code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class a_ ( a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : int = BioGptTokenizer
__SCREAMING_SNAKE_CASE : Tuple = False
def __lowerCAmelCase ( self ) ->List[str]:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
SCREAMING_SNAKE_CASE : int = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''w</w>''',
'''r</w>''',
'''t</w>''',
'''lo''',
'''low''',
'''er</w>''',
'''low</w>''',
'''lowest</w>''',
'''newer</w>''',
'''wider</w>''',
'''<unk>''',
]
SCREAMING_SNAKE_CASE : Any = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) )
SCREAMING_SNAKE_CASE : Optional[Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', '''''']
SCREAMING_SNAKE_CASE : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' ) as fp:
fp.write(json.dumps(_lowerCamelCase ) )
with open(self.merges_file , '''w''' ) as fp:
fp.write('''\n'''.join(_lowerCamelCase ) )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Any:
SCREAMING_SNAKE_CASE : List[str] = '''lower newer'''
SCREAMING_SNAKE_CASE : Optional[Any] = '''lower newer'''
return input_text, output_text
def __lowerCAmelCase ( self ) ->List[str]:
SCREAMING_SNAKE_CASE : str = BioGptTokenizer(self.vocab_file , self.merges_file )
SCREAMING_SNAKE_CASE : Optional[Any] = '''lower'''
SCREAMING_SNAKE_CASE : Optional[Any] = ['''low''', '''er</w>''']
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.tokenize(_lowerCamelCase )
self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Any = tokens + ['''<unk>''']
SCREAMING_SNAKE_CASE : Any = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase )
@slow
def __lowerCAmelCase ( self ) ->str:
SCREAMING_SNAKE_CASE : int = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 19 |
from math import pi, sqrt, tan
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if side_length < 0:
raise ValueError('''surface_area_cube() only accepts non-negative values''' )
return 6 * side_length**2
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if length < 0 or breadth < 0 or height < 0:
raise ValueError('''surface_area_cuboid() only accepts non-negative values''' )
return 2 * ((length * breadth) + (breadth * height) + (length * height))
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if radius < 0:
raise ValueError('''surface_area_sphere() only accepts non-negative values''' )
return 4 * pi * radius**2
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if radius < 0:
raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' )
return 3 * pi * radius**2
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if radius < 0 or height < 0:
raise ValueError('''surface_area_cone() only accepts non-negative values''' )
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if radius_a < 0 or radius_a < 0 or height < 0:
raise ValueError(
'''surface_area_conical_frustum() only accepts non-negative values''' )
SCREAMING_SNAKE_CASE : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5
return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2)
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if radius < 0 or height < 0:
raise ValueError('''surface_area_cylinder() only accepts non-negative values''' )
return 2 * pi * radius * (height + radius)
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if torus_radius < 0 or tube_radius < 0:
raise ValueError('''surface_area_torus() only accepts non-negative values''' )
if torus_radius < tube_radius:
raise ValueError(
'''surface_area_torus() does not support spindle or self intersecting tori''' )
return 4 * pow(a__ , 2 ) * torus_radius * tube_radius
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if length < 0 or width < 0:
raise ValueError('''area_rectangle() only accepts non-negative values''' )
return length * width
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if side_length < 0:
raise ValueError('''area_square() only accepts non-negative values''' )
return side_length**2
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if base < 0 or height < 0:
raise ValueError('''area_triangle() only accepts non-negative values''' )
return (base * height) / 2
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if sidea < 0 or sidea < 0 or sidea < 0:
raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' )
elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea:
raise ValueError('''Given three sides do not form a triangle''' )
SCREAMING_SNAKE_CASE : int = (sidea + sidea + sidea) / 2
SCREAMING_SNAKE_CASE : List[str] = sqrt(
semi_perimeter
* (semi_perimeter - sidea)
* (semi_perimeter - sidea)
* (semi_perimeter - sidea) )
return area
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if base < 0 or height < 0:
raise ValueError('''area_parallelogram() only accepts non-negative values''' )
return base * height
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if basea < 0 or basea < 0 or height < 0:
raise ValueError('''area_trapezium() only accepts non-negative values''' )
return 1 / 2 * (basea + basea) * height
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if radius < 0:
raise ValueError('''area_circle() only accepts non-negative values''' )
return pi * radius**2
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if radius_x < 0 or radius_y < 0:
raise ValueError('''area_ellipse() only accepts non-negative values''' )
return pi * radius_x * radius_y
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if diagonal_a < 0 or diagonal_a < 0:
raise ValueError('''area_rhombus() only accepts non-negative values''' )
return 1 / 2 * diagonal_a * diagonal_a
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if not isinstance(a__ , a__ ) or sides < 3:
raise ValueError(
'''area_reg_polygon() only accepts integers greater than or \
equal to three as number of sides''' )
elif length < 0:
raise ValueError(
'''area_reg_polygon() only accepts non-negative values as \
length of a side''' )
return (sides * length**2) / (4 * tan(pi / sides ))
return (sides * length**2) / (4 * tan(pi / sides ))
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) # verbose so we can see methods missing tests
print('''[DEMO] Areas of various geometric shapes: \n''')
print(F"Rectangle: {area_rectangle(10, 20) = }")
print(F"Square: {area_square(10) = }")
print(F"Triangle: {area_triangle(10, 10) = }")
print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }")
print(F"Parallelogram: {area_parallelogram(10, 20) = }")
print(F"Rhombus: {area_rhombus(10, 20) = }")
print(F"Trapezium: {area_trapezium(10, 20, 30) = }")
print(F"Circle: {area_circle(20) = }")
print(F"Ellipse: {area_ellipse(10, 20) = }")
print('''\nSurface Areas of various geometric shapes: \n''')
print(F"Cube: {surface_area_cube(20) = }")
print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }")
print(F"Sphere: {surface_area_sphere(20) = }")
print(F"Hemisphere: {surface_area_hemisphere(20) = }")
print(F"Cone: {surface_area_cone(10, 20) = }")
print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }")
print(F"Cylinder: {surface_area_cylinder(10, 20) = }")
print(F"Torus: {surface_area_torus(20, 10) = }")
print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }")
print(F"Square: {area_reg_polygon(4, 10) = }")
print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
| 19 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Union[str, Any] = 'philschmid/bart-large-cnn-samsum'
__SCREAMING_SNAKE_CASE : Optional[Any] = (
'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, '
'and returns a summary of the text.'
)
__SCREAMING_SNAKE_CASE : Tuple = 'summarizer'
__SCREAMING_SNAKE_CASE : int = AutoTokenizer
__SCREAMING_SNAKE_CASE : int = AutoModelForSeqaSeqLM
__SCREAMING_SNAKE_CASE : List[Any] = ['text']
__SCREAMING_SNAKE_CASE : Optional[Any] = ['text']
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tuple:
return self.pre_processor(_lowerCamelCase , return_tensors='''pt''' , truncation=_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]:
return self.model.generate(**_lowerCamelCase )[0]
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tuple:
return self.pre_processor.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase )
| 19 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
a__ : List[str] = None
a__ : Any = logging.get_logger(__name__)
a__ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
a__ : Dict = {
'''vocab_file''': {
'''facebook/mbart-large-en-ro''': (
'''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model'''
),
'''facebook/mbart-large-cc25''': (
'''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model'''
),
},
'''tokenizer_file''': {
'''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''',
'''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''',
},
}
a__ : str = {
'''facebook/mbart-large-en-ro''': 1_024,
'''facebook/mbart-large-cc25''': 1_024,
}
# fmt: off
a__ : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''']
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask']
__SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer
__SCREAMING_SNAKE_CASE : List[int] = []
__SCREAMING_SNAKE_CASE : List[int] = []
def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->List[Any]:
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token
super().__init__(
vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , )
SCREAMING_SNAKE_CASE : Any = vocab_file
SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True
SCREAMING_SNAKE_CASE : Any = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
SCREAMING_SNAKE_CASE : int = {
lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX'''
SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang )
SCREAMING_SNAKE_CASE : List[Any] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def __lowerCAmelCase ( self ) ->str:
return self._src_lang
@src_lang.setter
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
SCREAMING_SNAKE_CASE : str = [self.sep_token_id]
SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]:
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang
SCREAMING_SNAKE_CASE : List[str] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = tgt_lang_id
return inputs
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ) ->BatchEncoding:
SCREAMING_SNAKE_CASE : List[str] = src_lang
SCREAMING_SNAKE_CASE : List[str] = tgt_lang
return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase )
def __lowerCAmelCase ( self ) ->Dict:
return self.set_src_lang_special_tokens(self.src_lang )
def __lowerCAmelCase ( self ) ->List[Any]:
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = []
SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code]
SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens )
SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens )
SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
SCREAMING_SNAKE_CASE : str = self.convert_tokens_to_ids(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = []
SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code]
SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens )
SCREAMING_SNAKE_CASE : Any = self.convert_ids_to_tokens(self.suffix_tokens )
SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(_lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" )
return
SCREAMING_SNAKE_CASE : List[Any] = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ):
copyfile(self.vocab_file , _lowerCamelCase )
return (out_vocab_file,)
| 19 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
a__ : Optional[Any] = logging.get_logger(__name__)
def UpperCAmelCase_( a__ , a__=False , a__=False ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = '''backbone.''' if is_semantic else ''''''
SCREAMING_SNAKE_CASE : Dict = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""{prefix}blocks.{i}.norm1.weight""", F"""beit.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""{prefix}blocks.{i}.norm1.bias""", F"""beit.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(F"""{prefix}blocks.{i}.attn.proj.weight""", F"""beit.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append(
(F"""{prefix}blocks.{i}.attn.proj.bias""", F"""beit.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""{prefix}blocks.{i}.norm2.weight""", F"""beit.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""{prefix}blocks.{i}.norm2.bias""", F"""beit.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc1.weight""", F"""beit.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc1.bias""", F"""beit.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc2.weight""", F"""beit.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""{prefix}blocks.{i}.mlp.fc2.bias""", F"""beit.encoder.layer.{i}.output.dense.bias""") )
# projection layer + position embeddings
rename_keys.extend(
[
(F"""{prefix}cls_token""", '''beit.embeddings.cls_token'''),
(F"""{prefix}patch_embed.proj.weight""", '''beit.embeddings.patch_embeddings.projection.weight'''),
(F"""{prefix}patch_embed.proj.bias""", '''beit.embeddings.patch_embeddings.projection.bias'''),
(F"""{prefix}pos_embed""", '''beit.embeddings.position_embeddings'''),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
('''mask_token''', '''beit.embeddings.mask_token'''),
('''norm.weight''', '''layernorm.weight'''),
('''norm.bias''', '''layernorm.bias'''),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''),
('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''),
('''head.weight''', '''classifier.weight'''),
('''head.bias''', '''classifier.bias'''),
] )
return rename_keys
def UpperCAmelCase_( a__ , a__ , a__=False , a__=False ):
"""simple docstring"""
for i in range(config.num_hidden_layers ):
SCREAMING_SNAKE_CASE : Any = '''backbone.''' if is_semantic else ''''''
# queries, keys and values
SCREAMING_SNAKE_CASE : str = state_dict.pop(F"""{prefix}blocks.{i}.attn.qkv.weight""" )
SCREAMING_SNAKE_CASE : int = state_dict.pop(F"""{prefix}blocks.{i}.attn.q_bias""" )
SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(F"""{prefix}blocks.{i}.attn.v_bias""" )
SCREAMING_SNAKE_CASE : Any = in_proj_weight[
: config.hidden_size, :
]
SCREAMING_SNAKE_CASE : Tuple = q_bias
SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
SCREAMING_SNAKE_CASE : Optional[int] = in_proj_weight[
-config.hidden_size :, :
]
SCREAMING_SNAKE_CASE : Optional[int] = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
SCREAMING_SNAKE_CASE : str = state_dict.pop(F"""{prefix}blocks.{i}.gamma_1""" )
SCREAMING_SNAKE_CASE : Any = state_dict.pop(F"""{prefix}blocks.{i}.gamma_2""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = gamma_a
SCREAMING_SNAKE_CASE : Dict = gamma_a
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = dct.pop(a__ )
SCREAMING_SNAKE_CASE : Union[str, Any] = val
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
SCREAMING_SNAKE_CASE : Dict = Image.open(requests.get(a__ , stream=a__ ).raw )
return im
@torch.no_grad()
def UpperCAmelCase_( a__ , a__ , a__=False ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = False if '''rvlcdip''' in checkpoint_url else True
SCREAMING_SNAKE_CASE : str = BeitConfig(use_absolute_position_embeddings=a__ , use_mask_token=a__ )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
SCREAMING_SNAKE_CASE : Tuple = 1_024
SCREAMING_SNAKE_CASE : str = 4_096
SCREAMING_SNAKE_CASE : int = 24
SCREAMING_SNAKE_CASE : List[str] = 16
# labels
if "rvlcdip" in checkpoint_url:
SCREAMING_SNAKE_CASE : List[str] = 16
SCREAMING_SNAKE_CASE : Optional[int] = '''huggingface/label-files'''
SCREAMING_SNAKE_CASE : Optional[Any] = '''rvlcdip-id2label.json'''
SCREAMING_SNAKE_CASE : str = json.load(open(hf_hub_download(a__ , a__ , repo_type='''dataset''' ) , '''r''' ) )
SCREAMING_SNAKE_CASE : Tuple = {int(a__ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE : str = idalabel
SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
SCREAMING_SNAKE_CASE : List[str] = torch.hub.load_state_dict_from_url(a__ , map_location='''cpu''' )['''model''']
SCREAMING_SNAKE_CASE : Union[str, Any] = create_rename_keys(a__ , has_lm_head=a__ )
for src, dest in rename_keys:
rename_key(a__ , a__ , a__ )
read_in_q_k_v(a__ , a__ , has_lm_head=a__ )
# load HuggingFace model
SCREAMING_SNAKE_CASE : Any = BeitForMaskedImageModeling(a__ ) if has_lm_head else BeitForImageClassification(a__ )
model.eval()
model.load_state_dict(a__ )
# Check outputs on an image
SCREAMING_SNAKE_CASE : Tuple = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=a__ )
SCREAMING_SNAKE_CASE : Dict = prepare_img()
SCREAMING_SNAKE_CASE : List[Any] = image_processor(images=a__ , return_tensors='''pt''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = encoding['''pixel_values''']
SCREAMING_SNAKE_CASE : Tuple = model(a__ )
SCREAMING_SNAKE_CASE : str = outputs.logits
# verify logits
SCREAMING_SNAKE_CASE : Optional[int] = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192]
assert logits.shape == torch.Size(a__ ), "Shape of logits not as expected"
Path(a__ ).mkdir(exist_ok=a__ )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(a__ )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(a__ )
if push_to_hub:
if has_lm_head:
SCREAMING_SNAKE_CASE : Optional[Any] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large'''
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip'''
image_processor.push_to_hub(
repo_path_or_name=Path(a__ , a__ ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=a__ , )
model.push_to_hub(
repo_path_or_name=Path(a__ , a__ ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=a__ , )
if __name__ == "__main__":
a__ : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_url''',
default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''',
type=str,
help='''URL to the original PyTorch checkpoint (.pth file).''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
)
a__ : int = parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 19 |
import torch
from torch import nn
from transformers import CLIPPreTrainedModel, CLIPVisionModel
from ...models.attention import BasicTransformerBlock
from ...utils import logging
a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]:
super().__init__(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = proj_size
SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size )
SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size )
# uncondition for scaling
SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int:
SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output
SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] )
SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase )
if return_uncond_vector:
return latent_states, self.uncond_vector
return latent_states
class a_ ( nn.Module ):
"""simple docstring"""
def __init__( self , _lowerCamelCase ) ->List[str]:
super().__init__()
SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5
SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size
SCREAMING_SNAKE_CASE : Dict = 1
SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList(
[
BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase )
for _ in range(_lowerCamelCase )
] )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
for block in self.blocks:
SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase )
return hidden_states
| 19 | 1 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp()
# fmt: off
SCREAMING_SNAKE_CASE : Any = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
SCREAMING_SNAKE_CASE : Tuple = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) )
SCREAMING_SNAKE_CASE : List[Any] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', '''''']
SCREAMING_SNAKE_CASE : Optional[int] = {'''unk_token''': '''<unk>'''}
SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
SCREAMING_SNAKE_CASE : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(_lowerCamelCase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(_lowerCamelCase ) )
SCREAMING_SNAKE_CASE : Optional[int] = {
'''do_resize''': True,
'''size''': 20,
'''do_center_crop''': True,
'''crop_size''': 18,
'''do_normalize''': True,
'''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
'''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , _lowerCamelCase )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(_lowerCamelCase , _lowerCamelCase )
def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Dict:
return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase )
def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Dict:
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase )
def __lowerCAmelCase ( self , **_lowerCamelCase ) ->List[str]:
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase )
def __lowerCAmelCase ( self ) ->Optional[int]:
shutil.rmtree(self.tmpdirname )
def __lowerCAmelCase ( self ) ->int:
SCREAMING_SNAKE_CASE : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE : List[Any] = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __lowerCAmelCase ( self ) ->int:
SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Any = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE : Any = self.get_image_processor()
SCREAMING_SNAKE_CASE : Any = CLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase )
processor_slow.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE : str = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = CLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase )
processor_fast.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE : str = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase )
self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase )
self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->str:
SCREAMING_SNAKE_CASE : str = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' )
SCREAMING_SNAKE_CASE : int = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 )
SCREAMING_SNAKE_CASE : str = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , _lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : List[Any] = self.get_image_processor()
SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Dict = CLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE : Tuple = image_processor(_lowerCamelCase , return_tensors='''np''' )
SCREAMING_SNAKE_CASE : List[Any] = processor(images=_lowerCamelCase , return_tensors='''np''' )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_image_processor()
SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : int = CLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = '''lower newer'''
SCREAMING_SNAKE_CASE : int = processor(text=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer(_lowerCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __lowerCAmelCase ( self ) ->List[Any]:
SCREAMING_SNAKE_CASE : str = self.get_image_processor()
SCREAMING_SNAKE_CASE : Any = self.get_tokenizer()
SCREAMING_SNAKE_CASE : List[str] = CLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = '''lower newer'''
SCREAMING_SNAKE_CASE : Tuple = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE : List[str] = processor(text=_lowerCamelCase , images=_lowerCamelCase )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(_lowerCamelCase ):
processor()
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : Tuple = self.get_image_processor()
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : Dict = CLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE : Optional[int] = processor.batch_decode(_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = tokenizer.batch_decode(_lowerCamelCase )
self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : Optional[int] = self.get_image_processor()
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE : List[Any] = CLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = '''lower newer'''
SCREAMING_SNAKE_CASE : List[str] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE : List[str] = processor(text=_lowerCamelCase , images=_lowerCamelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 19 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a__ : Tuple = '''▁'''
a__ : List[Any] = {'''vocab_file''': '''spiece.model'''}
a__ : Optional[Any] = {
'''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''}
}
a__ : str = {
'''google/pegasus-xsum''': 512,
}
a__ : str = logging.get_logger(__name__)
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask']
def __init__( self , _lowerCamelCase , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<mask_2>" , _lowerCamelCase="<mask_1>" , _lowerCamelCase=None , _lowerCamelCase=103 , _lowerCamelCase = None , **_lowerCamelCase , ) ->None:
SCREAMING_SNAKE_CASE : Dict = offset
if additional_special_tokens is not None:
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise TypeError(
F"""additional_special_tokens should be of type {type(_lowerCamelCase )}, but is"""
F""" {type(_lowerCamelCase )}""" )
SCREAMING_SNAKE_CASE : List[Any] = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
F"""<unk_{i}>""" for i in range(len(_lowerCamelCase ) , self.offset - 1 )
]
if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ):
raise ValueError(
'''Please make sure that the provided additional_special_tokens do not contain an incorrectly'''
F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" )
SCREAMING_SNAKE_CASE : Dict = additional_special_tokens_extended
else:
SCREAMING_SNAKE_CASE : str = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )]
SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , )
SCREAMING_SNAKE_CASE : List[str] = mask_token_sent
SCREAMING_SNAKE_CASE : Optional[int] = vocab_file
SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCamelCase )
# add special tokens to encoder dict
SCREAMING_SNAKE_CASE : Dict[int, str] = {
0: self.pad_token,
1: self.eos_token,
}
if self.mask_token_sent is not None:
self.encoder.update(
{
2: self.mask_token_sent,
3: self.mask_token,
} )
if self.offset > 0:
# entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102
# mask_token_sent is already added to list -> so start at 1
self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} )
SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()}
@property
def __lowerCAmelCase ( self ) ->int:
return len(self.sp_model ) + self.offset
def __lowerCAmelCase ( self ) ->Dict[str, int]:
SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy()
SCREAMING_SNAKE_CASE : str = None
return state
def __setstate__( self , _lowerCamelCase ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Optional[Any] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
SCREAMING_SNAKE_CASE : List[str] = {}
SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]:
return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
if token in self.decoder:
return self.decoder[token]
elif token in self.added_tokens_decoder:
return self.added_tokens_decoder[token]
SCREAMING_SNAKE_CASE : List[str] = self.sp_model.piece_to_id(_lowerCamelCase )
return sp_id + self.offset
def __lowerCAmelCase ( self , _lowerCamelCase ) ->str:
if index in self.encoder:
return self.encoder[index]
elif index in self.added_tokens_encoder:
return self.added_tokens_encoder[index]
else:
SCREAMING_SNAKE_CASE : Dict = self.sp_model.IdToPiece(index - self.offset )
return token
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Dict = []
SCREAMING_SNAKE_CASE : int = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(_lowerCamelCase ) + token
SCREAMING_SNAKE_CASE : Optional[Any] = []
else:
current_sub_tokens.append(_lowerCamelCase )
out_string += self.sp_model.decode(_lowerCamelCase )
return out_string.strip()
def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->str:
return 1
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
SCREAMING_SNAKE_CASE : Dict = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
return [1 if x in all_special_ids else 0 for x in seq]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]:
if already_has_special_tokens:
return self._special_token_mask(_lowerCamelCase )
elif token_ids_a is None:
return self._special_token_mask(_lowerCamelCase ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]:
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
if not os.path.isdir(_lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
SCREAMING_SNAKE_CASE : int = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _lowerCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCamelCase , '''wb''' ) as fi:
SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto()
fi.write(_lowerCamelCase )
return (out_vocab_file,)
| 19 | 1 |
import pytest
a__ : List[str] = '''__dummy_dataset1__'''
a__ : str = '''
import json
import os
import datasets
REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"
URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}
class __DummyDataset1__(datasets.GeneratorBasedBuilder):
def _info(self):
features = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC",
]
)
),
"langs": datasets.Sequence(datasets.Value("string")),
"spans": datasets.Sequence(datasets.Value("string")),
}
)
return datasets.DatasetInfo(features=features)
def _split_generators(self, dl_manager):
dl_path = dl_manager.download(URLS)
return [
datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),
datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),
]
def _generate_examples(self, filepath):
with open(filepath, "r", encoding="utf-8") as f:
for i, line in enumerate(f):
yield i, json.loads(line)
'''
@pytest.fixture
def UpperCAmelCase_( ):
"""simple docstring"""
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def UpperCAmelCase_( ):
"""simple docstring"""
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = dataset_loading_script_name
SCREAMING_SNAKE_CASE : Dict = tmp_path / '''datasets''' / script_name
script_dir.mkdir(parents=a__ )
SCREAMING_SNAKE_CASE : Any = script_dir / F"""{script_name}.py"""
with open(a__ , '''w''' ) as f:
f.write(a__ )
return str(a__ )
| 19 |
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
SCREAMING_SNAKE_CASE : Tuple = 1
SCREAMING_SNAKE_CASE : Tuple = 1
while repunit:
SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def UpperCAmelCase_( a__ = 1_000_000 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(a__ ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(F"{solution() = }")
| 19 | 1 |
from __future__ import annotations
import unittest
from transformers import EsmConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers.models.esm.modeling_tf_esm import (
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
TFEsmModel,
)
class a_ :
"""simple docstring"""
def __init__( self , _lowerCamelCase , ) ->int:
SCREAMING_SNAKE_CASE : Optional[int] = parent
SCREAMING_SNAKE_CASE : Optional[Any] = 13
SCREAMING_SNAKE_CASE : List[Any] = 7
SCREAMING_SNAKE_CASE : str = True
SCREAMING_SNAKE_CASE : Tuple = True
SCREAMING_SNAKE_CASE : List[Any] = True
SCREAMING_SNAKE_CASE : Dict = 99
SCREAMING_SNAKE_CASE : Dict = 32
SCREAMING_SNAKE_CASE : Any = 2
SCREAMING_SNAKE_CASE : Tuple = 4
SCREAMING_SNAKE_CASE : List[Any] = 37
SCREAMING_SNAKE_CASE : Optional[Any] = '''gelu'''
SCREAMING_SNAKE_CASE : Tuple = 0.1
SCREAMING_SNAKE_CASE : str = 0.1
SCREAMING_SNAKE_CASE : Optional[Any] = 512
SCREAMING_SNAKE_CASE : Optional[Any] = 16
SCREAMING_SNAKE_CASE : Optional[int] = 2
SCREAMING_SNAKE_CASE : int = 0.0_2
SCREAMING_SNAKE_CASE : int = 3
SCREAMING_SNAKE_CASE : Optional[Any] = 4
SCREAMING_SNAKE_CASE : Optional[Any] = None
def __lowerCAmelCase ( self ) ->int:
SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE : Tuple = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Any = None
SCREAMING_SNAKE_CASE : int = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
SCREAMING_SNAKE_CASE : List[str] = EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self ) ->List[str]:
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : List[Any] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE : List[str] = True
SCREAMING_SNAKE_CASE : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any:
SCREAMING_SNAKE_CASE : List[str] = TFEsmModel(config=_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
SCREAMING_SNAKE_CASE : List[str] = model(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Any = [input_ids, input_mask]
SCREAMING_SNAKE_CASE : int = model(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) ->Optional[int]:
SCREAMING_SNAKE_CASE : List[str] = True
SCREAMING_SNAKE_CASE : Tuple = TFEsmModel(config=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''encoder_hidden_states''': encoder_hidden_states,
'''encoder_attention_mask''': encoder_attention_mask,
}
SCREAMING_SNAKE_CASE : str = model(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = [input_ids, input_mask]
SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , encoder_hidden_states=_lowerCamelCase )
# Also check the case where encoder outputs are not passed
SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Any = TFEsmForMaskedLM(config=_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = model([input_ids, input_mask] )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[int]:
SCREAMING_SNAKE_CASE : List[Any] = self.num_labels
SCREAMING_SNAKE_CASE : List[Any] = TFEsmForTokenClassification(config=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : List[str] = config_and_inputs
SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class a_ ( a__ , a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = (
(
TFEsmModel,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
)
if is_tf_available()
else ()
)
__SCREAMING_SNAKE_CASE : Any = (
{
'feature-extraction': TFEsmModel,
'fill-mask': TFEsmForMaskedLM,
'text-classification': TFEsmForSequenceClassification,
'token-classification': TFEsmForTokenClassification,
'zero-shot': TFEsmForSequenceClassification,
}
if is_tf_available()
else {}
)
__SCREAMING_SNAKE_CASE : Tuple = False
__SCREAMING_SNAKE_CASE : Dict = False
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : List[Any] = TFEsmModelTester(self )
SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 )
def __lowerCAmelCase ( self ) ->Optional[int]:
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCamelCase )
def __lowerCAmelCase ( self ) ->int:
SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*_lowerCamelCase )
def __lowerCAmelCase ( self ) ->str:
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase )
def __lowerCAmelCase ( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase )
@slow
def __lowerCAmelCase ( self ) ->str:
for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : List[str] = TFEsmModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
@unittest.skip('''Protein models do not support embedding resizing.''' )
def __lowerCAmelCase ( self ) ->Tuple:
pass
@unittest.skip('''Protein models do not support embedding resizing.''' )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
pass
def __lowerCAmelCase ( self ) ->int:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Tuple = model_class(_lowerCamelCase )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class is TFEsmForMaskedLM:
# Output embedding test differs from the main test because they're a matrix, not a layer
SCREAMING_SNAKE_CASE : Optional[int] = model.get_bias()
assert isinstance(_lowerCamelCase , _lowerCamelCase )
for k, v in name.items():
assert isinstance(_lowerCamelCase , tf.Variable )
else:
SCREAMING_SNAKE_CASE : Any = model.get_output_embeddings()
assert x is None
SCREAMING_SNAKE_CASE : Tuple = model.get_bias()
assert name is None
@require_tf
class a_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : Optional[Any] = TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] )
SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase )[0]
SCREAMING_SNAKE_CASE : List[Any] = [1, 6, 33]
self.assertEqual(list(output.numpy().shape ) , _lowerCamelCase )
# compare the actual values for a slice.
SCREAMING_SNAKE_CASE : Any = tf.constant(
[
[
[8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7],
[-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5],
[-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) )
@slow
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : List[Any] = TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' )
SCREAMING_SNAKE_CASE : Tuple = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
SCREAMING_SNAKE_CASE : Any = model(_lowerCamelCase )[0]
# compare the actual values for a slice.
SCREAMING_SNAKE_CASE : int = tf.constant(
[
[
[0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9],
[0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2],
[0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 19 |
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class a_ :
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict:
SCREAMING_SNAKE_CASE : Any = parent
SCREAMING_SNAKE_CASE : Optional[Any] = batch_size
SCREAMING_SNAKE_CASE : Optional[Any] = image_size
SCREAMING_SNAKE_CASE : str = num_channels
SCREAMING_SNAKE_CASE : Any = num_stages
SCREAMING_SNAKE_CASE : List[str] = hidden_sizes
SCREAMING_SNAKE_CASE : Optional[Any] = depths
SCREAMING_SNAKE_CASE : Any = is_training
SCREAMING_SNAKE_CASE : Tuple = use_labels
SCREAMING_SNAKE_CASE : Any = intermediate_size
SCREAMING_SNAKE_CASE : Dict = hidden_act
SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size
SCREAMING_SNAKE_CASE : str = initializer_range
SCREAMING_SNAKE_CASE : int = out_features
SCREAMING_SNAKE_CASE : List[str] = num_labels
SCREAMING_SNAKE_CASE : int = scope
SCREAMING_SNAKE_CASE : Optional[Any] = num_stages
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : str = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def __lowerCAmelCase ( self ) ->List[Any]:
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def __lowerCAmelCase ( self ) ->Any:
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any:
SCREAMING_SNAKE_CASE : List[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : Tuple = config_and_inputs
SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class a_ ( a__ , a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
__SCREAMING_SNAKE_CASE : List[str] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {}
__SCREAMING_SNAKE_CASE : Tuple = False
__SCREAMING_SNAKE_CASE : Union[str, Any] = False
__SCREAMING_SNAKE_CASE : Any = False
__SCREAMING_SNAKE_CASE : Tuple = False
__SCREAMING_SNAKE_CASE : Dict = False
__SCREAMING_SNAKE_CASE : Any = False
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : Optional[Any] = UperNetModelTester(self )
SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 )
def __lowerCAmelCase ( self ) ->str:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __lowerCAmelCase ( self ) ->str:
return
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase )
@unittest.skip(reason='''UperNet does not use inputs_embeds''' )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
pass
@unittest.skip(reason='''UperNet does not support input and output embeddings''' )
def __lowerCAmelCase ( self ) ->int:
pass
@unittest.skip(reason='''UperNet does not have a base model''' )
def __lowerCAmelCase ( self ) ->int:
pass
@unittest.skip(reason='''UperNet does not have a base model''' )
def __lowerCAmelCase ( self ) ->str:
pass
@require_torch_multi_gpu
@unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' )
def __lowerCAmelCase ( self ) ->str:
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __lowerCAmelCase ( self ) ->Tuple:
pass
def __lowerCAmelCase ( self ) ->int:
def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) )
SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_stages
self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Optional[int] = True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : Union[str, Any] = True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE : str = _config_zero_init(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : int = model_class(config=_lowerCamelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip(reason='''UperNet does not have tied weights''' )
def __lowerCAmelCase ( self ) ->List[Any]:
pass
@slow
def __lowerCAmelCase ( self ) ->List[Any]:
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download(
repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' )
SCREAMING_SNAKE_CASE : Any = Image.open(a__ ).convert('''RGB''' )
return image
@require_torch
@require_vision
@slow
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' )
SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = prepare_img()
SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(
[[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
def __lowerCAmelCase ( self ) ->int:
SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' )
SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = prepare_img()
SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase )
with torch.no_grad():
SCREAMING_SNAKE_CASE : str = model(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
| 19 | 1 |
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
SCREAMING_SNAKE_CASE : Tuple = 1
SCREAMING_SNAKE_CASE : Tuple = 1
while repunit:
SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def UpperCAmelCase_( a__ = 1_000_000 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(a__ ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(F"{solution() = }")
| 19 |
import datasets
from .evaluate import evaluate
a__ : Dict = '''\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
'''
a__ : List[str] = '''
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
'''
a__ : List[Any] = '''
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- \'id\': id of the question-answer pair as given in the references (see below)
- \'prediction_text\': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- \'id\': id of the question-answer pair (see above),
- \'answers\': a Dict in the CUAD dataset format
{
\'text\': list of possible texts for the answer, as a list of strings
\'answer_start\': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
\'exact_match\': Exact match (the normalized answer exactly match the gold answer)
\'f1\': The F-score of predicted tokens versus the gold answer
\'aupr\': Area Under the Precision-Recall curve
\'prec_at_80_recall\': Precision at 80% recall
\'prec_at_90_recall\': Precision at 90% recall
Examples:
>>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]
>>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]
>>> cuad_metric = datasets.load_metric("cuad")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Tuple:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': {
'''id''': datasets.Value('''string''' ),
'''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ),
},
'''references''': {
'''id''': datasets.Value('''string''' ),
'''answers''': datasets.features.Sequence(
{
'''text''': datasets.Value('''string''' ),
'''answer_start''': datasets.Value('''int32''' ),
} ),
},
} ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple:
SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions}
SCREAMING_SNAKE_CASE : int = [
{
'''paragraphs''': [
{
'''qas''': [
{
'''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']],
'''id''': ref['''id'''],
}
for ref in references
]
}
]
}
]
SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase )
return score
| 19 | 1 |
from __future__ import annotations
from math import pi, sqrt
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if inductance <= 0:
raise ValueError('''Inductance cannot be 0 or negative''' )
elif capacitance <= 0:
raise ValueError('''Capacitance cannot be 0 or negative''' )
else:
return (
"Resonant frequency",
float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 19 |
from sklearn.metrics import matthews_corrcoef
import datasets
a__ : Optional[Any] = '''
Compute the Matthews correlation coefficient (MCC)
The Matthews correlation coefficient is used in machine learning as a
measure of the quality of binary and multiclass classifications. It takes
into account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if the classes are of
very different sizes. The MCC is in essence a correlation coefficient value
between -1 and +1. A coefficient of +1 represents a perfect prediction, 0
an average random prediction and -1 an inverse prediction. The statistic
is also known as the phi coefficient. [source: Wikipedia]
'''
a__ : str = '''
Args:
predictions (list of int): Predicted labels, as returned by a model.
references (list of int): Ground truth labels.
sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.
Returns:
matthews_correlation (dict containing float): Matthews correlation.
