) ^ self.ror(_lowerCamelCase , 22 ) SCREAMING_SNAKE_CASE : Optional[int] = (a & b) ^ (a & c) ^ (b & c) SCREAMING_SNAKE_CASE : Union[str, Any] = (sa + maj) % 0x100_000_000 SCREAMING_SNAKE_CASE : Tuple = ( g, f, e, ((d + tempa) % 0x100_000_000), c, b, a, ((tempa + tempa) % 0x100_000_000), ) SCREAMING_SNAKE_CASE : str = [a, b, c, d, e, f, g, h] # Modify final values SCREAMING_SNAKE_CASE : Dict = [ ((element + mutated_hash_values[index]) % 0x100_000_000) for index, element in enumerate(self.hashes ) ] SCREAMING_SNAKE_CASE : Optional[Any] = ''''''.join([hex(_lowerCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->int: return 0xff_fff_fff & (value << (32 - rotations)) | (value >> rotations) class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->None: import hashlib SCREAMING_SNAKE_CASE : Any = bytes('''Test String''' , '''utf-8''' ) self.assertEqual(SHAaaa(_lowerCamelCase ).hash , hashlib.shaaaa(_lowerCamelCase ).hexdigest() ) def UpperCAmelCase_( ): """simple docstring""" import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() parser.add_argument( '''-s''' , '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument( '''-f''' , '''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() SCREAMING_SNAKE_CASE : str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: SCREAMING_SNAKE_CASE : Optional[Any] = f.read() else: SCREAMING_SNAKE_CASE : Tuple = bytes(a__ , '''utf-8''' ) print(SHAaaa(a__ ).hash ) if __name__ == "__main__": main()
358
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
0
def UpperCAmelCase_( a__ ): """simple docstring""" return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = credit_card_number SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : Dict = len(a__ ) - 2 for i in range(a__ , -1 , -2 ): # double the value of every second digit SCREAMING_SNAKE_CASE : Optional[int] = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = cc_number[:i] + str(a__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(a__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = F"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(F"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(a__ ) <= 16: print(F"""{error_message} of its length.""" ) return False if not validate_initial_digits(a__ ): print(F"""{error_message} of its first two digits.""" ) return False if not luhn_validation(a__ ): print(F"""{error_message} it fails the Luhn check.""" ) return False print(F"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('''4111111111111111''') validate_credit_card_number('''32323''')
359
import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase_( a__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2 while True: if is_prime(a__ ): yield num num += 1 def UpperCAmelCase_( a__ = 2_000_000 ): """simple docstring""" return sum(takewhile(lambda a__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
19
0
import argparse import os import re import packaging.version a__ : Tuple = '''examples/''' a__ : Optional[int] = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } a__ : int = { '''init''': '''src/diffusers/__init__.py''', '''setup''': '''setup.py''', } a__ : Dict = '''README.md''' def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" with open(a__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE : int = f.read() SCREAMING_SNAKE_CASE : Tuple = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE : Dict = replace.replace('''VERSION''' , a__ ) SCREAMING_SNAKE_CASE : Tuple = re_pattern.sub(a__ , a__ ) with open(a__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(a__ ) def UpperCAmelCase_( a__ ): """simple docstring""" for folder, directories, fnames in os.walk(a__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(a__ , a__ ) , a__ , pattern='''examples''' ) def UpperCAmelCase_( a__ , a__=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(a__ , a__ , a__ ) if not patch: update_version_in_examples(a__ ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = '''🤗 Transformers currently provides the following architectures''' SCREAMING_SNAKE_CASE : Dict = '''1. Want to contribute a new model?''' with open(a__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE : List[str] = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE : Optional[int] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): SCREAMING_SNAKE_CASE : List[str] = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(a__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(a__ ) def UpperCAmelCase_( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: SCREAMING_SNAKE_CASE : Dict = f.read() SCREAMING_SNAKE_CASE : str = REPLACE_PATTERNS['''init'''][0].search(a__ ).groups()[0] return packaging.version.parse(a__ ) def UpperCAmelCase_( a__=False ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE : Union[str, Any] = default_version.base_version elif patch: SCREAMING_SNAKE_CASE : Tuple = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: SCREAMING_SNAKE_CASE : List[Any] = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE : str = input(F"""Which version are you releasing? [{default_version}]""" ) if len(a__ ) == 0: SCREAMING_SNAKE_CASE : Tuple = default_version print(F"""Updating version to {version}.""" ) global_version_update(a__ , patch=a__ ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = get_version() SCREAMING_SNAKE_CASE : str = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" SCREAMING_SNAKE_CASE : int = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE : Tuple = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(a__ ) == 0: SCREAMING_SNAKE_CASE : Tuple = dev_version print(F"""Updating version to {version}.""" ) global_version_update(a__ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": a__ : int = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') a__ : int = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
360
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( a__ ): """simple docstring""" def __init__( self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int: super().__init__(*_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = eval_examples SCREAMING_SNAKE_CASE : Optional[int] = post_process_function def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ) ->Dict[str, float]: SCREAMING_SNAKE_CASE : Any = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE : Dict = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE : Any = gen_kwargs SCREAMING_SNAKE_CASE : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE : str = self.get_eval_dataloader(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_metrics SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Optional[Any] = time.time() SCREAMING_SNAKE_CASE : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Tuple = eval_loop( _lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Dict = compute_metrics SCREAMING_SNAKE_CASE : Tuple = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : Optional[int] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase ) return metrics def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : str = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(_lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Dict = self.compute_metrics SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : List[str] = time.time() SCREAMING_SNAKE_CASE : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Any = eval_loop( _lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics SCREAMING_SNAKE_CASE : List[Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' ) SCREAMING_SNAKE_CASE : Dict = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
19
0