Examples:
Example 1, a basic example with only predictions and references as inputs:
>>> matthews_metric = datasets.load_metric("matthews_correlation")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3])
>>> print(round(results[\'matthews_correlation\'], 2))
0.54
Example 2, the same example as above, but also including sample weights:
>>> matthews_metric = datasets.load_metric("matthews_correlation")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 3, 1, 1, 1, 2])
>>> print(round(results[\'matthews_correlation\'], 2))
0.1
Example 3, the same example as above, but with sample weights that cause a negative correlation:
>>> matthews_metric = datasets.load_metric("matthews_correlation")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 1, 0, 0, 0, 1])
>>> print(round(results[\'matthews_correlation\'], 2))
-0.25
'''
a__ : Union[str, Any] = '''\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Union[str, Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''int32''' ),
'''references''': datasets.Value('''int32''' ),
} ) , reference_urls=[
'''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html'''
] , )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]:
return {
"matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ),
}
| 19 | 1 |
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = 9, 14 # noqa: F841
SCREAMING_SNAKE_CASE : Optional[int] = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
SCREAMING_SNAKE_CASE : Optional[int] = defaultdict(a__ )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
SCREAMING_SNAKE_CASE : str = mst(a__ )
SCREAMING_SNAKE_CASE : Union[str, Any] = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
SCREAMING_SNAKE_CASE : int = tuple(answer[:2] )
SCREAMING_SNAKE_CASE : Optional[Any] = tuple(edge[::-1] )
assert edge in result or reverse in result
| 19 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from argparse import ArgumentParser
from accelerate.commands.config import get_config_parser
from accelerate.commands.env import env_command_parser
from accelerate.commands.launch import launch_command_parser
from accelerate.commands.test import test_command_parser
from accelerate.commands.tpu import tpu_command_parser
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a__ )
SCREAMING_SNAKE_CASE : int = parser.add_subparsers(help='''accelerate command helpers''' )
# Register commands
get_config_parser(subparsers=a__ )
env_command_parser(subparsers=a__ )
launch_command_parser(subparsers=a__ )
tpu_command_parser(subparsers=a__ )
test_command_parser(subparsers=a__ )
# Let's go
SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args()
if not hasattr(a__ , '''func''' ):
parser.print_help()
exit(1 )
# Run
args.func(a__ )
if __name__ == "__main__":
main()
| 19 | 1 |
a__ : dict[tuple[int, int, int], int] = {}
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
SCREAMING_SNAKE_CASE : Any = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
SCREAMING_SNAKE_CASE : int = _calculate(days - 1 , a__ , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
SCREAMING_SNAKE_CASE : Dict = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
SCREAMING_SNAKE_CASE : Dict = _calculate(days - 1 , a__ , 0 )
SCREAMING_SNAKE_CASE : Any = state_late + state_absent + state_ontime
SCREAMING_SNAKE_CASE : Optional[Any] = prizestrings
return prizestrings
def UpperCAmelCase_( a__ = 30 ):
"""simple docstring"""
return _calculate(a__ , absent=0 , late=0 )
if __name__ == "__main__":
print(solution())
| 19 |
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a__ : str = logging.get_logger(__name__)
a__ : Optional[Any] = {'''vocab_file''': '''vocab.json'''}
a__ : str = {
'''vocab_file''': {
'''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''',
}
}
a__ : Tuple = {'''mgp-str''': 27}
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) ->Dict:
super().__init__(
unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , pad_token=_lowerCamelCase , **_lowerCamelCase , )
with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle:
SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.vocab.items()}
@property
def __lowerCAmelCase ( self ) ->List[Any]:
return len(self.vocab )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
return dict(self.vocab , **self.added_tokens_encoder )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for s in text:
char_tokens.extend(_lowerCamelCase )
return char_tokens
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict:
return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
return self.decoder.get(_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
if not os.path.isdir(_lowerCamelCase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) )
return
SCREAMING_SNAKE_CASE : str = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' )
return (vocab_file,)
| 19 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = ['''XGLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[Any] = ['''XGLMTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : int = [
'''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XGLMForCausalLM''',
'''XGLMModel''',
'''XGLMPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'''FlaxXGLMForCausalLM''',
'''FlaxXGLMModel''',
'''FlaxXGLMPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXGLMForCausalLM''',
'''TFXGLMModel''',
'''TFXGLMPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 19 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[Any] = ['''DeiTFeatureExtractor''']
a__ : Any = ['''DeiTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''DeiTForImageClassification''',
'''DeiTForImageClassificationWithTeacher''',
'''DeiTForMaskedImageModeling''',
'''DeiTModel''',
'''DeiTPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
'''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFDeiTForImageClassification''',
'''TFDeiTForImageClassificationWithTeacher''',
'''TFDeiTForMaskedImageModeling''',
'''TFDeiTModel''',
'''TFDeiTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_deit import DeiTFeatureExtractor
from .image_processing_deit import DeiTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deit import (
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
DeiTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deit import (
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
TFDeiTPreTrainedModel,
)
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 19 | 1 |
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] )
@pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] )
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , a__ )
SCREAMING_SNAKE_CASE : List[str] = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
SCREAMING_SNAKE_CASE : List[Any] = dataset_size < in_memory_max_size
else:
SCREAMING_SNAKE_CASE : str = False
SCREAMING_SNAKE_CASE : Tuple = is_small_dataset(a__ )
assert result == expected
| 19 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = ['''XGLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[Any] = ['''XGLMTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : int = [
'''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XGLMForCausalLM''',
'''XGLMModel''',
'''XGLMPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'''FlaxXGLMForCausalLM''',
'''FlaxXGLMModel''',
'''FlaxXGLMPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXGLMForCausalLM''',
'''TFXGLMModel''',
'''TFXGLMPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 19 | 1 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
a__ : str = logging.get_logger(__name__)
a__ : Optional[int] = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''',
'''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''',
'''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''',
'''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''',
'''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''',
'''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''',
'''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''',
'''self_attn.rotary_emb''': '''encoder.embed_positions''',
'''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''',
'''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''',
'''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''',
'''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''',
'''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''',
'''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''',
'''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''',
'''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''',
'''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''',
'''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''',
'''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''',
'''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''lm_head''',
'''mask_emb''': '''masked_spec_embed''',
}
a__ : Tuple = [
'''lm_head''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
]
def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__ ):
"""simple docstring"""
for attribute in key.split('''.''' ):
SCREAMING_SNAKE_CASE : List[Any] = getattr(a__ , a__ )
if weight_type is not None:
SCREAMING_SNAKE_CASE : Tuple = getattr(a__ , a__ ).shape
else:
SCREAMING_SNAKE_CASE : List[Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}""" )
if weight_type == "weight":
SCREAMING_SNAKE_CASE : int = value
elif weight_type == "weight_g":
SCREAMING_SNAKE_CASE : List[str] = value
elif weight_type == "weight_v":
SCREAMING_SNAKE_CASE : Any = value
elif weight_type == "bias":
SCREAMING_SNAKE_CASE : List[Any] = value
elif weight_type == "running_mean":
SCREAMING_SNAKE_CASE : List[Any] = value
elif weight_type == "running_var":
SCREAMING_SNAKE_CASE : Optional[int] = value
elif weight_type == "num_batches_tracked":
SCREAMING_SNAKE_CASE : int = value
elif weight_type == "inv_freq":
SCREAMING_SNAKE_CASE : List[str] = value
else:
SCREAMING_SNAKE_CASE : Dict = value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = []
SCREAMING_SNAKE_CASE : int = fairseq_model.state_dict()
SCREAMING_SNAKE_CASE : str = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
SCREAMING_SNAKE_CASE : Optional[int] = False
if "conv_layers" in name:
load_conv_layer(
a__ , a__ , a__ , a__ , hf_model.config.feat_extract_norm == '''group''' , )
SCREAMING_SNAKE_CASE : Optional[int] = True
else:
for key, mapped_key in MAPPING.items():
SCREAMING_SNAKE_CASE : List[Any] = '''wav2vec2_conformer.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
SCREAMING_SNAKE_CASE : Optional[int] = True
if "*" in mapped_key:
SCREAMING_SNAKE_CASE : List[str] = name.split(a__ )[0].split('''.''' )[-2]
SCREAMING_SNAKE_CASE : Union[str, Any] = mapped_key.replace('''*''' , a__ )
if "pos_bias_u" in name:
SCREAMING_SNAKE_CASE : str = None
elif "pos_bias_v" in name:
SCREAMING_SNAKE_CASE : Dict = None
elif "weight_g" in name:
SCREAMING_SNAKE_CASE : Dict = '''weight_g'''
elif "weight_v" in name:
SCREAMING_SNAKE_CASE : str = '''weight_v'''
elif "bias" in name:
SCREAMING_SNAKE_CASE : Any = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
SCREAMING_SNAKE_CASE : List[str] = '''weight'''
elif "running_mean" in name:
SCREAMING_SNAKE_CASE : List[str] = '''running_mean'''
elif "inv_freq" in name:
SCREAMING_SNAKE_CASE : str = '''inv_freq'''
elif "running_var" in name:
SCREAMING_SNAKE_CASE : Any = '''running_var'''
elif "num_batches_tracked" in name:
SCREAMING_SNAKE_CASE : Optional[Any] = '''num_batches_tracked'''
else:
SCREAMING_SNAKE_CASE : Optional[Any] = None
set_recursively(a__ , a__ , a__ , a__ , a__ )
continue
if not is_used:
unused_weights.append(a__ )
logger.warning(F"""Unused weights: {unused_weights}""" )
def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = full_name.split('''conv_layers.''' )[-1]
SCREAMING_SNAKE_CASE : str = name.split('''.''' )
SCREAMING_SNAKE_CASE : str = int(items[0] )
SCREAMING_SNAKE_CASE : Dict = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
SCREAMING_SNAKE_CASE : Optional[Any] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
SCREAMING_SNAKE_CASE : Optional[Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
SCREAMING_SNAKE_CASE : Dict = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(a__ )
@torch.no_grad()
def UpperCAmelCase_( a__ , a__ , a__=None , a__=None , a__=True ):
"""simple docstring"""
if config_path is not None:
SCREAMING_SNAKE_CASE : List[str] = WavaVecaConformerConfig.from_pretrained(a__ , hidden_act='''swish''' )
else:
SCREAMING_SNAKE_CASE : List[Any] = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
SCREAMING_SNAKE_CASE : List[Any] = '''rotary'''
if is_finetuned:
if dict_path:
SCREAMING_SNAKE_CASE : Union[str, Any] = Dictionary.load(a__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
SCREAMING_SNAKE_CASE : Tuple = target_dict.pad_index
SCREAMING_SNAKE_CASE : List[Any] = target_dict.bos_index
SCREAMING_SNAKE_CASE : Dict = target_dict.eos_index
SCREAMING_SNAKE_CASE : Dict = len(target_dict.symbols )
SCREAMING_SNAKE_CASE : Tuple = os.path.join(a__ , '''vocab.json''' )
if not os.path.isdir(a__ ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(a__ ) )
return
os.makedirs(a__ , exist_ok=a__ )
SCREAMING_SNAKE_CASE : Tuple = target_dict.indices
# fairseq has the <pad> and <s> switched
SCREAMING_SNAKE_CASE : Tuple = 0
SCREAMING_SNAKE_CASE : Any = 1
with open(a__ , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(a__ , a__ )
SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaCTCTokenizer(
a__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=a__ , )
SCREAMING_SNAKE_CASE : Any = True if config.feat_extract_norm == '''layer''' else False
SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=a__ , return_attention_mask=a__ , )
SCREAMING_SNAKE_CASE : Dict = WavaVecaProcessor(feature_extractor=a__ , tokenizer=a__ )
processor.save_pretrained(a__ )
SCREAMING_SNAKE_CASE : str = WavaVecaConformerForCTC(a__ )
else:
SCREAMING_SNAKE_CASE : Any = WavaVecaConformerForPreTraining(a__ )
if is_finetuned:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.Namespace(task='''audio_pretraining''' )
SCREAMING_SNAKE_CASE : str = fairseq.tasks.setup_task(a__ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=a__ )
SCREAMING_SNAKE_CASE : List[str] = model[0].eval()
recursively_load_weights(a__ , a__ , not is_finetuned )
hf_wavavec.save_pretrained(a__ )
if __name__ == "__main__":
a__ : Optional[Any] = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
a__ : Optional[int] = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 19 |
import math
from collections.abc import Iterator
from itertools import takewhile
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = 2
while True:
if is_prime(a__ ):
yield num
num += 1
def UpperCAmelCase_( a__ = 2_000_000 ):
"""simple docstring"""
return sum(takewhile(lambda a__ : x < n , prime_generator() ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 19 | 1 |
def UpperCAmelCase_( a__ ):
"""simple docstring"""
return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') )
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = credit_card_number
SCREAMING_SNAKE_CASE : Tuple = 0
SCREAMING_SNAKE_CASE : Dict = len(a__ ) - 2
for i in range(a__ , -1 , -2 ):
# double the value of every second digit
SCREAMING_SNAKE_CASE : Optional[int] = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 10
digit += 1
SCREAMING_SNAKE_CASE : Union[str, Any] = cc_number[:i] + str(a__ ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(a__ ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 10 == 0
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = F"""{credit_card_number} is an invalid credit card number because"""
if not credit_card_number.isdigit():
print(F"""{error_message} it has nonnumerical characters.""" )
return False
if not 13 <= len(a__ ) <= 16:
print(F"""{error_message} of its length.""" )
return False
if not validate_initial_digits(a__ ):
print(F"""{error_message} of its first two digits.""" )
return False
if not luhn_validation(a__ ):
print(F"""{error_message} it fails the Luhn check.""" )
return False
print(F"""{credit_card_number} is a valid credit card number.""" )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number('''4111111111111111''')
validate_credit_card_number('''32323''')
| 19 |
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int:
super().__init__(*_lowerCamelCase , **_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = eval_examples
SCREAMING_SNAKE_CASE : Optional[int] = post_process_function
def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ) ->Dict[str, float]:
SCREAMING_SNAKE_CASE : Any = gen_kwargs.copy()
SCREAMING_SNAKE_CASE : str = (
gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length
)
SCREAMING_SNAKE_CASE : Dict = (
gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams
)
SCREAMING_SNAKE_CASE : Any = gen_kwargs
SCREAMING_SNAKE_CASE : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset
SCREAMING_SNAKE_CASE : str = self.get_eval_dataloader(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_metrics
SCREAMING_SNAKE_CASE : str = None
SCREAMING_SNAKE_CASE : Optional[Any] = time.time()
SCREAMING_SNAKE_CASE : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE : Tuple = eval_loop(
_lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , )
finally:
SCREAMING_SNAKE_CASE : Dict = compute_metrics
SCREAMING_SNAKE_CASE : Tuple = self.args.eval_batch_size * self.args.world_size
if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics:
start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""]
output.metrics.update(
speed_metrics(
_lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(_lowerCamelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"""{metric_key_prefix}_""" ):
SCREAMING_SNAKE_CASE : Optional[int] = metrics.pop(_lowerCamelCase )
metrics.update(output.metrics )
else:
SCREAMING_SNAKE_CASE : List[Any] = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(_lowerCamelCase )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
SCREAMING_SNAKE_CASE : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase )
return metrics
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ) ->int:
SCREAMING_SNAKE_CASE : str = gen_kwargs.copy()
SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(_lowerCamelCase )
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE : Dict = self.compute_metrics
SCREAMING_SNAKE_CASE : Tuple = None
SCREAMING_SNAKE_CASE : List[str] = time.time()
SCREAMING_SNAKE_CASE : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE : Any = eval_loop(
_lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , )
finally:
SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics
SCREAMING_SNAKE_CASE : List[Any] = self.args.eval_batch_size * self.args.world_size
if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics:
start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""]
output.metrics.update(
speed_metrics(
_lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' )
SCREAMING_SNAKE_CASE : Dict = self.compute_metrics(_lowerCamelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"""{metric_key_prefix}_""" ):
SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(_lowerCamelCase )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
| 19 | 1 |
from typing import Optional, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_mobilenet_va import MobileNetVaConfig
a__ : List[str] = logging.get_logger(__name__)
# General docstring
a__ : Tuple = '''MobileNetV1Config'''
# Base docstring
a__ : Optional[Any] = '''google/mobilenet_v1_1.0_224'''
a__ : Tuple = [1, 1_024, 7, 7]
# Image classification docstring
a__ : Optional[int] = '''google/mobilenet_v1_1.0_224'''
a__ : int = '''tabby, tabby cat'''
a__ : List[Any] = [
'''google/mobilenet_v1_1.0_224''',
'''google/mobilenet_v1_0.75_192''',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
]
def UpperCAmelCase_( a__ , a__ , a__=None ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = {}
if isinstance(a__ , a__ ):
SCREAMING_SNAKE_CASE : List[str] = model.mobilenet_va
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = model
SCREAMING_SNAKE_CASE : Optional[int] = '''MobilenetV1/Conv2d_0/'''
SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight
SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.normalization.bias
SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.weight
SCREAMING_SNAKE_CASE : Union[str, Any] = backbone.conv_stem.normalization.running_mean
SCREAMING_SNAKE_CASE : Any = backbone.conv_stem.normalization.running_var
for i in range(13 ):
SCREAMING_SNAKE_CASE : Dict = i + 1
SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2
SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index]
SCREAMING_SNAKE_CASE : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/"""
SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight
SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.bias
SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.weight
SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean
SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_var
SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index + 1]
SCREAMING_SNAKE_CASE : Any = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/"""
SCREAMING_SNAKE_CASE : Dict = pointer.convolution.weight
SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias
SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight
SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean
SCREAMING_SNAKE_CASE : str = pointer.normalization.running_var
if isinstance(a__ , a__ ):
SCREAMING_SNAKE_CASE : List[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/'''
SCREAMING_SNAKE_CASE : List[str] = model.classifier.weight
SCREAMING_SNAKE_CASE : List[str] = model.classifier.bias
return tf_to_pt_map
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
'''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see '''
'''https://www.tensorflow.org/install/ for installation instructions.''' )
raise
# Load weights from TF model
SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.list_variables(a__ )
SCREAMING_SNAKE_CASE : List[Any] = {}
for name, shape in init_vars:
logger.info(F"""Loading TF weight {name} with shape {shape}""" )
SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(a__ , a__ )
SCREAMING_SNAKE_CASE : Dict = array
# Build TF to PyTorch weights loading map
SCREAMING_SNAKE_CASE : int = _build_tf_to_pytorch_map(a__ , a__ , a__ )
for name, pointer in tf_to_pt_map.items():
logger.info(F"""Importing {name}""" )
if name not in tf_weights:
logger.info(F"""{name} not in tf pre-trained weights, skipping""" )
continue
SCREAMING_SNAKE_CASE : Union[str, Any] = tf_weights[name]
if "depthwise_weights" in name:
logger.info('''Transposing depthwise''' )
SCREAMING_SNAKE_CASE : Tuple = np.transpose(a__ , (2, 3, 0, 1) )
elif "weights" in name:
logger.info('''Transposing''' )
if len(pointer.shape ) == 2: # copying into linear layer
SCREAMING_SNAKE_CASE : Union[str, Any] = array.squeeze().transpose()
else:
SCREAMING_SNAKE_CASE : Optional[int] = np.transpose(a__ , (3, 2, 0, 1) )
if pointer.shape != array.shape:
raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" )
logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" )
SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ )
tf_weights.pop(a__ , a__ )
tf_weights.pop(name + '''/RMSProp''' , a__ )
tf_weights.pop(name + '''/RMSProp_1''' , a__ )
tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ )
logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" )
return model
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = features.shape[-2:]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = conv_layer.stride
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = conv_layer.kernel_size
if in_height % stride_height == 0:
SCREAMING_SNAKE_CASE : List[str] = max(kernel_height - stride_height , 0 )
else:
SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height) , 0 )
if in_width % stride_width == 0:
SCREAMING_SNAKE_CASE : int = max(kernel_width - stride_width , 0 )
else:
SCREAMING_SNAKE_CASE : Tuple = max(kernel_width - (in_width % stride_width) , 0 )
SCREAMING_SNAKE_CASE : List[str] = pad_along_width // 2
SCREAMING_SNAKE_CASE : Any = pad_along_width - pad_left
SCREAMING_SNAKE_CASE : str = pad_along_height // 2
SCREAMING_SNAKE_CASE : Optional[int] = pad_along_height - pad_top
SCREAMING_SNAKE_CASE : List[Any] = (pad_left, pad_right, pad_top, pad_bottom)
return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 )
class a_ ( nn.Module ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = True , ) ->None:
super().__init__()
SCREAMING_SNAKE_CASE : Any = config
if in_channels % groups != 0:
raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" )
if out_channels % groups != 0:
raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" )
SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 )
SCREAMING_SNAKE_CASE : List[str] = nn.Convad(
in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='''zeros''' , )
if use_normalization:
SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad(
num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , )
else:
SCREAMING_SNAKE_CASE : Dict = None
if use_activation:
if isinstance(_lowerCamelCase , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : Any = ACTaFN[use_activation]
elif isinstance(config.hidden_act , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act]
else:
SCREAMING_SNAKE_CASE : List[Any] = config.hidden_act
else:
SCREAMING_SNAKE_CASE : Optional[Any] = None
def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor:
if self.config.tf_padding:
SCREAMING_SNAKE_CASE : List[Any] = apply_tf_padding(_lowerCamelCase , self.convolution )
SCREAMING_SNAKE_CASE : Dict = self.convolution(_lowerCamelCase )
if self.normalization is not None:
SCREAMING_SNAKE_CASE : int = self.normalization(_lowerCamelCase )
if self.activation is not None:
SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase )
return features
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = MobileNetVaConfig
__SCREAMING_SNAKE_CASE : List[Any] = load_tf_weights_in_mobilenet_va
__SCREAMING_SNAKE_CASE : int = 'mobilenet_v1'
__SCREAMING_SNAKE_CASE : int = 'pixel_values'
__SCREAMING_SNAKE_CASE : List[str] = False
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(_lowerCamelCase , nn.BatchNormad ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
a__ : str = r'''
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
'''
a__ : Union[str, Any] = r'''
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`MobileNetV1ImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
'''
@add_start_docstrings(
'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , a__ , )
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase = True ) ->Dict:
super().__init__(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = config
SCREAMING_SNAKE_CASE : Dict = 32
SCREAMING_SNAKE_CASE : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth )
SCREAMING_SNAKE_CASE : str = MobileNetVaConvLayer(
_lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , )
SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
SCREAMING_SNAKE_CASE : Any = nn.ModuleList()
for i in range(13 ):
SCREAMING_SNAKE_CASE : int = out_channels
if strides[i] == 2 or i == 0:
depth *= 2
SCREAMING_SNAKE_CASE : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth )
self.layer.append(
MobileNetVaConvLayer(
_lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) )
self.layer.append(
MobileNetVaConvLayer(
_lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) )
SCREAMING_SNAKE_CASE : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]:
raise NotImplementedError
@add_start_docstrings_to_model_forward(_lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
SCREAMING_SNAKE_CASE : Union[str, Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
SCREAMING_SNAKE_CASE : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError('''You have to specify pixel_values''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_stem(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer ):
SCREAMING_SNAKE_CASE : Optional[int] = layer_module(_lowerCamelCase )
if output_hidden_states:
SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,)
SCREAMING_SNAKE_CASE : List[str] = hidden_states
if self.pooler is not None:
SCREAMING_SNAKE_CASE : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 )
else:
SCREAMING_SNAKE_CASE : List[Any] = None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None )
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , )
@add_start_docstrings(
'\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , )
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase ) ->None:
super().__init__(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels
SCREAMING_SNAKE_CASE : str = MobileNetVaModel(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va.layer[-1].convolution.out_channels
# Classifier head
SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]:
SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict
SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = outputs.pooler_output if return_dict else outputs[1]
SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(_lowerCamelCase ) )
SCREAMING_SNAKE_CASE : int = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
SCREAMING_SNAKE_CASE : Any = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification'''
else:
SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification'''
if self.config.problem_type == "regression":
SCREAMING_SNAKE_CASE : Any = MSELoss()
if self.num_labels == 1:
SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() )
else:
SCREAMING_SNAKE_CASE : Dict = loss_fct(_lowerCamelCase , _lowerCamelCase )
elif self.config.problem_type == "single_label_classification":
SCREAMING_SNAKE_CASE : str = CrossEntropyLoss()
SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
SCREAMING_SNAKE_CASE : List[Any] = BCEWithLogitsLoss()
SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase )
if not return_dict:
SCREAMING_SNAKE_CASE : Optional[Any] = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
| 19 |
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class a_ ( a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = DDIMPipeline
__SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
__SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - {
'num_images_per_prompt',
'latents',
'callback',
'callback_steps',
}
__SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
__SCREAMING_SNAKE_CASE : List[Any] = False
def __lowerCAmelCase ( self ) ->int:
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler()
SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler}
return components
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int:
if str(_lowerCamelCase ).startswith('''mps''' ):
SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase )
else:
SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = {
'''batch_size''': 1,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : Optional[int] = '''cpu'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase )
pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 32, 32, 3) )
SCREAMING_SNAKE_CASE : int = np.array(
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] )
SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_lowerCamelCase , 1e-3 )
def __lowerCAmelCase ( self ) ->Optional[int]:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def __lowerCAmelCase ( self ) ->Any:
super().test_save_load_local(expected_max_difference=3e-3 )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def __lowerCAmelCase ( self ) ->Any:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->List[Any]:
SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32'''
SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler()
SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase )
ddim.to(_lowerCamelCase )
ddim.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images
SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256'''
SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase )
ddpm.to(_lowerCamelCase )
ddpm.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images
SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 19 | 1 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFXLMRobertaModel
@require_tf
@require_sentencepiece
@require_tokenizers
class a_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def __lowerCAmelCase ( self ) ->List[str]:
SCREAMING_SNAKE_CASE : Optional[int] = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' )
SCREAMING_SNAKE_CASE : Tuple = {
'''input_ids''': tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]] , dtype=tf.intaa ), # "My dog is cute"
'''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ),
}
SCREAMING_SNAKE_CASE : str = model(_lowerCamelCase )['''last_hidden_state''']
SCREAMING_SNAKE_CASE : Any = tf.TensorShape((1, 6, 768) )
self.assertEqual(output.shape , _lowerCamelCase )
# compare the actual values for a slice.
SCREAMING_SNAKE_CASE : Union[str, Any] = tf.convert_to_tensor(
[
[
[0.0_6_8_1_7_6_2, 0.1_0_8_9_4_4_5_1, 0.0_6_7_7_2_5_0_4],
[-0.0_6_4_2_3_6_6_8, 0.0_2_3_6_6_6_1_5, 0.0_4_3_2_9_3_4_4],
[-0.0_6_0_5_7_2_9_5, 0.0_9_9_7_4_1_3_5, -0.0_0_0_7_0_5_8_4],
]
] , dtype=tf.floataa , )
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 19 |
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
class a_ ( a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer
__SCREAMING_SNAKE_CASE : List[str] = False
__SCREAMING_SNAKE_CASE : Dict = True
def __lowerCAmelCase ( self ) ->Dict:
super().setUp()
# We have a SentencePiece fixture for testing
SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase )
tokenizer.save_pretrained(self.tmpdirname )
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : List[str] = '''[PAD]'''
SCREAMING_SNAKE_CASE : Tuple = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->List[Any]:
SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''[PAD]''' )
self.assertEqual(vocab_keys[1] , '''[CLS]''' )
self.assertEqual(vocab_keys[-1] , '''j''' )
self.assertEqual(len(_lowerCamelCase ) , 1012 )
def __lowerCAmelCase ( self ) ->List[str]:
self.assertEqual(self.get_tokenizer().vocab_size , 1012 )
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_lowerCamelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase )
self.assertListEqual(
_lowerCamelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase )
self.assertListEqual(
_lowerCamelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''[UNK]''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''[UNK]''',
'''.''',
] , )
@cached_property
def __lowerCAmelCase ( self ) ->List[str]:
return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' )
@slow
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!'''
SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2]
self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) )
@slow
def __lowerCAmelCase ( self ) ->int:
# fmt: off
SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
| 19 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
a__ : Optional[Any] = logging.get_logger(__name__)
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->List[str]:
SCREAMING_SNAKE_CASE : str = feature_size
SCREAMING_SNAKE_CASE : Union[str, Any] = sampling_rate
SCREAMING_SNAKE_CASE : Union[str, Any] = padding_value
SCREAMING_SNAKE_CASE : int = kwargs.pop('''padding_side''' , '''right''' )
SCREAMING_SNAKE_CASE : int = kwargs.pop('''return_attention_mask''' , _lowerCamelCase )
super().__init__(**_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->BatchFeature:
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(_lowerCamelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
SCREAMING_SNAKE_CASE : Tuple = {
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
'''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`'''
F""" to this method that includes {self.model_input_names[0]}, but you provided"""
F""" {list(processed_features.keys() )}""" )
SCREAMING_SNAKE_CASE : Dict = processed_features[self.model_input_names[0]]
SCREAMING_SNAKE_CASE : Tuple = (
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(_lowerCamelCase ) == 0:
if return_attention_mask:
SCREAMING_SNAKE_CASE : Union[str, Any] = []
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
SCREAMING_SNAKE_CASE : int = required_input[0]
if isinstance(_lowerCamelCase , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
SCREAMING_SNAKE_CASE : int = 0
while len(required_input[index] ) == 0:
index += 1
if index < len(_lowerCamelCase ):
SCREAMING_SNAKE_CASE : List[str] = required_input[index][0]
if return_tensors is None:
if is_tf_tensor(_lowerCamelCase ):
SCREAMING_SNAKE_CASE : str = '''tf'''
elif is_torch_tensor(_lowerCamelCase ):
SCREAMING_SNAKE_CASE : Optional[Any] = '''pt'''
elif isinstance(_lowerCamelCase , (int, float, list, tuple, np.ndarray) ):
SCREAMING_SNAKE_CASE : List[Any] = '''np'''
else:
raise ValueError(
F"""type of {first_element} unknown: {type(_lowerCamelCase )}. """
'''Should be one of a python, numpy, pytorch or tensorflow object.''' )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
SCREAMING_SNAKE_CASE : Optional[Any] = to_numpy(_lowerCamelCase )
else:
SCREAMING_SNAKE_CASE : Optional[Any] = [to_numpy(_lowerCamelCase ) for v in value]
# Convert padding_strategy in PaddingStrategy
SCREAMING_SNAKE_CASE : Dict = self._get_padding_strategies(padding=_lowerCamelCase , max_length=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = processed_features[self.model_input_names[0]]
SCREAMING_SNAKE_CASE : Optional[int] = len(_lowerCamelCase )
if not all(len(_lowerCamelCase ) == batch_size for v in processed_features.values() ):
raise ValueError('''Some items in the output dictionary have a different batch size than others.''' )
SCREAMING_SNAKE_CASE : Tuple = []
for i in range(_lowerCamelCase ):
SCREAMING_SNAKE_CASE : Any = {k: v[i] for k, v in processed_features.items()}
# truncation
SCREAMING_SNAKE_CASE : List[str] = self._truncate(
_lowerCamelCase , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , truncation=_lowerCamelCase , )
truncated_inputs.append(_lowerCamelCase )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
SCREAMING_SNAKE_CASE : List[str] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
SCREAMING_SNAKE_CASE : Optional[int] = PaddingStrategy.MAX_LENGTH
SCREAMING_SNAKE_CASE : Tuple = {}
for i in range(_lowerCamelCase ):
# padding
SCREAMING_SNAKE_CASE : Tuple = self._pad(
truncated_inputs[i] , max_length=_lowerCamelCase , padding_strategy=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , )
for key, value in outputs.items():
if key not in batch_outputs:
SCREAMING_SNAKE_CASE : Optional[int] = []
if value.dtype is np.dtype(np.floataa ):
SCREAMING_SNAKE_CASE : Optional[Any] = value.astype(np.floataa )
batch_outputs[key].append(_lowerCamelCase )
return BatchFeature(_lowerCamelCase , tensor_type=_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = PaddingStrategy.DO_NOT_PAD , _lowerCamelCase = None , _lowerCamelCase = None , ) ->dict:
SCREAMING_SNAKE_CASE : int = processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
SCREAMING_SNAKE_CASE : Dict = len(_lowerCamelCase )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
SCREAMING_SNAKE_CASE : Optional[int] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
SCREAMING_SNAKE_CASE : int = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(_lowerCamelCase ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
SCREAMING_SNAKE_CASE : List[str] = np.ones(len(_lowerCamelCase ) , dtype=np.intaa )
if needs_to_be_padded:
SCREAMING_SNAKE_CASE : Optional[int] = max_length - len(_lowerCamelCase )
if self.padding_side == "right":
if return_attention_mask:
SCREAMING_SNAKE_CASE : str = np.pad(
processed_features['''attention_mask'''] , (0, difference) )
SCREAMING_SNAKE_CASE : Optional[int] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
SCREAMING_SNAKE_CASE : Tuple = np.pad(
_lowerCamelCase , _lowerCamelCase , '''constant''' , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
SCREAMING_SNAKE_CASE : Union[str, Any] = np.pad(
processed_features['''attention_mask'''] , (difference, 0) )
SCREAMING_SNAKE_CASE : str = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
SCREAMING_SNAKE_CASE : List[str] = np.pad(
_lowerCamelCase , _lowerCamelCase , '''constant''' , constant_values=self.padding_value )
else:
raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) )
return processed_features
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Optional[Any]:
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' )
SCREAMING_SNAKE_CASE : Dict = processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
SCREAMING_SNAKE_CASE : int = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
SCREAMING_SNAKE_CASE : Optional[Any] = len(_lowerCamelCase ) > max_length
if needs_to_be_truncated:
SCREAMING_SNAKE_CASE : int = processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
SCREAMING_SNAKE_CASE : List[Any] = processed_features['''attention_mask'''][:max_length]
return processed_features
def __lowerCAmelCase ( self , _lowerCamelCase=False , _lowerCamelCase=None ) ->List[Any]:
# Get padding strategy
if padding is not False:
if padding is True:
SCREAMING_SNAKE_CASE : Any = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(_lowerCamelCase , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : Optional[Any] = PaddingStrategy(_lowerCamelCase )
elif isinstance(_lowerCamelCase , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : str = padding
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
'''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use'''
''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' )
return padding_strategy
| 19 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class a_ ( a__ , a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline
__SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS
__SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS
__SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
__SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
__SCREAMING_SNAKE_CASE : int = False
def __lowerCAmelCase ( self ) ->Optional[int]:
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
SCREAMING_SNAKE_CASE : int = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : str = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str:
if str(_lowerCamelCase ).startswith('''mps''' ):
SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase )
else:
SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = {
'''prompt''': '''.''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 1.0,
'''sag_scale''': 1.0,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self ) ->Optional[int]:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Dict:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' )
SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase )
sag_pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = '''.'''
SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = sag_pipe(
[prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' )
SCREAMING_SNAKE_CASE : int = output.images
SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase )
sag_pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = '''.'''
SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = sag_pipe(
[prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' )
SCREAMING_SNAKE_CASE : List[str] = output.images
SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase )
sag_pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = '''.'''
SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = sag_pipe(
[prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , )
SCREAMING_SNAKE_CASE : List[Any] = output.images
assert image.shape == (1, 512, 768, 3)
| 19 | 1 |
from __future__ import annotations
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = [True] * limit
SCREAMING_SNAKE_CASE : Dict = False
SCREAMING_SNAKE_CASE : int = False
SCREAMING_SNAKE_CASE : Union[str, Any] = True
for i in range(3 , int(limit**0.5 + 1 ) , 2 ):
SCREAMING_SNAKE_CASE : Optional[int] = i * 2
while index < limit:
SCREAMING_SNAKE_CASE : int = False
SCREAMING_SNAKE_CASE : Optional[Any] = index + i
SCREAMING_SNAKE_CASE : Any = [2]
for i in range(3 , a__ , 2 ):
if is_prime[i]:
primes.append(a__ )
return primes
def UpperCAmelCase_( a__ = 1_000_000 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = prime_sieve(a__ )
SCREAMING_SNAKE_CASE : int = 0
SCREAMING_SNAKE_CASE : List[str] = 0
for i in range(len(a__ ) ):
for j in range(i + length , len(a__ ) ):
SCREAMING_SNAKE_CASE : Dict = sum(primes[i:j] )
if sol >= ceiling:
break
if sol in primes:
SCREAMING_SNAKE_CASE : Union[str, Any] = j - i
SCREAMING_SNAKE_CASE : int = sol
return largest
if __name__ == "__main__":
print(F"{solution() = }")
| 19 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mobilebert import MobileBertTokenizer
a__ : Optional[Any] = logging.get_logger(__name__)
a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
a__ : Tuple = {
'''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''},
'''tokenizer_file''': {
'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json'''
},
}
a__ : Optional[Any] = {'''mobilebert-uncased''': 512}
a__ : List[Any] = {}
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION
__SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer
def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]:
super().__init__(
_lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , )
SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) )
SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case
SCREAMING_SNAKE_CASE : Optional[int] = strip_accents
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars
SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = do_lower_case
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any:
SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id]
SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase )
return tuple(_lowerCamelCase )
| 19 | 1 |
import unittest
from transformers import BertGenerationTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a__ : List[Any] = '''▁'''
a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
class a_ ( a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Dict = BertGenerationTokenizer
__SCREAMING_SNAKE_CASE : int = False
__SCREAMING_SNAKE_CASE : List[str] = True
def __lowerCAmelCase ( self ) ->str:
super().setUp()
SCREAMING_SNAKE_CASE : Optional[int] = BertGenerationTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase )
tokenizer.save_pretrained(self.tmpdirname )
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : List[str] = '''<s>'''
SCREAMING_SNAKE_CASE : Optional[Any] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : int = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<unk>''' )
self.assertEqual(vocab_keys[1] , '''<s>''' )
self.assertEqual(vocab_keys[-1] , '''<pad>''' )
self.assertEqual(len(_lowerCamelCase ) , 1002 )
def __lowerCAmelCase ( self ) ->List[str]:
self.assertEqual(self.get_tokenizer().vocab_size , 1000 )
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : Dict = BertGenerationTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [285, 46, 10, 170, 382] , )
SCREAMING_SNAKE_CASE : str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_lowerCamelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase )
self.assertListEqual(
_lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
SCREAMING_SNAKE_CASE : Any = tokenizer.convert_ids_to_tokens(_lowerCamelCase )
self.assertListEqual(
_lowerCamelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def __lowerCAmelCase ( self ) ->str:
return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' )
@slow
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : List[Any] = '''Hello World!'''
SCREAMING_SNAKE_CASE : Union[str, Any] = [1_8536, 2260, 101]
self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) )
@slow
def __lowerCAmelCase ( self ) ->int:
SCREAMING_SNAKE_CASE : List[str] = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'''
)
SCREAMING_SNAKE_CASE : List[str] = [
871,
419,
358,
946,
991,
2521,
452,
358,
1357,
387,
7751,
3536,
112,
985,
456,
126,
865,
938,
5400,
5734,
458,
1368,
467,
786,
2462,
5246,
1159,
633,
865,
4519,
457,
582,
852,
2557,
427,
916,
508,
405,
3_4324,
497,
391,
408,
1_1342,
1244,
385,
100,
938,
985,
456,
574,
362,
1_2597,
3200,
3129,
1172,
]
self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) )
@require_torch
@slow
def __lowerCAmelCase ( self ) ->List[str]:
import torch
from transformers import BertGenerationConfig, BertGenerationEncoder
# Build sequence
SCREAMING_SNAKE_CASE : List[str] = list(self.big_tokenizer.get_vocab().keys() )[:10]
SCREAMING_SNAKE_CASE : str = ''' '''.join(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = self.big_tokenizer.encode_plus(_lowerCamelCase , return_tensors='''pt''' , return_token_type_ids=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = self.big_tokenizer.batch_encode_plus(
[sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = BertGenerationConfig()
SCREAMING_SNAKE_CASE : str = BertGenerationEncoder(_lowerCamelCase )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**_lowerCamelCase )
model(**_lowerCamelCase )
@slow
def __lowerCAmelCase ( self ) ->Optional[Any]:
# fmt: off
SCREAMING_SNAKE_CASE : int = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowerCamelCase , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
| 19 |
import math
a__ : List[str] = 10
a__ : Optional[int] = 7
a__ : int = BALLS_PER_COLOUR * NUM_COLOURS
def UpperCAmelCase_( a__ = 20 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ )
SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ )
SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total)
return F"""{result:.9f}"""
if __name__ == "__main__":
print(solution(20))
| 19 | 1 |
from queue import Queue
from typing import TYPE_CHECKING, Optional
if TYPE_CHECKING:
from ..models.auto import AutoTokenizer
class a_ :
"""simple docstring"""
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tuple:
raise NotImplementedError()
def __lowerCAmelCase ( self ) ->Optional[int]:
raise NotImplementedError()
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase = False , **_lowerCamelCase ) ->Tuple:
SCREAMING_SNAKE_CASE : Any = tokenizer
SCREAMING_SNAKE_CASE : List[Any] = skip_prompt
SCREAMING_SNAKE_CASE : Dict = decode_kwargs
# variables used in the streaming process
SCREAMING_SNAKE_CASE : List[str] = []
SCREAMING_SNAKE_CASE : Union[str, Any] = 0
SCREAMING_SNAKE_CASE : int = True
def __lowerCAmelCase ( self , _lowerCamelCase ) ->str:
if len(value.shape ) > 1 and value.shape[0] > 1:
raise ValueError('''TextStreamer only supports batch size 1''' )
elif len(value.shape ) > 1:
SCREAMING_SNAKE_CASE : Union[str, Any] = value[0]
if self.skip_prompt and self.next_tokens_are_prompt:
SCREAMING_SNAKE_CASE : Optional[int] = False
return
# Add the new token to the cache and decodes the entire thing.
self.token_cache.extend(value.tolist() )
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.decode(self.token_cache , **self.decode_kwargs )
# After the symbol for a new line, we flush the cache.
if text.endswith('''\n''' ):
SCREAMING_SNAKE_CASE : Dict = text[self.print_len :]
SCREAMING_SNAKE_CASE : Dict = []
SCREAMING_SNAKE_CASE : int = 0
# If the last token is a CJK character, we print the characters.
elif len(_lowerCamelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ):
SCREAMING_SNAKE_CASE : List[Any] = text[self.print_len :]
self.print_len += len(_lowerCamelCase )
# Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words,
# which may change with the subsequent token -- there are probably smarter ways to do this!)
else:
SCREAMING_SNAKE_CASE : Optional[int] = text[self.print_len : text.rfind(''' ''' ) + 1]
self.print_len += len(_lowerCamelCase )
self.on_finalized_text(_lowerCamelCase )
def __lowerCAmelCase ( self ) ->List[Any]:
# Flush the cache, if it exists
if len(self.token_cache ) > 0:
SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.decode(self.token_cache , **self.decode_kwargs )
SCREAMING_SNAKE_CASE : str = text[self.print_len :]
SCREAMING_SNAKE_CASE : Optional[int] = []
SCREAMING_SNAKE_CASE : Optional[int] = 0
else:
SCREAMING_SNAKE_CASE : Any = ''''''
SCREAMING_SNAKE_CASE : Optional[int] = True
self.on_finalized_text(_lowerCamelCase , stream_end=_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = False ) ->Tuple:
print(_lowerCamelCase , flush=_lowerCamelCase , end='''''' if not stream_end else None )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4_e00 and cp <= 0x9_fff)
or (cp >= 0x3_400 and cp <= 0x4_dbf) #
or (cp >= 0x20_000 and cp <= 0x2a_6df) #
or (cp >= 0x2a_700 and cp <= 0x2b_73f) #
or (cp >= 0x2b_740 and cp <= 0x2b_81f) #
or (cp >= 0x2b_820 and cp <= 0x2c_eaf) #
or (cp >= 0xf_900 and cp <= 0xf_aff)
or (cp >= 0x2f_800 and cp <= 0x2f_a1f) #
): #
return True
return False
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = None , **_lowerCamelCase ) ->Union[str, Any]:
super().__init__(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = Queue()
SCREAMING_SNAKE_CASE : Tuple = None
SCREAMING_SNAKE_CASE : List[str] = timeout
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = False ) ->str:
self.text_queue.put(_lowerCamelCase , timeout=self.timeout )
if stream_end:
self.text_queue.put(self.stop_signal , timeout=self.timeout )
def __iter__( self ) ->Tuple:
return self
def __lowerCAmelCase ( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Optional[Any] = self.text_queue.get(timeout=self.timeout )
if value == self.stop_signal:
raise StopIteration()
else:
return value
| 19 |
from typing import Optional, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_mobilenet_va import MobileNetVaConfig
a__ : List[str] = logging.get_logger(__name__)
# General docstring
a__ : Tuple = '''MobileNetV1Config'''
# Base docstring
a__ : Optional[Any] = '''google/mobilenet_v1_1.0_224'''
a__ : Tuple = [1, 1_024, 7, 7]
# Image classification docstring
a__ : Optional[int] = '''google/mobilenet_v1_1.0_224'''
a__ : int = '''tabby, tabby cat'''
a__ : List[Any] = [
'''google/mobilenet_v1_1.0_224''',
'''google/mobilenet_v1_0.75_192''',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
]
def UpperCAmelCase_( a__ , a__ , a__=None ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = {}
if isinstance(a__ , a__ ):
SCREAMING_SNAKE_CASE : List[str] = model.mobilenet_va
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = model
SCREAMING_SNAKE_CASE : Optional[int] = '''MobilenetV1/Conv2d_0/'''
SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight
SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.normalization.bias
SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.weight
SCREAMING_SNAKE_CASE : Union[str, Any] = backbone.conv_stem.normalization.running_mean
SCREAMING_SNAKE_CASE : Any = backbone.conv_stem.normalization.running_var
for i in range(13 ):
SCREAMING_SNAKE_CASE : Dict = i + 1
SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2
SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index]
SCREAMING_SNAKE_CASE : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/"""
SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight
SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.bias
SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.weight
SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean
SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_var
SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index + 1]
SCREAMING_SNAKE_CASE : Any = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/"""
SCREAMING_SNAKE_CASE : Dict = pointer.convolution.weight
SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias
SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight
SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean
SCREAMING_SNAKE_CASE : str = pointer.normalization.running_var
if isinstance(a__ , a__ ):
SCREAMING_SNAKE_CASE : List[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/'''
SCREAMING_SNAKE_CASE : List[str] = model.classifier.weight
SCREAMING_SNAKE_CASE : List[str] = model.classifier.bias
return tf_to_pt_map
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
'''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see '''
'''https://www.tensorflow.org/install/ for installation instructions.''' )
raise
# Load weights from TF model
SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.list_variables(a__ )
SCREAMING_SNAKE_CASE : List[Any] = {}
for name, shape in init_vars:
logger.info(F"""Loading TF weight {name} with shape {shape}""" )
SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(a__ , a__ )
SCREAMING_SNAKE_CASE : Dict = array
# Build TF to PyTorch weights loading map
SCREAMING_SNAKE_CASE : int = _build_tf_to_pytorch_map(a__ , a__ , a__ )
for name, pointer in tf_to_pt_map.items():
logger.info(F"""Importing {name}""" )
if name not in tf_weights:
logger.info(F"""{name} not in tf pre-trained weights, skipping""" )
continue
SCREAMING_SNAKE_CASE : Union[str, Any] = tf_weights[name]
if "depthwise_weights" in name:
logger.info('''Transposing depthwise''' )
SCREAMING_SNAKE_CASE : Tuple = np.transpose(a__ , (2, 3, 0, 1) )
elif "weights" in name:
logger.info('''Transposing''' )
if len(pointer.shape ) == 2: # copying into linear layer
SCREAMING_SNAKE_CASE : Union[str, Any] = array.squeeze().transpose()
else:
SCREAMING_SNAKE_CASE : Optional[int] = np.transpose(a__ , (3, 2, 0, 1) )
if pointer.shape != array.shape:
raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" )
logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" )
SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ )
tf_weights.pop(a__ , a__ )
tf_weights.pop(name + '''/RMSProp''' , a__ )
tf_weights.pop(name + '''/RMSProp_1''' , a__ )
tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ )
logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" )
return model
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = features.shape[-2:]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = conv_layer.stride
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = conv_layer.kernel_size
if in_height % stride_height == 0:
SCREAMING_SNAKE_CASE : List[str] = max(kernel_height - stride_height , 0 )
else:
SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height) , 0 )
if in_width % stride_width == 0:
SCREAMING_SNAKE_CASE : int = max(kernel_width - stride_width , 0 )
else:
SCREAMING_SNAKE_CASE : Tuple = max(kernel_width - (in_width % stride_width) , 0 )
SCREAMING_SNAKE_CASE : List[str] = pad_along_width // 2
SCREAMING_SNAKE_CASE : Any = pad_along_width - pad_left
SCREAMING_SNAKE_CASE : str = pad_along_height // 2
SCREAMING_SNAKE_CASE : Optional[int] = pad_along_height - pad_top
SCREAMING_SNAKE_CASE : List[Any] = (pad_left, pad_right, pad_top, pad_bottom)
return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 )
class a_ ( nn.Module ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = True , ) ->None:
super().__init__()
SCREAMING_SNAKE_CASE : Any = config
if in_channels % groups != 0:
raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" )
if out_channels % groups != 0:
raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" )
SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 )
SCREAMING_SNAKE_CASE : List[str] = nn.Convad(
in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='''zeros''' , )
if use_normalization:
SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad(
num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , )
else:
SCREAMING_SNAKE_CASE : Dict = None
if use_activation:
if isinstance(_lowerCamelCase , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : Any = ACTaFN[use_activation]
elif isinstance(config.hidden_act , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act]
else:
SCREAMING_SNAKE_CASE : List[Any] = config.hidden_act
else:
SCREAMING_SNAKE_CASE : Optional[Any] = None
def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor:
if self.config.tf_padding:
SCREAMING_SNAKE_CASE : List[Any] = apply_tf_padding(_lowerCamelCase , self.convolution )
SCREAMING_SNAKE_CASE : Dict = self.convolution(_lowerCamelCase )
if self.normalization is not None:
SCREAMING_SNAKE_CASE : int = self.normalization(_lowerCamelCase )
if self.activation is not None:
SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase )
return features
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = MobileNetVaConfig
__SCREAMING_SNAKE_CASE : List[Any] = load_tf_weights_in_mobilenet_va
__SCREAMING_SNAKE_CASE : int = 'mobilenet_v1'
__SCREAMING_SNAKE_CASE : int = 'pixel_values'
__SCREAMING_SNAKE_CASE : List[str] = False
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(_lowerCamelCase , nn.BatchNormad ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
a__ : str = r'''
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
'''
a__ : Union[str, Any] = r'''
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`MobileNetV1ImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
'''
@add_start_docstrings(
'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , a__ , )
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase = True ) ->Dict:
super().__init__(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = config
SCREAMING_SNAKE_CASE : Dict = 32
SCREAMING_SNAKE_CASE : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth )
SCREAMING_SNAKE_CASE : str = MobileNetVaConvLayer(
_lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , )
SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
SCREAMING_SNAKE_CASE : Any = nn.ModuleList()
for i in range(13 ):
SCREAMING_SNAKE_CASE : int = out_channels
if strides[i] == 2 or i == 0:
depth *= 2
SCREAMING_SNAKE_CASE : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth )
self.layer.append(
MobileNetVaConvLayer(
_lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) )
self.layer.append(
MobileNetVaConvLayer(
_lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) )
SCREAMING_SNAKE_CASE : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]:
raise NotImplementedError
@add_start_docstrings_to_model_forward(_lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
SCREAMING_SNAKE_CASE : Union[str, Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
SCREAMING_SNAKE_CASE : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError('''You have to specify pixel_values''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_stem(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer ):
SCREAMING_SNAKE_CASE : Optional[int] = layer_module(_lowerCamelCase )
if output_hidden_states:
SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,)
SCREAMING_SNAKE_CASE : List[str] = hidden_states
if self.pooler is not None:
SCREAMING_SNAKE_CASE : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 )
else:
SCREAMING_SNAKE_CASE : List[Any] = None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None )
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , )
@add_start_docstrings(
'\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , )
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase ) ->None:
super().__init__(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels
SCREAMING_SNAKE_CASE : str = MobileNetVaModel(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va.layer[-1].convolution.out_channels
# Classifier head
SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]:
SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict
SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = outputs.pooler_output if return_dict else outputs[1]
SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(_lowerCamelCase ) )
SCREAMING_SNAKE_CASE : int = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
SCREAMING_SNAKE_CASE : Any = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification'''
else:
SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification'''
if self.config.problem_type == "regression":
SCREAMING_SNAKE_CASE : Any = MSELoss()
if self.num_labels == 1:
SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() )
else:
SCREAMING_SNAKE_CASE : Dict = loss_fct(_lowerCamelCase , _lowerCamelCase )
elif self.config.problem_type == "single_label_classification":
SCREAMING_SNAKE_CASE : str = CrossEntropyLoss()
SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
SCREAMING_SNAKE_CASE : List[Any] = BCEWithLogitsLoss()
SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase )
if not return_dict:
SCREAMING_SNAKE_CASE : Optional[Any] = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
| 19 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
a__ : Any = logging.get_logger(__name__)
a__ : Tuple = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
a__ : Optional[int] = {
'''vocab_file''': {
'''yjernite/retribert-base-uncased''': (
'''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''yjernite/retribert-base-uncased''': (
'''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json'''
),
},
}
a__ : Any = {
'''yjernite/retribert-base-uncased''': 512,
}
a__ : int = {
'''yjernite/retribert-base-uncased''': {'''do_lower_case''': True},
}
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[str] = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : str = PRETRAINED_INIT_CONFIGURATION
__SCREAMING_SNAKE_CASE : List[str] = RetriBertTokenizer
__SCREAMING_SNAKE_CASE : List[str] = ['input_ids', 'attention_mask']
def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->int:
super().__init__(
_lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , )
SCREAMING_SNAKE_CASE : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) )
SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case
SCREAMING_SNAKE_CASE : List[Any] = strip_accents
SCREAMING_SNAKE_CASE : List[Any] = tokenize_chinese_chars
SCREAMING_SNAKE_CASE : Optional[int] = normalizer_class(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = do_lower_case
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]:
SCREAMING_SNAKE_CASE : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id]
SCREAMING_SNAKE_CASE : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
SCREAMING_SNAKE_CASE : Union[str, Any] = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase )
return tuple(_lowerCamelCase )
| 19 |
import math
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 )
return exponent == int(a__ )
def UpperCAmelCase_( a__ = 1 / 12_345 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = 0
SCREAMING_SNAKE_CASE : Dict = 0
SCREAMING_SNAKE_CASE : int = 3
while True:
SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4
# if candidate is an integer, then there is a partition for k
if partition_candidate == int(a__ ):
SCREAMING_SNAKE_CASE : List[str] = int(a__ )
total_partitions += 1
if check_partition_perfect(a__ ):
perfect_partitions += 1
if perfect_partitions > 0:
if perfect_partitions / total_partitions < max_proportion:
return int(a__ )
integer += 1
if __name__ == "__main__":
print(F"{solution() = }")
| 19 | 1 |
import argparse
from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = TaConfig.from_json_file(a__ )
print(F"""Building PyTorch model from configuration: {config}""" )
SCREAMING_SNAKE_CASE : Dict = TaForConditionalGeneration(a__ )
# Load weights from tf checkpoint
load_tf_weights_in_ta(a__ , a__ , a__ )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(a__ )
if __name__ == "__main__":
a__ : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
a__ : Optional[int] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
| 19 |
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
a__ : Any = TypeVar('''T''')
def UpperCAmelCase_( a__ ):
"""simple docstring"""
return (position - 1) // 2
def UpperCAmelCase_( a__ ):
"""simple docstring"""
return (2 * position) + 1
def UpperCAmelCase_( a__ ):
"""simple docstring"""
return (2 * position) + 2
class a_ ( Generic[T] ):
"""simple docstring"""
def __init__( self ) ->None:
SCREAMING_SNAKE_CASE : list[tuple[T, int]] = []
SCREAMING_SNAKE_CASE : dict[T, int] = {}
SCREAMING_SNAKE_CASE : int = 0
def __len__( self ) ->int:
return self.elements
def __repr__( self ) ->str:
return str(self.heap )
def __lowerCAmelCase ( self ) ->bool:
# Check if the priority queue is empty
return self.elements == 0
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None:
# Add an element with given priority to the queue
self.heap.append((elem, weight) )
SCREAMING_SNAKE_CASE : Tuple = self.elements
self.elements += 1
self._bubble_up(_lowerCamelCase )
def __lowerCAmelCase ( self ) ->T:
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[0]
self._bubble_down(_lowerCamelCase )
return elem
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None:
# Update the weight of the given key
SCREAMING_SNAKE_CASE : List[Any] = self.position_map[elem]
SCREAMING_SNAKE_CASE : Any = (elem, weight)
if position > 0:
SCREAMING_SNAKE_CASE : List[Any] = get_parent_position(_lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(_lowerCamelCase )
else:
self._bubble_down(_lowerCamelCase )
else:
self._bubble_down(_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem]
if curr_pos == 0:
return None
SCREAMING_SNAKE_CASE : str = get_parent_position(_lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.heap[curr_pos]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(_lowerCamelCase , _lowerCamelCase )
return self._bubble_up(_lowerCamelCase )
return None
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[curr_pos]
SCREAMING_SNAKE_CASE : List[str] = get_child_left_position(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = get_child_right_position(_lowerCamelCase )
if child_left_position < self.elements and child_right_position < self.elements:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[child_left_position]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(_lowerCamelCase , _lowerCamelCase )
return self._bubble_down(_lowerCamelCase )
if child_left_position < self.elements:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(_lowerCamelCase , _lowerCamelCase )
return self._bubble_down(_lowerCamelCase )
else:
return None
if child_right_position < self.elements:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(_lowerCamelCase , _lowerCamelCase )
return self._bubble_down(_lowerCamelCase )
return None
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None:
# Swap the nodes at the given positions
SCREAMING_SNAKE_CASE : Optional[int] = self.heap[nodea_pos][0]
SCREAMING_SNAKE_CASE : Any = self.heap[nodea_pos][0]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
SCREAMING_SNAKE_CASE : Optional[int] = nodea_pos
SCREAMING_SNAKE_CASE : List[str] = nodea_pos
class a_ ( Generic[T] ):
"""simple docstring"""
def __init__( self ) ->None:
SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {}
SCREAMING_SNAKE_CASE : int = 0
def __repr__( self ) ->str:
return str(self.connections )
def __len__( self ) ->int:
return self.nodes
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
# Add a node in the graph if it is not in the graph
if node not in self.connections:
SCREAMING_SNAKE_CASE : Any = {}
self.nodes += 1
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None:
# Add an edge between 2 nodes in the graph
self.add_node(_lowerCamelCase )
self.add_node(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = weight
SCREAMING_SNAKE_CASE : str = weight
def UpperCAmelCase_( a__ , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : dict[T, int] = {node: maxsize for node in graph.connections}
SCREAMING_SNAKE_CASE : dict[T, T | None] = {node: None for node in graph.connections}
SCREAMING_SNAKE_CASE : MinPriorityQueue[T] = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(a__ , a__ )
if priority_queue.is_empty():
return dist, parent
# initialization
SCREAMING_SNAKE_CASE : List[Any] = priority_queue.extract_min()
SCREAMING_SNAKE_CASE : Union[str, Any] = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
SCREAMING_SNAKE_CASE : Any = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(a__ , dist[neighbour] )
SCREAMING_SNAKE_CASE : str = node
# running prim's algorithm
while not priority_queue.is_empty():
SCREAMING_SNAKE_CASE : List[str] = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
SCREAMING_SNAKE_CASE : List[Any] = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(a__ , dist[neighbour] )
SCREAMING_SNAKE_CASE : str = node
return dist, parent
| 19 | 1 |
import os
import unittest
from huggingface_hub.utils import are_progress_bars_disabled
import transformers.models.bart.tokenization_bart
from transformers import logging
from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context
from transformers.utils.logging import disable_progress_bar, enable_progress_bar
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger()
# the current default level is logging.WARNING
SCREAMING_SNAKE_CASE : Any = logging.get_verbosity()
logging.set_verbosity_error()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_warning()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_info()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_debug()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
# restore to the original level
logging.set_verbosity(_lowerCamelCase )
def __lowerCAmelCase ( self ) ->str:
SCREAMING_SNAKE_CASE : Any = logging.get_verbosity()
SCREAMING_SNAKE_CASE : Any = logging.get_logger('''transformers.models.bart.tokenization_bart''' )
SCREAMING_SNAKE_CASE : List[Any] = '''Testing 1, 2, 3'''
# should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`)
if level_origin <= logging.WARNING:
with CaptureLogger(_lowerCamelCase ) as cl:
logger.warning(_lowerCamelCase )
self.assertEqual(cl.out , msg + '''\n''' )
# this is setting the level for all of `transformers.*` loggers
logging.set_verbosity_error()
# should not be able to log warnings
with CaptureLogger(_lowerCamelCase ) as cl:
logger.warning(_lowerCamelCase )
self.assertEqual(cl.out , '''''' )
# should be able to log warnings again
logging.set_verbosity_warning()
with CaptureLogger(_lowerCamelCase ) as cl:
logger.warning(_lowerCamelCase )
self.assertEqual(cl.out , msg + '''\n''' )
# restore to the original level
logging.set_verbosity(_lowerCamelCase )
@mockenv(TRANSFORMERS_VERBOSITY='''error''' )
def __lowerCAmelCase ( self ) ->int:
# reset for the env var to take effect, next time some logger call is made
transformers.utils.logging._reset_library_root_logger()
# this action activates the env var
SCREAMING_SNAKE_CASE : List[str] = logging.get_logger('''transformers.models.bart.tokenization_bart''' )
SCREAMING_SNAKE_CASE : List[str] = os.getenv('''TRANSFORMERS_VERBOSITY''' , _lowerCamelCase )
SCREAMING_SNAKE_CASE : str = logging.log_levels[env_level_str]
SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_verbosity()
self.assertEqual(
_lowerCamelCase , _lowerCamelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , )
# restore to the original level
SCREAMING_SNAKE_CASE : Optional[int] = ''''''
transformers.utils.logging._reset_library_root_logger()
@mockenv(TRANSFORMERS_VERBOSITY='''super-error''' )
def __lowerCAmelCase ( self ) ->Optional[int]:
# reset for the env var to take effect, next time some logger call is made
transformers.utils.logging._reset_library_root_logger()
SCREAMING_SNAKE_CASE : str = logging.logging.getLogger()
with CaptureLogger(_lowerCamelCase ) as cl:
# this action activates the env var
logging.get_logger('''transformers.models.bart.tokenization_bart''' )
self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out )
# no need to restore as nothing was changed
def __lowerCAmelCase ( self ) ->List[Any]:
# testing `logger.warning_advice()`
transformers.utils.logging._reset_library_root_logger()
SCREAMING_SNAKE_CASE : Dict = logging.get_logger('''transformers.models.bart.tokenization_bart''' )
SCREAMING_SNAKE_CASE : Dict = '''Testing 1, 2, 3'''
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ):
# nothing should be logged as env var disables this method
with CaptureLogger(_lowerCamelCase ) as cl:
logger.warning_advice(_lowerCamelCase )
self.assertEqual(cl.out , '''''' )
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ):
# should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset
with CaptureLogger(_lowerCamelCase ) as cl:
logger.warning_advice(_lowerCamelCase )
self.assertEqual(cl.out , msg + '''\n''' )
def UpperCAmelCase_( ):
"""simple docstring"""
disable_progress_bar()
assert are_progress_bars_disabled()
enable_progress_bar()
assert not are_progress_bars_disabled()
| 19 |
from math import pi, sqrt, tan
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if side_length < 0:
raise ValueError('''surface_area_cube() only accepts non-negative values''' )
return 6 * side_length**2
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if length < 0 or breadth < 0 or height < 0:
raise ValueError('''surface_area_cuboid() only accepts non-negative values''' )
return 2 * ((length * breadth) + (breadth * height) + (length * height))
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if radius < 0:
raise ValueError('''surface_area_sphere() only accepts non-negative values''' )
return 4 * pi * radius**2
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if radius < 0:
raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' )
return 3 * pi * radius**2
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if radius < 0 or height < 0:
raise ValueError('''surface_area_cone() only accepts non-negative values''' )
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if radius_a < 0 or radius_a < 0 or height < 0:
raise ValueError(
'''surface_area_conical_frustum() only accepts non-negative values''' )
SCREAMING_SNAKE_CASE : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5
return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2)
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if radius < 0 or height < 0:
raise ValueError('''surface_area_cylinder() only accepts non-negative values''' )
return 2 * pi * radius * (height + radius)
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if torus_radius < 0 or tube_radius < 0:
raise ValueError('''surface_area_torus() only accepts non-negative values''' )
if torus_radius < tube_radius:
raise ValueError(
'''surface_area_torus() does not support spindle or self intersecting tori''' )
return 4 * pow(a__ , 2 ) * torus_radius * tube_radius
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if length < 0 or width < 0:
raise ValueError('''area_rectangle() only accepts non-negative values''' )
return length * width
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if side_length < 0:
raise ValueError('''area_square() only accepts non-negative values''' )
return side_length**2
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if base < 0 or height < 0:
raise ValueError('''area_triangle() only accepts non-negative values''' )
return (base * height) / 2
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if sidea < 0 or sidea < 0 or sidea < 0:
raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' )
elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea:
raise ValueError('''Given three sides do not form a triangle''' )
SCREAMING_SNAKE_CASE : int = (sidea + sidea + sidea) / 2
SCREAMING_SNAKE_CASE : List[str] = sqrt(
semi_perimeter
* (semi_perimeter - sidea)
* (semi_perimeter - sidea)
* (semi_perimeter - sidea) )
return area
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if base < 0 or height < 0:
raise ValueError('''area_parallelogram() only accepts non-negative values''' )
return base * height
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if basea < 0 or basea < 0 or height < 0:
raise ValueError('''area_trapezium() only accepts non-negative values''' )
return 1 / 2 * (basea + basea) * height
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if radius < 0:
raise ValueError('''area_circle() only accepts non-negative values''' )
return pi * radius**2
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if radius_x < 0 or radius_y < 0:
raise ValueError('''area_ellipse() only accepts non-negative values''' )
return pi * radius_x * radius_y
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if diagonal_a < 0 or diagonal_a < 0:
raise ValueError('''area_rhombus() only accepts non-negative values''' )
return 1 / 2 * diagonal_a * diagonal_a
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if not isinstance(a__ , a__ ) or sides < 3:
raise ValueError(
'''area_reg_polygon() only accepts integers greater than or \
equal to three as number of sides''' )
elif length < 0:
raise ValueError(
'''area_reg_polygon() only accepts non-negative values as \
length of a side''' )
return (sides * length**2) / (4 * tan(pi / sides ))
return (sides * length**2) / (4 * tan(pi / sides ))
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) # verbose so we can see methods missing tests
print('''[DEMO] Areas of various geometric shapes: \n''')
print(F"Rectangle: {area_rectangle(10, 20) = }")
print(F"Square: {area_square(10) = }")
print(F"Triangle: {area_triangle(10, 10) = }")
print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }")
print(F"Parallelogram: {area_parallelogram(10, 20) = }")
print(F"Rhombus: {area_rhombus(10, 20) = }")
print(F"Trapezium: {area_trapezium(10, 20, 30) = }")
print(F"Circle: {area_circle(20) = }")
print(F"Ellipse: {area_ellipse(10, 20) = }")
print('''\nSurface Areas of various geometric shapes: \n''')
print(F"Cube: {surface_area_cube(20) = }")
print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }")
print(F"Sphere: {surface_area_sphere(20) = }")
print(F"Hemisphere: {surface_area_hemisphere(20) = }")
print(F"Cone: {surface_area_cone(10, 20) = }")
print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }")
print(F"Cylinder: {surface_area_cylinder(10, 20) = }")
print(F"Torus: {surface_area_torus(20, 10) = }")
print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }")
print(F"Square: {area_reg_polygon(4, 10) = }")
print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
| 19 | 1 |
import os
import unittest
from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class a_ ( a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[str] = PhobertTokenizer
__SCREAMING_SNAKE_CASE : Optional[Any] = False
def __lowerCAmelCase ( self ) ->List[Any]:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
SCREAMING_SNAKE_CASE : Optional[Any] = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@''']
SCREAMING_SNAKE_CASE : Union[str, Any] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) )
SCREAMING_SNAKE_CASE : str = ['''#version: 0.2''', '''l à</w>''']
SCREAMING_SNAKE_CASE : Dict = {'''unk_token''': '''<unk>'''}
SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
for token in vocab_tokens:
fp.write(F"""{token} {vocab_tokens[token]}\n""" )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(_lowerCamelCase ) )
def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Union[str, Any]:
kwargs.update(self.special_tokens_map )
return PhobertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
SCREAMING_SNAKE_CASE : Any = '''Tôi là VinAI Research'''
SCREAMING_SNAKE_CASE : List[Any] = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>'''
return input_text, output_text
def __lowerCAmelCase ( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Union[str, Any] = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
SCREAMING_SNAKE_CASE : Any = '''Tôi là VinAI Research'''
SCREAMING_SNAKE_CASE : List[str] = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split()
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize(_lowerCamelCase )
print(_lowerCamelCase )
self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = tokens + [tokenizer.unk_token]
SCREAMING_SNAKE_CASE : Optional[Any] = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase )
| 19 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
a__ : List[str] = None
a__ : Any = logging.get_logger(__name__)
a__ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
a__ : Dict = {
'''vocab_file''': {
'''facebook/mbart-large-en-ro''': (
'''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model'''
),
'''facebook/mbart-large-cc25''': (
'''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model'''
),
},
'''tokenizer_file''': {
'''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''',
'''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''',
},
}
a__ : str = {
'''facebook/mbart-large-en-ro''': 1_024,
'''facebook/mbart-large-cc25''': 1_024,
}
# fmt: off
a__ : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''']
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask']
__SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer
__SCREAMING_SNAKE_CASE : List[int] = []
__SCREAMING_SNAKE_CASE : List[int] = []
def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->List[Any]:
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token
super().__init__(
vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , )
SCREAMING_SNAKE_CASE : Any = vocab_file
SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True
SCREAMING_SNAKE_CASE : Any = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
SCREAMING_SNAKE_CASE : int = {
lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX'''
SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang )
SCREAMING_SNAKE_CASE : List[Any] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def __lowerCAmelCase ( self ) ->str:
return self._src_lang
@src_lang.setter
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
SCREAMING_SNAKE_CASE : str = [self.sep_token_id]
SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]:
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang
SCREAMING_SNAKE_CASE : List[str] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = tgt_lang_id
return inputs
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ) ->BatchEncoding:
SCREAMING_SNAKE_CASE : List[str] = src_lang
SCREAMING_SNAKE_CASE : List[str] = tgt_lang
return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase )
def __lowerCAmelCase ( self ) ->Dict:
return self.set_src_lang_special_tokens(self.src_lang )
def __lowerCAmelCase ( self ) ->List[Any]:
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = []
SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code]
SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens )
SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens )
SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
SCREAMING_SNAKE_CASE : str = self.convert_tokens_to_ids(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = []
SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code]
SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens )
SCREAMING_SNAKE_CASE : Any = self.convert_ids_to_tokens(self.suffix_tokens )
SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(_lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" )
return
SCREAMING_SNAKE_CASE : List[Any] = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ):
copyfile(self.vocab_file , _lowerCamelCase )
return (out_vocab_file,)
| 19 | 1 |
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if density <= 0:
raise ValueError('''Impossible fluid density''' )
if bulk_modulus <= 0:
raise ValueError('''Impossible bulk modulus''' )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 19 |
import torch
from torch import nn
from transformers import CLIPPreTrainedModel, CLIPVisionModel
from ...models.attention import BasicTransformerBlock
from ...utils import logging
a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]:
super().__init__(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = proj_size
SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size )
SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size )
# uncondition for scaling
SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int:
SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output
SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] )
SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase )
if return_uncond_vector:
return latent_states, self.uncond_vector
return latent_states
class a_ ( nn.Module ):
"""simple docstring"""
def __init__( self , _lowerCamelCase ) ->List[str]:
super().__init__()
SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5
SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size
SCREAMING_SNAKE_CASE : Dict = 1
SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList(
[
BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase )
for _ in range(_lowerCamelCase )
] )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
for block in self.blocks:
SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase )
return hidden_states
| 19 | 1 |
import argparse
import os
from pathlib import Path
import fairseq
import torch
from packaging import version
from torch import nn
from transformers import (
BartConfig,
BartForConditionalGeneration,
BartForSequenceClassification,
BartModel,
BartTokenizer,
)
from transformers.utils import logging
a__ : List[Any] = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt''']
a__ : int = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification}
if version.parse(fairseq.__version__) < version.parse('''0.9.0'''):
raise Exception('''requires fairseq >= 0.9.0''')
logging.set_verbosity_info()
a__ : Union[str, Any] = logging.get_logger(__name__)
a__ : Union[str, Any] = ''' Hello world! cécé herlolip'''
a__ : Tuple = [
('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''),
('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''),
('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''),
('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''),
]
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''_float_tensor''',
]
for k in ignore_keys:
state_dict.pop(a__ , a__ )
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = dct.pop(a__ )
SCREAMING_SNAKE_CASE : List[str] = val
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = torch.load(a__ , map_location='''cpu''' )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.hub.load('''pytorch/fairseq''' , '''bart.large.cnn''' ).eval()
hub_interface.model.load_state_dict(sd['''model'''] )
return hub_interface
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = emb.weight.shape
SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(a__ , a__ , bias=a__ )
SCREAMING_SNAKE_CASE : Any = emb.weight.data
return lin_layer
@torch.no_grad()
def UpperCAmelCase_( a__ , a__ , a__=None ):
"""simple docstring"""
if not os.path.exists(a__ ):
SCREAMING_SNAKE_CASE : int = torch.hub.load('''pytorch/fairseq''' , a__ ).eval()
else:
SCREAMING_SNAKE_CASE : Optional[int] = load_xsum_checkpoint(a__ )
bart.model.upgrade_state_dict(bart.model.state_dict() )
if hf_checkpoint_name is None:
SCREAMING_SNAKE_CASE : List[Any] = checkpoint_path.replace('''.''' , '''-''' )
SCREAMING_SNAKE_CASE : str = BartConfig.from_pretrained(a__ )
SCREAMING_SNAKE_CASE : Union[str, Any] = bart.encode(a__ ).unsqueeze(0 )
SCREAMING_SNAKE_CASE : Optional[int] = BartTokenizer.from_pretrained(a__ ).encode(a__ , return_tensors='''pt''' ).unsqueeze(0 )
if not torch.eq(a__ , a__ ).all():
raise ValueError(
F"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" )
if checkpoint_path == "bart.large.mnli":
SCREAMING_SNAKE_CASE : List[str] = bart.state_dict()
remove_ignore_keys_(a__ )
SCREAMING_SNAKE_CASE : Optional[Any] = state_dict['''model.decoder.embed_tokens.weight''']
for src, dest in mnli_rename_keys:
rename_key(a__ , a__ , a__ )
SCREAMING_SNAKE_CASE : str = BartForSequenceClassification(a__ ).eval()
model.load_state_dict(a__ )
SCREAMING_SNAKE_CASE : List[Any] = bart.predict('''mnli''' , a__ , return_logits=a__ )
SCREAMING_SNAKE_CASE : Dict = model(a__ )[0] # logits
else: # no classification heads to worry about
SCREAMING_SNAKE_CASE : Union[str, Any] = bart.model.state_dict()
remove_ignore_keys_(a__ )
SCREAMING_SNAKE_CASE : List[Any] = state_dict['''decoder.embed_tokens.weight''']
SCREAMING_SNAKE_CASE : Optional[Any] = bart.extract_features(a__ )
if hf_checkpoint_name == "facebook/bart-large":
SCREAMING_SNAKE_CASE : Dict = BartModel(a__ ).eval()
model.load_state_dict(a__ )
SCREAMING_SNAKE_CASE : Any = model(a__ ).model[0]
else:
SCREAMING_SNAKE_CASE : Tuple = BartForConditionalGeneration(a__ ).eval() # an existing summarization ckpt
model.model.load_state_dict(a__ )
if hasattr(a__ , '''lm_head''' ):
SCREAMING_SNAKE_CASE : List[str] = make_linear_from_emb(model.model.shared )
SCREAMING_SNAKE_CASE : Optional[Any] = model.model(a__ )[0]
# Check results
if fairseq_output.shape != new_model_outputs.shape:
raise ValueError(
F"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" )
if (fairseq_output != new_model_outputs).any().item():
raise ValueError('''Some values in `fairseq_output` are different from `new_model_outputs`''' )
Path(a__ ).mkdir(exist_ok=a__ )
model.save_pretrained(a__ )
if __name__ == "__main__":
a__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'''
)
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum'''
)
a__ : Tuple = parser.parse_args()
convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
| 19 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a__ : Tuple = '''▁'''
a__ : List[Any] = {'''vocab_file''': '''spiece.model'''}
a__ : Optional[Any] = {
'''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''}
}
a__ : str = {
'''google/pegasus-xsum''': 512,
}
a__ : str = logging.get_logger(__name__)
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask']
def __init__( self , _lowerCamelCase , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<mask_2>" , _lowerCamelCase="<mask_1>" , _lowerCamelCase=None , _lowerCamelCase=103 , _lowerCamelCase = None , **_lowerCamelCase , ) ->None:
SCREAMING_SNAKE_CASE : Dict = offset
if additional_special_tokens is not None:
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise TypeError(
F"""additional_special_tokens should be of type {type(_lowerCamelCase )}, but is"""
F""" {type(_lowerCamelCase )}""" )
SCREAMING_SNAKE_CASE : List[Any] = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
F"""<unk_{i}>""" for i in range(len(_lowerCamelCase ) , self.offset - 1 )
]
if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ):
raise ValueError(
'''Please make sure that the provided additional_special_tokens do not contain an incorrectly'''
F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" )
SCREAMING_SNAKE_CASE : Dict = additional_special_tokens_extended
else:
SCREAMING_SNAKE_CASE : str = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )]
SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , )
SCREAMING_SNAKE_CASE : List[str] = mask_token_sent
SCREAMING_SNAKE_CASE : Optional[int] = vocab_file
SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCamelCase )
# add special tokens to encoder dict
SCREAMING_SNAKE_CASE : Dict[int, str] = {
0: self.pad_token,
1: self.eos_token,
}
if self.mask_token_sent is not None:
self.encoder.update(
{
2: self.mask_token_sent,
3: self.mask_token,
} )
if self.offset > 0:
# entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102
# mask_token_sent is already added to list -> so start at 1
self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} )
SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()}
@property
def __lowerCAmelCase ( self ) ->int:
return len(self.sp_model ) + self.offset
def __lowerCAmelCase ( self ) ->Dict[str, int]:
SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy()
SCREAMING_SNAKE_CASE : str = None
return state
def __setstate__( self , _lowerCamelCase ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Optional[Any] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
SCREAMING_SNAKE_CASE : List[str] = {}
SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]:
return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
if token in self.decoder:
return self.decoder[token]
elif token in self.added_tokens_decoder:
return self.added_tokens_decoder[token]
SCREAMING_SNAKE_CASE : List[str] = self.sp_model.piece_to_id(_lowerCamelCase )
return sp_id + self.offset
def __lowerCAmelCase ( self , _lowerCamelCase ) ->str:
if index in self.encoder:
return self.encoder[index]
elif index in self.added_tokens_encoder:
return self.added_tokens_encoder[index]
else:
SCREAMING_SNAKE_CASE : Dict = self.sp_model.IdToPiece(index - self.offset )
return token
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Dict = []
SCREAMING_SNAKE_CASE : int = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(_lowerCamelCase ) + token
SCREAMING_SNAKE_CASE : Optional[Any] = []
else:
current_sub_tokens.append(_lowerCamelCase )
out_string += self.sp_model.decode(_lowerCamelCase )
return out_string.strip()
def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->str:
return 1
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
SCREAMING_SNAKE_CASE : Dict = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
return [1 if x in all_special_ids else 0 for x in seq]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]:
if already_has_special_tokens:
return self._special_token_mask(_lowerCamelCase )
elif token_ids_a is None:
return self._special_token_mask(_lowerCamelCase ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]:
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
if not os.path.isdir(_lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
SCREAMING_SNAKE_CASE : int = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _lowerCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCamelCase , '''wb''' ) as fi:
SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto()
fi.write(_lowerCamelCase )
return (out_vocab_file,)
| 19 | 1 |
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=4 , ) ->Optional[int]:
SCREAMING_SNAKE_CASE : str = parent
SCREAMING_SNAKE_CASE : Tuple = batch_size
SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length
SCREAMING_SNAKE_CASE : Any = is_training
SCREAMING_SNAKE_CASE : Optional[int] = use_attention_mask
SCREAMING_SNAKE_CASE : Optional[Any] = use_token_type_ids
SCREAMING_SNAKE_CASE : List[Any] = use_labels
SCREAMING_SNAKE_CASE : str = vocab_size
SCREAMING_SNAKE_CASE : List[Any] = hidden_size
SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers
SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads
SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size
SCREAMING_SNAKE_CASE : List[str] = hidden_act
SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : str = max_position_embeddings
SCREAMING_SNAKE_CASE : Optional[int] = type_vocab_size
SCREAMING_SNAKE_CASE : Dict = type_sequence_label_size
SCREAMING_SNAKE_CASE : List[Any] = initializer_range
SCREAMING_SNAKE_CASE : Union[str, Any] = num_choices
def __lowerCAmelCase ( self ) ->List[str]:
SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE : Tuple = None
if self.use_attention_mask:
SCREAMING_SNAKE_CASE : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE : Tuple = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE : Optional[Any] = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs
SCREAMING_SNAKE_CASE : List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def __lowerCAmelCase ( self ) ->List[str]:
SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs
SCREAMING_SNAKE_CASE : str = True
SCREAMING_SNAKE_CASE : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class a_ ( a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[str] = True
__SCREAMING_SNAKE_CASE : Dict = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : Any = FlaxRobertaModelTester(self )
@slow
def __lowerCAmelCase ( self ) ->List[Any]:
for model_class_name in self.all_model_classes:
SCREAMING_SNAKE_CASE : Optional[Any] = model_class_name.from_pretrained('''roberta-base''' , from_pt=_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = model(np.ones((1, 1) ) )
self.assertIsNotNone(_lowerCamelCase )
| 19 |
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
SCREAMING_SNAKE_CASE : Tuple = 1
SCREAMING_SNAKE_CASE : Tuple = 1
while repunit:
SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def UpperCAmelCase_( a__ = 1_000_000 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(a__ ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(F"{solution() = }")
| 19 | 1 |
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def UpperCAmelCase_( *a__ , a__ = None , a__=True , a__=2 ):
"""simple docstring"""
from .. import __version__
SCREAMING_SNAKE_CASE : Tuple = take_from
SCREAMING_SNAKE_CASE : List[str] = ()
if not isinstance(args[0] , a__ ):
SCREAMING_SNAKE_CASE : Dict = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(a__ ).base_version ) >= version.parse(a__ ):
raise ValueError(
F"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'"""
F""" version {__version__} is >= {version_name}""" )
SCREAMING_SNAKE_CASE : Optional[int] = None
if isinstance(a__ , a__ ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(a__ ),)
SCREAMING_SNAKE_CASE : Union[str, Any] = F"""The `{attribute}` argument is deprecated and will be removed in version {version_name}."""
elif hasattr(a__ , a__ ):
values += (getattr(a__ , a__ ),)
SCREAMING_SNAKE_CASE : str = F"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}."""
elif deprecated_kwargs is None:
SCREAMING_SNAKE_CASE : Optional[Any] = F"""`{attribute}` is deprecated and will be removed in version {version_name}."""
if warning is not None:
SCREAMING_SNAKE_CASE : int = warning + ''' ''' if standard_warn else ''''''
warnings.warn(warning + message , a__ , stacklevel=a__ )
if isinstance(a__ , a__ ) and len(a__ ) > 0:
SCREAMING_SNAKE_CASE : str = inspect.getouterframes(inspect.currentframe() )[1]
SCREAMING_SNAKE_CASE : Tuple = call_frame.filename
SCREAMING_SNAKE_CASE : Optional[Any] = call_frame.lineno
SCREAMING_SNAKE_CASE : Tuple = call_frame.function
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = next(iter(deprecated_kwargs.items() ) )
raise TypeError(F"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" )
if len(a__ ) == 0:
return
elif len(a__ ) == 1:
return values[0]
return values
| 19 |
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class a_ :
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict:
SCREAMING_SNAKE_CASE : Any = parent
SCREAMING_SNAKE_CASE : Optional[Any] = batch_size
SCREAMING_SNAKE_CASE : Optional[Any] = image_size
SCREAMING_SNAKE_CASE : str = num_channels
SCREAMING_SNAKE_CASE : Any = num_stages
SCREAMING_SNAKE_CASE : List[str] = hidden_sizes
SCREAMING_SNAKE_CASE : Optional[Any] = depths
SCREAMING_SNAKE_CASE : Any = is_training
SCREAMING_SNAKE_CASE : Tuple = use_labels
SCREAMING_SNAKE_CASE : Any = intermediate_size
SCREAMING_SNAKE_CASE : Dict = hidden_act
SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size
SCREAMING_SNAKE_CASE : str = initializer_range
SCREAMING_SNAKE_CASE : int = out_features
SCREAMING_SNAKE_CASE : List[str] = num_labels
SCREAMING_SNAKE_CASE : int = scope
SCREAMING_SNAKE_CASE : Optional[Any] = num_stages
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : str = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def __lowerCAmelCase ( self ) ->List[Any]:
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def __lowerCAmelCase ( self ) ->Any:
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any:
SCREAMING_SNAKE_CASE : List[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : Tuple = config_and_inputs
SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class a_ ( a__ , a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
__SCREAMING_SNAKE_CASE : List[str] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {}
__SCREAMING_SNAKE_CASE : Tuple = False
__SCREAMING_SNAKE_CASE : Union[str, Any] = False
__SCREAMING_SNAKE_CASE : Any = False
__SCREAMING_SNAKE_CASE : Tuple = False
__SCREAMING_SNAKE_CASE : Dict = False
__SCREAMING_SNAKE_CASE : Any = False
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : Optional[Any] = UperNetModelTester(self )
SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 )
def __lowerCAmelCase ( self ) ->str:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __lowerCAmelCase ( self ) ->str:
return
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase )
@unittest.skip(reason='''UperNet does not use inputs_embeds''' )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
pass
@unittest.skip(reason='''UperNet does not support input and output embeddings''' )
def __lowerCAmelCase ( self ) ->int:
pass
@unittest.skip(reason='''UperNet does not have a base model''' )
def __lowerCAmelCase ( self ) ->int:
pass
@unittest.skip(reason='''UperNet does not have a base model''' )
def __lowerCAmelCase ( self ) ->str:
pass
@require_torch_multi_gpu
@unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' )
def __lowerCAmelCase ( self ) ->str:
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __lowerCAmelCase ( self ) ->Tuple:
pass
def __lowerCAmelCase ( self ) ->int:
def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) )
SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_stages
self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Optional[int] = True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : Union[str, Any] = True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE : str = _config_zero_init(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : int = model_class(config=_lowerCamelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip(reason='''UperNet does not have tied weights''' )
def __lowerCAmelCase ( self ) ->List[Any]:
pass
@slow
def __lowerCAmelCase ( self ) ->List[Any]:
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download(
repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' )
SCREAMING_SNAKE_CASE : Any = Image.open(a__ ).convert('''RGB''' )
return image
@require_torch
@require_vision
@slow
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' )
SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = prepare_img()
SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(
[[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
def __lowerCAmelCase ( self ) ->int:
SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' )
SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = prepare_img()
SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase )
with torch.no_grad():
SCREAMING_SNAKE_CASE : str = model(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
| 19 | 1 |
import warnings
from pathlib import Path
from typing import List, Tuple, Union
import fire
from torch import nn
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel
from transformers.utils import logging
a__ : List[Any] = logging.get_logger(__name__)
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList([src_layers[i] for i in layers_to_copy] )
assert len(a__ ) == len(a__ ), F"""{len(a__ )} != {len(a__ )}"""
dest_layers.load_state_dict(layers_to_copy.state_dict() )
a__ : List[str] = {
# maps num layers in teacher -> num_layers in student -> which teacher layers to copy.
# 12: bart, 16: pegasus, 6: marian/Helsinki-NLP
12: {
1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher
2: [0, 6],
3: [0, 6, 11],
4: [0, 4, 8, 11],
6: [0, 2, 4, 7, 9, 11],
9: [0, 1, 2, 4, 5, 7, 9, 10, 11],
12: list(range(12)),
},
16: { # maps num layers in student -> which teacher layers to copy
1: [0],
2: [0, 15],
3: [0, 8, 15],
4: [0, 5, 10, 15],
6: [0, 3, 6, 9, 12, 15],
8: [0, 2, 4, 6, 8, 10, 12, 15],
9: [0, 1, 3, 5, 7, 9, 11, 13, 15],
12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15],
16: list(range(16)),
},
6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))},
}
a__ : List[str] = {
# maps num layers in student -> which teacher layers to copy.
6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]},
12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]},
16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]},
}
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
try:
SCREAMING_SNAKE_CASE : Tuple = LAYERS_TO_COPY[n_teacher][n_student]
return val
except KeyError:
if n_student != n_teacher:
warnings.warn(
F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first"""
F""" {n_student}""" )
return list(range(a__ ) )
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if n_student > n_teacher:
raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" )
elif n_teacher == n_student:
return list(range(a__ ) )
elif n_student == 1:
return [n_teacher - 1]
else:
return LAYERS_TO_SUPERVISE[n_teacher][n_student]
def UpperCAmelCase_( a__ , a__ = "student" , a__ = None , a__ = None , a__=False , a__=None , a__=None , **a__ , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = '''encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.'''
assert (e is not None) or (d is not None), _msg
if isinstance(a__ , a__ ):
AutoTokenizer.from_pretrained(a__ ).save_pretrained(a__ ) # purely for convenience
SCREAMING_SNAKE_CASE : Dict = AutoModelForSeqaSeqLM.from_pretrained(a__ ).eval()
else:
assert isinstance(a__ , a__ ), F"""teacher must be a model or string got type {type(a__ )}"""
SCREAMING_SNAKE_CASE : List[Any] = teacher.config.to_diff_dict()
try:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = teacher.config.encoder_layers, teacher.config.decoder_layers
if e is None:
SCREAMING_SNAKE_CASE : Optional[Any] = teacher_e
if d is None:
SCREAMING_SNAKE_CASE : Any = teacher_d
init_kwargs.update({'''encoder_layers''': e, '''decoder_layers''': d} )
except AttributeError: # T5
if hasattr(teacher.config , '''num_encoder_layers''' ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = teacher.config.num_layers, teacher.config.num_decoder_layers
if e is None:
SCREAMING_SNAKE_CASE : List[Any] = teacher_e
if d is None:
SCREAMING_SNAKE_CASE : List[str] = teacher_d
if hasattr(teacher.config , '''num_encoder_layers''' ):
init_kwargs.update({'''num_encoder_layers''': e, '''num_decoder_layers''': d} )
else:
init_kwargs.update({'''num_layers''': e, '''num_decoder_layers''': d} )
# Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs
init_kwargs.update(a__ )
# Copy weights
SCREAMING_SNAKE_CASE : Dict = teacher.config_class(**a__ )
SCREAMING_SNAKE_CASE : int = AutoModelForSeqaSeqLM.from_config(a__ )
# Start by copying the full teacher state dict this will copy the first N teacher layers to the student.
SCREAMING_SNAKE_CASE : Union[str, Any] = student.load_state_dict(teacher.state_dict() , strict=a__ )
assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys.
if copy_first_teacher_layers: # Our copying is done. We just log and save
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = list(range(a__ ) ), list(range(a__ ) )
logger.info(
F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to"""
F""" {save_path}""" )
student.save_pretrained(a__ )
return student, e_layers_to_copy, d_layers_to_copy
# Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer.
if e_layers_to_copy is None:
SCREAMING_SNAKE_CASE : List[int] = pick_layers_to_copy(a__ , a__ )
if d_layers_to_copy is None:
SCREAMING_SNAKE_CASE : List[int] = pick_layers_to_copy(a__ , a__ )
try:
if hasattr(
a__ , '''prophetnet''' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers
copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , a__ )
copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , a__ )
else:
copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , a__ )
copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , a__ )
except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block
copy_layers(teacher.encoder.block , student.encoder.block , a__ )
copy_layers(teacher.decoder.block , student.decoder.block , a__ )
logger.info(
F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" )
SCREAMING_SNAKE_CASE : Tuple = {
'''teacher_type''': teacher.config.model_type,
'''copied_encoder_layers''': e_layers_to_copy,
'''copied_decoder_layers''': d_layers_to_copy,
}
student.save_pretrained(a__ )
# Save information about copying for easier reproducibility
return student, e_layers_to_copy, d_layers_to_copy
if __name__ == "__main__":
fire.Fire(create_student_by_copying_alternating_layers)
| 19 |
import datasets
from .evaluate import evaluate
a__ : Dict = '''\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
'''
a__ : List[str] = '''
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
'''
a__ : List[Any] = '''
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- \'id\': id of the question-answer pair as given in the references (see below)
- \'prediction_text\': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- \'id\': id of the question-answer pair (see above),
- \'answers\': a Dict in the CUAD dataset format
{
\'text\': list of possible texts for the answer, as a list of strings
\'answer_start\': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
\'exact_match\': Exact match (the normalized answer exactly match the gold answer)
\'f1\': The F-score of predicted tokens versus the gold answer
\'aupr\': Area Under the Precision-Recall curve
\'prec_at_80_recall\': Precision at 80% recall
\'prec_at_90_recall\': Precision at 90% recall
Examples:
>>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]
>>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]
>>> cuad_metric = datasets.load_metric("cuad")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Tuple:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': {
'''id''': datasets.Value('''string''' ),
'''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ),
},
'''references''': {
'''id''': datasets.Value('''string''' ),
'''answers''': datasets.features.Sequence(
{
'''text''': datasets.Value('''string''' ),
'''answer_start''': datasets.Value('''int32''' ),
} ),
},
} ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple:
SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions}
SCREAMING_SNAKE_CASE : int = [
{
'''paragraphs''': [
{
'''qas''': [
{
'''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']],
'''id''': ref['''id'''],
}
for ref in references
]
}
]
}
]
SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase )
return score
| 19 | 1 |
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
a__ : Tuple = logging.getLogger(__name__)
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = git.Repo(search_parent_directories=a__ )
SCREAMING_SNAKE_CASE : List[str] = {
'''repo_id''': str(a__ ),
'''repo_sha''': str(repo.head.object.hexsha ),
'''repo_branch''': str(repo.active_branch ),
}
with open(os.path.join(a__ , '''git_log.json''' ) , '''w''' ) as f:
json.dump(a__ , a__ , indent=4 )
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if params.n_gpu <= 0:
SCREAMING_SNAKE_CASE : List[Any] = 0
SCREAMING_SNAKE_CASE : Optional[int] = -1
SCREAMING_SNAKE_CASE : Optional[Any] = True
SCREAMING_SNAKE_CASE : Optional[Any] = False
return
assert torch.cuda.is_available()
logger.info('''Initializing GPUs''' )
if params.n_gpu > 1:
assert params.local_rank != -1
SCREAMING_SNAKE_CASE : Tuple = int(os.environ['''WORLD_SIZE'''] )
SCREAMING_SNAKE_CASE : Optional[int] = int(os.environ['''N_GPU_NODE'''] )
SCREAMING_SNAKE_CASE : List[Any] = int(os.environ['''RANK'''] )
# number of nodes / node ID
SCREAMING_SNAKE_CASE : List[Any] = params.world_size // params.n_gpu_per_node
SCREAMING_SNAKE_CASE : Optional[int] = params.global_rank // params.n_gpu_per_node
SCREAMING_SNAKE_CASE : Optional[Any] = True
assert params.n_nodes == int(os.environ['''N_NODES'''] )
assert params.node_id == int(os.environ['''NODE_RANK'''] )
# local job (single GPU)
else:
assert params.local_rank == -1
SCREAMING_SNAKE_CASE : List[str] = 1
SCREAMING_SNAKE_CASE : Optional[Any] = 0
SCREAMING_SNAKE_CASE : int = 0
SCREAMING_SNAKE_CASE : Optional[int] = 0
SCREAMING_SNAKE_CASE : Any = 1
SCREAMING_SNAKE_CASE : List[str] = 1
SCREAMING_SNAKE_CASE : Dict = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
SCREAMING_SNAKE_CASE : str = params.node_id == 0 and params.local_rank == 0
SCREAMING_SNAKE_CASE : Union[str, Any] = params.n_nodes > 1
# summary
SCREAMING_SNAKE_CASE : Optional[Any] = F"""--- Global rank: {params.global_rank} - """
logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes )
logger.info(PREFIX + '''Node ID : %i''' % params.node_id )
logger.info(PREFIX + '''Local rank : %i''' % params.local_rank )
logger.info(PREFIX + '''World size : %i''' % params.world_size )
logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node )
logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) )
logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) )
logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) )
logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info('''Initializing PyTorch distributed''' )
torch.distributed.init_process_group(
init_method='''env://''' , backend='''nccl''' , )
def UpperCAmelCase_( a__ ):
"""simple docstring"""
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 19 |
from sklearn.metrics import matthews_corrcoef
import datasets
a__ : Optional[Any] = '''
Compute the Matthews correlation coefficient (MCC)
The Matthews correlation coefficient is used in machine learning as a
measure of the quality of binary and multiclass classifications. It takes
into account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if the classes are of
very different sizes. The MCC is in essence a correlation coefficient value
between -1 and +1. A coefficient of +1 represents a perfect prediction, 0
an average random prediction and -1 an inverse prediction. The statistic
is also known as the phi coefficient. [source: Wikipedia]
'''
a__ : str = '''
Args:
predictions (list of int): Predicted labels, as returned by a model.
references (list of int): Ground truth labels.
sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.
Returns:
matthews_correlation (dict containing float): Matthews correlation.
Examples:
Example 1, a basic example with only predictions and references as inputs:
>>> matthews_metric = datasets.load_metric("matthews_correlation")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3])
>>> print(round(results[\'matthews_correlation\'], 2))
0.54
Example 2, the same example as above, but also including sample weights:
>>> matthews_metric = datasets.load_metric("matthews_correlation")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 3, 1, 1, 1, 2])
>>> print(round(results[\'matthews_correlation\'], 2))
0.1
Example 3, the same example as above, but with sample weights that cause a negative correlation:
>>> matthews_metric = datasets.load_metric("matthews_correlation")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 1, 0, 0, 0, 1])
>>> print(round(results[\'matthews_correlation\'], 2))
-0.25
'''
a__ : Union[str, Any] = '''\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Union[str, Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''int32''' ),
'''references''': datasets.Value('''int32''' ),
} ) , reference_urls=[
'''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html'''
] , )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]:
return {
"matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ),
}
| 19 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[Any] = ['''DeiTFeatureExtractor''']
a__ : Any = ['''DeiTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''DeiTForImageClassification''',
'''DeiTForImageClassificationWithTeacher''',
'''DeiTForMaskedImageModeling''',
'''DeiTModel''',
'''DeiTPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
'''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFDeiTForImageClassification''',
'''TFDeiTForImageClassificationWithTeacher''',
'''TFDeiTForMaskedImageModeling''',
'''TFDeiTModel''',
'''TFDeiTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_deit import DeiTFeatureExtractor
from .image_processing_deit import DeiTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deit import (
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
DeiTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deit import (
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
TFDeiTPreTrainedModel,
)
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 19 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from argparse import ArgumentParser
from accelerate.commands.config import get_config_parser
from accelerate.commands.env import env_command_parser
from accelerate.commands.launch import launch_command_parser
from accelerate.commands.test import test_command_parser
from accelerate.commands.tpu import tpu_command_parser
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a__ )
SCREAMING_SNAKE_CASE : int = parser.add_subparsers(help='''accelerate command helpers''' )
# Register commands
get_config_parser(subparsers=a__ )
env_command_parser(subparsers=a__ )
launch_command_parser(subparsers=a__ )
tpu_command_parser(subparsers=a__ )
test_command_parser(subparsers=a__ )
# Let's go
SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args()
if not hasattr(a__ , '''func''' ):
parser.print_help()
exit(1 )
# Run
args.func(a__ )
if __name__ == "__main__":
main()
| 19 | 1 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def UpperCAmelCase_( a__=None ):
"""simple docstring"""
if subparsers is not None:
SCREAMING_SNAKE_CASE : Tuple = subparsers.add_parser('''test''' )
else:
SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser('''Accelerate test command''' )
parser.add_argument(
'''--config_file''' , default=a__ , help=(
'''The path to use to store the config file. Will default to a file named default_config.yaml in the cache '''
'''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '''
'''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '''
'''with \'huggingface\'.'''
) , )
if subparsers is not None:
parser.set_defaults(func=a__ )
return parser
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] )
if args.config_file is None:
SCREAMING_SNAKE_CASE : int = script_name
else:
SCREAMING_SNAKE_CASE : str = F"""--config_file={args.config_file} {script_name}"""
SCREAMING_SNAKE_CASE : Dict = ['''accelerate-launch'''] + test_args.split()
SCREAMING_SNAKE_CASE : str = execute_subprocess_async(a__ , env=os.environ.copy() )
if result.returncode == 0:
print('''Test is a success! You are ready for your distributed training!''' )
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = test_command_parser()
SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args()
test_command(a__ )
if __name__ == "__main__":
main()
| 19 |
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a__ : str = logging.get_logger(__name__)
a__ : Optional[Any] = {'''vocab_file''': '''vocab.json'''}
a__ : str = {
'''vocab_file''': {
'''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''',
}
}
a__ : Tuple = {'''mgp-str''': 27}
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) ->Dict:
super().__init__(
unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , pad_token=_lowerCamelCase , **_lowerCamelCase , )
with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle:
SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.vocab.items()}
@property
def __lowerCAmelCase ( self ) ->List[Any]:
return len(self.vocab )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
return dict(self.vocab , **self.added_tokens_encoder )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for s in text:
char_tokens.extend(_lowerCamelCase )
return char_tokens
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict:
return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
return self.decoder.get(_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
if not os.path.isdir(_lowerCamelCase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) )
return
SCREAMING_SNAKE_CASE : str = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' )
return (vocab_file,)
| 19 | 1 |
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
TextToVideoSDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class a_ ( a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Union[str, Any] = TextToVideoSDPipeline
__SCREAMING_SNAKE_CASE : str = TEXT_TO_IMAGE_PARAMS
__SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS
# No `output_type`.
__SCREAMING_SNAKE_CASE : Union[str, Any] = frozenset(
[
'num_inference_steps',
'generator',
'latents',
'return_dict',
'callback',
'callback_steps',
] )
def __lowerCAmelCase ( self ) ->int:
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , )
SCREAMING_SNAKE_CASE : Union[str, Any] = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , )
SCREAMING_SNAKE_CASE : List[str] = CLIPTextModel(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
SCREAMING_SNAKE_CASE : Optional[Any] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->Union[str, Any]:
if str(_lowerCamelCase ).startswith('''mps''' ):
SCREAMING_SNAKE_CASE : int = torch.manual_seed(_lowerCamelCase )
else:
SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''pt''',
}
return inputs
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(_lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Any = '''np'''
SCREAMING_SNAKE_CASE : Dict = sd_pipe(**_lowerCamelCase ).frames
SCREAMING_SNAKE_CASE : str = frames[0][-3:, -3:, -1]
assert frames[0].shape == (64, 64, 3)
SCREAMING_SNAKE_CASE : List[str] = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self ) ->Optional[Any]:
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_lowerCamelCase , expected_max_diff=3e-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def __lowerCAmelCase ( self ) ->Dict:
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_lowerCamelCase , expected_max_diff=1e-2 )
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def __lowerCAmelCase ( self ) ->Optional[int]:
pass
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def __lowerCAmelCase ( self ) ->Optional[Any]:
pass
@unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' )
def __lowerCAmelCase ( self ) ->List[str]:
pass
def __lowerCAmelCase ( self ) ->List[Any]:
return super().test_progress_bar()
@slow
@skip_mps
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->List[Any]:
SCREAMING_SNAKE_CASE : Tuple = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' )
SCREAMING_SNAKE_CASE : Tuple = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' )
SCREAMING_SNAKE_CASE : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE : List[Any] = pipe.to('''cuda''' )
SCREAMING_SNAKE_CASE : List[str] = '''Spiderman is surfing'''
SCREAMING_SNAKE_CASE : str = torch.Generator(device='''cpu''' ).manual_seed(0 )
SCREAMING_SNAKE_CASE : int = pipe(_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=25 , output_type='''pt''' ).frames
SCREAMING_SNAKE_CASE : Optional[int] = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' )
SCREAMING_SNAKE_CASE : Any = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' )
SCREAMING_SNAKE_CASE : List[str] = pipe.to('''cuda''' )
SCREAMING_SNAKE_CASE : int = '''Spiderman is surfing'''
SCREAMING_SNAKE_CASE : Optional[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , generator=_lowerCamelCase , num_inference_steps=2 , output_type='''pt''' ).frames
SCREAMING_SNAKE_CASE : Any = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
| 19 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[Any] = ['''DeiTFeatureExtractor''']
a__ : Any = ['''DeiTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''DeiTForImageClassification''',
'''DeiTForImageClassificationWithTeacher''',
'''DeiTForMaskedImageModeling''',
'''DeiTModel''',
'''DeiTPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
'''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFDeiTForImageClassification''',
'''TFDeiTForImageClassificationWithTeacher''',
'''TFDeiTForMaskedImageModeling''',
'''TFDeiTModel''',
'''TFDeiTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_deit import DeiTFeatureExtractor
from .image_processing_deit import DeiTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deit import (
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
DeiTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deit import (
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
TFDeiTPreTrainedModel,
)
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 19 | 1 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class a_ ( a__ , a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline
__SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS
__SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS
__SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
__SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
__SCREAMING_SNAKE_CASE : int = False
def __lowerCAmelCase ( self ) ->Optional[int]:
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
SCREAMING_SNAKE_CASE : int = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : str = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str:
if str(_lowerCamelCase ).startswith('''mps''' ):
SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase )
else:
SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = {
'''prompt''': '''.''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 1.0,
'''sag_scale''': 1.0,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self ) ->Optional[int]:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Dict:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' )
SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase )
sag_pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = '''.'''
SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = sag_pipe(
[prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' )
SCREAMING_SNAKE_CASE : int = output.images
SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase )
sag_pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = '''.'''
SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = sag_pipe(
[prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' )
SCREAMING_SNAKE_CASE : List[str] = output.images
SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase )
sag_pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = '''.'''
SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = sag_pipe(
[prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , )
SCREAMING_SNAKE_CASE : List[Any] = output.images
assert image.shape == (1, 512, 768, 3)
| 19 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = ['''XGLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[Any] = ['''XGLMTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : int = [
'''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XGLMForCausalLM''',
'''XGLMModel''',
'''XGLMPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'''FlaxXGLMForCausalLM''',
'''FlaxXGLMModel''',
'''FlaxXGLMPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXGLMForCausalLM''',
'''TFXGLMModel''',
'''TFXGLMPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 19 | 1 |
import hashlib
import unittest
from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available
from transformers.pipelines import DepthEstimationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
else:
class a_ :
"""simple docstring"""
@staticmethod
def __lowerCAmelCase ( *_lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]:
pass
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = hashlib.mda(image.tobytes() )
return m.hexdigest()
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class a_ ( unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = MODEL_FOR_DEPTH_ESTIMATION_MAPPING
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->int:
SCREAMING_SNAKE_CASE : Union[str, Any] = DepthEstimationPipeline(model=_lowerCamelCase , image_processor=_lowerCamelCase )
return depth_estimator, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Union[str, Any] = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , _lowerCamelCase )
import datasets
SCREAMING_SNAKE_CASE : Any = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' )
SCREAMING_SNAKE_CASE : Optional[Any] = depth_estimator(
[
Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ),
'''http://images.cocodataset.org/val2017/000000039769.jpg''',
# RGBA
dataset[0]['''file'''],
# LA
dataset[1]['''file'''],
# L
dataset[2]['''file'''],
] )
self.assertEqual(
[
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
{'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )},
] , _lowerCamelCase , )
@require_tf
@unittest.skip('''Depth estimation is not implemented in TF''' )
def __lowerCAmelCase ( self ) ->Any:
pass
@slow
@require_torch
def __lowerCAmelCase ( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Union[str, Any] = '''Intel/dpt-large'''
SCREAMING_SNAKE_CASE : List[str] = pipeline('''depth-estimation''' , model=_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' )
SCREAMING_SNAKE_CASE : List[str] = hashimage(outputs['''depth'''] )
# This seems flaky.
# self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977")
self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 2_9.3_0_4 )
self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.6_6_2 )
@require_torch
def __lowerCAmelCase ( self ) ->str:
# This is highly irregular to have no small tests.
self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
| 19 |
import math
from collections.abc import Iterator
from itertools import takewhile
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = 2
while True:
if is_prime(a__ ):
yield num
num += 1
def UpperCAmelCase_( a__ = 2_000_000 ):
"""simple docstring"""
return sum(takewhile(lambda a__ : x < n , prime_generator() ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 19 | 1 |
import argparse
import struct
import unittest
class a_ :
"""simple docstring"""
def __init__( self , _lowerCamelCase ) ->None:
SCREAMING_SNAKE_CASE : Tuple = data
# Initialize hash values
SCREAMING_SNAKE_CASE : Tuple = [
0x6a_09e_667,
0xbb_67a_e85,
0x3c_6ef_372,
0xa5_4ff_53a,
0x51_0e5_27f,
0x9b_056_88c,
0x1f_83d_9ab,
0x5b_e0c_d19,
]
# Initialize round constants
SCREAMING_SNAKE_CASE : Any = [
0x42_8a2_f98,
0x71_374_491,
0xb5_c0f_bcf,
0xe9_b5d_ba5,
0x39_56c_25b,
0x59_f11_1f1,
0x92_3f8_2a4,
0xab_1c5_ed5,
0xd8_07a_a98,
0x12_835_b01,
0x24_318_5be,
0x55_0c7_dc3,
0x72_be5_d74,
0x80_deb_1fe,
0x9b_dc0_6a7,
0xc1_9bf_174,
0xe4_9b6_9c1,
0xef_be4_786,
0x0f_c19_dc6,
0x24_0ca_1cc,
0x2d_e92_c6f,
0x4a_748_4aa,
0x5c_b0a_9dc,
0x76_f98_8da,
0x98_3e5_152,
0xa8_31c_66d,
0xb0_032_7c8,
0xbf_597_fc7,
0xc6_e00_bf3,
0xd5_a79_147,
0x06_ca6_351,
0x14_292_967,
0x27_b70_a85,
0x2e_1b2_138,
0x4d_2c6_dfc,
0x53_380_d13,
0x65_0a7_354,
0x76_6a0_abb,
0x81_c2c_92e,
0x92_722_c85,
0xa2_bfe_8a1,
0xa8_1a6_64b,
0xc2_4b8_b70,
0xc7_6c5_1a3,
0xd1_92e_819,
0xd6_990_624,
0xf4_0e3_585,
0x10_6aa_070,
0x19_a4c_116,
0x1e_376_c08,
0x27_487_74c,
0x34_b0b_cb5,
0x39_1c0_cb3,
0x4e_d8a_a4a,
0x5b_9cc_a4f,
0x68_2e6_ff3,
0x74_8f8_2ee,
0x78_a56_36f,
0x84_c87_814,
0x8c_c70_208,
0x90_bef_ffa,
0xa4_506_ceb,
0xbe_f9a_3f7,
0xc6_717_8f2,
]
SCREAMING_SNAKE_CASE : Union[str, Any] = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def __lowerCAmelCase ( _lowerCamelCase ) ->bytes:
SCREAMING_SNAKE_CASE : Optional[int] = B'''\x80''' + (B'''\x00''' * (63 - (len(_lowerCamelCase ) + 8) % 64))
SCREAMING_SNAKE_CASE : str = struct.pack('''>Q''' , (len(_lowerCamelCase ) * 8) )
return data + padding + big_endian_integer
def __lowerCAmelCase ( self ) ->None:
# Convert into blocks of 64 bytes
SCREAMING_SNAKE_CASE : Optional[int] = [
self.preprocessed_data[x : x + 64]
for x in range(0 , len(self.preprocessed_data ) , 64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
SCREAMING_SNAKE_CASE : int = list(struct.unpack('''>16L''' , _lowerCamelCase ) )
# add 48 0-ed integers
words += [0] * 48
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.hashes
for index in range(0 , 64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
SCREAMING_SNAKE_CASE : List[Any] = (
self.ror(words[index - 15] , 7 )
^ self.ror(words[index - 15] , 18 )
^ (words[index - 15] >> 3)
)
SCREAMING_SNAKE_CASE : Optional[int] = (
self.ror(words[index - 2] , 17 )
^ self.ror(words[index - 2] , 19 )
^ (words[index - 2] >> 10)
)
SCREAMING_SNAKE_CASE : Dict = (
words[index - 16] + sa + words[index - 7] + sa
) % 0x100_000_000
# Compression
SCREAMING_SNAKE_CASE : List[str] = self.ror(_lowerCamelCase , 6 ) ^ self.ror(_lowerCamelCase , 11 ) ^ self.ror(_lowerCamelCase , 25 )
SCREAMING_SNAKE_CASE : int = (e & f) ^ ((~e & 0xff_fff_fff) & g)
SCREAMING_SNAKE_CASE : Union[str, Any] = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x100_000_000
SCREAMING_SNAKE_CASE : Any = self.ror(_lowerCamelCase , 2 ) ^ self.ror(_lowerCamelCase , 13 ) ^ self.ror(_lowerCamelCase , 22 )
SCREAMING_SNAKE_CASE : Optional[int] = (a & b) ^ (a & c) ^ (b & c)
SCREAMING_SNAKE_CASE : Union[str, Any] = (sa + maj) % 0x100_000_000
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = (
g,
f,
e,
((d + tempa) % 0x100_000_000),
c,
b,
a,
((tempa + tempa) % 0x100_000_000),
)
SCREAMING_SNAKE_CASE : str = [a, b, c, d, e, f, g, h]
# Modify final values
SCREAMING_SNAKE_CASE : Dict = [
((element + mutated_hash_values[index]) % 0x100_000_000)
for index, element in enumerate(self.hashes )
]
SCREAMING_SNAKE_CASE : Optional[Any] = ''''''.join([hex(_lowerCamelCase )[2:].zfill(8 ) for value in self.hashes] )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->int:
return 0xff_fff_fff & (value << (32 - rotations)) | (value >> rotations)
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->None:
import hashlib
SCREAMING_SNAKE_CASE : Any = bytes('''Test String''' , '''utf-8''' )
self.assertEqual(SHAaaa(_lowerCamelCase ).hash , hashlib.shaaaa(_lowerCamelCase ).hexdigest() )
def UpperCAmelCase_( ):
"""simple docstring"""
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser()
parser.add_argument(
'''-s''' , '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , )
parser.add_argument(
'''-f''' , '''--file''' , dest='''input_file''' , help='''Hash contents of a file''' )
SCREAMING_SNAKE_CASE : Any = parser.parse_args()
SCREAMING_SNAKE_CASE : str = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , '''rb''' ) as f:
SCREAMING_SNAKE_CASE : Optional[Any] = f.read()
else:
SCREAMING_SNAKE_CASE : Tuple = bytes(a__ , '''utf-8''' )
print(SHAaaa(a__ ).hash )
if __name__ == "__main__":
main()
| 19 |
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int:
super().__init__(*_lowerCamelCase , **_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = eval_examples
SCREAMING_SNAKE_CASE : Optional[int] = post_process_function
def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ) ->Dict[str, float]:
SCREAMING_SNAKE_CASE : Any = gen_kwargs.copy()
SCREAMING_SNAKE_CASE : str = (
gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length
)
SCREAMING_SNAKE_CASE : Dict = (
gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams
)
SCREAMING_SNAKE_CASE : Any = gen_kwargs
SCREAMING_SNAKE_CASE : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset
SCREAMING_SNAKE_CASE : str = self.get_eval_dataloader(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_metrics
SCREAMING_SNAKE_CASE : str = None
SCREAMING_SNAKE_CASE : Optional[Any] = time.time()
SCREAMING_SNAKE_CASE : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE : Tuple = eval_loop(
_lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , )
finally:
SCREAMING_SNAKE_CASE : Dict = compute_metrics
SCREAMING_SNAKE_CASE : Tuple = self.args.eval_batch_size * self.args.world_size
if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics:
start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""]
output.metrics.update(
speed_metrics(
_lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(_lowerCamelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"""{metric_key_prefix}_""" ):
SCREAMING_SNAKE_CASE : Optional[int] = metrics.pop(_lowerCamelCase )
metrics.update(output.metrics )
else:
SCREAMING_SNAKE_CASE : List[Any] = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(_lowerCamelCase )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
SCREAMING_SNAKE_CASE : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase )
return metrics
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ) ->int:
SCREAMING_SNAKE_CASE : str = gen_kwargs.copy()
SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(_lowerCamelCase )
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE : Dict = self.compute_metrics
SCREAMING_SNAKE_CASE : Tuple = None
SCREAMING_SNAKE_CASE : List[str] = time.time()
SCREAMING_SNAKE_CASE : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE : Any = eval_loop(
_lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , )
finally:
SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics
SCREAMING_SNAKE_CASE : List[Any] = self.args.eval_batch_size * self.args.world_size
if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics:
start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""]
output.metrics.update(
speed_metrics(
_lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' )
SCREAMING_SNAKE_CASE : Dict = self.compute_metrics(_lowerCamelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"""{metric_key_prefix}_""" ):
SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(_lowerCamelCase )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
| 19 | 1 |
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
'''files''' , [
['''full:README.md''', '''dataset_infos.json'''],
['''empty:README.md''', '''dataset_infos.json'''],
['''dataset_infos.json'''],
['''full:README.md'''],
] , )
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = tmp_path_factory.mktemp('''dset_infos_dir''' )
if "full:README.md" in files:
with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f:
f.write('''---\ndataset_info:\n dataset_size: 42\n---''' )
if "empty:README.md" in files:
with open(dataset_infos_dir / '''README.md''' , '''w''' ) as f:
f.write('''''' )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / '''dataset_infos.json''' , '''w''' ) as f:
f.write('''{"default": {"dataset_size": 42}}''' )
SCREAMING_SNAKE_CASE : int = DatasetInfosDict.from_directory(a__ )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
'''dataset_info''' , [
DatasetInfo(),
DatasetInfo(
description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , ),
] , )
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = str(a__ )
dataset_info.write_to_directory(a__ )
SCREAMING_SNAKE_CASE : Optional[Any] = DatasetInfo.from_directory(a__ )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(a__ , '''dataset_info.json''' ) )
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = DatasetInfo(
description='''foo''' , citation='''bar''' , homepage='''https://foo.bar''' , license='''CC0''' , features=Features({'''a''': Value('''int32''' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train''', '''num_examples''': 42}] , download_checksums={} , download_size=1_337 , post_processing_size=442 , dataset_size=1_234 , size_in_bytes=1_337 + 442 + 1_234 , )
SCREAMING_SNAKE_CASE : int = dataset_info._to_yaml_dict()
assert sorted(a__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) )
SCREAMING_SNAKE_CASE : Optional[Any] = yaml.safe_dump(a__ )
SCREAMING_SNAKE_CASE : List[Any] = yaml.safe_load(a__ )
assert dataset_info_yaml_dict == reloaded
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = DatasetInfo()
SCREAMING_SNAKE_CASE : List[str] = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
'''dataset_infos_dict''' , [
DatasetInfosDict(),
DatasetInfosDict({'''default''': DatasetInfo()} ),
DatasetInfosDict({'''my_config_name''': DatasetInfo()} ),
DatasetInfosDict(
{
'''default''': DatasetInfo(
description='''foo''' , features=Features({'''a''': Value('''int32''' )} ) , builder_name='''builder''' , config_name='''config''' , version='''1.0.0''' , splits=[{'''name''': '''train'''}] , download_size=42 , )
} ),
DatasetInfosDict(
{
'''v1''': DatasetInfo(dataset_size=42 ),
'''v2''': DatasetInfo(dataset_size=1_337 ),
} ),
] , )
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = str(a__ )
dataset_infos_dict.write_to_directory(a__ )
SCREAMING_SNAKE_CASE : str = DatasetInfosDict.from_directory(a__ )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
SCREAMING_SNAKE_CASE : str = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
SCREAMING_SNAKE_CASE : str = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(a__ , '''README.md''' ) )
| 19 |
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class a_ ( a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = DDIMPipeline
__SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
__SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - {
'num_images_per_prompt',
'latents',
'callback',
'callback_steps',
}
__SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
__SCREAMING_SNAKE_CASE : List[Any] = False
def __lowerCAmelCase ( self ) ->int:
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler()
SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler}
return components
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int:
if str(_lowerCamelCase ).startswith('''mps''' ):
SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase )
else:
SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = {
'''batch_size''': 1,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : Optional[int] = '''cpu'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase )
pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 32, 32, 3) )
SCREAMING_SNAKE_CASE : int = np.array(
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] )
SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_lowerCamelCase , 1e-3 )
def __lowerCAmelCase ( self ) ->Optional[int]:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def __lowerCAmelCase ( self ) ->Any:
super().test_save_load_local(expected_max_difference=3e-3 )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def __lowerCAmelCase ( self ) ->Any:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->List[Any]:
SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32'''
SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler()
SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase )
ddim.to(_lowerCamelCase )
ddim.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images
SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256'''
SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase )
ddpm.to(_lowerCamelCase )
ddpm.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images
SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 19 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
a__ : int = logging.get_logger(__name__)
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Dict = ['pixel_values']
def __init__( self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ) ->None:
super().__init__(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else {'''shortest_edge''': 256}
SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
SCREAMING_SNAKE_CASE : Any = get_size_dict(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = do_resize
SCREAMING_SNAKE_CASE : Union[str, Any] = size
SCREAMING_SNAKE_CASE : List[str] = resample
SCREAMING_SNAKE_CASE : Dict = do_center_crop
SCREAMING_SNAKE_CASE : List[str] = crop_size
SCREAMING_SNAKE_CASE : Optional[Any] = do_rescale
SCREAMING_SNAKE_CASE : List[Any] = rescale_factor
SCREAMING_SNAKE_CASE : Any = do_normalize
SCREAMING_SNAKE_CASE : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
SCREAMING_SNAKE_CASE : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BICUBIC , _lowerCamelCase = None , **_lowerCamelCase , ) ->np.ndarray:
SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase )
if "shortest_edge" not in size:
raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
SCREAMING_SNAKE_CASE : List[str] = get_resize_output_image_size(_lowerCamelCase , size=size['''shortest_edge'''] , default_to_square=_lowerCamelCase )
return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ) ->np.ndarray:
SCREAMING_SNAKE_CASE : List[str] = get_size_dict(_lowerCamelCase )
return center_crop(_lowerCamelCase , size=(size['''height'''], size['''width''']) , data_format=_lowerCamelCase , **_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase ) ->np.ndarray:
return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ) ->np.ndarray:
return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ) ->str:
SCREAMING_SNAKE_CASE : Any = do_resize if do_resize is not None else self.do_resize
SCREAMING_SNAKE_CASE : List[str] = size if size is not None else self.size
SCREAMING_SNAKE_CASE : int = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = resample if resample is not None else self.resample
SCREAMING_SNAKE_CASE : int = do_center_crop if do_center_crop is not None else self.do_center_crop
SCREAMING_SNAKE_CASE : Union[str, Any] = crop_size if crop_size is not None else self.crop_size
SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE : str = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE : Dict = do_normalize if do_normalize is not None else self.do_normalize
SCREAMING_SNAKE_CASE : Union[str, Any] = image_mean if image_mean is not None else self.image_mean
SCREAMING_SNAKE_CASE : int = image_std if image_std is not None else self.image_std
SCREAMING_SNAKE_CASE : int = make_list_of_images(_lowerCamelCase )
if not valid_images(_lowerCamelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE : Any = [to_numpy_array(_lowerCamelCase ) for image in images]
if do_resize:
SCREAMING_SNAKE_CASE : str = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images]
if do_center_crop:
SCREAMING_SNAKE_CASE : List[Any] = [self.center_crop(image=_lowerCamelCase , size=_lowerCamelCase ) for image in images]
if do_rescale:
SCREAMING_SNAKE_CASE : Optional[Any] = [self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase ) for image in images]
if do_normalize:
SCREAMING_SNAKE_CASE : Optional[Any] = [self.normalize(image=_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase ) for image in images]
SCREAMING_SNAKE_CASE : Tuple = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images]
SCREAMING_SNAKE_CASE : List[Any] = {'''pixel_values''': images}
return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
| 19 |
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
class a_ ( a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer
__SCREAMING_SNAKE_CASE : List[str] = False
__SCREAMING_SNAKE_CASE : Dict = True
def __lowerCAmelCase ( self ) ->Dict:
super().setUp()
# We have a SentencePiece fixture for testing
SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase )
tokenizer.save_pretrained(self.tmpdirname )
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : List[str] = '''[PAD]'''
SCREAMING_SNAKE_CASE : Tuple = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->List[Any]:
SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''[PAD]''' )
self.assertEqual(vocab_keys[1] , '''[CLS]''' )
self.assertEqual(vocab_keys[-1] , '''j''' )
self.assertEqual(len(_lowerCamelCase ) , 1012 )
def __lowerCAmelCase ( self ) ->List[str]:
self.assertEqual(self.get_tokenizer().vocab_size , 1012 )
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_lowerCamelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase )
self.assertListEqual(
_lowerCamelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase )
self.assertListEqual(
_lowerCamelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''[UNK]''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''[UNK]''',
'''.''',
] , )
@cached_property
def __lowerCAmelCase ( self ) ->List[str]:
return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' )
@slow
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!'''
SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2]
self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) )
@slow
def __lowerCAmelCase ( self ) ->int:
# fmt: off
SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
| 19 | 1 |
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a__ : str = logging.get_logger(__name__)
a__ : Optional[Any] = {'''vocab_file''': '''vocab.json'''}
a__ : str = {
'''vocab_file''': {
'''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''',
}
}
a__ : Tuple = {'''mgp-str''': 27}
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) ->Dict:
super().__init__(
unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , pad_token=_lowerCamelCase , **_lowerCamelCase , )
with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle:
SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.vocab.items()}
@property
def __lowerCAmelCase ( self ) ->List[Any]:
return len(self.vocab )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
return dict(self.vocab , **self.added_tokens_encoder )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for s in text:
char_tokens.extend(_lowerCamelCase )
return char_tokens
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict:
return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
return self.decoder.get(_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
if not os.path.isdir(_lowerCamelCase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) )
return
SCREAMING_SNAKE_CASE : str = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' )
return (vocab_file,)
| 19 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class a_ ( a__ , a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline
__SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS
__SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS
__SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
__SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
__SCREAMING_SNAKE_CASE : int = False
def __lowerCAmelCase ( self ) ->Optional[int]:
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
SCREAMING_SNAKE_CASE : int = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : str = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str:
if str(_lowerCamelCase ).startswith('''mps''' ):
SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase )
else:
SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = {
'''prompt''': '''.''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 1.0,
'''sag_scale''': 1.0,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self ) ->Optional[int]:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Dict:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' )
SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase )
sag_pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = '''.'''
SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = sag_pipe(
[prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' )
SCREAMING_SNAKE_CASE : int = output.images
SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase )
sag_pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = '''.'''
SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = sag_pipe(
[prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' )
SCREAMING_SNAKE_CASE : List[str] = output.images
SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase )
sag_pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = '''.'''
SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = sag_pipe(
[prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , )
SCREAMING_SNAKE_CASE : List[Any] = output.images
assert image.shape == (1, 512, 768, 3)
| 19 | 1 |
from collections import deque
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = len(a__ )
SCREAMING_SNAKE_CASE : Tuple = deque()
SCREAMING_SNAKE_CASE : Union[str, Any] = [False for _ in range(a__ )]
SCREAMING_SNAKE_CASE : Optional[Any] = [-1 for _ in range(a__ )]
SCREAMING_SNAKE_CASE : Dict = index_of[:]
def strong_connect(a__ , a__ , a__ ):
SCREAMING_SNAKE_CASE : str = index # the number when this node is seen
SCREAMING_SNAKE_CASE : List[str] = index # lowest rank node reachable from here
index += 1
stack.append(a__ )
SCREAMING_SNAKE_CASE : Any = True
for w in g[v]:
if index_of[w] == -1:
SCREAMING_SNAKE_CASE : int = strong_connect(a__ , a__ , a__ )
SCREAMING_SNAKE_CASE : int = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
SCREAMING_SNAKE_CASE : Any = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
SCREAMING_SNAKE_CASE : List[Any] = []
SCREAMING_SNAKE_CASE : int = stack.pop()
SCREAMING_SNAKE_CASE : Dict = False
component.append(a__ )
while w != v:
SCREAMING_SNAKE_CASE : List[Any] = stack.pop()
SCREAMING_SNAKE_CASE : Any = False
component.append(a__ )
components.append(a__ )
return index
SCREAMING_SNAKE_CASE : int = []
for v in range(a__ ):
if index_of[v] == -1:
strong_connect(a__ , 0 , a__ )
return components
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = [[] for _ in range(a__ )]
for u, v in edges:
g[u].append(a__ )
return g
if __name__ == "__main__":
# Test
a__ : str = 7
a__ : List[str] = [0, 0, 1, 2, 3, 3, 4, 4, 6]
a__ : List[Any] = [1, 3, 2, 0, 1, 4, 5, 6, 5]
a__ : int = [(u, v) for u, v in zip(source, target)]
a__ : Optional[Any] = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 19 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mobilebert import MobileBertTokenizer
a__ : Optional[Any] = logging.get_logger(__name__)
a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
a__ : Tuple = {
'''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''},
'''tokenizer_file''': {
'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json'''
},
}
a__ : Optional[Any] = {'''mobilebert-uncased''': 512}
a__ : List[Any] = {}
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION
__SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer
def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]:
super().__init__(
_lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , )
SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) )
SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case
SCREAMING_SNAKE_CASE : Optional[int] = strip_accents
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars
SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = do_lower_case
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any:
SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id]
SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase )
return tuple(_lowerCamelCase )
| 19 | 1 |
from collections.abc import Callable
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : float = a
SCREAMING_SNAKE_CASE : float = b
if function(a__ ) == 0: # one of the a or b is a root for the function
return a
elif function(a__ ) == 0:
return b
elif (
function(a__ ) * function(a__ ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('''could not find root in given interval.''' )
else:
SCREAMING_SNAKE_CASE : float = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(a__ ) == 0:
return mid
elif function(a__ ) * function(a__ ) < 0:
SCREAMING_SNAKE_CASE : List[str] = mid
else:
SCREAMING_SNAKE_CASE : Optional[int] = mid
SCREAMING_SNAKE_CASE : Union[str, Any] = start + (end - start) / 2.0
return mid
def UpperCAmelCase_( a__ ):
"""simple docstring"""
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1_000))
import doctest
doctest.testmod()
| 19 |
import math
a__ : List[str] = 10
a__ : Optional[int] = 7
a__ : int = BALLS_PER_COLOUR * NUM_COLOURS
def UpperCAmelCase_( a__ = 20 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ )
SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ )
SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total)
return F"""{result:.9f}"""
if __name__ == "__main__":
print(solution(20))
| 19 | 1 |
import warnings
from contextlib import contextmanager
from ....processing_utils import ProcessorMixin
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[Any] = 'MCTCTFeatureExtractor'
__SCREAMING_SNAKE_CASE : Tuple = 'AutoTokenizer'
def __init__( self , _lowerCamelCase , _lowerCamelCase ) ->List[str]:
super().__init__(_lowerCamelCase , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = self.feature_extractor
SCREAMING_SNAKE_CASE : Optional[int] = False
def __call__( self , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[int]:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*_lowerCamelCase , **_lowerCamelCase )
if "raw_speech" in kwargs:
warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop('''raw_speech''' )
else:
SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop('''audio''' , _lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop('''sampling_rate''' , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''text''' , _lowerCamelCase )
if len(_lowerCamelCase ) > 0:
SCREAMING_SNAKE_CASE : Optional[int] = args[0]
SCREAMING_SNAKE_CASE : Optional[Any] = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if audio is not None:
SCREAMING_SNAKE_CASE : int = self.feature_extractor(_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase )
if text is not None:
SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(_lowerCamelCase , **_lowerCamelCase )
if text is None:
return inputs
elif audio is None:
return encodings
else:
SCREAMING_SNAKE_CASE : List[str] = encodings['''input_ids''']
return inputs
def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Dict:
return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase )
def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->List[Any]:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor.pad(*_lowerCamelCase , **_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop('''input_features''' , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Any = kwargs.pop('''labels''' , _lowerCamelCase )
if len(_lowerCamelCase ) > 0:
SCREAMING_SNAKE_CASE : Optional[Any] = args[0]
SCREAMING_SNAKE_CASE : List[Any] = args[1:]
if input_features is not None:
SCREAMING_SNAKE_CASE : Dict = self.feature_extractor.pad(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase )
if labels is not None:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer.pad(_lowerCamelCase , **_lowerCamelCase )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
SCREAMING_SNAKE_CASE : Any = labels['''input_ids''']
return input_features
def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[int]:
return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase )
@contextmanager
def __lowerCAmelCase ( self ) ->Any:
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your audio inputs, or in a separate call.''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = True
SCREAMING_SNAKE_CASE : List[str] = self.tokenizer
yield
SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extractor
SCREAMING_SNAKE_CASE : Tuple = False
| 19 |
from typing import Optional, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_mobilenet_va import MobileNetVaConfig
a__ : List[str] = logging.get_logger(__name__)
# General docstring
a__ : Tuple = '''MobileNetV1Config'''
# Base docstring
a__ : Optional[Any] = '''google/mobilenet_v1_1.0_224'''
a__ : Tuple = [1, 1_024, 7, 7]
# Image classification docstring
a__ : Optional[int] = '''google/mobilenet_v1_1.0_224'''
a__ : int = '''tabby, tabby cat'''
a__ : List[Any] = [
'''google/mobilenet_v1_1.0_224''',
'''google/mobilenet_v1_0.75_192''',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
]
def UpperCAmelCase_( a__ , a__ , a__=None ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = {}
if isinstance(a__ , a__ ):
SCREAMING_SNAKE_CASE : List[str] = model.mobilenet_va
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = model
SCREAMING_SNAKE_CASE : Optional[int] = '''MobilenetV1/Conv2d_0/'''
SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight
SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.normalization.bias
SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.weight
SCREAMING_SNAKE_CASE : Union[str, Any] = backbone.conv_stem.normalization.running_mean
SCREAMING_SNAKE_CASE : Any = backbone.conv_stem.normalization.running_var
for i in range(13 ):
SCREAMING_SNAKE_CASE : Dict = i + 1
SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2
SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index]
SCREAMING_SNAKE_CASE : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/"""
SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight
SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.bias
SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.weight
SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean
SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_var
SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index + 1]
SCREAMING_SNAKE_CASE : Any = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/"""
SCREAMING_SNAKE_CASE : Dict = pointer.convolution.weight
SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias
SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight
SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean
SCREAMING_SNAKE_CASE : str = pointer.normalization.running_var
if isinstance(a__ , a__ ):
SCREAMING_SNAKE_CASE : List[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/'''
SCREAMING_SNAKE_CASE : List[str] = model.classifier.weight
SCREAMING_SNAKE_CASE : List[str] = model.classifier.bias
return tf_to_pt_map
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
'''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see '''
'''https://www.tensorflow.org/install/ for installation instructions.''' )
raise
# Load weights from TF model
SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.list_variables(a__ )
SCREAMING_SNAKE_CASE : List[Any] = {}
for name, shape in init_vars:
logger.info(F"""Loading TF weight {name} with shape {shape}""" )
SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(a__ , a__ )
SCREAMING_SNAKE_CASE : Dict = array
# Build TF to PyTorch weights loading map
SCREAMING_SNAKE_CASE : int = _build_tf_to_pytorch_map(a__ , a__ , a__ )
for name, pointer in tf_to_pt_map.items():
logger.info(F"""Importing {name}""" )
if name not in tf_weights:
logger.info(F"""{name} not in tf pre-trained weights, skipping""" )
continue
SCREAMING_SNAKE_CASE : Union[str, Any] = tf_weights[name]
if "depthwise_weights" in name:
logger.info('''Transposing depthwise''' )
SCREAMING_SNAKE_CASE : Tuple = np.transpose(a__ , (2, 3, 0, 1) )
elif "weights" in name:
logger.info('''Transposing''' )
if len(pointer.shape ) == 2: # copying into linear layer
SCREAMING_SNAKE_CASE : Union[str, Any] = array.squeeze().transpose()
else:
SCREAMING_SNAKE_CASE : Optional[int] = np.transpose(a__ , (3, 2, 0, 1) )
if pointer.shape != array.shape:
raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" )
logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" )
SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ )
tf_weights.pop(a__ , a__ )
tf_weights.pop(name + '''/RMSProp''' , a__ )
tf_weights.pop(name + '''/RMSProp_1''' , a__ )
tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ )
logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" )
return model
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = features.shape[-2:]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = conv_layer.stride
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = conv_layer.kernel_size
if in_height % stride_height == 0:
SCREAMING_SNAKE_CASE : List[str] = max(kernel_height - stride_height , 0 )
else:
SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height) , 0 )
if in_width % stride_width == 0:
SCREAMING_SNAKE_CASE : int = max(kernel_width - stride_width , 0 )
else:
SCREAMING_SNAKE_CASE : Tuple = max(kernel_width - (in_width % stride_width) , 0 )
SCREAMING_SNAKE_CASE : List[str] = pad_along_width // 2
SCREAMING_SNAKE_CASE : Any = pad_along_width - pad_left
SCREAMING_SNAKE_CASE : str = pad_along_height // 2
SCREAMING_SNAKE_CASE : Optional[int] = pad_along_height - pad_top
SCREAMING_SNAKE_CASE : List[Any] = (pad_left, pad_right, pad_top, pad_bottom)
return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 )
class a_ ( nn.Module ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = True , ) ->None:
super().__init__()
SCREAMING_SNAKE_CASE : Any = config
if in_channels % groups != 0:
raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" )
if out_channels % groups != 0:
raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" )
SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 )
SCREAMING_SNAKE_CASE : List[str] = nn.Convad(
in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='''zeros''' , )
if use_normalization:
SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad(
num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , )
else:
SCREAMING_SNAKE_CASE : Dict = None
if use_activation:
if isinstance(_lowerCamelCase , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : Any = ACTaFN[use_activation]
elif isinstance(config.hidden_act , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act]
else:
SCREAMING_SNAKE_CASE : List[Any] = config.hidden_act
else:
SCREAMING_SNAKE_CASE : Optional[Any] = None
def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor:
if self.config.tf_padding:
SCREAMING_SNAKE_CASE : List[Any] = apply_tf_padding(_lowerCamelCase , self.convolution )
SCREAMING_SNAKE_CASE : Dict = self.convolution(_lowerCamelCase )
if self.normalization is not None:
SCREAMING_SNAKE_CASE : int = self.normalization(_lowerCamelCase )
if self.activation is not None:
SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase )
return features
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = MobileNetVaConfig
__SCREAMING_SNAKE_CASE : List[Any] = load_tf_weights_in_mobilenet_va
__SCREAMING_SNAKE_CASE : int = 'mobilenet_v1'
__SCREAMING_SNAKE_CASE : int = 'pixel_values'
__SCREAMING_SNAKE_CASE : List[str] = False
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(_lowerCamelCase , nn.BatchNormad ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
a__ : str = r'''
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
'''
a__ : Union[str, Any] = r'''
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`MobileNetV1ImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
'''
@add_start_docstrings(
'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , a__ , )
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase = True ) ->Dict:
super().__init__(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = config
SCREAMING_SNAKE_CASE : Dict = 32
SCREAMING_SNAKE_CASE : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth )
SCREAMING_SNAKE_CASE : str = MobileNetVaConvLayer(
_lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , )
SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
SCREAMING_SNAKE_CASE : Any = nn.ModuleList()
for i in range(13 ):
SCREAMING_SNAKE_CASE : int = out_channels
if strides[i] == 2 or i == 0:
depth *= 2
SCREAMING_SNAKE_CASE : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth )
self.layer.append(
MobileNetVaConvLayer(
_lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) )
self.layer.append(
MobileNetVaConvLayer(
_lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) )
SCREAMING_SNAKE_CASE : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]:
raise NotImplementedError
@add_start_docstrings_to_model_forward(_lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
SCREAMING_SNAKE_CASE : Union[str, Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
SCREAMING_SNAKE_CASE : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError('''You have to specify pixel_values''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_stem(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer ):
SCREAMING_SNAKE_CASE : Optional[int] = layer_module(_lowerCamelCase )
if output_hidden_states:
SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,)
SCREAMING_SNAKE_CASE : List[str] = hidden_states
if self.pooler is not None:
SCREAMING_SNAKE_CASE : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 )
else:
SCREAMING_SNAKE_CASE : List[Any] = None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None )
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , )
@add_start_docstrings(
'\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , )
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase ) ->None:
super().__init__(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels
SCREAMING_SNAKE_CASE : str = MobileNetVaModel(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va.layer[-1].convolution.out_channels
# Classifier head
SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]:
SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict
SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = outputs.pooler_output if return_dict else outputs[1]
SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(_lowerCamelCase ) )
SCREAMING_SNAKE_CASE : int = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
SCREAMING_SNAKE_CASE : Any = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification'''
else:
SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification'''
if self.config.problem_type == "regression":
SCREAMING_SNAKE_CASE : Any = MSELoss()
if self.num_labels == 1:
SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() )
else:
SCREAMING_SNAKE_CASE : Dict = loss_fct(_lowerCamelCase , _lowerCamelCase )
elif self.config.problem_type == "single_label_classification":
SCREAMING_SNAKE_CASE : str = CrossEntropyLoss()
SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
SCREAMING_SNAKE_CASE : List[Any] = BCEWithLogitsLoss()
SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase )
if not return_dict:
SCREAMING_SNAKE_CASE : Optional[Any] = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
| 19 | 1 |
import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
a__ : List[str] = logging.getLogger(__name__)
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : int = 'token-classification'
def __init__( self , _lowerCamelCase ) ->str:
if type(_lowerCamelCase ) == dict:
SCREAMING_SNAKE_CASE : Union[str, Any] = Namespace(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = import_module('''tasks''' )
try:
SCREAMING_SNAKE_CASE : List[str] = getattr(_lowerCamelCase , hparams.task_type )
SCREAMING_SNAKE_CASE : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
F"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """
F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" )
SCREAMING_SNAKE_CASE : str = self.token_classification_task.get_labels(hparams.labels )
SCREAMING_SNAKE_CASE : Optional[Any] = CrossEntropyLoss().ignore_index
super().__init__(_lowerCamelCase , len(self.labels ) , self.mode )
def __lowerCAmelCase ( self , **_lowerCamelCase ) ->List[Any]:
return self.model(**_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple:
SCREAMING_SNAKE_CASE : Union[str, Any] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]}
if self.config.model_type != "distilbert":
SCREAMING_SNAKE_CASE : Union[str, Any] = (
batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None
) # XLM and RoBERTa don"t use token_type_ids
SCREAMING_SNAKE_CASE : int = self(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : List[str] = self.hparams
for mode in ["train", "dev", "test"]:
SCREAMING_SNAKE_CASE : Any = self._feature_file(_lowerCamelCase )
if os.path.exists(_lowerCamelCase ) and not args.overwrite_cache:
logger.info('''Loading features from cached file %s''' , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.load(_lowerCamelCase )
else:
logger.info('''Creating features from dataset file at %s''' , args.data_dir )
SCREAMING_SNAKE_CASE : Dict = self.token_classification_task.read_examples_from_file(args.data_dir , _lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = self.token_classification_task.convert_examples_to_features(
_lowerCamelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=_lowerCamelCase , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info('''Saving features into cached file %s''' , _lowerCamelCase )
torch.save(_lowerCamelCase , _lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False ) ->DataLoader:
SCREAMING_SNAKE_CASE : Optional[Any] = self._feature_file(_lowerCamelCase )
logger.info('''Loading features from cached file %s''' , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = torch.load(_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
if features[0].token_type_ids is not None:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
else:
SCREAMING_SNAKE_CASE : Dict = torch.tensor([0 for f in features] , dtype=torch.long )
# HACK(we will not use this anymore soon)
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long )
return DataLoader(
TensorDataset(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , batch_size=_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Optional[int]:
"""Compute validation""" ""
SCREAMING_SNAKE_CASE : List[Any] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]}
if self.config.model_type != "distilbert":
SCREAMING_SNAKE_CASE : Optional[Any] = (
batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None
) # XLM and RoBERTa don"t use token_type_ids
SCREAMING_SNAKE_CASE : Optional[int] = self(**_lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = outputs[:2]
SCREAMING_SNAKE_CASE : Optional[Any] = logits.detach().cpu().numpy()
SCREAMING_SNAKE_CASE : Optional[int] = inputs['''labels'''].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict:
SCREAMING_SNAKE_CASE : Optional[int] = torch.stack([x['''val_loss'''] for x in outputs] ).mean()
SCREAMING_SNAKE_CASE : Union[str, Any] = np.concatenate([x['''pred'''] for x in outputs] , axis=0 )
SCREAMING_SNAKE_CASE : str = np.argmax(_lowerCamelCase , axis=2 )
SCREAMING_SNAKE_CASE : Tuple = np.concatenate([x['''target'''] for x in outputs] , axis=0 )
SCREAMING_SNAKE_CASE : Any = dict(enumerate(self.labels ) )
SCREAMING_SNAKE_CASE : int = [[] for _ in range(out_label_ids.shape[0] )]
SCREAMING_SNAKE_CASE : Optional[Any] = [[] for _ in range(out_label_ids.shape[0] )]
for i in range(out_label_ids.shape[0] ):
for j in range(out_label_ids.shape[1] ):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
SCREAMING_SNAKE_CASE : List[Any] = {
'''val_loss''': val_loss_mean,
'''accuracy_score''': accuracy_score(_lowerCamelCase , _lowerCamelCase ),
'''precision''': precision_score(_lowerCamelCase , _lowerCamelCase ),
'''recall''': recall_score(_lowerCamelCase , _lowerCamelCase ),
'''f1''': fa_score(_lowerCamelCase , _lowerCamelCase ),
}
SCREAMING_SNAKE_CASE : Optional[int] = dict(results.items() )
SCREAMING_SNAKE_CASE : Optional[int] = results
return ret, preds_list, out_label_list
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tuple:
# when stable
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self._eval_end(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = ret['''log''']
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tuple:
# updating to test_epoch_end instead of deprecated test_end
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self._eval_end(_lowerCamelCase )
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
SCREAMING_SNAKE_CASE : Any = ret['''log''']
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def __lowerCAmelCase ( _lowerCamelCase , _lowerCamelCase ) ->Dict:
# Add NER specific options
BaseTransformer.add_model_specific_args(_lowerCamelCase , _lowerCamelCase )
parser.add_argument(
'''--task_type''' , default='''NER''' , type=_lowerCamelCase , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' )
parser.add_argument(
'''--max_seq_length''' , default=128 , type=_lowerCamelCase , help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
) , )
parser.add_argument(
'''--labels''' , default='''''' , type=_lowerCamelCase , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , )
parser.add_argument(
'''--gpus''' , default=0 , type=_lowerCamelCase , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , )
parser.add_argument(
'''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' )
return parser
if __name__ == "__main__":
a__ : Tuple = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
a__ : Optional[int] = NERTransformer.add_model_specific_args(parser, os.getcwd())
a__ : int = parser.parse_args()
a__ : Any = NERTransformer(args)
a__ : Any = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
a__ : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True))
a__ : Optional[Any] = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model)
| 19 |
import math
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 )
return exponent == int(a__ )
def UpperCAmelCase_( a__ = 1 / 12_345 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = 0
SCREAMING_SNAKE_CASE : Dict = 0
SCREAMING_SNAKE_CASE : int = 3
while True:
SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4
# if candidate is an integer, then there is a partition for k
if partition_candidate == int(a__ ):
SCREAMING_SNAKE_CASE : List[str] = int(a__ )
total_partitions += 1
if check_partition_perfect(a__ ):
perfect_partitions += 1
if perfect_partitions > 0:
if perfect_partitions / total_partitions < max_proportion:
return int(a__ )
integer += 1
if __name__ == "__main__":
print(F"{solution() = }")
| 19 | 1 |
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[Any] = 'Speech2TextFeatureExtractor'
__SCREAMING_SNAKE_CASE : List[str] = 'Speech2TextTokenizer'
def __init__( self , _lowerCamelCase , _lowerCamelCase ) ->str:
super().__init__(_lowerCamelCase , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extractor
SCREAMING_SNAKE_CASE : List[Any] = False
def __call__( self , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[int]:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*_lowerCamelCase , **_lowerCamelCase )
if "raw_speech" in kwargs:
warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' )
SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop('''raw_speech''' )
else:
SCREAMING_SNAKE_CASE : str = kwargs.pop('''audio''' , _lowerCamelCase )
SCREAMING_SNAKE_CASE : int = kwargs.pop('''sampling_rate''' , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Any = kwargs.pop('''text''' , _lowerCamelCase )
if len(_lowerCamelCase ) > 0:
SCREAMING_SNAKE_CASE : Dict = args[0]
SCREAMING_SNAKE_CASE : Dict = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if audio is not None:
SCREAMING_SNAKE_CASE : int = self.feature_extractor(_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase )
if text is not None:
SCREAMING_SNAKE_CASE : Any = self.tokenizer(_lowerCamelCase , **_lowerCamelCase )
if text is None:
return inputs
elif audio is None:
return encodings
else:
SCREAMING_SNAKE_CASE : List[Any] = encodings['''input_ids''']
return inputs
def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->List[str]:
return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase )
def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Dict:
return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase )
@contextmanager
def __lowerCAmelCase ( self ) ->Optional[Any]:
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your audio inputs, or in a separate call.''' )
SCREAMING_SNAKE_CASE : Any = True
SCREAMING_SNAKE_CASE : str = self.tokenizer
yield
SCREAMING_SNAKE_CASE : int = self.feature_extractor
SCREAMING_SNAKE_CASE : Union[str, Any] = False
| 19 |
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
a__ : Any = TypeVar('''T''')
def UpperCAmelCase_( a__ ):
"""simple docstring"""
return (position - 1) // 2
def UpperCAmelCase_( a__ ):
"""simple docstring"""
return (2 * position) + 1
def UpperCAmelCase_( a__ ):
"""simple docstring"""
return (2 * position) + 2
class a_ ( Generic[T] ):
"""simple docstring"""
def __init__( self ) ->None:
SCREAMING_SNAKE_CASE : list[tuple[T, int]] = []
SCREAMING_SNAKE_CASE : dict[T, int] = {}
SCREAMING_SNAKE_CASE : int = 0
def __len__( self ) ->int:
return self.elements
def __repr__( self ) ->str:
return str(self.heap )
def __lowerCAmelCase ( self ) ->bool:
# Check if the priority queue is empty
return self.elements == 0
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None:
# Add an element with given priority to the queue
self.heap.append((elem, weight) )
SCREAMING_SNAKE_CASE : Tuple = self.elements
self.elements += 1
self._bubble_up(_lowerCamelCase )
def __lowerCAmelCase ( self ) ->T:
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[0]
self._bubble_down(_lowerCamelCase )
return elem
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None:
# Update the weight of the given key
SCREAMING_SNAKE_CASE : List[Any] = self.position_map[elem]
SCREAMING_SNAKE_CASE : Any = (elem, weight)
if position > 0:
SCREAMING_SNAKE_CASE : List[Any] = get_parent_position(_lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(_lowerCamelCase )
else:
self._bubble_down(_lowerCamelCase )
else:
self._bubble_down(_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem]
if curr_pos == 0:
return None
SCREAMING_SNAKE_CASE : str = get_parent_position(_lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.heap[curr_pos]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(_lowerCamelCase , _lowerCamelCase )
return self._bubble_up(_lowerCamelCase )
return None
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[curr_pos]
SCREAMING_SNAKE_CASE : List[str] = get_child_left_position(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = get_child_right_position(_lowerCamelCase )
if child_left_position < self.elements and child_right_position < self.elements:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[child_left_position]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(_lowerCamelCase , _lowerCamelCase )
return self._bubble_down(_lowerCamelCase )
if child_left_position < self.elements:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(_lowerCamelCase , _lowerCamelCase )
return self._bubble_down(_lowerCamelCase )
else:
return None
if child_right_position < self.elements:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(_lowerCamelCase , _lowerCamelCase )
return self._bubble_down(_lowerCamelCase )
return None
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None:
# Swap the nodes at the given positions
SCREAMING_SNAKE_CASE : Optional[int] = self.heap[nodea_pos][0]
SCREAMING_SNAKE_CASE : Any = self.heap[nodea_pos][0]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
SCREAMING_SNAKE_CASE : Optional[int] = nodea_pos
SCREAMING_SNAKE_CASE : List[str] = nodea_pos
class a_ ( Generic[T] ):
"""simple docstring"""
def __init__( self ) ->None:
SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {}
SCREAMING_SNAKE_CASE : int = 0
def __repr__( self ) ->str:
return str(self.connections )
def __len__( self ) ->int:
return self.nodes
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
# Add a node in the graph if it is not in the graph
if node not in self.connections:
SCREAMING_SNAKE_CASE : Any = {}
self.nodes += 1
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None:
# Add an edge between 2 nodes in the graph
self.add_node(_lowerCamelCase )
self.add_node(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = weight
SCREAMING_SNAKE_CASE : str = weight
def UpperCAmelCase_( a__ , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : dict[T, int] = {node: maxsize for node in graph.connections}
SCREAMING_SNAKE_CASE : dict[T, T | None] = {node: None for node in graph.connections}
SCREAMING_SNAKE_CASE : MinPriorityQueue[T] = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(a__ , a__ )
if priority_queue.is_empty():
return dist, parent
# initialization
SCREAMING_SNAKE_CASE : List[Any] = priority_queue.extract_min()
SCREAMING_SNAKE_CASE : Union[str, Any] = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
SCREAMING_SNAKE_CASE : Any = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(a__ , dist[neighbour] )
SCREAMING_SNAKE_CASE : str = node
# running prim's algorithm
while not priority_queue.is_empty():
SCREAMING_SNAKE_CASE : List[str] = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
SCREAMING_SNAKE_CASE : List[Any] = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(a__ , dist[neighbour] )
SCREAMING_SNAKE_CASE : str = node
return dist, parent
| 19 | 1 |
import io
import json
import unittest
from parameterized import parameterized
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device
from utils import calculate_bleu
a__ : str = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json'''
with io.open(filename, '''r''', encoding='''utf-8''') as f:
a__ : Optional[Any] = json.load(f)
@require_torch
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]:
return FSMTTokenizer.from_pretrained(_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tuple:
SCREAMING_SNAKE_CASE : Dict = FSMTForConditionalGeneration.from_pretrained(_lowerCamelCase ).to(_lowerCamelCase )
if torch_device == "cuda":
model.half()
return model
@parameterized.expand(
[
['''en-ru''', 2_6.0],
['''ru-en''', 2_2.0],
['''en-de''', 2_2.0],
['''de-en''', 2_9.0],
] )
@slow
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->str:
# note: this test is not testing the best performance since it only evals a small batch
# but it should be enough to detect a regression in the output quality
SCREAMING_SNAKE_CASE : List[str] = F"""facebook/wmt19-{pair}"""
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = self.get_model(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = bleu_data[pair]['''src''']
SCREAMING_SNAKE_CASE : Dict = bleu_data[pair]['''tgt''']
SCREAMING_SNAKE_CASE : Tuple = tokenizer(_lowerCamelCase , return_tensors='''pt''' , truncation=_lowerCamelCase , padding='''longest''' ).to(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = model.generate(
input_ids=batch.input_ids , num_beams=8 , )
SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(
_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = calculate_bleu(_lowerCamelCase , _lowerCamelCase )
print(_lowerCamelCase )
self.assertGreaterEqual(scores['''bleu'''] , _lowerCamelCase )
| 19 |
from math import pi, sqrt, tan
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if side_length < 0:
raise ValueError('''surface_area_cube() only accepts non-negative values''' )
return 6 * side_length**2
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if length < 0 or breadth < 0 or height < 0:
raise ValueError('''surface_area_cuboid() only accepts non-negative values''' )
return 2 * ((length * breadth) + (breadth * height) + (length * height))
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if radius < 0:
raise ValueError('''surface_area_sphere() only accepts non-negative values''' )
return 4 * pi * radius**2
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if radius < 0:
raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' )
return 3 * pi * radius**2
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if radius < 0 or height < 0:
raise ValueError('''surface_area_cone() only accepts non-negative values''' )
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if radius_a < 0 or radius_a < 0 or height < 0:
raise ValueError(
'''surface_area_conical_frustum() only accepts non-negative values''' )
SCREAMING_SNAKE_CASE : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5
return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2)
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if radius < 0 or height < 0:
raise ValueError('''surface_area_cylinder() only accepts non-negative values''' )
return 2 * pi * radius * (height + radius)
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if torus_radius < 0 or tube_radius < 0:
raise ValueError('''surface_area_torus() only accepts non-negative values''' )
if torus_radius < tube_radius:
raise ValueError(
'''surface_area_torus() does not support spindle or self intersecting tori''' )
return 4 * pow(a__ , 2 ) * torus_radius * tube_radius
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if length < 0 or width < 0:
raise ValueError('''area_rectangle() only accepts non-negative values''' )
return length * width
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if side_length < 0:
raise ValueError('''area_square() only accepts non-negative values''' )
return side_length**2
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if base < 0 or height < 0:
raise ValueError('''area_triangle() only accepts non-negative values''' )
return (base * height) / 2
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if sidea < 0 or sidea < 0 or sidea < 0:
raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' )
elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea:
raise ValueError('''Given three sides do not form a triangle''' )
SCREAMING_SNAKE_CASE : int = (sidea + sidea + sidea) / 2
SCREAMING_SNAKE_CASE : List[str] = sqrt(
semi_perimeter
* (semi_perimeter - sidea)
* (semi_perimeter - sidea)
* (semi_perimeter - sidea) )
return area
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if base < 0 or height < 0:
raise ValueError('''area_parallelogram() only accepts non-negative values''' )
return base * height
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if basea < 0 or basea < 0 or height < 0:
raise ValueError('''area_trapezium() only accepts non-negative values''' )
return 1 / 2 * (basea + basea) * height
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if radius < 0:
raise ValueError('''area_circle() only accepts non-negative values''' )
return pi * radius**2
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if radius_x < 0 or radius_y < 0:
raise ValueError('''area_ellipse() only accepts non-negative values''' )
return pi * radius_x * radius_y
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if diagonal_a < 0 or diagonal_a < 0:
raise ValueError('''area_rhombus() only accepts non-negative values''' )
return 1 / 2 * diagonal_a * diagonal_a
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if not isinstance(a__ , a__ ) or sides < 3:
raise ValueError(
'''area_reg_polygon() only accepts integers greater than or \
equal to three as number of sides''' )
elif length < 0:
raise ValueError(
'''area_reg_polygon() only accepts non-negative values as \
length of a side''' )
return (sides * length**2) / (4 * tan(pi / sides ))
return (sides * length**2) / (4 * tan(pi / sides ))
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) # verbose so we can see methods missing tests
print('''[DEMO] Areas of various geometric shapes: \n''')
print(F"Rectangle: {area_rectangle(10, 20) = }")
print(F"Square: {area_square(10) = }")
print(F"Triangle: {area_triangle(10, 10) = }")
print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }")
print(F"Parallelogram: {area_parallelogram(10, 20) = }")
print(F"Rhombus: {area_rhombus(10, 20) = }")
print(F"Trapezium: {area_trapezium(10, 20, 30) = }")
print(F"Circle: {area_circle(20) = }")
print(F"Ellipse: {area_ellipse(10, 20) = }")
print('''\nSurface Areas of various geometric shapes: \n''')
print(F"Cube: {surface_area_cube(20) = }")
print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }")
print(F"Sphere: {surface_area_sphere(20) = }")
print(F"Hemisphere: {surface_area_hemisphere(20) = }")
print(F"Cone: {surface_area_cone(10, 20) = }")
print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }")
print(F"Cylinder: {surface_area_cylinder(10, 20) = }")
print(F"Torus: {surface_area_torus(20, 10) = }")
print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }")
print(F"Square: {area_reg_polygon(4, 10) = }")
print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
| 19 | 1 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing the experiment tracking capability,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
a__ : Dict = 16
a__ : str = 32
def UpperCAmelCase_( a__ , a__ = 16 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained('''bert-base-cased''' )
SCREAMING_SNAKE_CASE : Optional[int] = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(a__ ):
# max_length=None => use the model max length (it's actually the default)
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=a__ , max_length=a__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
SCREAMING_SNAKE_CASE : Union[str, Any] = datasets.map(
a__ , batched=a__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(a__ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
SCREAMING_SNAKE_CASE : List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
SCREAMING_SNAKE_CASE : List[Any] = 16
elif accelerator.mixed_precision != "no":
SCREAMING_SNAKE_CASE : Optional[int] = 8
else:
SCREAMING_SNAKE_CASE : Optional[Any] = None
return tokenizer.pad(
a__ , padding='''longest''' , max_length=a__ , pad_to_multiple_of=a__ , return_tensors='''pt''' , )
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE : List[str] = DataLoader(
tokenized_datasets['''train'''] , shuffle=a__ , collate_fn=a__ , batch_size=a__ )
SCREAMING_SNAKE_CASE : Tuple = DataLoader(
tokenized_datasets['''validation'''] , shuffle=a__ , collate_fn=a__ , batch_size=a__ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
a__ : List[str] = mocked_dataloaders # noqa: F811
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , a__ ) == "1":
SCREAMING_SNAKE_CASE : List[Any] = 2
# Initialize Accelerator
# New Code #
# We pass in "all" to `log_with` to grab all available trackers in the environment
# Note: If using a custom `Tracker` class, should be passed in here such as:
# >>> log_with = ["all", MyCustomTrackerClassInstance()]
if args.with_tracking:
SCREAMING_SNAKE_CASE : Dict = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir )
else:
SCREAMING_SNAKE_CASE : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
SCREAMING_SNAKE_CASE : str = config['''lr''']
SCREAMING_SNAKE_CASE : Optional[int] = int(config['''num_epochs'''] )
SCREAMING_SNAKE_CASE : Union[str, Any] = int(config['''seed'''] )
SCREAMING_SNAKE_CASE : int = int(config['''batch_size'''] )
set_seed(a__ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = get_dataloaders(a__ , a__ )
SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' )
# If the batch size is too big we use gradient accumulation
SCREAMING_SNAKE_CASE : List[Any] = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
SCREAMING_SNAKE_CASE : Tuple = batch_size // MAX_GPU_BATCH_SIZE
SCREAMING_SNAKE_CASE : Dict = MAX_GPU_BATCH_SIZE
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
SCREAMING_SNAKE_CASE : Dict = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=a__ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
SCREAMING_SNAKE_CASE : List[str] = model.to(accelerator.device )
# Instantiate optimizer
SCREAMING_SNAKE_CASE : Any = AdamW(params=model.parameters() , lr=a__ )
# Instantiate scheduler
SCREAMING_SNAKE_CASE : Any = get_linear_schedule_with_warmup(
optimizer=a__ , num_warmup_steps=100 , num_training_steps=(len(a__ ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(
a__ , a__ , a__ , a__ , a__ )
# New Code #
# We need to initialize the trackers we use. Overall configurations can also be stored
if args.with_tracking:
SCREAMING_SNAKE_CASE : str = os.path.split(a__ )[-1].split('''.''' )[0]
accelerator.init_trackers(a__ , a__ )
# Now we train the model
for epoch in range(a__ ):
model.train()
# New Code #
# For our tracking example, we will log the total loss of each epoch
if args.with_tracking:
SCREAMING_SNAKE_CASE : Dict = 0
for step, batch in enumerate(a__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
SCREAMING_SNAKE_CASE : Any = model(**a__ )
SCREAMING_SNAKE_CASE : int = outputs.loss
# New Code #
if args.with_tracking:
total_loss += loss.detach().float()
SCREAMING_SNAKE_CASE : Any = loss / gradient_accumulation_steps
accelerator.backward(a__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(a__ ):
# We could avoid this line since we set the accelerator with `device_placement=True` (the default).
batch.to(accelerator.device )
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[str] = model(**a__ )
SCREAMING_SNAKE_CASE : Dict = outputs.logits.argmax(dim=-1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=a__ , references=a__ , )
SCREAMING_SNAKE_CASE : List[Any] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}:""" , a__ )
# New Code #
# To actually log, we call `Accelerator.log`
# The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int`
if args.with_tracking:
accelerator.log(
{
'''accuracy''': eval_metric['''accuracy'''],
'''f1''': eval_metric['''f1'''],
'''train_loss''': total_loss.item() / len(a__ ),
'''epoch''': epoch,
} , step=a__ , )
# New Code #
# When a run is finished, you should call `accelerator.end_training()`
# to close all of the open trackers
if args.with_tracking:
accelerator.end_training()
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=a__ , default=a__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
parser.add_argument(
'''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , )
parser.add_argument(
'''--project_dir''' , type=a__ , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , )
SCREAMING_SNAKE_CASE : Any = parser.parse_args()
SCREAMING_SNAKE_CASE : Union[str, Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(a__ , a__ )
if __name__ == "__main__":
main()
| 19 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
a__ : List[str] = None
a__ : Any = logging.get_logger(__name__)
a__ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
a__ : Dict = {
'''vocab_file''': {
'''facebook/mbart-large-en-ro''': (
'''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model'''
),
'''facebook/mbart-large-cc25''': (
'''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model'''
),
},
'''tokenizer_file''': {
'''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''',
'''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''',
},
}
a__ : str = {
'''facebook/mbart-large-en-ro''': 1_024,
'''facebook/mbart-large-cc25''': 1_024,
}
# fmt: off
a__ : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''']
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask']
__SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer
__SCREAMING_SNAKE_CASE : List[int] = []
__SCREAMING_SNAKE_CASE : List[int] = []
def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->List[Any]:
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token
super().__init__(
vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , )
SCREAMING_SNAKE_CASE : Any = vocab_file
SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True
SCREAMING_SNAKE_CASE : Any = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
SCREAMING_SNAKE_CASE : int = {
lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX'''
SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang )
SCREAMING_SNAKE_CASE : List[Any] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def __lowerCAmelCase ( self ) ->str:
return self._src_lang
@src_lang.setter
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
SCREAMING_SNAKE_CASE : str = [self.sep_token_id]
SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]:
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang
SCREAMING_SNAKE_CASE : List[str] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = tgt_lang_id
return inputs
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ) ->BatchEncoding:
SCREAMING_SNAKE_CASE : List[str] = src_lang
SCREAMING_SNAKE_CASE : List[str] = tgt_lang
return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase )
def __lowerCAmelCase ( self ) ->Dict:
return self.set_src_lang_special_tokens(self.src_lang )
def __lowerCAmelCase ( self ) ->List[Any]:
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = []
SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code]
SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens )
SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens )
SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
SCREAMING_SNAKE_CASE : str = self.convert_tokens_to_ids(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = []
SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code]
SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens )
SCREAMING_SNAKE_CASE : Any = self.convert_ids_to_tokens(self.suffix_tokens )
SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(_lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" )
return
SCREAMING_SNAKE_CASE : List[Any] = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ):
copyfile(self.vocab_file , _lowerCamelCase )
return (out_vocab_file,)
| 19 | 1 |
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''):
a__ : Optional[Any] = {
'''linear''': PIL.Image.Resampling.BILINEAR,
'''bilinear''': PIL.Image.Resampling.BILINEAR,
'''bicubic''': PIL.Image.Resampling.BICUBIC,
'''lanczos''': PIL.Image.Resampling.LANCZOS,
'''nearest''': PIL.Image.Resampling.NEAREST,
}
else:
a__ : List[Any] = {
'''linear''': PIL.Image.LINEAR,
'''bilinear''': PIL.Image.BILINEAR,
'''bicubic''': PIL.Image.BICUBIC,
'''lanczos''': PIL.Image.LANCZOS,
'''nearest''': PIL.Image.NEAREST,
}
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = (images / 2 + 0.5).clamp(0 , 1 )
SCREAMING_SNAKE_CASE : Tuple = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
SCREAMING_SNAKE_CASE : List[str] = numpy_to_pil(a__ )
return images
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if images.ndim == 3:
SCREAMING_SNAKE_CASE : str = images[None, ...]
SCREAMING_SNAKE_CASE : List[Any] = (images * 255).round().astype('''uint8''' )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
SCREAMING_SNAKE_CASE : List[Any] = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images]
else:
SCREAMING_SNAKE_CASE : Dict = [Image.fromarray(a__ ) for image in images]
return pil_images
| 19 |
import torch
from torch import nn
from transformers import CLIPPreTrainedModel, CLIPVisionModel
from ...models.attention import BasicTransformerBlock
from ...utils import logging
a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]:
super().__init__(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = proj_size
SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size )
SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size )
# uncondition for scaling
SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int:
SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output
SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] )
SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase )
if return_uncond_vector:
return latent_states, self.uncond_vector
return latent_states
class a_ ( nn.Module ):
"""simple docstring"""
def __init__( self , _lowerCamelCase ) ->List[str]:
super().__init__()
SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5
SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size
SCREAMING_SNAKE_CASE : Dict = 1
SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList(
[
BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase )
for _ in range(_lowerCamelCase )
] )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
for block in self.blocks:
SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase )
return hidden_states
| 19 | 1 |
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 19 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a__ : Tuple = '''▁'''
a__ : List[Any] = {'''vocab_file''': '''spiece.model'''}
a__ : Optional[Any] = {
'''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''}
}
a__ : str = {
'''google/pegasus-xsum''': 512,
}
a__ : str = logging.get_logger(__name__)
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask']
def __init__( self , _lowerCamelCase , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<mask_2>" , _lowerCamelCase="<mask_1>" , _lowerCamelCase=None , _lowerCamelCase=103 , _lowerCamelCase = None , **_lowerCamelCase , ) ->None:
SCREAMING_SNAKE_CASE : Dict = offset
if additional_special_tokens is not None:
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise TypeError(
F"""additional_special_tokens should be of type {type(_lowerCamelCase )}, but is"""
F""" {type(_lowerCamelCase )}""" )
SCREAMING_SNAKE_CASE : List[Any] = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
F"""<unk_{i}>""" for i in range(len(_lowerCamelCase ) , self.offset - 1 )
]
if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ):
raise ValueError(
'''Please make sure that the provided additional_special_tokens do not contain an incorrectly'''
F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" )
SCREAMING_SNAKE_CASE : Dict = additional_special_tokens_extended
else:
SCREAMING_SNAKE_CASE : str = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )]
SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , )
SCREAMING_SNAKE_CASE : List[str] = mask_token_sent
SCREAMING_SNAKE_CASE : Optional[int] = vocab_file
SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCamelCase )
# add special tokens to encoder dict
SCREAMING_SNAKE_CASE : Dict[int, str] = {
0: self.pad_token,
1: self.eos_token,
}
if self.mask_token_sent is not None:
self.encoder.update(
{
2: self.mask_token_sent,
3: self.mask_token,
} )
if self.offset > 0:
# entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102
# mask_token_sent is already added to list -> so start at 1
self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} )
SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()}
@property
def __lowerCAmelCase ( self ) ->int:
return len(self.sp_model ) + self.offset
def __lowerCAmelCase ( self ) ->Dict[str, int]:
SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy()
SCREAMING_SNAKE_CASE : str = None
return state
def __setstate__( self , _lowerCamelCase ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Optional[Any] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
SCREAMING_SNAKE_CASE : List[str] = {}
SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]:
return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
if token in self.decoder:
return self.decoder[token]
elif token in self.added_tokens_decoder:
return self.added_tokens_decoder[token]
SCREAMING_SNAKE_CASE : List[str] = self.sp_model.piece_to_id(_lowerCamelCase )
return sp_id + self.offset
def __lowerCAmelCase ( self , _lowerCamelCase ) ->str:
if index in self.encoder:
return self.encoder[index]
elif index in self.added_tokens_encoder:
return self.added_tokens_encoder[index]
else:
SCREAMING_SNAKE_CASE : Dict = self.sp_model.IdToPiece(index - self.offset )
return token
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Dict = []
SCREAMING_SNAKE_CASE : int = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(_lowerCamelCase ) + token
SCREAMING_SNAKE_CASE : Optional[Any] = []
else:
current_sub_tokens.append(_lowerCamelCase )
out_string += self.sp_model.decode(_lowerCamelCase )
return out_string.strip()
def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->str:
return 1
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
SCREAMING_SNAKE_CASE : Dict = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
return [1 if x in all_special_ids else 0 for x in seq]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]:
if already_has_special_tokens:
return self._special_token_mask(_lowerCamelCase )
elif token_ids_a is None:
return self._special_token_mask(_lowerCamelCase ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]:
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
if not os.path.isdir(_lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
SCREAMING_SNAKE_CASE : int = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _lowerCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCamelCase , '''wb''' ) as fi:
SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto()
fi.write(_lowerCamelCase )
return (out_vocab_file,)
| 19 | 1 |
import importlib
import shutil
import threading
import warnings
from typing import List
import fsspec
import fsspec.asyn
from . import compression
from .hffilesystem import HfFileSystem
a__ : Optional[int] = importlib.util.find_spec('''s3fs''') is not None
if _has_safs:
from .safilesystem import SaFileSystem # noqa: F401
a__ : List[compression.BaseCompressedFileFileSystem] = [
compression.BzaFileSystem,
compression.GzipFileSystem,
compression.LzaFileSystem,
compression.XzFileSystem,
compression.ZstdFileSystem,
]
# Register custom filesystems
for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]:
if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class:
warnings.warn(F"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.")
fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True)
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if "://" in dataset_path:
SCREAMING_SNAKE_CASE : Union[str, Any] = dataset_path.split('''://''' )[1]
return dataset_path
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if fs is not None and fs.protocol != "file":
return True
else:
return False
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = not is_remote_filesystem(a__ )
if is_local:
# LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory
shutil.move(fs._strip_protocol(a__ ) , fs._strip_protocol(a__ ) )
else:
fs.mv(a__ , a__ , recursive=a__ )
def UpperCAmelCase_( ):
"""simple docstring"""
if hasattr(fsspec.asyn , '''reset_lock''' ):
# for future fsspec>2022.05.0
fsspec.asyn.reset_lock()
else:
SCREAMING_SNAKE_CASE : List[Any] = None
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : int = threading.Lock()
| 19 |
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
SCREAMING_SNAKE_CASE : Tuple = 1
SCREAMING_SNAKE_CASE : Tuple = 1
while repunit:
SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def UpperCAmelCase_( a__ = 1_000_000 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(a__ ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(F"{solution() = }")
| 19 | 1 |
import qiskit
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = qiskit.Aer.get_backend('''aer_simulator''' )
# Create a Quantum Circuit acting on the q register
SCREAMING_SNAKE_CASE : str = qiskit.QuantumCircuit(a__ , a__ )
# Map the quantum measurement to the classical bits
circuit.measure([0] , [0] )
# Execute the circuit on the simulator
SCREAMING_SNAKE_CASE : Any = qiskit.execute(a__ , a__ , shots=1_000 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(a__ )
if __name__ == "__main__":
print(F"Total count for various states are: {single_qubit_measure(1, 1)}")
| 19 |
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class a_ :
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict:
SCREAMING_SNAKE_CASE : Any = parent
SCREAMING_SNAKE_CASE : Optional[Any] = batch_size
SCREAMING_SNAKE_CASE : Optional[Any] = image_size
SCREAMING_SNAKE_CASE : str = num_channels
SCREAMING_SNAKE_CASE : Any = num_stages
SCREAMING_SNAKE_CASE : List[str] = hidden_sizes
SCREAMING_SNAKE_CASE : Optional[Any] = depths
SCREAMING_SNAKE_CASE : Any = is_training
SCREAMING_SNAKE_CASE : Tuple = use_labels
SCREAMING_SNAKE_CASE : Any = intermediate_size
SCREAMING_SNAKE_CASE : Dict = hidden_act
SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size
SCREAMING_SNAKE_CASE : str = initializer_range
SCREAMING_SNAKE_CASE : int = out_features
SCREAMING_SNAKE_CASE : List[str] = num_labels
SCREAMING_SNAKE_CASE : int = scope
SCREAMING_SNAKE_CASE : Optional[Any] = num_stages
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : str = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def __lowerCAmelCase ( self ) ->List[Any]:
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def __lowerCAmelCase ( self ) ->Any:
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any:
SCREAMING_SNAKE_CASE : List[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : Tuple = config_and_inputs
SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class a_ ( a__ , a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
__SCREAMING_SNAKE_CASE : List[str] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {}
__SCREAMING_SNAKE_CASE : Tuple = False
__SCREAMING_SNAKE_CASE : Union[str, Any] = False
__SCREAMING_SNAKE_CASE : Any = False
__SCREAMING_SNAKE_CASE : Tuple = False
__SCREAMING_SNAKE_CASE : Dict = False
__SCREAMING_SNAKE_CASE : Any = False
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : Optional[Any] = UperNetModelTester(self )
SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 )
def __lowerCAmelCase ( self ) ->str:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __lowerCAmelCase ( self ) ->str:
return
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase )
@unittest.skip(reason='''UperNet does not use inputs_embeds''' )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
pass
@unittest.skip(reason='''UperNet does not support input and output embeddings''' )
def __lowerCAmelCase ( self ) ->int:
pass
@unittest.skip(reason='''UperNet does not have a base model''' )
def __lowerCAmelCase ( self ) ->int:
pass
@unittest.skip(reason='''UperNet does not have a base model''' )
def __lowerCAmelCase ( self ) ->str:
pass
@require_torch_multi_gpu
@unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' )
def __lowerCAmelCase ( self ) ->str:
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __lowerCAmelCase ( self ) ->Tuple:
pass
def __lowerCAmelCase ( self ) ->int:
def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) )
SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_stages
self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Optional[int] = True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : Union[str, Any] = True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE : str = _config_zero_init(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : int = model_class(config=_lowerCamelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip(reason='''UperNet does not have tied weights''' )
def __lowerCAmelCase ( self ) ->List[Any]:
pass
@slow
def __lowerCAmelCase ( self ) ->List[Any]:
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download(
repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' )
SCREAMING_SNAKE_CASE : Any = Image.open(a__ ).convert('''RGB''' )
return image
@require_torch
@require_vision
@slow
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' )
SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = prepare_img()
SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(
[[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
def __lowerCAmelCase ( self ) ->int:
SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' )
SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = prepare_img()
SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase )
with torch.no_grad():
SCREAMING_SNAKE_CASE : str = model(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
| 19 | 1 |
import copy
import tempfile
import unittest
from transformers import MaMaaaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer
from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder
def UpperCAmelCase_( a__ , a__ , a__ , a__=None , a__=None , a__=None , a__=None , a__=None , ):
"""simple docstring"""
if attention_mask is None:
SCREAMING_SNAKE_CASE : Dict = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
SCREAMING_SNAKE_CASE : List[Any] = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
SCREAMING_SNAKE_CASE : int = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=a__ )
if decoder_head_mask is None:
SCREAMING_SNAKE_CASE : Dict = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=a__ )
if cross_attn_head_mask is None:
SCREAMING_SNAKE_CASE : Optional[int] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=a__ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class a_ :
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=99 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase="relu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=20 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : List[str] = parent
SCREAMING_SNAKE_CASE : Optional[int] = batch_size
SCREAMING_SNAKE_CASE : Optional[int] = seq_length
SCREAMING_SNAKE_CASE : Tuple = is_training
SCREAMING_SNAKE_CASE : List[Any] = use_labels
SCREAMING_SNAKE_CASE : Any = vocab_size
SCREAMING_SNAKE_CASE : int = hidden_size
SCREAMING_SNAKE_CASE : str = num_hidden_layers
SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads
SCREAMING_SNAKE_CASE : str = intermediate_size
SCREAMING_SNAKE_CASE : int = hidden_act
SCREAMING_SNAKE_CASE : str = hidden_dropout_prob
SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : str = encoder_layerdrop
SCREAMING_SNAKE_CASE : Any = decoder_layerdrop
SCREAMING_SNAKE_CASE : str = max_position_embeddings
SCREAMING_SNAKE_CASE : Any = eos_token_id
SCREAMING_SNAKE_CASE : int = pad_token_id
SCREAMING_SNAKE_CASE : str = bos_token_id
def __lowerCAmelCase ( self ) ->List[Any]:
SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE : int = self.eos_token_id # Eos Token
SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for M2M100 the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
SCREAMING_SNAKE_CASE : List[str] = input_ids.clamp(self.pad_token_id + 1 )
SCREAMING_SNAKE_CASE : int = decoder_input_ids.clamp(self.pad_token_id + 1 )
SCREAMING_SNAKE_CASE : Tuple = self.get_config()
SCREAMING_SNAKE_CASE : str = prepare_mam_aaa_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
return config, inputs_dict
def __lowerCAmelCase ( self ) ->Union[str, Any]:
return MaMaaaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , )
def __lowerCAmelCase ( self ) ->List[str]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs()
return config, inputs_dict
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict:
SCREAMING_SNAKE_CASE : Optional[Any] = MaMaaaModel(config=_lowerCamelCase ).get_decoder().to(_lowerCamelCase ).eval()
SCREAMING_SNAKE_CASE : int = inputs_dict['''input_ids''']
SCREAMING_SNAKE_CASE : str = inputs_dict['''attention_mask''']
SCREAMING_SNAKE_CASE : int = inputs_dict['''head_mask''']
# first forward pass
SCREAMING_SNAKE_CASE : Optional[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase , use_cache=_lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size )
SCREAMING_SNAKE_CASE : List[Any] = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
SCREAMING_SNAKE_CASE : str = model(_lowerCamelCase , attention_mask=_lowerCamelCase )['''last_hidden_state''']
SCREAMING_SNAKE_CASE : Dict = model(_lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase )[
'''last_hidden_state'''
]
# select random slice
SCREAMING_SNAKE_CASE : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
SCREAMING_SNAKE_CASE : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach()
SCREAMING_SNAKE_CASE : Optional[Any] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-2 ) )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Optional[int]:
SCREAMING_SNAKE_CASE : List[Any] = MaMaaaModel(config=_lowerCamelCase ).to(_lowerCamelCase ).eval()
SCREAMING_SNAKE_CASE : Tuple = model(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Any = outputs.encoder_last_hidden_state
SCREAMING_SNAKE_CASE : Optional[int] = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
SCREAMING_SNAKE_CASE : str = model.get_encoder()
encoder.save_pretrained(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = MaMaaaEncoder.from_pretrained(_lowerCamelCase ).to(_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = encoder(inputs_dict['''input_ids'''] , attention_mask=inputs_dict['''attention_mask'''] )[
0
]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
with tempfile.TemporaryDirectory() as tmpdirname:
SCREAMING_SNAKE_CASE : List[Any] = model.get_decoder()
decoder.save_pretrained(_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = MaMaaaDecoder.from_pretrained(_lowerCamelCase ).to(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = decoder(
input_ids=inputs_dict['''decoder_input_ids'''] , attention_mask=inputs_dict['''decoder_attention_mask'''] , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=inputs_dict['''attention_mask'''] , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class a_ ( a__ , a__ , a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Union[str, Any] = (
(
MaMaaaModel,
MaMaaaForConditionalGeneration,
)
if is_torch_available()
else ()
)
__SCREAMING_SNAKE_CASE : Any = (MaMaaaForConditionalGeneration,) if is_torch_available() else ()
__SCREAMING_SNAKE_CASE : Optional[int] = (
{
'conversational': MaMaaaForConditionalGeneration,
'feature-extraction': MaMaaaModel,
'summarization': MaMaaaForConditionalGeneration,
'text2text-generation': MaMaaaForConditionalGeneration,
'translation': MaMaaaForConditionalGeneration,
}
if is_torch_available()
else {}
)
__SCREAMING_SNAKE_CASE : str = True
__SCREAMING_SNAKE_CASE : int = True
__SCREAMING_SNAKE_CASE : Any = False
__SCREAMING_SNAKE_CASE : int = False
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->str:
if pipeline_test_casse_name == "TranslationPipelineTests":
# Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`.
# `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer.
return True
return False
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : Dict = MaMaaaModelTester(self )
SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=_lowerCamelCase )
def __lowerCAmelCase ( self ) ->Tuple:
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self ) ->str:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Dict = model_class(_lowerCamelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = model_class.from_pretrained(_lowerCamelCase , output_loading_info=_lowerCamelCase )
self.assertEqual(info['''missing_keys'''] , [] )
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*_lowerCamelCase )
def __lowerCAmelCase ( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*_lowerCamelCase )
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration):
SCREAMING_SNAKE_CASE : Any = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) )
if not self.is_encoder_decoder:
SCREAMING_SNAKE_CASE : int = inputs['''input_ids''']
del inputs["input_ids"]
else:
SCREAMING_SNAKE_CASE : int = inputs['''input_ids''']
SCREAMING_SNAKE_CASE : int = inputs.get('''decoder_input_ids''' , _lowerCamelCase )
del inputs["input_ids"]
inputs.pop('''decoder_input_ids''' , _lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = model.get_input_embeddings()
if not self.is_encoder_decoder:
SCREAMING_SNAKE_CASE : Optional[Any] = wte(_lowerCamelCase )
else:
SCREAMING_SNAKE_CASE : List[str] = wte(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = wte(_lowerCamelCase )
with torch.no_grad():
model(**_lowerCamelCase )[0]
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE : Optional[int] = input_dict['''input_ids''']
SCREAMING_SNAKE_CASE : Tuple = input_ids.ne(1 ).to(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = MaMaaaForConditionalGeneration(_lowerCamelCase ).eval().to(_lowerCamelCase )
if torch_device == "cuda":
model.half()
model.generate(_lowerCamelCase , attention_mask=_lowerCamelCase )
model.generate(num_beams=4 , do_sample=_lowerCamelCase , early_stopping=_lowerCamelCase , num_return_sequences=3 )
def UpperCAmelCase_( a__ ):
"""simple docstring"""
return torch.tensor(a__ , dtype=torch.long , device=a__ )
a__ : Optional[int] = 1E-4
@require_torch
@require_sentencepiece
@require_tokenizers
@slow
class a_ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __lowerCAmelCase ( self ) ->Any:
return MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' )
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : List[str] = MaMaaaModel.from_pretrained('''facebook/m2m100_418M''' ).to(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] )
SCREAMING_SNAKE_CASE : Any = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] )
SCREAMING_SNAKE_CASE : int = prepare_mam_aaa_inputs_dict(model.config , _lowerCamelCase , _lowerCamelCase )
with torch.no_grad():
SCREAMING_SNAKE_CASE : str = model(**_lowerCamelCase )[0]
SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, 11, 1024) )
self.assertEqual(output.shape , _lowerCamelCase )
# change to expected output here
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(
[[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=_lowerCamelCase )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) )
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : Tuple = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(_lowerCamelCase )
# change to intended input
SCREAMING_SNAKE_CASE : List[Any] = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] )
SCREAMING_SNAKE_CASE : Optional[int] = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] )
SCREAMING_SNAKE_CASE : Any = prepare_mam_aaa_inputs_dict(model.config , _lowerCamelCase , _lowerCamelCase )
with torch.no_grad():
SCREAMING_SNAKE_CASE : int = model(**_lowerCamelCase )[0]
SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, 11, model.config.vocab_size) )
self.assertEqual(output.shape , _lowerCamelCase )
# change to expected output here
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(
[[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=_lowerCamelCase )
self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) )
def __lowerCAmelCase ( self ) ->List[Any]:
SCREAMING_SNAKE_CASE : List[str] = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' , src_lang='''fr''' , tgt_lang='''en''' )
SCREAMING_SNAKE_CASE : str = [
'''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''',
'''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''',
'''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent'''
''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de'''
''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''',
]
# The below article tests that we don't add any hypotheses outside of the top n_beams
SCREAMING_SNAKE_CASE : List[str] = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , return_tensors='''pt''' )
SCREAMING_SNAKE_CASE : str = model.generate(
input_ids=dct['''input_ids'''].to(_lowerCamelCase ) , attention_mask=dct['''attention_mask'''].to(_lowerCamelCase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('''en''' ) , )
SCREAMING_SNAKE_CASE : Dict = [
'''The NSA case highlights the total absence of intelligence debate''',
'''I think there are two levels of response from the French government.''',
'''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.'''
''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all'''
''' communications in France.''',
]
SCREAMING_SNAKE_CASE : int = tokenizer.batch_decode(
hypotheses_batch.tolist() , clean_up_tokenization_spaces=_lowerCamelCase , skip_special_tokens=_lowerCamelCase )
assert generated == expected_en
| 19 |
import datasets
from .evaluate import evaluate
a__ : Dict = '''\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
'''
a__ : List[str] = '''
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
'''
a__ : List[Any] = '''
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- \'id\': id of the question-answer pair as given in the references (see below)
- \'prediction_text\': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- \'id\': id of the question-answer pair (see above),
- \'answers\': a Dict in the CUAD dataset format
{
\'text\': list of possible texts for the answer, as a list of strings
\'answer_start\': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
\'exact_match\': Exact match (the normalized answer exactly match the gold answer)
\'f1\': The F-score of predicted tokens versus the gold answer
\'aupr\': Area Under the Precision-Recall curve
\'prec_at_80_recall\': Precision at 80% recall
\'prec_at_90_recall\': Precision at 90% recall
Examples:
>>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]
>>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]
>>> cuad_metric = datasets.load_metric("cuad")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Tuple:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': {
'''id''': datasets.Value('''string''' ),
'''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ),
},
'''references''': {
'''id''': datasets.Value('''string''' ),
'''answers''': datasets.features.Sequence(
{
'''text''': datasets.Value('''string''' ),
'''answer_start''': datasets.Value('''int32''' ),
} ),
},
} ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple:
SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions}
SCREAMING_SNAKE_CASE : int = [
{
'''paragraphs''': [
{
'''qas''': [
{
'''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']],
'''id''': ref['''id'''],
}
for ref in references
]
}
]
}
]
SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase )
return score
| 19 | 1 |
import random
def UpperCAmelCase_( a__ , a__ , a__ = False ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : dict = {i: [] for i in range(a__ )}
# if probability is greater or equal than 1, then generate a complete graph
if probability >= 1:
return complete_graph(a__ )
# if probability is lower or equal than 0, then return a graph without edges
if probability <= 0:
return graph
# for each couple of nodes, add an edge from u to v
# if the number randomly generated is greater than probability probability
for i in range(a__ ):
for j in range(i + 1 , a__ ):
if random.random() < probability:
graph[i].append(a__ )
if not directed:
# if the graph is undirected, add an edge in from j to i, either
graph[j].append(a__ )
return graph
def UpperCAmelCase_( a__ ):
"""simple docstring"""
return {
i: [j for j in range(a__ ) if i != j] for i in range(a__ )
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 19 |
from sklearn.metrics import matthews_corrcoef
import datasets
a__ : Optional[Any] = '''
Compute the Matthews correlation coefficient (MCC)
The Matthews correlation coefficient is used in machine learning as a
measure of the quality of binary and multiclass classifications. It takes
into account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if the classes are of
very different sizes. The MCC is in essence a correlation coefficient value
between -1 and +1. A coefficient of +1 represents a perfect prediction, 0
an average random prediction and -1 an inverse prediction. The statistic
is also known as the phi coefficient. [source: Wikipedia]
'''
a__ : str = '''
Args:
predictions (list of int): Predicted labels, as returned by a model.
references (list of int): Ground truth labels.
sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.
Returns:
matthews_correlation (dict containing float): Matthews correlation.
Examples:
Example 1, a basic example with only predictions and references as inputs:
>>> matthews_metric = datasets.load_metric("matthews_correlation")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3])
>>> print(round(results[\'matthews_correlation\'], 2))
0.54
Example 2, the same example as above, but also including sample weights:
>>> matthews_metric = datasets.load_metric("matthews_correlation")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 3, 1, 1, 1, 2])
>>> print(round(results[\'matthews_correlation\'], 2))
0.1
Example 3, the same example as above, but with sample weights that cause a negative correlation:
>>> matthews_metric = datasets.load_metric("matthews_correlation")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 1, 0, 0, 0, 1])
>>> print(round(results[\'matthews_correlation\'], 2))
-0.25
'''
a__ : Union[str, Any] = '''\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Union[str, Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''int32''' ),
'''references''': datasets.Value('''int32''' ),
} ) , reference_urls=[
'''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html'''
] , )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]:
return {
"matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ),
}
| 19 | 1 |
from __future__ import annotations
import math
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = u
for i in range(1 , a__ ):
SCREAMING_SNAKE_CASE : int = temp * (u - i)
return temp
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = int(input('''enter the numbers of values: ''' ) )
SCREAMING_SNAKE_CASE : list[list[float]] = []
for _ in range(a__ ):
y.append([] )
for i in range(a__ ):
for j in range(a__ ):
y[i].append(a__ )
SCREAMING_SNAKE_CASE : str = 0
print('''enter the values of parameters in a list: ''' )
SCREAMING_SNAKE_CASE : Any = list(map(a__ , input().split() ) )
print('''enter the values of corresponding parameters: ''' )
for i in range(a__ ):
SCREAMING_SNAKE_CASE : Union[str, Any] = float(input() )
SCREAMING_SNAKE_CASE : List[str] = int(input('''enter the value to interpolate: ''' ) )
SCREAMING_SNAKE_CASE : Tuple = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1 , a__ ):
for j in range(n - i ):
SCREAMING_SNAKE_CASE : Optional[Any] = y[j + 1][i - 1] - y[j][i - 1]
SCREAMING_SNAKE_CASE : Dict = y[0][0]
for i in range(1 , a__ ):
summ += (ucal(a__ , a__ ) * y[0][i]) / math.factorial(a__ )
print(F"""the value at {value} is {summ}""" )
if __name__ == "__main__":
main()
| 19 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from argparse import ArgumentParser
from accelerate.commands.config import get_config_parser
from accelerate.commands.env import env_command_parser
from accelerate.commands.launch import launch_command_parser
from accelerate.commands.test import test_command_parser
from accelerate.commands.tpu import tpu_command_parser
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a__ )
SCREAMING_SNAKE_CASE : int = parser.add_subparsers(help='''accelerate command helpers''' )
# Register commands
get_config_parser(subparsers=a__ )
env_command_parser(subparsers=a__ )
launch_command_parser(subparsers=a__ )
tpu_command_parser(subparsers=a__ )
test_command_parser(subparsers=a__ )
# Let's go
SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args()
if not hasattr(a__ , '''func''' ):
parser.print_help()
exit(1 )
# Run
args.func(a__ )
if __name__ == "__main__":
main()
| 19 | 1 |
from __future__ import annotations
from typing import TypedDict
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str
__SCREAMING_SNAKE_CASE : int
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if not isinstance(a__ , a__ ):
raise TypeError('''The parameter s type must be str.''' )
return [s[i:] + s[:i] for i in range(len(a__ ) )]
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if not isinstance(a__ , a__ ):
raise TypeError('''The parameter s type must be str.''' )
if not s:
raise ValueError('''The parameter s must not be empty.''' )
SCREAMING_SNAKE_CASE : List[Any] = all_rotations(a__ )
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
SCREAMING_SNAKE_CASE : BWTTransformDict = {
"bwt_string": "".join([word[-1] for word in rotations] ),
"idx_original_string": rotations.index(a__ ),
}
return response
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if not isinstance(a__ , a__ ):
raise TypeError('''The parameter bwt_string type must be str.''' )
if not bwt_string:
raise ValueError('''The parameter bwt_string must not be empty.''' )
try:
SCREAMING_SNAKE_CASE : List[Any] = int(a__ )
except ValueError:
raise TypeError(
'''The parameter idx_original_string type must be int or passive'''
''' of cast to int.''' )
if idx_original_string < 0:
raise ValueError('''The parameter idx_original_string must not be lower than 0.''' )
if idx_original_string >= len(a__ ):
raise ValueError(
'''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''' )
SCREAMING_SNAKE_CASE : Optional[int] = [''''''] * len(a__ )
for _ in range(len(a__ ) ):
for i in range(len(a__ ) ):
SCREAMING_SNAKE_CASE : Any = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string]
if __name__ == "__main__":
a__ : Optional[int] = '''Provide a string that I will generate its BWT transform: '''
a__ : Dict = input(entry_msg).strip()
a__ : Optional[Any] = bwt_transform(s)
print(
F"Burrows Wheeler transform for string '{s}' results "
F"in '{result['bwt_string']}'"
)
a__ : Union[str, Any] = reverse_bwt(result['''bwt_string'''], result['''idx_original_string'''])
print(
F"Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' "
F"we get original string '{original_string}'"
)
| 19 |
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a__ : str = logging.get_logger(__name__)
a__ : Optional[Any] = {'''vocab_file''': '''vocab.json'''}
a__ : str = {
'''vocab_file''': {
'''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''',
}
}
a__ : Tuple = {'''mgp-str''': 27}
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) ->Dict:
super().__init__(
unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , pad_token=_lowerCamelCase , **_lowerCamelCase , )
with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle:
SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.vocab.items()}
@property
def __lowerCAmelCase ( self ) ->List[Any]:
return len(self.vocab )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
return dict(self.vocab , **self.added_tokens_encoder )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for s in text:
char_tokens.extend(_lowerCamelCase )
return char_tokens
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict:
return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
return self.decoder.get(_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
if not os.path.isdir(_lowerCamelCase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) )
return
SCREAMING_SNAKE_CASE : str = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' )
return (vocab_file,)
| 19 | 1 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
a__ : Tuple = logging.get_logger(__name__)
a__ : Optional[Any] = {
'''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''',
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : int = 'deformable_detr'
__SCREAMING_SNAKE_CASE : List[str] = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=3 , _lowerCamelCase=300 , _lowerCamelCase=1024 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1.0 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="sine" , _lowerCamelCase="resnet50" , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=False , _lowerCamelCase=300 , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2_5 , _lowerCamelCase=False , **_lowerCamelCase , ) ->List[Any]:
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(_lowerCamelCase , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : Union[str, Any] = backbone_config.get('''model_type''' )
SCREAMING_SNAKE_CASE : Optional[Any] = CONFIG_MAPPING[backbone_model_type]
SCREAMING_SNAKE_CASE : Tuple = config_class.from_dict(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = use_timm_backbone
SCREAMING_SNAKE_CASE : Tuple = backbone_config
SCREAMING_SNAKE_CASE : int = num_channels
SCREAMING_SNAKE_CASE : Optional[int] = num_queries
SCREAMING_SNAKE_CASE : Any = max_position_embeddings
SCREAMING_SNAKE_CASE : Optional[Any] = d_model
SCREAMING_SNAKE_CASE : List[str] = encoder_ffn_dim
SCREAMING_SNAKE_CASE : int = encoder_layers
SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_attention_heads
SCREAMING_SNAKE_CASE : int = decoder_ffn_dim
SCREAMING_SNAKE_CASE : Tuple = decoder_layers
SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_attention_heads
SCREAMING_SNAKE_CASE : int = dropout
SCREAMING_SNAKE_CASE : List[str] = attention_dropout
SCREAMING_SNAKE_CASE : Dict = activation_dropout
SCREAMING_SNAKE_CASE : Union[str, Any] = activation_function
SCREAMING_SNAKE_CASE : Tuple = init_std
SCREAMING_SNAKE_CASE : Dict = init_xavier_std
SCREAMING_SNAKE_CASE : str = encoder_layerdrop
SCREAMING_SNAKE_CASE : List[str] = auxiliary_loss
SCREAMING_SNAKE_CASE : List[str] = position_embedding_type
SCREAMING_SNAKE_CASE : Tuple = backbone
SCREAMING_SNAKE_CASE : Optional[int] = use_pretrained_backbone
SCREAMING_SNAKE_CASE : List[Any] = dilation
# deformable attributes
SCREAMING_SNAKE_CASE : Union[str, Any] = num_feature_levels
SCREAMING_SNAKE_CASE : Any = encoder_n_points
SCREAMING_SNAKE_CASE : List[Any] = decoder_n_points
SCREAMING_SNAKE_CASE : List[Any] = two_stage
SCREAMING_SNAKE_CASE : str = two_stage_num_proposals
SCREAMING_SNAKE_CASE : str = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''' )
# Hungarian matcher
SCREAMING_SNAKE_CASE : List[str] = class_cost
SCREAMING_SNAKE_CASE : Dict = bbox_cost
SCREAMING_SNAKE_CASE : Optional[Any] = giou_cost
# Loss coefficients
SCREAMING_SNAKE_CASE : List[str] = mask_loss_coefficient
SCREAMING_SNAKE_CASE : List[Any] = dice_loss_coefficient
SCREAMING_SNAKE_CASE : Optional[Any] = bbox_loss_coefficient
SCREAMING_SNAKE_CASE : List[str] = giou_loss_coefficient
SCREAMING_SNAKE_CASE : str = eos_coefficient
SCREAMING_SNAKE_CASE : Dict = focal_alpha
SCREAMING_SNAKE_CASE : str = disable_custom_kernels
super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase )
@property
def __lowerCAmelCase ( self ) ->int:
return self.encoder_attention_heads
@property
def __lowerCAmelCase ( self ) ->int:
return self.d_model
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = self.backbone_config.to_dict()
SCREAMING_SNAKE_CASE : List[Any] = self.__class__.model_type
return output
| 19 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[Any] = ['''DeiTFeatureExtractor''']
a__ : Any = ['''DeiTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''DeiTForImageClassification''',
'''DeiTForImageClassificationWithTeacher''',
'''DeiTForMaskedImageModeling''',
'''DeiTModel''',
'''DeiTPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
'''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFDeiTForImageClassification''',
'''TFDeiTForImageClassificationWithTeacher''',
'''TFDeiTForMaskedImageModeling''',
'''TFDeiTModel''',
'''TFDeiTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_deit import DeiTFeatureExtractor
from .image_processing_deit import DeiTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deit import (
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
DeiTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deit import (
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
TFDeiTPreTrainedModel,
)
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 19 | 1 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class a_ :
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ) ->Optional[int]:
SCREAMING_SNAKE_CASE : List[str] = parent
SCREAMING_SNAKE_CASE : int = batch_size
SCREAMING_SNAKE_CASE : Optional[Any] = seq_length
SCREAMING_SNAKE_CASE : Dict = is_training
SCREAMING_SNAKE_CASE : Any = use_token_type_ids
SCREAMING_SNAKE_CASE : Tuple = use_labels
SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size
SCREAMING_SNAKE_CASE : Optional[int] = hidden_size
SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers
SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads
SCREAMING_SNAKE_CASE : List[str] = intermediate_size
SCREAMING_SNAKE_CASE : Any = hidden_act
SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : str = max_position_embeddings
SCREAMING_SNAKE_CASE : Dict = type_vocab_size
SCREAMING_SNAKE_CASE : Tuple = type_sequence_label_size
SCREAMING_SNAKE_CASE : List[Any] = initializer_range
SCREAMING_SNAKE_CASE : List[str] = num_labels
SCREAMING_SNAKE_CASE : str = num_choices
SCREAMING_SNAKE_CASE : List[Any] = scope
SCREAMING_SNAKE_CASE : Any = self.vocab_size - 1
def __lowerCAmelCase ( self ) ->List[str]:
SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE : Optional[Any] = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE : Optional[Any] = None
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Optional[Any] = None
if self.use_labels:
SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.num_choices )
SCREAMING_SNAKE_CASE : List[Any] = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , *_lowerCamelCase ) ->List[Any]:
SCREAMING_SNAKE_CASE : Union[str, Any] = OpenAIGPTModel(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE : Dict = model(_lowerCamelCase , token_type_ids=_lowerCamelCase , head_mask=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , token_type_ids=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , *_lowerCamelCase ) ->Any:
SCREAMING_SNAKE_CASE : Any = OpenAIGPTLMHeadModel(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE : Dict = model(_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , *_lowerCamelCase ) ->List[str]:
SCREAMING_SNAKE_CASE : Tuple = OpenAIGPTDoubleHeadsModel(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE : Dict = model(_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , *_lowerCamelCase ) ->Any:
SCREAMING_SNAKE_CASE : Tuple = self.num_labels
SCREAMING_SNAKE_CASE : List[str] = OpenAIGPTForSequenceClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE : Dict = model(_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self ) ->int:
SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : Optional[int] = config_and_inputs
SCREAMING_SNAKE_CASE : List[str] = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''head_mask''': head_mask,
}
return config, inputs_dict
@require_torch
class a_ ( a__ , a__ , a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
__SCREAMING_SNAKE_CASE : Optional[Any] = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
__SCREAMING_SNAKE_CASE : List[Any] = (
{
'feature-extraction': OpenAIGPTModel,
'text-classification': OpenAIGPTForSequenceClassification,
'text-generation': OpenAIGPTLMHeadModel,
'zero-shot': OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[Any]:
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) ->int:
SCREAMING_SNAKE_CASE : Optional[int] = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
SCREAMING_SNAKE_CASE : int = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCamelCase , )
SCREAMING_SNAKE_CASE : Dict = inputs_dict['''labels''']
SCREAMING_SNAKE_CASE : Dict = inputs_dict['''labels''']
SCREAMING_SNAKE_CASE : List[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_lowerCamelCase , )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_lowerCamelCase )
return inputs_dict
def __lowerCAmelCase ( self ) ->str:
SCREAMING_SNAKE_CASE : Any = OpenAIGPTModelTester(self )
SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=_lowerCamelCase , n_embd=37 )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*_lowerCamelCase )
def __lowerCAmelCase ( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*_lowerCamelCase )
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*_lowerCamelCase )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_lowerCamelCase )
@slow
def __lowerCAmelCase ( self ) ->Optional[int]:
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : Optional[int] = OpenAIGPTModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
@require_torch
class a_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def __lowerCAmelCase ( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : List[str] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' )
model.to(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=_lowerCamelCase ) # the president is
SCREAMING_SNAKE_CASE : int = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
4_0477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
SCREAMING_SNAKE_CASE : Optional[int] = model.generate(_lowerCamelCase , do_sample=_lowerCamelCase )
self.assertListEqual(output_ids[0].tolist() , _lowerCamelCase )
| 19 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = ['''XGLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[Any] = ['''XGLMTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : int = [
'''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XGLMForCausalLM''',
'''XGLMModel''',
'''XGLMPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'''FlaxXGLMForCausalLM''',
'''FlaxXGLMModel''',
'''FlaxXGLMPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXGLMForCausalLM''',
'''TFXGLMModel''',
'''TFXGLMPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 19 | 1 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
a__ : str = datasets.utils.logging.get_logger(__name__)
@dataclass
class a_ ( datasets.BuilderConfig ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None
__SCREAMING_SNAKE_CASE : str = "utf-8"
__SCREAMING_SNAKE_CASE : Optional[str] = None
__SCREAMING_SNAKE_CASE : Optional[str] = None
__SCREAMING_SNAKE_CASE : bool = True # deprecated
__SCREAMING_SNAKE_CASE : Optional[int] = None # deprecated
__SCREAMING_SNAKE_CASE : int = 10 << 20 # 10MB
__SCREAMING_SNAKE_CASE : Optional[bool] = None
class a_ ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = JsonConfig
def __lowerCAmelCase ( self ) ->Dict:
if self.config.block_size is not None:
logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' )
SCREAMING_SNAKE_CASE : List[str] = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
'''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' )
if self.config.newlines_in_values is not None:
raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' )
return datasets.DatasetInfo(features=self.config.features )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
SCREAMING_SNAKE_CASE : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_lowerCamelCase , (str, list, tuple) ):
SCREAMING_SNAKE_CASE : Dict = data_files
if isinstance(_lowerCamelCase , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : List[str] = [files]
SCREAMING_SNAKE_CASE : Tuple = [dl_manager.iter_files(_lowerCamelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
SCREAMING_SNAKE_CASE : Any = []
for split_name, files in data_files.items():
if isinstance(_lowerCamelCase , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : Optional[int] = [files]
SCREAMING_SNAKE_CASE : List[Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files]
splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'''files''': files} ) )
return splits
def __lowerCAmelCase ( self , _lowerCamelCase ) ->pa.Table:
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
SCREAMING_SNAKE_CASE : int = self.config.features.arrow_schema.field(_lowerCamelCase ).type
SCREAMING_SNAKE_CASE : Any = pa_table.append_column(_lowerCamelCase , pa.array([None] * len(_lowerCamelCase ) , type=_lowerCamelCase ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
SCREAMING_SNAKE_CASE : str = table_cast(_lowerCamelCase , self.config.features.arrow_schema )
return pa_table
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]:
for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(_lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
SCREAMING_SNAKE_CASE : List[str] = json.load(_lowerCamelCase )
# We keep only the field we are interested in
SCREAMING_SNAKE_CASE : Optional[int] = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(_lowerCamelCase , (list, tuple) ):
SCREAMING_SNAKE_CASE : List[Any] = set().union(*[row.keys() for row in dataset] )
SCREAMING_SNAKE_CASE : int = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys}
else:
SCREAMING_SNAKE_CASE : int = dataset
SCREAMING_SNAKE_CASE : str = pa.Table.from_pydict(_lowerCamelCase )
yield file_idx, self._cast_table(_lowerCamelCase )
# If the file has one json object per line
else:
with open(_lowerCamelCase , '''rb''' ) as f:
SCREAMING_SNAKE_CASE : int = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
SCREAMING_SNAKE_CASE : int = max(self.config.chunksize // 32 , 16 << 10 )
SCREAMING_SNAKE_CASE : Optional[int] = (
self.config.encoding_errors if self.config.encoding_errors is not None else '''strict'''
)
while True:
SCREAMING_SNAKE_CASE : str = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(_lowerCamelCase )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
SCREAMING_SNAKE_CASE : Optional[Any] = batch.decode(self.config.encoding , errors=_lowerCamelCase ).encode('''utf-8''' )
try:
while True:
try:
SCREAMING_SNAKE_CASE : str = paj.read_json(
io.BytesIO(_lowerCamelCase ) , read_options=paj.ReadOptions(block_size=_lowerCamelCase ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(_lowerCamelCase , pa.ArrowInvalid )
and "straddling" not in str(_lowerCamelCase )
or block_size > len(_lowerCamelCase )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
F"""Batch of {len(_lowerCamelCase )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
_lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(_lowerCamelCase )
except json.JSONDecodeError:
logger.error(F"""Failed to read file '{file}' with error {type(_lowerCamelCase )}: {e}""" )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(_lowerCamelCase , _lowerCamelCase ): # list is the only sequence type supported in JSON
try:
SCREAMING_SNAKE_CASE : Tuple = set().union(*[row.keys() for row in dataset] )
SCREAMING_SNAKE_CASE : Optional[Any] = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys}
SCREAMING_SNAKE_CASE : str = pa.Table.from_pydict(_lowerCamelCase )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(F"""Failed to read file '{file}' with error {type(_lowerCamelCase )}: {e}""" )
raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None
yield file_idx, self._cast_table(_lowerCamelCase )
break
else:
logger.error(F"""Failed to read file '{file}' with error {type(_lowerCamelCase )}: {e}""" )
raise ValueError(
F"""Not able to read records in the JSON file at {file}. """
F"""You should probably indicate the field of the JSON file containing your records. """
F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """
F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase )
batch_idx += 1
| 19 |
import math
from collections.abc import Iterator
from itertools import takewhile
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = 2
while True:
if is_prime(a__ ):
yield num
num += 1
def UpperCAmelCase_( a__ = 2_000_000 ):
"""simple docstring"""
return sum(takewhile(lambda a__ : x < n , prime_generator() ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 19 | 1 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from argparse import ArgumentParser
from accelerate.commands.config import get_config_parser
from accelerate.commands.env import env_command_parser
from accelerate.commands.launch import launch_command_parser
from accelerate.commands.test import test_command_parser
from accelerate.commands.tpu import tpu_command_parser
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a__ )
SCREAMING_SNAKE_CASE : int = parser.add_subparsers(help='''accelerate command helpers''' )
# Register commands
get_config_parser(subparsers=a__ )
env_command_parser(subparsers=a__ )
launch_command_parser(subparsers=a__ )
tpu_command_parser(subparsers=a__ )
test_command_parser(subparsers=a__ )
# Let's go
SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args()
if not hasattr(a__ , '''func''' ):
parser.print_help()
exit(1 )
# Run
args.func(a__ )
if __name__ == "__main__":
main()
| 19 |
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int:
super().__init__(*_lowerCamelCase , **_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = eval_examples
SCREAMING_SNAKE_CASE : Optional[int] = post_process_function
def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ) ->Dict[str, float]:
SCREAMING_SNAKE_CASE : Any = gen_kwargs.copy()
SCREAMING_SNAKE_CASE : str = (
gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length
)
SCREAMING_SNAKE_CASE : Dict = (
gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams
)
SCREAMING_SNAKE_CASE : Any = gen_kwargs
SCREAMING_SNAKE_CASE : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset
SCREAMING_SNAKE_CASE : str = self.get_eval_dataloader(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_metrics
SCREAMING_SNAKE_CASE : str = None
SCREAMING_SNAKE_CASE : Optional[Any] = time.time()
SCREAMING_SNAKE_CASE : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE : Tuple = eval_loop(
_lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , )
finally:
SCREAMING_SNAKE_CASE : Dict = compute_metrics
SCREAMING_SNAKE_CASE : Tuple = self.args.eval_batch_size * self.args.world_size
if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics:
start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""]
output.metrics.update(
speed_metrics(
_lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(_lowerCamelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"""{metric_key_prefix}_""" ):
SCREAMING_SNAKE_CASE : Optional[int] = metrics.pop(_lowerCamelCase )
metrics.update(output.metrics )
else:
SCREAMING_SNAKE_CASE : List[Any] = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(_lowerCamelCase )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
SCREAMING_SNAKE_CASE : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase )
return metrics
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ) ->int:
SCREAMING_SNAKE_CASE : str = gen_kwargs.copy()
SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(_lowerCamelCase )
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE : Dict = self.compute_metrics
SCREAMING_SNAKE_CASE : Tuple = None
SCREAMING_SNAKE_CASE : List[str] = time.time()
SCREAMING_SNAKE_CASE : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE : Any = eval_loop(
_lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , )
finally:
SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics
SCREAMING_SNAKE_CASE : List[Any] = self.args.eval_batch_size * self.args.world_size
if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics:
start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""]
output.metrics.update(
speed_metrics(
_lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' )
SCREAMING_SNAKE_CASE : Dict = self.compute_metrics(_lowerCamelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"""{metric_key_prefix}_""" ):
SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(_lowerCamelCase )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
| 19 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a__ : Union[str, Any] = {
'''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Swinv2ForImageClassification''',
'''Swinv2ForMaskedImageModeling''',
'''Swinv2Model''',
'''Swinv2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
a__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 19 |
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class a_ ( a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = DDIMPipeline
__SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
__SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - {
'num_images_per_prompt',
'latents',
'callback',
'callback_steps',
}
__SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
__SCREAMING_SNAKE_CASE : List[Any] = False
def __lowerCAmelCase ( self ) ->int:
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler()
SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler}
return components
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int:
if str(_lowerCamelCase ).startswith('''mps''' ):
SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase )
else:
SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = {
'''batch_size''': 1,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : Optional[int] = '''cpu'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase )
pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 32, 32, 3) )
SCREAMING_SNAKE_CASE : int = np.array(
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] )
SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_lowerCamelCase , 1e-3 )
def __lowerCAmelCase ( self ) ->Optional[int]:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def __lowerCAmelCase ( self ) ->Any:
super().test_save_load_local(expected_max_difference=3e-3 )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def __lowerCAmelCase ( self ) ->Any:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->List[Any]:
SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32'''
SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler()
SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase )
ddim.to(_lowerCamelCase )
ddim.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images
SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256'''
SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase )
ddpm.to(_lowerCamelCase )
ddpm.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images
SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 19 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a__ : Union[str, Any] = logging.get_logger(__name__)
a__ : Any = '''▁'''
a__ : int = {'''vocab_file''': '''sentencepiece.bpe.model'''}
a__ : Optional[Any] = {
'''vocab_file''': {
'''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''',
}
}
a__ : Any = {
'''facebook/xglm-564M''': 2_048,
}
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : Optional[Any] = ['input_ids', 'attention_mask']
def __init__( self , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase = None , **_lowerCamelCase , ) ->None:
SCREAMING_SNAKE_CASE : str = {} if sp_model_kwargs is None else sp_model_kwargs
# Compatibility with the original tokenizer
SCREAMING_SNAKE_CASE : str = 7
SCREAMING_SNAKE_CASE : Dict = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )]
SCREAMING_SNAKE_CASE : Dict = kwargs.get('''additional_special_tokens''' , [] )
kwargs["additional_special_tokens"] += [
word for word in madeup_words if word not in kwargs["additional_special_tokens"]
]
super().__init__(
bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , )
SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_lowerCamelCase ) )
SCREAMING_SNAKE_CASE : Optional[Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
SCREAMING_SNAKE_CASE : int = 1
# Mimic fairseq token-to-id alignment for the first 4 token
SCREAMING_SNAKE_CASE : Union[str, Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
SCREAMING_SNAKE_CASE : Tuple = len(self.sp_model )
SCREAMING_SNAKE_CASE : Tuple = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )}
self.fairseq_tokens_to_ids.update(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) ->List[str]:
SCREAMING_SNAKE_CASE : List[str] = self.__dict__.copy()
SCREAMING_SNAKE_CASE : int = None
SCREAMING_SNAKE_CASE : int = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , _lowerCamelCase ) ->Dict:
SCREAMING_SNAKE_CASE : List[Any] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
SCREAMING_SNAKE_CASE : Tuple = {}
SCREAMING_SNAKE_CASE : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
if token_ids_a is None:
return [self.sep_token_id] + token_ids_a
SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id]
return sep + token_ids_a + sep + sep + token_ids_a
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(_lowerCamelCase ))
return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase ))
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id]
if token_ids_a is None:
return len(sep + token_ids_a ) * [0]
return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0]
@property
def __lowerCAmelCase ( self ) ->List[str]:
return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words
def __lowerCAmelCase ( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : List[str] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]:
return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->str:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.PieceToId(_lowerCamelCase )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->str:
SCREAMING_SNAKE_CASE : List[str] = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase , ''' ''' ).strip()
return out_string
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
if not os.path.isdir(_lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _lowerCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCamelCase , '''wb''' ) as fi:
SCREAMING_SNAKE_CASE : str = self.sp_model.serialized_model_proto()
fi.write(_lowerCamelCase )
return (out_vocab_file,)
| 19 |
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
class a_ ( a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer
__SCREAMING_SNAKE_CASE : List[str] = False
__SCREAMING_SNAKE_CASE : Dict = True
def __lowerCAmelCase ( self ) ->Dict:
super().setUp()
# We have a SentencePiece fixture for testing
SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase )
tokenizer.save_pretrained(self.tmpdirname )
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : List[str] = '''[PAD]'''
SCREAMING_SNAKE_CASE : Tuple = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->List[Any]:
SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''[PAD]''' )
self.assertEqual(vocab_keys[1] , '''[CLS]''' )
self.assertEqual(vocab_keys[-1] , '''j''' )
self.assertEqual(len(_lowerCamelCase ) , 1012 )
def __lowerCAmelCase ( self ) ->List[str]:
self.assertEqual(self.get_tokenizer().vocab_size , 1012 )
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_lowerCamelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase )
self.assertListEqual(
_lowerCamelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase )
self.assertListEqual(
_lowerCamelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''[UNK]''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''[UNK]''',
'''.''',
] , )
@cached_property
def __lowerCAmelCase ( self ) ->List[str]:
return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' )
@slow
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!'''
SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2]
self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) )
@slow
def __lowerCAmelCase ( self ) ->int:
# fmt: off
SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
| 19 | 1 |
import inspect
from typing import Optional, Union
import numpy as np
import PIL
import torch
from torch.nn import functional as F
from torchvision import transforms
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.utils import (
PIL_INTERPOLATION,
randn_tensor,
)
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if isinstance(a__ , torch.Tensor ):
return image
elif isinstance(a__ , PIL.Image.Image ):
SCREAMING_SNAKE_CASE : Dict = [image]
if isinstance(image[0] , PIL.Image.Image ):
SCREAMING_SNAKE_CASE : List[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image]
SCREAMING_SNAKE_CASE : Union[str, Any] = np.concatenate(a__ , axis=0 )
SCREAMING_SNAKE_CASE : Dict = np.array(a__ ).astype(np.floataa ) / 255.0
SCREAMING_SNAKE_CASE : Dict = image.transpose(0 , 3 , 1 , 2 )
SCREAMING_SNAKE_CASE : Any = 2.0 * image - 1.0
SCREAMING_SNAKE_CASE : str = torch.from_numpy(a__ )
elif isinstance(image[0] , torch.Tensor ):
SCREAMING_SNAKE_CASE : int = torch.cat(a__ , dim=0 )
return image
def UpperCAmelCase_( a__ , a__ , a__ , a__=0.9_995 ):
"""simple docstring"""
if not isinstance(a__ , np.ndarray ):
SCREAMING_SNAKE_CASE : int = True
SCREAMING_SNAKE_CASE : List[Any] = va.device
SCREAMING_SNAKE_CASE : str = va.cpu().numpy()
SCREAMING_SNAKE_CASE : Union[str, Any] = va.cpu().numpy()
SCREAMING_SNAKE_CASE : str = np.sum(va * va / (np.linalg.norm(a__ ) * np.linalg.norm(a__ )) )
if np.abs(a__ ) > DOT_THRESHOLD:
SCREAMING_SNAKE_CASE : str = (1 - t) * va + t * va
else:
SCREAMING_SNAKE_CASE : List[Any] = np.arccos(a__ )
SCREAMING_SNAKE_CASE : Optional[Any] = np.sin(a__ )
SCREAMING_SNAKE_CASE : List[Any] = theta_a * t
SCREAMING_SNAKE_CASE : str = np.sin(a__ )
SCREAMING_SNAKE_CASE : Optional[Any] = np.sin(theta_a - theta_t ) / sin_theta_a
SCREAMING_SNAKE_CASE : Tuple = sin_theta_t / sin_theta_a
SCREAMING_SNAKE_CASE : List[Any] = sa * va + sa * va
if inputs_are_torch:
SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ ).to(a__ )
return va
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = F.normalize(a__ , dim=-1 )
SCREAMING_SNAKE_CASE : Any = F.normalize(a__ , dim=-1 )
return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 )
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
for param in model.parameters():
SCREAMING_SNAKE_CASE : Union[str, Any] = value
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ) ->List[str]:
super().__init__()
self.register_modules(
vae=_lowerCamelCase , text_encoder=_lowerCamelCase , clip_model=_lowerCamelCase , tokenizer=_lowerCamelCase , unet=_lowerCamelCase , scheduler=_lowerCamelCase , feature_extractor=_lowerCamelCase , coca_model=_lowerCamelCase , coca_tokenizer=_lowerCamelCase , coca_transform=_lowerCamelCase , )
SCREAMING_SNAKE_CASE : List[str] = (
feature_extractor.size
if isinstance(feature_extractor.size , _lowerCamelCase )
else feature_extractor.size['''shortest_edge''']
)
SCREAMING_SNAKE_CASE : Tuple = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std )
set_requires_grad(self.text_encoder , _lowerCamelCase )
set_requires_grad(self.clip_model , _lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase = "auto" ) ->Optional[int]:
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
SCREAMING_SNAKE_CASE : Union[str, Any] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(_lowerCamelCase )
def __lowerCAmelCase ( self ) ->str:
self.enable_attention_slicing(_lowerCamelCase )
def __lowerCAmelCase ( self ) ->int:
set_requires_grad(self.vae , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Dict:
set_requires_grad(self.vae , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Optional[int]:
set_requires_grad(self.unet , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->int:
set_requires_grad(self.unet , _lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Dict:
# get the original timestep using init_timestep
SCREAMING_SNAKE_CASE : str = min(int(num_inference_steps * strength ) , _lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = max(num_inference_steps - init_timestep , 0 )
SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->str:
if not isinstance(_lowerCamelCase , torch.Tensor ):
raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(_lowerCamelCase )}""" )
SCREAMING_SNAKE_CASE : List[Any] = image.to(device=_lowerCamelCase , dtype=_lowerCamelCase )
if isinstance(_lowerCamelCase , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [
self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_lowerCamelCase )
]
SCREAMING_SNAKE_CASE : Tuple = torch.cat(_lowerCamelCase , dim=0 )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.vae.encode(_lowerCamelCase ).latent_dist.sample(_lowerCamelCase )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
SCREAMING_SNAKE_CASE : Union[str, Any] = 0.1_8_2_1_5 * init_latents
SCREAMING_SNAKE_CASE : Tuple = init_latents.repeat_interleave(_lowerCamelCase , dim=0 )
SCREAMING_SNAKE_CASE : Tuple = randn_tensor(init_latents.shape , generator=_lowerCamelCase , device=_lowerCamelCase , dtype=_lowerCamelCase )
# get latents
SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler.add_noise(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
SCREAMING_SNAKE_CASE : str = init_latents
return latents
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Tuple = self.coca_transform(_lowerCamelCase ).unsqueeze(0 )
with torch.no_grad(), torch.cuda.amp.autocast():
SCREAMING_SNAKE_CASE : int = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) )
SCREAMING_SNAKE_CASE : List[Any] = self.coca_tokenizer.decode(generated[0].cpu().numpy() )
return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict:
SCREAMING_SNAKE_CASE : List[str] = self.feature_extractor.preprocess(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half()
SCREAMING_SNAKE_CASE : Optional[Any] = self.clip_model.get_image_features(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = image_embeddings_clip.repeat_interleave(_lowerCamelCase , dim=0 )
return image_embeddings_clip
@torch.enable_grad()
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) ->int:
SCREAMING_SNAKE_CASE : List[Any] = latents.detach().requires_grad_()
SCREAMING_SNAKE_CASE : List[str] = self.scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase )
# predict the noise residual
SCREAMING_SNAKE_CASE : Optional[Any] = self.unet(_lowerCamelCase , _lowerCamelCase , encoder_hidden_states=_lowerCamelCase ).sample
if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ):
SCREAMING_SNAKE_CASE : Any = self.scheduler.alphas_cumprod[timestep]
SCREAMING_SNAKE_CASE : int = 1 - alpha_prod_t
# compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
SCREAMING_SNAKE_CASE : Optional[int] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5
SCREAMING_SNAKE_CASE : Dict = torch.sqrt(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = pred_original_sample * (fac) + latents * (1 - fac)
elif isinstance(self.scheduler , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : int = self.scheduler.sigmas[index]
SCREAMING_SNAKE_CASE : int = latents - sigma * noise_pred
else:
raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" )
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
SCREAMING_SNAKE_CASE : str = 1 / 0.1_8_2_1_5 * sample
SCREAMING_SNAKE_CASE : List[Any] = self.vae.decode(_lowerCamelCase ).sample
SCREAMING_SNAKE_CASE : List[str] = (image / 2 + 0.5).clamp(0 , 1 )
SCREAMING_SNAKE_CASE : Tuple = transforms.Resize(self.feature_extractor_size )(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = self.normalize(_lowerCamelCase ).to(latents.dtype )
SCREAMING_SNAKE_CASE : Any = self.clip_model.get_image_features(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = spherical_dist_loss(_lowerCamelCase , _lowerCamelCase ).mean() * clip_guidance_scale
SCREAMING_SNAKE_CASE : List[str] = -torch.autograd.grad(_lowerCamelCase , _lowerCamelCase )[0]
if isinstance(self.scheduler , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : Tuple = latents.detach() + grads * (sigma**2)
SCREAMING_SNAKE_CASE : Dict = noise_pred_original
else:
SCREAMING_SNAKE_CASE : int = noise_pred_original - torch.sqrt(_lowerCamelCase ) * grads
return noise_pred, latents
@torch.no_grad()
def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 0.6 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = 100 , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = 0.8 , _lowerCamelCase = 0.1 , _lowerCamelCase = 0.1 , ) ->Dict:
if isinstance(_lowerCamelCase , _lowerCamelCase ) and len(_lowerCamelCase ) != batch_size:
raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(_lowerCamelCase )} generators.""" )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" )
if isinstance(_lowerCamelCase , torch.Generator ) and batch_size > 1:
SCREAMING_SNAKE_CASE : Any = [generator] + [None] * (batch_size - 1)
SCREAMING_SNAKE_CASE : Optional[Any] = [
('''model''', self.coca_model is None),
('''tokenizer''', self.coca_tokenizer is None),
('''transform''', self.coca_transform is None),
]
SCREAMING_SNAKE_CASE : List[Any] = [x[0] for x in coca_is_none if x[1]]
SCREAMING_SNAKE_CASE : Tuple = ''', '''.join(_lowerCamelCase )
# generate prompts with coca model if prompt is None
if content_prompt is None:
if len(_lowerCamelCase ):
raise ValueError(
F"""Content prompt is None and CoCa [{coca_is_none_str}] is None."""
F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
SCREAMING_SNAKE_CASE : Any = self.get_image_description(_lowerCamelCase )
if style_prompt is None:
if len(_lowerCamelCase ):
raise ValueError(
F"""Style prompt is None and CoCa [{coca_is_none_str}] is None."""
F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" )
SCREAMING_SNAKE_CASE : int = self.get_image_description(_lowerCamelCase )
# get prompt text embeddings for content and style
SCREAMING_SNAKE_CASE : int = self.tokenizer(
_lowerCamelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=_lowerCamelCase , return_tensors='''pt''' , )
SCREAMING_SNAKE_CASE : Optional[Any] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0]
SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(
_lowerCamelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=_lowerCamelCase , return_tensors='''pt''' , )
SCREAMING_SNAKE_CASE : str = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0]
SCREAMING_SNAKE_CASE : Dict = slerp(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# duplicate text embeddings for each generation per prompt
SCREAMING_SNAKE_CASE : int = text_embeddings.repeat_interleave(_lowerCamelCase , dim=0 )
# set timesteps
SCREAMING_SNAKE_CASE : Optional[int] = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() )
SCREAMING_SNAKE_CASE : int = {}
if accepts_offset:
SCREAMING_SNAKE_CASE : List[str] = 1
self.scheduler.set_timesteps(_lowerCamelCase , **_lowerCamelCase )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
self.scheduler.timesteps.to(self.device )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.get_timesteps(_lowerCamelCase , _lowerCamelCase , self.device )
SCREAMING_SNAKE_CASE : Union[str, Any] = timesteps[:1].repeat(_lowerCamelCase )
# Preprocess image
SCREAMING_SNAKE_CASE : int = preprocess(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
SCREAMING_SNAKE_CASE : int = self.prepare_latents(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , text_embeddings.dtype , self.device , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = preprocess(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
SCREAMING_SNAKE_CASE : str = self.prepare_latents(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , text_embeddings.dtype , self.device , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = slerp(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
if clip_guidance_scale > 0:
SCREAMING_SNAKE_CASE : str = self.get_clip_image_embeddings(_lowerCamelCase , _lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = self.get_clip_image_embeddings(_lowerCamelCase , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = slerp(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
SCREAMING_SNAKE_CASE : Optional[int] = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
SCREAMING_SNAKE_CASE : Optional[Any] = content_text_input.input_ids.shape[-1]
SCREAMING_SNAKE_CASE : Dict = self.tokenizer([''''''] , padding='''max_length''' , max_length=_lowerCamelCase , return_tensors='''pt''' )
SCREAMING_SNAKE_CASE : List[str] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt
SCREAMING_SNAKE_CASE : str = uncond_embeddings.repeat_interleave(_lowerCamelCase , dim=0 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
SCREAMING_SNAKE_CASE : List[str] = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
SCREAMING_SNAKE_CASE : Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8)
SCREAMING_SNAKE_CASE : Dict = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not work reproducibly on mps
SCREAMING_SNAKE_CASE : Tuple = torch.randn(_lowerCamelCase , generator=_lowerCamelCase , device='''cpu''' , dtype=_lowerCamelCase ).to(
self.device )
else:
SCREAMING_SNAKE_CASE : str = torch.randn(_lowerCamelCase , generator=_lowerCamelCase , device=self.device , dtype=_lowerCamelCase )
else:
if latents.shape != latents_shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
SCREAMING_SNAKE_CASE : Tuple = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
SCREAMING_SNAKE_CASE : List[str] = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
SCREAMING_SNAKE_CASE : Optional[Any] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
SCREAMING_SNAKE_CASE : Any = {}
if accepts_eta:
SCREAMING_SNAKE_CASE : Optional[int] = eta
# check if the scheduler accepts generator
SCREAMING_SNAKE_CASE : int = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
if accepts_generator:
SCREAMING_SNAKE_CASE : int = generator
with self.progress_bar(total=_lowerCamelCase ):
for i, t in enumerate(_lowerCamelCase ):
# expand the latents if we are doing classifier free guidance
SCREAMING_SNAKE_CASE : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
SCREAMING_SNAKE_CASE : Tuple = self.scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase )
# predict the noise residual
SCREAMING_SNAKE_CASE : List[Any] = self.unet(_lowerCamelCase , _lowerCamelCase , encoder_hidden_states=_lowerCamelCase ).sample
# perform classifier free guidance
if do_classifier_free_guidance:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = noise_pred.chunk(2 )
SCREAMING_SNAKE_CASE : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# perform clip guidance
if clip_guidance_scale > 0:
SCREAMING_SNAKE_CASE : List[Any] = (
text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings
)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.cond_fn(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , )
# compute the previous noisy sample x_t -> x_t-1
SCREAMING_SNAKE_CASE : int = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ).prev_sample
# Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor
SCREAMING_SNAKE_CASE : List[str] = 1 / 0.1_8_2_1_5 * latents
SCREAMING_SNAKE_CASE : Optional[int] = self.vae.decode(_lowerCamelCase ).sample
SCREAMING_SNAKE_CASE : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 )
SCREAMING_SNAKE_CASE : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
SCREAMING_SNAKE_CASE : str = self.numpy_to_pil(_lowerCamelCase )
if not return_dict:
return (image, None)
return StableDiffusionPipelineOutput(images=_lowerCamelCase , nsfw_content_detected=_lowerCamelCase )
| 19 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class a_ ( a__ , a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline
__SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS
__SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS
__SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
__SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
__SCREAMING_SNAKE_CASE : int = False
def __lowerCAmelCase ( self ) ->Optional[int]:
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
SCREAMING_SNAKE_CASE : int = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : str = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str:
if str(_lowerCamelCase ).startswith('''mps''' ):
SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase )
else:
SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = {
'''prompt''': '''.''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 1.0,
'''sag_scale''': 1.0,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self ) ->Optional[int]:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Dict:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' )
SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase )
sag_pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = '''.'''
SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = sag_pipe(
[prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' )
SCREAMING_SNAKE_CASE : int = output.images
SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase )
sag_pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = '''.'''
SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = sag_pipe(
[prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' )
SCREAMING_SNAKE_CASE : List[str] = output.images
SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase )
sag_pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = '''.'''
SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = sag_pipe(
[prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , )
SCREAMING_SNAKE_CASE : List[Any] = output.images
assert image.shape == (1, 512, 768, 3)
| 19 | 1 |
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
SCREAMING_SNAKE_CASE : int = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
SCREAMING_SNAKE_CASE : Union[str, Any] = 4
SCREAMING_SNAKE_CASE : Tuple = 48
SCREAMING_SNAKE_CASE : Any = '''pixelshuffle_aux'''
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
SCREAMING_SNAKE_CASE : int = [6, 6, 6, 6]
SCREAMING_SNAKE_CASE : List[Any] = 60
SCREAMING_SNAKE_CASE : Optional[int] = [6, 6, 6, 6]
SCREAMING_SNAKE_CASE : str = '''pixelshuffledirect'''
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
SCREAMING_SNAKE_CASE : List[str] = 4
SCREAMING_SNAKE_CASE : Dict = '''nearest+conv'''
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
SCREAMING_SNAKE_CASE : Optional[Any] = 1
SCREAMING_SNAKE_CASE : int = 1
SCREAMING_SNAKE_CASE : str = 126
SCREAMING_SNAKE_CASE : str = 7
SCREAMING_SNAKE_CASE : List[str] = 255.0
SCREAMING_SNAKE_CASE : List[str] = ''''''
return config
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if "patch_embed.proj" in name and "layers" not in name:
SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
SCREAMING_SNAKE_CASE : str = name.replace('''patch_embed.norm''' , '''embeddings.patch_embeddings.layernorm''' )
if "layers" in name:
SCREAMING_SNAKE_CASE : Dict = name.replace('''layers''' , '''encoder.stages''' )
if "residual_group.blocks" in name:
SCREAMING_SNAKE_CASE : int = name.replace('''residual_group.blocks''' , '''layers''' )
if "attn.proj" in name:
SCREAMING_SNAKE_CASE : str = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
SCREAMING_SNAKE_CASE : Dict = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
SCREAMING_SNAKE_CASE : Dict = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
SCREAMING_SNAKE_CASE : str = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''mlp.fc2''' , '''output.dense''' )
if "q_bias" in name:
SCREAMING_SNAKE_CASE : Any = name.replace('''q_bias''' , '''query.bias''' )
if "k_bias" in name:
SCREAMING_SNAKE_CASE : Dict = name.replace('''k_bias''' , '''key.bias''' )
if "v_bias" in name:
SCREAMING_SNAKE_CASE : int = name.replace('''v_bias''' , '''value.bias''' )
if "cpb_mlp" in name:
SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' )
if "patch_embed.proj" in name:
SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''patch_embed.proj''' , '''patch_embed.projection''' )
if name == "norm.weight":
SCREAMING_SNAKE_CASE : str = '''layernorm.weight'''
if name == "norm.bias":
SCREAMING_SNAKE_CASE : str = '''layernorm.bias'''
if "conv_first" in name:
SCREAMING_SNAKE_CASE : str = name.replace('''conv_first''' , '''first_convolution''' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
SCREAMING_SNAKE_CASE : List[Any] = name.replace('''conv_last''' , '''final_convolution''' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
SCREAMING_SNAKE_CASE : Dict = name.replace('''conv_before_upsample.0''' , '''conv_before_upsample''' )
if "upsample.0" in name:
SCREAMING_SNAKE_CASE : List[str] = name.replace('''upsample.0''' , '''upsample.convolution_0''' )
if "upsample.2" in name:
SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''upsample.2''' , '''upsample.convolution_1''' )
SCREAMING_SNAKE_CASE : Optional[Any] = '''upsample.''' + name
elif config.upsampler == "pixelshuffledirect":
SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''upsample.0.weight''' , '''upsample.conv.weight''' )
SCREAMING_SNAKE_CASE : Tuple = name.replace('''upsample.0.bias''' , '''upsample.conv.bias''' )
else:
pass
else:
SCREAMING_SNAKE_CASE : str = '''swin2sr.''' + name
return name
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
SCREAMING_SNAKE_CASE : Tuple = orig_state_dict.pop(a__ )
if "qkv" in key:
SCREAMING_SNAKE_CASE : Dict = key.split('''.''' )
SCREAMING_SNAKE_CASE : Optional[int] = int(key_split[1] )
SCREAMING_SNAKE_CASE : Optional[int] = int(key_split[4] )
SCREAMING_SNAKE_CASE : Optional[Any] = config.embed_dim
if "weight" in key:
SCREAMING_SNAKE_CASE : Optional[int] = val[:dim, :]
SCREAMING_SNAKE_CASE : List[Any] = val[dim : dim * 2, :]
SCREAMING_SNAKE_CASE : Any = val[-dim:, :]
else:
SCREAMING_SNAKE_CASE : Any = val[:dim]
SCREAMING_SNAKE_CASE : List[str] = val[dim : dim * 2]
SCREAMING_SNAKE_CASE : Union[str, Any] = val[-dim:]
pass
else:
SCREAMING_SNAKE_CASE : int = val
return orig_state_dict
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = get_config(a__ )
SCREAMING_SNAKE_CASE : List[Any] = SwinaSRForImageSuperResolution(a__ )
model.eval()
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.hub.load_state_dict_from_url(a__ , map_location='''cpu''' )
SCREAMING_SNAKE_CASE : Optional[Any] = convert_state_dict(a__ , a__ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = model.load_state_dict(a__ , strict=a__ )
if len(a__ ) > 0:
raise ValueError('''Missing keys when converting: {}'''.format(a__ ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F"""Unexpected key {key} in state_dict""" )
# verify values
SCREAMING_SNAKE_CASE : List[str] = '''https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'''
SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open(requests.get(a__ , stream=a__ ).raw ).convert('''RGB''' )
SCREAMING_SNAKE_CASE : List[Any] = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
SCREAMING_SNAKE_CASE : Any = 126 if '''Jpeg''' in checkpoint_url else 256
SCREAMING_SNAKE_CASE : List[Any] = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
SCREAMING_SNAKE_CASE : Dict = transforms(a__ ).unsqueeze(0 )
if config.num_channels == 1:
SCREAMING_SNAKE_CASE : Optional[Any] = pixel_values[:, 0, :, :].unsqueeze(1 )
SCREAMING_SNAKE_CASE : Optional[int] = model(a__ )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size([1, 3, 512, 512] )
SCREAMING_SNAKE_CASE : int = torch.tensor(
[[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
SCREAMING_SNAKE_CASE : str = torch.Size([1, 3, 1_024, 1_024] )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor(
[[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size([1, 3, 1_024, 1_024] )
SCREAMING_SNAKE_CASE : int = torch.tensor(
[[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size([1, 3, 512, 512] )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(
[[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size([1, 3, 1_024, 1_024] )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor(
[[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}"""
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , a__ , atol=1e-3 )
print('''Looks ok!''' )
SCREAMING_SNAKE_CASE : Optional[int] = {
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''': (
'''swin2SR-classical-sr-x2-64'''
),
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth''': (
'''swin2SR-classical-sr-x4-64'''
),
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth''': (
'''swin2SR-compressed-sr-x4-48'''
),
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth''': (
'''swin2SR-lightweight-x2-64'''
),
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth''': (
'''swin2SR-realworld-sr-x4-64-bsrgan-psnr'''
),
}
SCREAMING_SNAKE_CASE : Optional[Any] = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(a__ )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
processor.save_pretrained(a__ )
if push_to_hub:
model.push_to_hub(F"""caidas/{model_name}""" )
processor.push_to_hub(F"""caidas/{model_name}""" )
if __name__ == "__main__":
a__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''',
type=str,
help='''URL of the original Swin2SR checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''')
a__ : int = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 19 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mobilebert import MobileBertTokenizer
a__ : Optional[Any] = logging.get_logger(__name__)
a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
a__ : Tuple = {
'''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''},
'''tokenizer_file''': {
'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json'''
},
}
a__ : Optional[Any] = {'''mobilebert-uncased''': 512}
a__ : List[Any] = {}
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION
__SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer
def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]:
super().__init__(
_lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , )
SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) )
SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case
SCREAMING_SNAKE_CASE : Optional[int] = strip_accents
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars
SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = do_lower_case
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any:
SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id]
SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase )
return tuple(_lowerCamelCase )
| 19 | 1 |
from math import factorial
def UpperCAmelCase_( a__ = 100 ):
"""simple docstring"""
return sum(map(a__ , str(factorial(a__ ) ) ) )
if __name__ == "__main__":
print(solution(int(input('''Enter the Number: ''').strip())))
| 19 |
import math
a__ : List[str] = 10
a__ : Optional[int] = 7
a__ : int = BALLS_PER_COLOUR * NUM_COLOURS
def UpperCAmelCase_( a__ = 20 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ )
SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ )
SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total)
return F"""{result:.9f}"""
if __name__ == "__main__":
print(solution(20))
| 19 | 1 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Tuple:
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
SCREAMING_SNAKE_CASE : List[str] = [[1, 2, 4], [1, 2, 3, 4]]
SCREAMING_SNAKE_CASE : str = DisjunctiveConstraint(_lowerCamelCase )
self.assertTrue(isinstance(dc.token_ids , _lowerCamelCase ) )
with self.assertRaises(_lowerCamelCase ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(_lowerCamelCase ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def __lowerCAmelCase ( self ) ->int:
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
SCREAMING_SNAKE_CASE : Any = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(_lowerCamelCase ):
DisjunctiveConstraint(_lowerCamelCase ) # fails here
def __lowerCAmelCase ( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : str = [[1, 2, 3], [1, 2, 4]]
SCREAMING_SNAKE_CASE : int = DisjunctiveConstraint(_lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = dc.update(1 )
SCREAMING_SNAKE_CASE : List[Any] = stepped is True and completed is False and reset is False
self.assertTrue(_lowerCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = dc.update(2 )
SCREAMING_SNAKE_CASE : List[Any] = stepped is True and completed is False and reset is False
self.assertTrue(_lowerCamelCase )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = dc.update(3 )
SCREAMING_SNAKE_CASE : Union[str, Any] = stepped is True and completed is True and reset is False
self.assertTrue(_lowerCamelCase )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : List[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
SCREAMING_SNAKE_CASE : Any = DisjunctiveConstraint(_lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 19 |
from typing import Optional, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_mobilenet_va import MobileNetVaConfig
a__ : List[str] = logging.get_logger(__name__)
# General docstring
a__ : Tuple = '''MobileNetV1Config'''
# Base docstring
a__ : Optional[Any] = '''google/mobilenet_v1_1.0_224'''
a__ : Tuple = [1, 1_024, 7, 7]
# Image classification docstring
a__ : Optional[int] = '''google/mobilenet_v1_1.0_224'''
a__ : int = '''tabby, tabby cat'''
a__ : List[Any] = [
'''google/mobilenet_v1_1.0_224''',
'''google/mobilenet_v1_0.75_192''',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
]
def UpperCAmelCase_( a__ , a__ , a__=None ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = {}
if isinstance(a__ , a__ ):
SCREAMING_SNAKE_CASE : List[str] = model.mobilenet_va
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = model
SCREAMING_SNAKE_CASE : Optional[int] = '''MobilenetV1/Conv2d_0/'''
SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight
SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.normalization.bias
SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.weight
SCREAMING_SNAKE_CASE : Union[str, Any] = backbone.conv_stem.normalization.running_mean
SCREAMING_SNAKE_CASE : Any = backbone.conv_stem.normalization.running_var
for i in range(13 ):
SCREAMING_SNAKE_CASE : Dict = i + 1
SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2
SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index]
SCREAMING_SNAKE_CASE : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/"""
SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight
SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.bias
SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.weight
SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean
SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_var
SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index + 1]
SCREAMING_SNAKE_CASE : Any = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/"""
SCREAMING_SNAKE_CASE : Dict = pointer.convolution.weight
SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias
SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight
SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean
SCREAMING_SNAKE_CASE : str = pointer.normalization.running_var
if isinstance(a__ , a__ ):
SCREAMING_SNAKE_CASE : List[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/'''
SCREAMING_SNAKE_CASE : List[str] = model.classifier.weight
SCREAMING_SNAKE_CASE : List[str] = model.classifier.bias
return tf_to_pt_map
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
'''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see '''
'''https://www.tensorflow.org/install/ for installation instructions.''' )
raise
# Load weights from TF model
SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.list_variables(a__ )
SCREAMING_SNAKE_CASE : List[Any] = {}
for name, shape in init_vars:
logger.info(F"""Loading TF weight {name} with shape {shape}""" )
SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(a__ , a__ )
SCREAMING_SNAKE_CASE : Dict = array
# Build TF to PyTorch weights loading map
SCREAMING_SNAKE_CASE : int = _build_tf_to_pytorch_map(a__ , a__ , a__ )
for name, pointer in tf_to_pt_map.items():
logger.info(F"""Importing {name}""" )
if name not in tf_weights:
logger.info(F"""{name} not in tf pre-trained weights, skipping""" )
continue
SCREAMING_SNAKE_CASE : Union[str, Any] = tf_weights[name]
if "depthwise_weights" in name:
logger.info('''Transposing depthwise''' )
SCREAMING_SNAKE_CASE : Tuple = np.transpose(a__ , (2, 3, 0, 1) )
elif "weights" in name:
logger.info('''Transposing''' )
if len(pointer.shape ) == 2: # copying into linear layer
SCREAMING_SNAKE_CASE : Union[str, Any] = array.squeeze().transpose()
else:
SCREAMING_SNAKE_CASE : Optional[int] = np.transpose(a__ , (3, 2, 0, 1) )
if pointer.shape != array.shape:
raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" )
logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" )
SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ )
tf_weights.pop(a__ , a__ )
tf_weights.pop(name + '''/RMSProp''' , a__ )
tf_weights.pop(name + '''/RMSProp_1''' , a__ )
tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ )
logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" )
return model
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = features.shape[-2:]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = conv_layer.stride
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = conv_layer.kernel_size
if in_height % stride_height == 0:
SCREAMING_SNAKE_CASE : List[str] = max(kernel_height - stride_height , 0 )
else:
SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height) , 0 )
if in_width % stride_width == 0:
SCREAMING_SNAKE_CASE : int = max(kernel_width - stride_width , 0 )
else:
SCREAMING_SNAKE_CASE : Tuple = max(kernel_width - (in_width % stride_width) , 0 )
SCREAMING_SNAKE_CASE : List[str] = pad_along_width // 2
SCREAMING_SNAKE_CASE : Any = pad_along_width - pad_left
SCREAMING_SNAKE_CASE : str = pad_along_height // 2
SCREAMING_SNAKE_CASE : Optional[int] = pad_along_height - pad_top
SCREAMING_SNAKE_CASE : List[Any] = (pad_left, pad_right, pad_top, pad_bottom)
return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 )
class a_ ( nn.Module ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = True , ) ->None:
super().__init__()
SCREAMING_SNAKE_CASE : Any = config
if in_channels % groups != 0:
raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" )
if out_channels % groups != 0:
raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" )
SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 )
SCREAMING_SNAKE_CASE : List[str] = nn.Convad(
in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='''zeros''' , )
if use_normalization:
SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad(
num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , )
else:
SCREAMING_SNAKE_CASE : Dict = None
if use_activation:
if isinstance(_lowerCamelCase , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : Any = ACTaFN[use_activation]
elif isinstance(config.hidden_act , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act]
else:
SCREAMING_SNAKE_CASE : List[Any] = config.hidden_act
else:
SCREAMING_SNAKE_CASE : Optional[Any] = None
def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor:
if self.config.tf_padding:
SCREAMING_SNAKE_CASE : List[Any] = apply_tf_padding(_lowerCamelCase , self.convolution )
SCREAMING_SNAKE_CASE : Dict = self.convolution(_lowerCamelCase )
if self.normalization is not None:
SCREAMING_SNAKE_CASE : int = self.normalization(_lowerCamelCase )
if self.activation is not None:
SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase )
return features
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = MobileNetVaConfig
__SCREAMING_SNAKE_CASE : List[Any] = load_tf_weights_in_mobilenet_va
__SCREAMING_SNAKE_CASE : int = 'mobilenet_v1'
__SCREAMING_SNAKE_CASE : int = 'pixel_values'
__SCREAMING_SNAKE_CASE : List[str] = False
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(_lowerCamelCase , nn.BatchNormad ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
a__ : str = r'''
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
'''
a__ : Union[str, Any] = r'''
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`MobileNetV1ImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
'''
@add_start_docstrings(
'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , a__ , )
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase = True ) ->Dict:
super().__init__(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = config
SCREAMING_SNAKE_CASE : Dict = 32
SCREAMING_SNAKE_CASE : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth )
SCREAMING_SNAKE_CASE : str = MobileNetVaConvLayer(
_lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , )
SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
SCREAMING_SNAKE_CASE : Any = nn.ModuleList()
for i in range(13 ):
SCREAMING_SNAKE_CASE : int = out_channels
if strides[i] == 2 or i == 0:
depth *= 2
SCREAMING_SNAKE_CASE : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth )
self.layer.append(
MobileNetVaConvLayer(
_lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) )
self.layer.append(
MobileNetVaConvLayer(
_lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) )
SCREAMING_SNAKE_CASE : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]:
raise NotImplementedError
@add_start_docstrings_to_model_forward(_lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
SCREAMING_SNAKE_CASE : Union[str, Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
SCREAMING_SNAKE_CASE : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError('''You have to specify pixel_values''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_stem(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer ):
SCREAMING_SNAKE_CASE : Optional[int] = layer_module(_lowerCamelCase )
if output_hidden_states:
SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,)
SCREAMING_SNAKE_CASE : List[str] = hidden_states
if self.pooler is not None:
SCREAMING_SNAKE_CASE : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 )
else:
SCREAMING_SNAKE_CASE : List[Any] = None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None )
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , )
@add_start_docstrings(
'\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , )
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase ) ->None:
super().__init__(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels
SCREAMING_SNAKE_CASE : str = MobileNetVaModel(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va.layer[-1].convolution.out_channels
# Classifier head
SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]:
SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict
SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = outputs.pooler_output if return_dict else outputs[1]
SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(_lowerCamelCase ) )
SCREAMING_SNAKE_CASE : int = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
SCREAMING_SNAKE_CASE : Any = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification'''
else:
SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification'''
if self.config.problem_type == "regression":
SCREAMING_SNAKE_CASE : Any = MSELoss()
if self.num_labels == 1:
SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() )
else:
SCREAMING_SNAKE_CASE : Dict = loss_fct(_lowerCamelCase , _lowerCamelCase )
elif self.config.problem_type == "single_label_classification":
SCREAMING_SNAKE_CASE : str = CrossEntropyLoss()
SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
SCREAMING_SNAKE_CASE : List[Any] = BCEWithLogitsLoss()
SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase )
if not return_dict:
SCREAMING_SNAKE_CASE : Optional[Any] = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
| 19 | 1 |
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
a__ : Optional[Any] = re.compile('''[^A-Za-z_0-9]''')
# parameters used in DuplicationIndex
a__ : Optional[int] = 10
a__ : Dict = 256
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if len(a__ ) < MIN_NUM_TOKENS:
return None
SCREAMING_SNAKE_CASE : Optional[int] = MinHash(num_perm=a__ )
for token in set(a__ ):
min_hash.update(token.encode() )
return min_hash
def UpperCAmelCase_( a__ ):
"""simple docstring"""
return {t for t in NON_ALPHA.split(a__ ) if len(t.strip() ) > 0}
class a_ :
"""simple docstring"""
def __init__( self , *,
_lowerCamelCase = 0.8_5 , ) ->Dict:
SCREAMING_SNAKE_CASE : Dict = duplication_jaccard_threshold
SCREAMING_SNAKE_CASE : Union[str, Any] = NUM_PERM
SCREAMING_SNAKE_CASE : Optional[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm )
SCREAMING_SNAKE_CASE : int = defaultdict(_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None:
SCREAMING_SNAKE_CASE : Dict = self._index.query(_lowerCamelCase )
if code_key in self._index.keys:
print(F"""Duplicate key {code_key}""" )
return
self._index.insert(_lowerCamelCase , _lowerCamelCase )
if len(_lowerCamelCase ) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(_lowerCamelCase )
break
else:
self._duplicate_clusters[close_duplicates[0]].add(_lowerCamelCase )
def __lowerCAmelCase ( self ) ->List[List[Dict]]:
SCREAMING_SNAKE_CASE : Tuple = []
for base, duplicates in self._duplicate_clusters.items():
SCREAMING_SNAKE_CASE : Optional[Any] = [base] + list(_lowerCamelCase )
# reformat the cluster to be a list of dict
SCREAMING_SNAKE_CASE : Optional[Any] = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster]
duplicate_clusters.append(_lowerCamelCase )
return duplicate_clusters
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
SCREAMING_SNAKE_CASE : List[Any] = self.get_duplicate_clusters()
with open(_lowerCamelCase , '''w''' ) as f:
json.dump(_lowerCamelCase , _lowerCamelCase )
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = element
SCREAMING_SNAKE_CASE : Dict = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def UpperCAmelCase_( a__ ):
"""simple docstring"""
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(a__ , max_queue_size=10_000 ) , chunksize=100 , ):
if data is not None:
yield data
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = DuplicationIndex(duplication_jaccard_threshold=a__ )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(a__ ) ) , max_queue_size=100 ) ):
di.add(a__ , a__ )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = get_tokens(a__ )
SCREAMING_SNAKE_CASE : Union[str, Any] = get_tokens(a__ )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
a__ : List[str] = None
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = []
for elementa in cluster:
SCREAMING_SNAKE_CASE : List[Any] = _shared_dataset[elementa['''base_index''']]['''content''']
for elementa in extremes:
SCREAMING_SNAKE_CASE : str = _shared_dataset[elementa['''base_index''']]['''content''']
if jaccard_similarity(a__ , a__ ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
SCREAMING_SNAKE_CASE : Optional[Any] = 1
extremes.append(a__ )
return extremes
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
global _shared_dataset
SCREAMING_SNAKE_CASE : Any = dataset
SCREAMING_SNAKE_CASE : List[Any] = []
SCREAMING_SNAKE_CASE : str = partial(_find_cluster_extremes_shared , jaccard_threshold=a__ )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
a__ , a__ , ) , total=len(a__ ) , ):
extremes_list.append(a__ )
return extremes_list
def UpperCAmelCase_( a__ , a__ = 0.85 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = make_duplicate_clusters(a__ , a__ )
SCREAMING_SNAKE_CASE : Optional[Any] = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster}
SCREAMING_SNAKE_CASE : List[Any] = {}
SCREAMING_SNAKE_CASE : Tuple = find_extremes(a__ , a__ , a__ )
for extremes in extremes_clusters:
for element in extremes:
SCREAMING_SNAKE_CASE : Optional[int] = element
SCREAMING_SNAKE_CASE : int = duplicate_indices - set(extreme_dict.keys() )
SCREAMING_SNAKE_CASE : Dict = dataset.filter(lambda a__ , a__ : idx not in remove_indices , with_indices=a__ )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
SCREAMING_SNAKE_CASE : Optional[Any] = element['''base_index'''] in extreme_dict
if element["is_extreme"]:
SCREAMING_SNAKE_CASE : Union[str, Any] = extreme_dict[element['''base_index''']]['''copies''']
print(F"""Original dataset size: {len(a__ )}""" )
print(F"""Number of duplicate clusters: {len(a__ )}""" )
print(F"""Files in duplicate cluster: {len(a__ )}""" )
print(F"""Unique files in duplicate cluster: {len(a__ )}""" )
print(F"""Filtered dataset size: {len(a__ )}""" )
return ds_filter, duplicate_clusters
| 19 |
import math
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 )
return exponent == int(a__ )
def UpperCAmelCase_( a__ = 1 / 12_345 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = 0
SCREAMING_SNAKE_CASE : Dict = 0
SCREAMING_SNAKE_CASE : int = 3
while True:
SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4
# if candidate is an integer, then there is a partition for k
if partition_candidate == int(a__ ):
SCREAMING_SNAKE_CASE : List[str] = int(a__ )
total_partitions += 1
if check_partition_perfect(a__ ):
perfect_partitions += 1
if perfect_partitions > 0:
if perfect_partitions / total_partitions < max_proportion:
return int(a__ )
integer += 1
if __name__ == "__main__":
print(F"{solution() = }")
| 19 | 1 |
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
a__ : Union[str, Any] = logging.get_logger(__name__)
a__ : Tuple = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
a__ : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class a_ :
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = field(
default=a__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(a__ )} )
__SCREAMING_SNAKE_CASE : str = field(
default=a__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} )
__SCREAMING_SNAKE_CASE : int = field(
default=128 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
__SCREAMING_SNAKE_CASE : int = field(
default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , )
__SCREAMING_SNAKE_CASE : int = field(
default=64 , metadata={
'help': (
'The maximum number of tokens for the question. Questions longer than this will '
'be truncated to this length.'
)
} , )
__SCREAMING_SNAKE_CASE : int = field(
default=30 , metadata={
'help': (
'The maximum length of an answer that can be generated. This is needed because the start '
'and end predictions are not conditioned on one another.'
)
} , )
__SCREAMING_SNAKE_CASE : bool = field(
default=a__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} )
__SCREAMING_SNAKE_CASE : bool = field(
default=a__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} )
__SCREAMING_SNAKE_CASE : float = field(
default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} )
__SCREAMING_SNAKE_CASE : int = field(
default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} )
__SCREAMING_SNAKE_CASE : int = field(
default=0 , metadata={
'help': (
'language id of input for language-specific xlm models (see'
' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'
)
} , )
__SCREAMING_SNAKE_CASE : int = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} )
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = 'train'
__SCREAMING_SNAKE_CASE : List[Any] = 'dev'
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : SquadDataTrainingArguments
__SCREAMING_SNAKE_CASE : List[SquadFeatures]
__SCREAMING_SNAKE_CASE : Split
__SCREAMING_SNAKE_CASE : bool
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = Split.train , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = "pt" , ) ->Optional[int]:
SCREAMING_SNAKE_CASE : Any = args
SCREAMING_SNAKE_CASE : Tuple = is_language_sensitive
SCREAMING_SNAKE_CASE : List[str] = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(_lowerCamelCase , _lowerCamelCase ):
try:
SCREAMING_SNAKE_CASE : Tuple = Split[mode]
except KeyError:
raise KeyError('''mode is not a valid split name''' )
SCREAMING_SNAKE_CASE : List[str] = mode
# Load data features from cache or dataset file
SCREAMING_SNAKE_CASE : int = '''v2''' if args.version_2_with_negative else '''v1'''
SCREAMING_SNAKE_CASE : str = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
SCREAMING_SNAKE_CASE : Tuple = cached_features_file + '''.lock'''
with FileLock(_lowerCamelCase ):
if os.path.exists(_lowerCamelCase ) and not args.overwrite_cache:
SCREAMING_SNAKE_CASE : List[Any] = time.time()
SCREAMING_SNAKE_CASE : Tuple = torch.load(_lowerCamelCase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
SCREAMING_SNAKE_CASE : Union[str, Any] = self.old_features['''features''']
SCREAMING_SNAKE_CASE : Optional[int] = self.old_features.get('''dataset''' , _lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = self.old_features.get('''examples''' , _lowerCamelCase )
logger.info(
F"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
F"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"""
''' future run''' )
else:
if mode == Split.dev:
SCREAMING_SNAKE_CASE : int = self.processor.get_dev_examples(args.data_dir )
else:
SCREAMING_SNAKE_CASE : int = self.processor.get_train_examples(args.data_dir )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = squad_convert_examples_to_features(
examples=self.examples , tokenizer=_lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowerCamelCase , )
SCREAMING_SNAKE_CASE : str = time.time()
torch.save(
{'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , _lowerCamelCase , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" )
def __len__( self ) ->Dict:
return len(self.features )
def __getitem__( self , _lowerCamelCase ) ->Dict[str, torch.Tensor]:
# Convert to Tensors and build dataset
SCREAMING_SNAKE_CASE : List[Any] = self.features[i]
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(feature.input_ids , dtype=torch.long )
SCREAMING_SNAKE_CASE : str = torch.tensor(feature.attention_mask , dtype=torch.long )
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(feature.token_type_ids , dtype=torch.long )
SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(feature.cls_index , dtype=torch.long )
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(feature.p_mask , dtype=torch.float )
SCREAMING_SNAKE_CASE : Dict = torch.tensor(feature.is_impossible , dtype=torch.float )
SCREAMING_SNAKE_CASE : Any = {
'''input_ids''': input_ids,
'''attention_mask''': attention_mask,
'''token_type_ids''': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'''is_impossible''': is_impossible} )
if self.is_language_sensitive:
inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(feature.start_position , dtype=torch.long )
SCREAMING_SNAKE_CASE : str = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} )
return inputs
| 19 |
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
a__ : Any = TypeVar('''T''')
def UpperCAmelCase_( a__ ):
"""simple docstring"""
return (position - 1) // 2
def UpperCAmelCase_( a__ ):
"""simple docstring"""
return (2 * position) + 1
def UpperCAmelCase_( a__ ):
"""simple docstring"""
return (2 * position) + 2
class a_ ( Generic[T] ):
"""simple docstring"""
def __init__( self ) ->None:
SCREAMING_SNAKE_CASE : list[tuple[T, int]] = []
SCREAMING_SNAKE_CASE : dict[T, int] = {}
SCREAMING_SNAKE_CASE : int = 0
def __len__( self ) ->int:
return self.elements
def __repr__( self ) ->str:
return str(self.heap )
def __lowerCAmelCase ( self ) ->bool:
# Check if the priority queue is empty
return self.elements == 0
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None:
# Add an element with given priority to the queue
self.heap.append((elem, weight) )
SCREAMING_SNAKE_CASE : Tuple = self.elements
self.elements += 1
self._bubble_up(_lowerCamelCase )
def __lowerCAmelCase ( self ) ->T:
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[0]
self._bubble_down(_lowerCamelCase )
return elem
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None:
# Update the weight of the given key
SCREAMING_SNAKE_CASE : List[Any] = self.position_map[elem]
SCREAMING_SNAKE_CASE : Any = (elem, weight)
if position > 0:
SCREAMING_SNAKE_CASE : List[Any] = get_parent_position(_lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(_lowerCamelCase )
else:
self._bubble_down(_lowerCamelCase )
else:
self._bubble_down(_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem]
if curr_pos == 0:
return None
SCREAMING_SNAKE_CASE : str = get_parent_position(_lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.heap[curr_pos]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(_lowerCamelCase , _lowerCamelCase )
return self._bubble_up(_lowerCamelCase )
return None
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[curr_pos]
SCREAMING_SNAKE_CASE : List[str] = get_child_left_position(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = get_child_right_position(_lowerCamelCase )
if child_left_position < self.elements and child_right_position < self.elements:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[child_left_position]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(_lowerCamelCase , _lowerCamelCase )
return self._bubble_down(_lowerCamelCase )
if child_left_position < self.elements:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(_lowerCamelCase , _lowerCamelCase )
return self._bubble_down(_lowerCamelCase )
else:
return None
if child_right_position < self.elements:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(_lowerCamelCase , _lowerCamelCase )
return self._bubble_down(_lowerCamelCase )
return None
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None:
# Swap the nodes at the given positions
SCREAMING_SNAKE_CASE : Optional[int] = self.heap[nodea_pos][0]
SCREAMING_SNAKE_CASE : Any = self.heap[nodea_pos][0]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
SCREAMING_SNAKE_CASE : Optional[int] = nodea_pos
SCREAMING_SNAKE_CASE : List[str] = nodea_pos
class a_ ( Generic[T] ):
"""simple docstring"""
def __init__( self ) ->None:
SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {}
SCREAMING_SNAKE_CASE : int = 0
def __repr__( self ) ->str:
return str(self.connections )
def __len__( self ) ->int:
return self.nodes
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
# Add a node in the graph if it is not in the graph
if node not in self.connections:
SCREAMING_SNAKE_CASE : Any = {}
self.nodes += 1
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None:
# Add an edge between 2 nodes in the graph
self.add_node(_lowerCamelCase )
self.add_node(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = weight
SCREAMING_SNAKE_CASE : str = weight
def UpperCAmelCase_( a__ , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : dict[T, int] = {node: maxsize for node in graph.connections}
SCREAMING_SNAKE_CASE : dict[T, T | None] = {node: None for node in graph.connections}
SCREAMING_SNAKE_CASE : MinPriorityQueue[T] = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(a__ , a__ )
if priority_queue.is_empty():
return dist, parent
# initialization
SCREAMING_SNAKE_CASE : List[Any] = priority_queue.extract_min()
SCREAMING_SNAKE_CASE : Union[str, Any] = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
SCREAMING_SNAKE_CASE : Any = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(a__ , dist[neighbour] )
SCREAMING_SNAKE_CASE : str = node
# running prim's algorithm
while not priority_queue.is_empty():
SCREAMING_SNAKE_CASE : List[str] = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
SCREAMING_SNAKE_CASE : List[Any] = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(a__ , dist[neighbour] )
SCREAMING_SNAKE_CASE : str = node
return dist, parent
| 19 | 1 |
from cva import destroyAllWindows, imread, imshow, waitKey
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = img.shape[0], img.shape[1]
# converting each pixel's color to its negative
for i in range(a__ ):
for j in range(a__ ):
SCREAMING_SNAKE_CASE : Any = [255, 255, 255] - img[i][j]
return img
if __name__ == "__main__":
# read original image
a__ : Tuple = imread('''image_data/lena.jpg''', 1)
# convert to its negative
a__ : Any = convert_to_negative(img)
# show result image
imshow('''negative of original image''', img)
waitKey(0)
destroyAllWindows()
| 19 |
from math import pi, sqrt, tan
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if side_length < 0:
raise ValueError('''surface_area_cube() only accepts non-negative values''' )
return 6 * side_length**2
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if length < 0 or breadth < 0 or height < 0:
raise ValueError('''surface_area_cuboid() only accepts non-negative values''' )
return 2 * ((length * breadth) + (breadth * height) + (length * height))
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if radius < 0:
raise ValueError('''surface_area_sphere() only accepts non-negative values''' )
return 4 * pi * radius**2
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if radius < 0:
raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' )
return 3 * pi * radius**2
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if radius < 0 or height < 0:
raise ValueError('''surface_area_cone() only accepts non-negative values''' )
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if radius_a < 0 or radius_a < 0 or height < 0:
raise ValueError(
'''surface_area_conical_frustum() only accepts non-negative values''' )
SCREAMING_SNAKE_CASE : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5
return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2)
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if radius < 0 or height < 0:
raise ValueError('''surface_area_cylinder() only accepts non-negative values''' )
return 2 * pi * radius * (height + radius)
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if torus_radius < 0 or tube_radius < 0:
raise ValueError('''surface_area_torus() only accepts non-negative values''' )
if torus_radius < tube_radius:
raise ValueError(
'''surface_area_torus() does not support spindle or self intersecting tori''' )
return 4 * pow(a__ , 2 ) * torus_radius * tube_radius
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if length < 0 or width < 0:
raise ValueError('''area_rectangle() only accepts non-negative values''' )
return length * width
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if side_length < 0:
raise ValueError('''area_square() only accepts non-negative values''' )
return side_length**2
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if base < 0 or height < 0:
raise ValueError('''area_triangle() only accepts non-negative values''' )
return (base * height) / 2
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if sidea < 0 or sidea < 0 or sidea < 0:
raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' )
elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea:
raise ValueError('''Given three sides do not form a triangle''' )
SCREAMING_SNAKE_CASE : int = (sidea + sidea + sidea) / 2
SCREAMING_SNAKE_CASE : List[str] = sqrt(
semi_perimeter
* (semi_perimeter - sidea)
* (semi_perimeter - sidea)
* (semi_perimeter - sidea) )
return area
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if base < 0 or height < 0:
raise ValueError('''area_parallelogram() only accepts non-negative values''' )
return base * height
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if basea < 0 or basea < 0 or height < 0:
raise ValueError('''area_trapezium() only accepts non-negative values''' )
return 1 / 2 * (basea + basea) * height
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if radius < 0:
raise ValueError('''area_circle() only accepts non-negative values''' )
return pi * radius**2
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if radius_x < 0 or radius_y < 0:
raise ValueError('''area_ellipse() only accepts non-negative values''' )
return pi * radius_x * radius_y
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if diagonal_a < 0 or diagonal_a < 0:
raise ValueError('''area_rhombus() only accepts non-negative values''' )
return 1 / 2 * diagonal_a * diagonal_a
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if not isinstance(a__ , a__ ) or sides < 3:
raise ValueError(
'''area_reg_polygon() only accepts integers greater than or \
equal to three as number of sides''' )
elif length < 0:
raise ValueError(
'''area_reg_polygon() only accepts non-negative values as \
length of a side''' )
return (sides * length**2) / (4 * tan(pi / sides ))
return (sides * length**2) / (4 * tan(pi / sides ))
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) # verbose so we can see methods missing tests
print('''[DEMO] Areas of various geometric shapes: \n''')
print(F"Rectangle: {area_rectangle(10, 20) = }")
print(F"Square: {area_square(10) = }")
print(F"Triangle: {area_triangle(10, 10) = }")
print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }")
print(F"Parallelogram: {area_parallelogram(10, 20) = }")
print(F"Rhombus: {area_rhombus(10, 20) = }")
print(F"Trapezium: {area_trapezium(10, 20, 30) = }")
print(F"Circle: {area_circle(20) = }")
print(F"Ellipse: {area_ellipse(10, 20) = }")
print('''\nSurface Areas of various geometric shapes: \n''')
print(F"Cube: {surface_area_cube(20) = }")
print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }")
print(F"Sphere: {surface_area_sphere(20) = }")
print(F"Hemisphere: {surface_area_hemisphere(20) = }")
print(F"Cone: {surface_area_cone(10, 20) = }")
print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }")
print(F"Cylinder: {surface_area_cylinder(10, 20) = }")
print(F"Torus: {surface_area_torus(20, 10) = }")
print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }")
print(F"Square: {area_reg_polygon(4, 10) = }")
print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
| 19 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : Optional[Any] = {
'''configuration_blenderbot''': [
'''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''BlenderbotConfig''',
'''BlenderbotOnnxConfig''',
],
'''tokenization_blenderbot''': ['''BlenderbotTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = ['''BlenderbotTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[Any] = [
'''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BlenderbotForCausalLM''',
'''BlenderbotForConditionalGeneration''',
'''BlenderbotModel''',
'''BlenderbotPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = [
'''TFBlenderbotForConditionalGeneration''',
'''TFBlenderbotModel''',
'''TFBlenderbotPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[Any] = [
'''FlaxBlenderbotForConditionalGeneration''',
'''FlaxBlenderbotModel''',
'''FlaxBlenderbotPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
a__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 19 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
a__ : List[str] = None
a__ : Any = logging.get_logger(__name__)
a__ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
a__ : Dict = {
'''vocab_file''': {
'''facebook/mbart-large-en-ro''': (
'''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model'''
),
'''facebook/mbart-large-cc25''': (
'''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model'''
),
},
'''tokenizer_file''': {
'''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''',
'''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''',
},
}
a__ : str = {
'''facebook/mbart-large-en-ro''': 1_024,
'''facebook/mbart-large-cc25''': 1_024,
}
# fmt: off
a__ : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''']
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask']
__SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer
__SCREAMING_SNAKE_CASE : List[int] = []
__SCREAMING_SNAKE_CASE : List[int] = []
def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->List[Any]:
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token
super().__init__(
vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , )
SCREAMING_SNAKE_CASE : Any = vocab_file
SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True
SCREAMING_SNAKE_CASE : Any = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
SCREAMING_SNAKE_CASE : int = {
lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX'''
SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang )
SCREAMING_SNAKE_CASE : List[Any] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def __lowerCAmelCase ( self ) ->str:
return self._src_lang
@src_lang.setter
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
SCREAMING_SNAKE_CASE : str = [self.sep_token_id]
SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]:
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang
SCREAMING_SNAKE_CASE : List[str] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = tgt_lang_id
return inputs
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ) ->BatchEncoding:
SCREAMING_SNAKE_CASE : List[str] = src_lang
SCREAMING_SNAKE_CASE : List[str] = tgt_lang
return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase )
def __lowerCAmelCase ( self ) ->Dict:
return self.set_src_lang_special_tokens(self.src_lang )
def __lowerCAmelCase ( self ) ->List[Any]:
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = []
SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code]
SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens )
SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens )
SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
SCREAMING_SNAKE_CASE : str = self.convert_tokens_to_ids(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = []
SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code]
SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens )
SCREAMING_SNAKE_CASE : Any = self.convert_ids_to_tokens(self.suffix_tokens )
SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(_lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" )
return
SCREAMING_SNAKE_CASE : List[Any] = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ):
copyfile(self.vocab_file , _lowerCamelCase )
return (out_vocab_file,)
| 19 | 1 |
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def UpperCAmelCase_( a__ ):
"""simple docstring"""
return (data["data"], data["target"])
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = XGBClassifier()
classifier.fit(a__ , a__ )
return classifier
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = load_iris()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = data_handling(a__ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = train_test_split(
a__ , a__ , test_size=0.25 )
SCREAMING_SNAKE_CASE : List[Any] = iris['''target_names''']
# Create an XGBoost Classifier from the training data
SCREAMING_SNAKE_CASE : List[str] = xgboost(a__ , a__ )
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
a__ , a__ , a__ , display_labels=a__ , cmap='''Blues''' , normalize='''true''' , )
plt.title('''Normalized Confusion Matrix - IRIS Dataset''' )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 19 |
import torch
from torch import nn
from transformers import CLIPPreTrainedModel, CLIPVisionModel
from ...models.attention import BasicTransformerBlock
from ...utils import logging
a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]:
super().__init__(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = proj_size
SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size )
SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size )
# uncondition for scaling
SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int:
SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output
SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] )
SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase )
if return_uncond_vector:
return latent_states, self.uncond_vector
return latent_states
class a_ ( nn.Module ):
"""simple docstring"""
def __init__( self , _lowerCamelCase ) ->List[str]:
super().__init__()
SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5
SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size
SCREAMING_SNAKE_CASE : Dict = 1
SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList(
[
BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase )
for _ in range(_lowerCamelCase )
] )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
for block in self.blocks:
SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase )
return hidden_states
| 19 | 1 |
from PIL import Image
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = image.size
SCREAMING_SNAKE_CASE : Dict = 0
SCREAMING_SNAKE_CASE : Optional[Any] = image.load()
for i in range(a__ ):
for j in range(a__ ):
SCREAMING_SNAKE_CASE : str = pixels[j, i]
mean += pixel
mean //= width * height
for j in range(a__ ):
for i in range(a__ ):
SCREAMING_SNAKE_CASE : Any = 255 if pixels[i, j] > mean else 0
return image
if __name__ == "__main__":
a__ : List[str] = mean_threshold(Image.open('''path_to_image''').convert('''L'''))
image.save('''output_image_path''')
| 19 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a__ : Tuple = '''▁'''
a__ : List[Any] = {'''vocab_file''': '''spiece.model'''}
a__ : Optional[Any] = {
'''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''}
}
a__ : str = {
'''google/pegasus-xsum''': 512,
}
a__ : str = logging.get_logger(__name__)
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask']
def __init__( self , _lowerCamelCase , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<mask_2>" , _lowerCamelCase="<mask_1>" , _lowerCamelCase=None , _lowerCamelCase=103 , _lowerCamelCase = None , **_lowerCamelCase , ) ->None:
SCREAMING_SNAKE_CASE : Dict = offset
if additional_special_tokens is not None:
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise TypeError(
F"""additional_special_tokens should be of type {type(_lowerCamelCase )}, but is"""
F""" {type(_lowerCamelCase )}""" )
SCREAMING_SNAKE_CASE : List[Any] = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
F"""<unk_{i}>""" for i in range(len(_lowerCamelCase ) , self.offset - 1 )
]
if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ):
raise ValueError(
'''Please make sure that the provided additional_special_tokens do not contain an incorrectly'''
F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" )
SCREAMING_SNAKE_CASE : Dict = additional_special_tokens_extended
else:
SCREAMING_SNAKE_CASE : str = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )]
SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , )
SCREAMING_SNAKE_CASE : List[str] = mask_token_sent
SCREAMING_SNAKE_CASE : Optional[int] = vocab_file
SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCamelCase )
# add special tokens to encoder dict
SCREAMING_SNAKE_CASE : Dict[int, str] = {
0: self.pad_token,
1: self.eos_token,
}
if self.mask_token_sent is not None:
self.encoder.update(
{
2: self.mask_token_sent,
3: self.mask_token,
} )
if self.offset > 0:
# entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102
# mask_token_sent is already added to list -> so start at 1
self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} )
SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()}
@property
def __lowerCAmelCase ( self ) ->int:
return len(self.sp_model ) + self.offset
def __lowerCAmelCase ( self ) ->Dict[str, int]:
SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy()
SCREAMING_SNAKE_CASE : str = None
return state
def __setstate__( self , _lowerCamelCase ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Optional[Any] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
SCREAMING_SNAKE_CASE : List[str] = {}
SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]:
return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
if token in self.decoder:
return self.decoder[token]
elif token in self.added_tokens_decoder:
return self.added_tokens_decoder[token]
SCREAMING_SNAKE_CASE : List[str] = self.sp_model.piece_to_id(_lowerCamelCase )
return sp_id + self.offset
def __lowerCAmelCase ( self , _lowerCamelCase ) ->str:
if index in self.encoder:
return self.encoder[index]
elif index in self.added_tokens_encoder:
return self.added_tokens_encoder[index]
else:
SCREAMING_SNAKE_CASE : Dict = self.sp_model.IdToPiece(index - self.offset )
return token
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Dict = []
SCREAMING_SNAKE_CASE : int = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(_lowerCamelCase ) + token
SCREAMING_SNAKE_CASE : Optional[Any] = []
else:
current_sub_tokens.append(_lowerCamelCase )
out_string += self.sp_model.decode(_lowerCamelCase )
return out_string.strip()
def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->str:
return 1
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
SCREAMING_SNAKE_CASE : Dict = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
return [1 if x in all_special_ids else 0 for x in seq]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]:
if already_has_special_tokens:
return self._special_token_mask(_lowerCamelCase )
elif token_ids_a is None:
return self._special_token_mask(_lowerCamelCase ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]:
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
if not os.path.isdir(_lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
SCREAMING_SNAKE_CASE : int = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _lowerCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCamelCase , '''wb''' ) as fi:
SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto()
fi.write(_lowerCamelCase )
return (out_vocab_file,)
| 19 | 1 |
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def UpperCAmelCase_( a__ ):
"""simple docstring"""
return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )}
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = ArgumentParser(
'''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=a__ )
SCREAMING_SNAKE_CASE : Tuple = parser.add_subparsers(help='''datasets-cli command helpers''' )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(a__ )
EnvironmentCommand.register_subcommand(a__ )
TestCommand.register_subcommand(a__ )
RunBeamCommand.register_subcommand(a__ )
DummyDataCommand.register_subcommand(a__ )
# Parse args
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = parser.parse_known_args()
if not hasattr(a__ , '''func''' ):
parser.print_help()
exit(1 )
SCREAMING_SNAKE_CASE : int = parse_unknown_args(a__ )
# Run
SCREAMING_SNAKE_CASE : Optional[Any] = args.func(a__ , **a__ )
service.run()
if __name__ == "__main__":
main()
| 19 |
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
SCREAMING_SNAKE_CASE : Tuple = 1
SCREAMING_SNAKE_CASE : Tuple = 1
while repunit:
SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def UpperCAmelCase_( a__ = 1_000_000 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(a__ ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(F"{solution() = }")
| 19 | 1 |
def UpperCAmelCase_( a__ ):
"""simple docstring"""
assert (
isinstance(a__ , a__ ) and number_of_steps > 0
), F"""number_of_steps needs to be positive integer, your input {number_of_steps}"""
if number_of_steps == 1:
return 1
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = 1, 1
for _ in range(number_of_steps - 1 ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = current + previous, current
return current
if __name__ == "__main__":
import doctest
doctest.testmod()
| 19 |
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class a_ :
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict:
SCREAMING_SNAKE_CASE : Any = parent
SCREAMING_SNAKE_CASE : Optional[Any] = batch_size
SCREAMING_SNAKE_CASE : Optional[Any] = image_size
SCREAMING_SNAKE_CASE : str = num_channels
SCREAMING_SNAKE_CASE : Any = num_stages
SCREAMING_SNAKE_CASE : List[str] = hidden_sizes
SCREAMING_SNAKE_CASE : Optional[Any] = depths
SCREAMING_SNAKE_CASE : Any = is_training
SCREAMING_SNAKE_CASE : Tuple = use_labels
SCREAMING_SNAKE_CASE : Any = intermediate_size
SCREAMING_SNAKE_CASE : Dict = hidden_act
SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size
SCREAMING_SNAKE_CASE : str = initializer_range
SCREAMING_SNAKE_CASE : int = out_features
SCREAMING_SNAKE_CASE : List[str] = num_labels
SCREAMING_SNAKE_CASE : int = scope
SCREAMING_SNAKE_CASE : Optional[Any] = num_stages
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : str = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def __lowerCAmelCase ( self ) ->List[Any]:
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def __lowerCAmelCase ( self ) ->Any:
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any:
SCREAMING_SNAKE_CASE : List[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : Tuple = config_and_inputs
SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class a_ ( a__ , a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
__SCREAMING_SNAKE_CASE : List[str] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {}
__SCREAMING_SNAKE_CASE : Tuple = False
__SCREAMING_SNAKE_CASE : Union[str, Any] = False
__SCREAMING_SNAKE_CASE : Any = False
__SCREAMING_SNAKE_CASE : Tuple = False
__SCREAMING_SNAKE_CASE : Dict = False
__SCREAMING_SNAKE_CASE : Any = False
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : Optional[Any] = UperNetModelTester(self )
SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 )
def __lowerCAmelCase ( self ) ->str:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __lowerCAmelCase ( self ) ->str:
return
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase )
@unittest.skip(reason='''UperNet does not use inputs_embeds''' )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
pass
@unittest.skip(reason='''UperNet does not support input and output embeddings''' )
def __lowerCAmelCase ( self ) ->int:
pass
@unittest.skip(reason='''UperNet does not have a base model''' )
def __lowerCAmelCase ( self ) ->int:
pass
@unittest.skip(reason='''UperNet does not have a base model''' )
def __lowerCAmelCase ( self ) ->str:
pass
@require_torch_multi_gpu
@unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' )
def __lowerCAmelCase ( self ) ->str:
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __lowerCAmelCase ( self ) ->Tuple:
pass
def __lowerCAmelCase ( self ) ->int:
def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) )
SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_stages
self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Optional[int] = True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : Union[str, Any] = True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE : str = _config_zero_init(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : int = model_class(config=_lowerCamelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip(reason='''UperNet does not have tied weights''' )
def __lowerCAmelCase ( self ) ->List[Any]:
pass
@slow
def __lowerCAmelCase ( self ) ->List[Any]:
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download(
repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' )
SCREAMING_SNAKE_CASE : Any = Image.open(a__ ).convert('''RGB''' )
return image
@require_torch
@require_vision
@slow
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' )
SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = prepare_img()
SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(
[[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
def __lowerCAmelCase ( self ) ->int:
SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' )
SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = prepare_img()
SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase )
with torch.no_grad():
SCREAMING_SNAKE_CASE : str = model(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
| 19 | 1 |
import random
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = num - 1
SCREAMING_SNAKE_CASE : Any = 0
while s % 2 == 0:
SCREAMING_SNAKE_CASE : Any = s // 2
t += 1
for _ in range(5 ):
SCREAMING_SNAKE_CASE : List[str] = random.randrange(2 , num - 1 )
SCREAMING_SNAKE_CASE : Tuple = pow(a__ , a__ , a__ )
if v != 1:
SCREAMING_SNAKE_CASE : Optional[Any] = 0
while v != (num - 1):
if i == t - 1:
return False
else:
SCREAMING_SNAKE_CASE : Tuple = i + 1
SCREAMING_SNAKE_CASE : Optional[int] = (v**2) % num
return True
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if num < 2:
return False
SCREAMING_SNAKE_CASE : Union[str, Any] = [
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
101,
103,
107,
109,
113,
127,
131,
137,
139,
149,
151,
157,
163,
167,
173,
179,
181,
191,
193,
197,
199,
211,
223,
227,
229,
233,
239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(a__ )
def UpperCAmelCase_( a__ = 1_024 ):
"""simple docstring"""
while True:
SCREAMING_SNAKE_CASE : Union[str, Any] = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) )
if is_prime_low_num(a__ ):
return num
if __name__ == "__main__":
a__ : Any = generate_large_prime()
print(('''Prime number:''', num))
print(('''is_prime_low_num:''', is_prime_low_num(num)))
| 19 |
import datasets
from .evaluate import evaluate
a__ : Dict = '''\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
'''
a__ : List[str] = '''
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
'''
a__ : List[Any] = '''
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- \'id\': id of the question-answer pair as given in the references (see below)
- \'prediction_text\': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- \'id\': id of the question-answer pair (see above),
- \'answers\': a Dict in the CUAD dataset format
{
\'text\': list of possible texts for the answer, as a list of strings
\'answer_start\': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
\'exact_match\': Exact match (the normalized answer exactly match the gold answer)
\'f1\': The F-score of predicted tokens versus the gold answer
\'aupr\': Area Under the Precision-Recall curve
\'prec_at_80_recall\': Precision at 80% recall
\'prec_at_90_recall\': Precision at 90% recall
Examples:
>>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]
>>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]
>>> cuad_metric = datasets.load_metric("cuad")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Tuple:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': {
'''id''': datasets.Value('''string''' ),
'''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ),
},
'''references''': {
'''id''': datasets.Value('''string''' ),
'''answers''': datasets.features.Sequence(
{
'''text''': datasets.Value('''string''' ),
'''answer_start''': datasets.Value('''int32''' ),
} ),
},
} ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple:
SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions}
SCREAMING_SNAKE_CASE : int = [
{
'''paragraphs''': [
{
'''qas''': [
{
'''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']],
'''id''': ref['''id'''],
}
for ref in references
]
}
]
}
]
SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase )
return score
| 19 | 1 |
from typing import Callable, List, Optional, Union
import PIL
import torch
from transformers import (
CLIPImageProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
CLIPTextModel,
CLIPTokenizer,
)
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, is_accelerate_available, logging
a__ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) ->Union[str, Any]:
super().__init__()
if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1:
SCREAMING_SNAKE_CASE : str = (
F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"""
F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """
'''to update the config accordingly as leaving `steps_offset` might led to incorrect results'''
''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,'''
''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`'''
''' file'''
)
deprecate('''steps_offset!=1''' , '''1.0.0''' , _lowerCamelCase , standard_warn=_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = dict(scheduler.config )
SCREAMING_SNAKE_CASE : int = 1
SCREAMING_SNAKE_CASE : Any = FrozenDict(_lowerCamelCase )
if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False:
SCREAMING_SNAKE_CASE : Tuple = (
F"""The configuration file of this scheduler: {scheduler} has not set the configuration"""
''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make'''
''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to'''
''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face'''
''' Hub, it would be very nice if you could open a Pull request for the'''
''' `scheduler/scheduler_config.json` file'''
)
deprecate('''skip_prk_steps not set''' , '''1.0.0''' , _lowerCamelCase , standard_warn=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = dict(scheduler.config )
SCREAMING_SNAKE_CASE : List[str] = True
SCREAMING_SNAKE_CASE : str = FrozenDict(_lowerCamelCase )
if safety_checker is None:
logger.warning(
F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"""
''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'''
''' results in services or applications open to the public. Both the diffusers team and Hugging Face'''
''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'''
''' it only for use-cases that involve analyzing network behavior or auditing its results. For more'''
''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' )
self.register_modules(
segmentation_model=_lowerCamelCase , segmentation_processor=_lowerCamelCase , vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , unet=_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , )
def __lowerCAmelCase ( self , _lowerCamelCase = "auto" ) ->Dict:
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
SCREAMING_SNAKE_CASE : List[Any] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(_lowerCamelCase )
def __lowerCAmelCase ( self ) ->Optional[int]:
self.enable_attention_slicing(_lowerCamelCase )
def __lowerCAmelCase ( self ) ->List[str]:
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''' )
SCREAMING_SNAKE_CASE : List[Any] = torch.device('''cuda''' )
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
if cpu_offloaded_model is not None:
cpu_offload(_lowerCamelCase , _lowerCamelCase )
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def __lowerCAmelCase ( self ) ->Union[str, Any]:
if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ):
return self.device
for module in self.unet.modules():
if (
hasattr(_lowerCamelCase , '''_hf_hook''' )
and hasattr(module._hf_hook , '''execution_device''' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 512 , _lowerCamelCase = 512 , _lowerCamelCase = 50 , _lowerCamelCase = 7.5 , _lowerCamelCase = None , _lowerCamelCase = 1 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "pil" , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = 1 , **_lowerCamelCase , ) ->Optional[int]:
SCREAMING_SNAKE_CASE : Dict = self.segmentation_processor(
text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device )
SCREAMING_SNAKE_CASE : Optional[Any] = self.segmentation_model(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy()
SCREAMING_SNAKE_CASE : List[Any] = self.numpy_to_pil(_lowerCamelCase )[0].resize(image.size )
# Run inpainting pipeline with the generated mask
SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionInpaintPipeline(
vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , )
return inpainting_pipeline(
prompt=_lowerCamelCase , image=_lowerCamelCase , mask_image=_lowerCamelCase , height=_lowerCamelCase , width=_lowerCamelCase , num_inference_steps=_lowerCamelCase , guidance_scale=_lowerCamelCase , negative_prompt=_lowerCamelCase , num_images_per_prompt=_lowerCamelCase , eta=_lowerCamelCase , generator=_lowerCamelCase , latents=_lowerCamelCase , output_type=_lowerCamelCase , return_dict=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=_lowerCamelCase , )
| 19 |
from sklearn.metrics import matthews_corrcoef
import datasets
a__ : Optional[Any] = '''
Compute the Matthews correlation coefficient (MCC)
The Matthews correlation coefficient is used in machine learning as a
measure of the quality of binary and multiclass classifications. It takes
into account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if the classes are of
very different sizes. The MCC is in essence a correlation coefficient value
between -1 and +1. A coefficient of +1 represents a perfect prediction, 0
an average random prediction and -1 an inverse prediction. The statistic
is also known as the phi coefficient. [source: Wikipedia]
'''
a__ : str = '''
Args:
predictions (list of int): Predicted labels, as returned by a model.
references (list of int): Ground truth labels.
sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.
Returns:
matthews_correlation (dict containing float): Matthews correlation.
Examples:
Example 1, a basic example with only predictions and references as inputs:
>>> matthews_metric = datasets.load_metric("matthews_correlation")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3])
>>> print(round(results[\'matthews_correlation\'], 2))
0.54
Example 2, the same example as above, but also including sample weights:
>>> matthews_metric = datasets.load_metric("matthews_correlation")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 3, 1, 1, 1, 2])
>>> print(round(results[\'matthews_correlation\'], 2))
0.1
Example 3, the same example as above, but with sample weights that cause a negative correlation:
>>> matthews_metric = datasets.load_metric("matthews_correlation")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 1, 0, 0, 0, 1])
>>> print(round(results[\'matthews_correlation\'], 2))
-0.25
'''
a__ : Union[str, Any] = '''\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Union[str, Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''int32''' ),
'''references''': datasets.Value('''int32''' ),
} ) , reference_urls=[
'''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html'''
] , )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]:
return {
"matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ),
}
| 19 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mobilebert import MobileBertTokenizer
a__ : Optional[Any] = logging.get_logger(__name__)
a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
a__ : Tuple = {
'''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''},
'''tokenizer_file''': {
'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json'''
},
}
a__ : Optional[Any] = {'''mobilebert-uncased''': 512}
a__ : List[Any] = {}
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION
__SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer
def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]:
super().__init__(
_lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , )
SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) )
SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case
SCREAMING_SNAKE_CASE : Optional[int] = strip_accents
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars
SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = do_lower_case
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any:
SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id]
SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase )
return tuple(_lowerCamelCase )
| 19 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from argparse import ArgumentParser
from accelerate.commands.config import get_config_parser
from accelerate.commands.env import env_command_parser
from accelerate.commands.launch import launch_command_parser
from accelerate.commands.test import test_command_parser
from accelerate.commands.tpu import tpu_command_parser
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a__ )
SCREAMING_SNAKE_CASE : int = parser.add_subparsers(help='''accelerate command helpers''' )
# Register commands
get_config_parser(subparsers=a__ )
env_command_parser(subparsers=a__ )
launch_command_parser(subparsers=a__ )
tpu_command_parser(subparsers=a__ )
test_command_parser(subparsers=a__ )
# Let's go
SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args()
if not hasattr(a__ , '''func''' ):
parser.print_help()
exit(1 )
# Run
args.func(a__ )
if __name__ == "__main__":
main()
| 19 | 1 |
a__ : Dict = [
'''Audio''',
'''Array2D''',
'''Array3D''',
'''Array4D''',
'''Array5D''',
'''ClassLabel''',
'''Features''',
'''Sequence''',
'''Value''',
'''Image''',
'''Translation''',
'''TranslationVariableLanguages''',
]
from .audio import Audio
from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value
from .image import Image
from .translation import Translation, TranslationVariableLanguages
| 19 |
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a__ : str = logging.get_logger(__name__)
a__ : Optional[Any] = {'''vocab_file''': '''vocab.json'''}
a__ : str = {
'''vocab_file''': {
'''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''',
}
}
a__ : Tuple = {'''mgp-str''': 27}
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) ->Dict:
super().__init__(
unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , pad_token=_lowerCamelCase , **_lowerCamelCase , )
with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle:
SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.vocab.items()}
@property
def __lowerCAmelCase ( self ) ->List[Any]:
return len(self.vocab )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
return dict(self.vocab , **self.added_tokens_encoder )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for s in text:
char_tokens.extend(_lowerCamelCase )
return char_tokens
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict:
return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
return self.decoder.get(_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
if not os.path.isdir(_lowerCamelCase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) )
return
SCREAMING_SNAKE_CASE : str = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' )
return (vocab_file,)
| 19 | 1 |
import itertools
from dataclasses import dataclass
from typing import List, Optional
import pyarrow as pa
import pyarrow.parquet as pq
import datasets
from datasets.table import table_cast
a__ : Optional[int] = datasets.utils.logging.get_logger(__name__)
@dataclass
class a_ ( datasets.BuilderConfig ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : int = 1_0000
__SCREAMING_SNAKE_CASE : Optional[List[str]] = None
__SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None
class a_ ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[Any] = ParquetConfig
def __lowerCAmelCase ( self ) ->Any:
return datasets.DatasetInfo(features=self.config.features )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]:
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
SCREAMING_SNAKE_CASE : Tuple = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_lowerCamelCase , (str, list, tuple) ):
SCREAMING_SNAKE_CASE : str = data_files
if isinstance(_lowerCamelCase , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : Optional[int] = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
SCREAMING_SNAKE_CASE : Optional[int] = [dl_manager.iter_files(_lowerCamelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
SCREAMING_SNAKE_CASE : Dict = []
for split_name, files in data_files.items():
if isinstance(_lowerCamelCase , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : str = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
SCREAMING_SNAKE_CASE : Optional[Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files]
# Infer features is they are stoed in the arrow schema
if self.info.features is None:
for file in itertools.chain.from_iterable(_lowerCamelCase ):
with open(_lowerCamelCase , '''rb''' ) as f:
SCREAMING_SNAKE_CASE : int = datasets.Features.from_arrow_schema(pq.read_schema(_lowerCamelCase ) )
break
splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'''files''': files} ) )
return splits
def __lowerCAmelCase ( self , _lowerCamelCase ) ->pa.Table:
if self.info.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
SCREAMING_SNAKE_CASE : List[str] = table_cast(_lowerCamelCase , self.info.features.arrow_schema )
return pa_table
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Any:
SCREAMING_SNAKE_CASE : Dict = self.info.features.arrow_schema if self.info.features is not None else None
if self.info.features is not None and self.config.columns is not None:
if sorted(field.name for field in schema ) != sorted(self.config.columns ):
raise ValueError(
F"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" )
for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ):
with open(_lowerCamelCase , '''rb''' ) as f:
SCREAMING_SNAKE_CASE : Tuple = pq.ParquetFile(_lowerCamelCase )
try:
for batch_idx, record_batch in enumerate(
parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ):
SCREAMING_SNAKE_CASE : int = pa.Table.from_batches([record_batch] )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield F"""{file_idx}_{batch_idx}""", self._cast_table(_lowerCamelCase )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(_lowerCamelCase )}: {e}""" )
raise
| 19 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[Any] = ['''DeiTFeatureExtractor''']
a__ : Any = ['''DeiTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''DeiTForImageClassification''',
'''DeiTForImageClassificationWithTeacher''',
'''DeiTForMaskedImageModeling''',
'''DeiTModel''',
'''DeiTPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
'''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFDeiTForImageClassification''',
'''TFDeiTForImageClassificationWithTeacher''',
'''TFDeiTForMaskedImageModeling''',
'''TFDeiTModel''',
'''TFDeiTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_deit import DeiTFeatureExtractor
from .image_processing_deit import DeiTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deit import (
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
DeiTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deit import (
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
TFDeiTPreTrainedModel,
)
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 19 | 1 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPanoramaPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
@skip_mps
class a_ ( a__ , a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = StableDiffusionPanoramaPipeline
__SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_PARAMS
__SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS
__SCREAMING_SNAKE_CASE : str = TEXT_TO_IMAGE_IMAGE_PARAMS
__SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS
def __lowerCAmelCase ( self ) ->Dict:
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
SCREAMING_SNAKE_CASE : Optional[Any] = DDIMScheduler()
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
SCREAMING_SNAKE_CASE : Tuple = CLIPTextModel(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
SCREAMING_SNAKE_CASE : List[str] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->List[str]:
SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = {
'''prompt''': '''a photo of the dolomites''',
'''generator''': generator,
# Setting height and width to None to prevent OOMs on CPU.
'''height''': None,
'''width''': None,
'''num_inference_steps''': 1,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = StableDiffusionPanoramaPipeline(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(_lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = sd_pipe(**_lowerCamelCase ).images
SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
SCREAMING_SNAKE_CASE : Any = np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self ) ->Any:
super().test_inference_batch_consistent(batch_sizes=[1, 2] )
def __lowerCAmelCase ( self ) ->Tuple:
super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 )
def __lowerCAmelCase ( self ) ->int:
SCREAMING_SNAKE_CASE : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = StableDiffusionPanoramaPipeline(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = sd_pipe.to(_lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Any = '''french fries'''
SCREAMING_SNAKE_CASE : int = sd_pipe(**_lowerCamelCase , negative_prompt=_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = output.images
SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
SCREAMING_SNAKE_CASE : str = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = StableDiffusionPanoramaPipeline(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = sd_pipe.to(_lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(**_lowerCamelCase , view_batch_size=2 )
SCREAMING_SNAKE_CASE : Optional[int] = output.images
SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
SCREAMING_SNAKE_CASE : Tuple = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE : int = self.get_dummy_components()
SCREAMING_SNAKE_CASE : int = EulerAncestralDiscreteScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' )
SCREAMING_SNAKE_CASE : int = StableDiffusionPanoramaPipeline(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(_lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs(_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = sd_pipe(**_lowerCamelCase ).images
SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self ) ->List[Any]:
SCREAMING_SNAKE_CASE : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Dict = PNDMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , skip_prk_steps=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionPanoramaPipeline(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe.to(_lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = sd_pipe(**_lowerCamelCase ).images
SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
SCREAMING_SNAKE_CASE : Any = np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->List[str]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self , _lowerCamelCase=0 ) ->Tuple:
SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = {
'''prompt''': '''a photo of the dolomites''',
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : List[str] = '''stabilityai/stable-diffusion-2-base'''
SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler.from_pretrained(_lowerCamelCase , subfolder='''scheduler''' )
SCREAMING_SNAKE_CASE : Any = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase )
pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE : List[str] = self.get_inputs()
SCREAMING_SNAKE_CASE : Any = pipe(**_lowerCamelCase ).images
SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 2048, 3)
SCREAMING_SNAKE_CASE : List[str] = np.array(
[
0.3_6_9_6_8_3_9_2,
0.2_7_0_2_5_3_7_2,
0.3_2_4_4_6_7_6_6,
0.2_8_3_7_9_3_8_7,
0.3_6_3_6_3_2_7_4,
0.3_0_7_3_3_3_4_7,
0.2_7_1_0_0_0_2_7,
0.2_7_0_5_4_1_2_5,
0.2_5_5_3_6_0_9_6,
] )
assert np.abs(expected_slice - image_slice ).max() < 1e-2
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionPanoramaPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-base''' , safety_checker=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE : str = self.get_inputs()
SCREAMING_SNAKE_CASE : List[Any] = pipe(**_lowerCamelCase ).images
SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 2048, 3)
SCREAMING_SNAKE_CASE : List[str] = np.array(
[
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
]
] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def __lowerCAmelCase ( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Optional[int] = 0
def callback_fn(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> None:
SCREAMING_SNAKE_CASE : str = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
SCREAMING_SNAKE_CASE : Dict = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 256)
SCREAMING_SNAKE_CASE : int = latents[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE : Optional[int] = np.array(
[
0.1_8_6_8_1_8_6_9,
0.3_3_9_0_7_8_1_6,
0.5_3_6_1_2_7_6,
0.1_4_4_3_2_8_6_5,
-0.0_2_8_5_6_6_1_1,
-0.7_3_9_4_1_1_2_3,
0.2_3_3_9_7_9_8_7,
0.4_7_3_2_2_6_8_2,
-0.3_7_8_2_3_1_6_4,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
elif step == 2:
SCREAMING_SNAKE_CASE : int = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 256)
SCREAMING_SNAKE_CASE : Tuple = latents[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE : Union[str, Any] = np.array(
[
0.1_8_5_3_9_6_4_5,
0.3_3_9_8_7_2_4_8,
0.5_3_7_8_5_5_9,
0.1_4_4_3_7_1_4_2,
-0.0_2_4_5_5_2_6_1,
-0.7_3_3_8_3_1_7,
0.2_3_9_9_0_7_5_5,
0.4_7_3_5_6_2_7_2,
-0.3_7_8_6_5_0_5,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
SCREAMING_SNAKE_CASE : Optional[int] = False
SCREAMING_SNAKE_CASE : Tuple = '''stabilityai/stable-diffusion-2-base'''
SCREAMING_SNAKE_CASE : str = DDIMScheduler.from_pretrained(_lowerCamelCase , subfolder='''scheduler''' )
SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Any = pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
pipe.enable_attention_slicing()
SCREAMING_SNAKE_CASE : int = self.get_inputs()
pipe(**_lowerCamelCase , callback=_lowerCamelCase , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def __lowerCAmelCase ( self ) ->Dict:
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
SCREAMING_SNAKE_CASE : Tuple = '''stabilityai/stable-diffusion-2-base'''
SCREAMING_SNAKE_CASE : List[str] = DDIMScheduler.from_pretrained(_lowerCamelCase , subfolder='''scheduler''' )
SCREAMING_SNAKE_CASE : int = StableDiffusionPanoramaPipeline.from_pretrained(_lowerCamelCase , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
SCREAMING_SNAKE_CASE : int = self.get_inputs()
SCREAMING_SNAKE_CASE : Tuple = pipe(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = torch.cuda.max_memory_allocated()
# make sure that less than 5.2 GB is allocated
assert mem_bytes < 5.5 * 10**9
| 19 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = ['''XGLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[Any] = ['''XGLMTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : int = [
'''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XGLMForCausalLM''',
'''XGLMModel''',
'''XGLMPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'''FlaxXGLMForCausalLM''',
'''FlaxXGLMModel''',
'''FlaxXGLMPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXGLMForCausalLM''',
'''TFXGLMModel''',
'''TFXGLMPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 19 | 1 |
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class a_ ( a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[Any] = DanceDiffusionPipeline
__SCREAMING_SNAKE_CASE : Optional[int] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
__SCREAMING_SNAKE_CASE : Union[str, Any] = PipelineTesterMixin.required_optional_params - {
'callback',
'latents',
'callback_steps',
'output_type',
'num_images_per_prompt',
}
__SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
__SCREAMING_SNAKE_CASE : Any = False
__SCREAMING_SNAKE_CASE : int = False
def __lowerCAmelCase ( self ) ->Optional[int]:
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : str = UNetaDModel(
block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=1_6000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_lowerCamelCase , use_timestep_embedding=_lowerCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , )
SCREAMING_SNAKE_CASE : Optional[int] = IPNDMScheduler()
SCREAMING_SNAKE_CASE : Optional[int] = {
'''unet''': unet,
'''scheduler''': scheduler,
}
return components
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->Optional[int]:
if str(_lowerCamelCase ).startswith('''mps''' ):
SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(_lowerCamelCase )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = {
'''batch_size''': 1,
'''generator''': generator,
'''num_inference_steps''': 4,
}
return inputs
def __lowerCAmelCase ( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[Any] = DanceDiffusionPipeline(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = self.get_dummy_inputs(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = pipe(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = output.audios
SCREAMING_SNAKE_CASE : Optional[Any] = audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
SCREAMING_SNAKE_CASE : Optional[int] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def __lowerCAmelCase ( self ) ->List[str]:
return super().test_save_load_local()
@skip_mps
def __lowerCAmelCase ( self ) ->Optional[Any]:
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
@skip_mps
def __lowerCAmelCase ( self ) ->Dict:
return super().test_save_load_optional_components()
@skip_mps
def __lowerCAmelCase ( self ) ->Any:
return super().test_attention_slicing_forward_pass()
def __lowerCAmelCase ( self ) ->List[str]:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->int:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : Tuple = torch_device
SCREAMING_SNAKE_CASE : Optional[Any] = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' )
SCREAMING_SNAKE_CASE : int = pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : int = pipe(generator=_lowerCamelCase , num_inference_steps=100 , audio_length_in_s=4.0_9_6 )
SCREAMING_SNAKE_CASE : List[str] = output.audios
SCREAMING_SNAKE_CASE : Union[str, Any] = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
SCREAMING_SNAKE_CASE : Optional[int] = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : Tuple = torch_device
SCREAMING_SNAKE_CASE : Optional[Any] = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE : Tuple = pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = pipe(generator=_lowerCamelCase , num_inference_steps=100 , audio_length_in_s=4.0_9_6 )
SCREAMING_SNAKE_CASE : List[Any] = output.audios
SCREAMING_SNAKE_CASE : Optional[Any] = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
SCREAMING_SNAKE_CASE : List[Any] = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
| 19 |
import math
from collections.abc import Iterator
from itertools import takewhile
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = 2
while True:
if is_prime(a__ ):
yield num
num += 1
def UpperCAmelCase_( a__ = 2_000_000 ):
"""simple docstring"""
return sum(takewhile(lambda a__ : x < n , prime_generator() ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 19 | 1 |
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
a__ : Optional[Any] = [
# tf -> hf
('''/''', '''.'''),
('''layer_''', '''layers.'''),
('''kernel''', '''weight'''),
('''beta''', '''bias'''),
('''gamma''', '''weight'''),
('''pegasus''', '''model'''),
]
a__ : Union[str, Any] = [
('''.output.dense''', '''.fc2'''),
('''intermediate.LayerNorm''', '''final_layer_norm'''),
('''intermediate.dense''', '''fc1'''),
]
a__ : Optional[int] = (
INIT_COMMON
+ [
('''attention.self.LayerNorm''', '''self_attn_layer_norm'''),
('''attention.output.dense''', '''self_attn.out_proj'''),
('''attention.self''', '''self_attn'''),
('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''),
('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''),
('''attention.encdec''', '''encoder_attn'''),
('''key''', '''k_proj'''),
('''value''', '''v_proj'''),
('''query''', '''q_proj'''),
('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''),
]
+ END_COMMON
)
a__ : Any = (
INIT_COMMON
+ [
('''embeddings.word_embeddings''', '''shared.weight'''),
('''embeddings.position_embeddings''', '''embed_positions.weight'''),
('''attention.self.LayerNorm''', '''self_attn_layer_norm'''),
('''attention.output.dense''', '''self_attn.output'''),
('''attention.self''', '''self_attn.self'''),
('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''),
]
+ END_COMMON
)
a__ : Union[str, Any] = [
'''encdec/key/bias''',
'''encdec/query/bias''',
'''encdec/value/bias''',
'''self/key/bias''',
'''self/query/bias''',
'''self/value/bias''',
'''encdec_output/dense/bias''',
'''attention/output/dense/bias''',
]
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
for tf_name, hf_name in patterns:
SCREAMING_SNAKE_CASE : List[Any] = k.replace(a__ , a__ )
return k
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = BigBirdPegasusConfig(**a__ )
SCREAMING_SNAKE_CASE : str = BigBirdPegasusForConditionalGeneration(a__ )
SCREAMING_SNAKE_CASE : int = torch_model.state_dict()
SCREAMING_SNAKE_CASE : Optional[Any] = {}
# separating decoder weights
SCREAMING_SNAKE_CASE : Dict = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )}
SCREAMING_SNAKE_CASE : Optional[int] = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )}
for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [k.endswith(a__ ) for ending in KEYS_TO_IGNORE]
if any(a__ ):
continue
SCREAMING_SNAKE_CASE : Dict = DECODER_PATTERNS
SCREAMING_SNAKE_CASE : Optional[int] = rename_state_dict_key(a__ , a__ )
if new_k not in state_dict:
raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ):
SCREAMING_SNAKE_CASE : Optional[Any] = v.T
SCREAMING_SNAKE_CASE : Optional[int] = torch.from_numpy(a__ )
assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ):
SCREAMING_SNAKE_CASE : Optional[int] = [k.endswith(a__ ) for ending in KEYS_TO_IGNORE]
if any(a__ ):
continue
SCREAMING_SNAKE_CASE : int = REMAINING_PATTERNS
SCREAMING_SNAKE_CASE : List[Any] = rename_state_dict_key(a__ , a__ )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ):
SCREAMING_SNAKE_CASE : Optional[Any] = v.T
SCREAMING_SNAKE_CASE : str = torch.from_numpy(a__ )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
SCREAMING_SNAKE_CASE : Any = mapping['''model.embed_positions.weight''']
SCREAMING_SNAKE_CASE : Optional[Any] = mapping.pop('''model.embed_positions.weight''' )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = torch_model.load_state_dict(a__ , strict=a__ )
SCREAMING_SNAKE_CASE : Any = [
k
for k in missing
if k
not in [
'''final_logits_bias''',
'''model.encoder.embed_tokens.weight''',
'''model.decoder.embed_tokens.weight''',
'''lm_head.weight''',
]
]
assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}"""
assert extra == [], F"""no matches found for the following tf keys {extra}"""
return torch_model
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = tf.train.list_variables(a__ )
SCREAMING_SNAKE_CASE : Optional[Any] = {}
SCREAMING_SNAKE_CASE : Optional[int] = ['''global_step''']
for name, shape in tqdm(a__ , desc='''converting tf checkpoint to dict''' ):
SCREAMING_SNAKE_CASE : Union[str, Any] = any(pat in name for pat in ignore_name )
if skip_key:
continue
SCREAMING_SNAKE_CASE : str = tf.train.load_variable(a__ , a__ )
SCREAMING_SNAKE_CASE : List[str] = array
return tf_weights
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = get_tf_weights_as_numpy(a__ )
SCREAMING_SNAKE_CASE : Optional[Any] = convert_bigbird_pegasus(a__ , a__ )
torch_model.save_pretrained(a__ )
if __name__ == "__main__":
a__ : int = argparse.ArgumentParser()
parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''')
parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''')
a__ : Dict = parser.parse_args()
a__ : List[Any] = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 19 |
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int:
super().__init__(*_lowerCamelCase , **_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = eval_examples
SCREAMING_SNAKE_CASE : Optional[int] = post_process_function
def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ) ->Dict[str, float]:
SCREAMING_SNAKE_CASE : Any = gen_kwargs.copy()
SCREAMING_SNAKE_CASE : str = (
gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length
)
SCREAMING_SNAKE_CASE : Dict = (
gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams
)
SCREAMING_SNAKE_CASE : Any = gen_kwargs
SCREAMING_SNAKE_CASE : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset
SCREAMING_SNAKE_CASE : str = self.get_eval_dataloader(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_metrics
SCREAMING_SNAKE_CASE : str = None
SCREAMING_SNAKE_CASE : Optional[Any] = time.time()
SCREAMING_SNAKE_CASE : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE : Tuple = eval_loop(
_lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , )
finally:
SCREAMING_SNAKE_CASE : Dict = compute_metrics
SCREAMING_SNAKE_CASE : Tuple = self.args.eval_batch_size * self.args.world_size
if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics:
start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""]
output.metrics.update(
speed_metrics(
_lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(_lowerCamelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"""{metric_key_prefix}_""" ):
SCREAMING_SNAKE_CASE : Optional[int] = metrics.pop(_lowerCamelCase )
metrics.update(output.metrics )
else:
SCREAMING_SNAKE_CASE : List[Any] = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(_lowerCamelCase )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
SCREAMING_SNAKE_CASE : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase )
return metrics
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ) ->int:
SCREAMING_SNAKE_CASE : str = gen_kwargs.copy()
SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(_lowerCamelCase )
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE : Dict = self.compute_metrics
SCREAMING_SNAKE_CASE : Tuple = None
SCREAMING_SNAKE_CASE : List[str] = time.time()
SCREAMING_SNAKE_CASE : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE : Any = eval_loop(
_lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , )
finally:
SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics
SCREAMING_SNAKE_CASE : List[Any] = self.args.eval_batch_size * self.args.world_size
if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics:
start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""]
output.metrics.update(
speed_metrics(
_lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' )
SCREAMING_SNAKE_CASE : Dict = self.compute_metrics(_lowerCamelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"""{metric_key_prefix}_""" ):
SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(_lowerCamelCase )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
| 19 | 1 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
a__ : str = pytest.mark.integration
@require_faiss
class a_ ( a__ ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->List[str]:
SCREAMING_SNAKE_CASE : List[str] = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(_lowerCamelCase ) for x in np.arange(30 ).tolist()]} )
return dset
def __lowerCAmelCase ( self ) ->Tuple:
import faiss
SCREAMING_SNAKE_CASE : Dataset = self._create_dummy_dataset()
SCREAMING_SNAKE_CASE : Dict = dset.map(
lambda _lowerCamelCase , _lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_lowerCamelCase , keep_in_memory=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = dset.add_faiss_index('''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
dset.drop_index('''vecs''' )
def __lowerCAmelCase ( self ) ->int:
import faiss
SCREAMING_SNAKE_CASE : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self ) ->Dict:
import faiss
SCREAMING_SNAKE_CASE : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=_lowerCamelCase ) as tmp_file:
dset.save_faiss_index('''vecs''' , tmp_file.name )
dset.load_faiss_index('''vecs2''' , tmp_file.name )
os.unlink(tmp_file.name )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' )
dset.drop_index('''vecs''' )
self.assertRaises(_lowerCamelCase , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) )
def __lowerCAmelCase ( self ) ->Optional[Any]:
from elasticsearch import Elasticsearch
SCREAMING_SNAKE_CASE : Dataset = self._create_dummy_dataset()
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
SCREAMING_SNAKE_CASE : List[str] = {'''acknowledged''': True}
mocked_bulk.return_value([(True, None)] * 30 )
SCREAMING_SNAKE_CASE : List[Any] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}}
SCREAMING_SNAKE_CASE : List[str] = Elasticsearch()
dset.add_elasticsearch_index('''filename''' , es_client=_lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' )
self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' )
@require_faiss
class a_ ( a__ ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Any:
import faiss
SCREAMING_SNAKE_CASE : str = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
SCREAMING_SNAKE_CASE : Optional[Any] = np.zeros(5 , dtype=np.floataa )
SCREAMING_SNAKE_CASE : Any = 1
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = index.search(_lowerCamelCase )
self.assertRaises(_lowerCamelCase , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
SCREAMING_SNAKE_CASE : Dict = np.eye(5 , dtype=np.floataa )[::-1]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = index.search_batch(_lowerCamelCase )
self.assertRaises(_lowerCamelCase , index.search_batch , queries[0] )
SCREAMING_SNAKE_CASE : str = [scores[0] for scores in total_scores]
SCREAMING_SNAKE_CASE : Optional[Any] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_lowerCamelCase ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Dict:
import faiss
SCREAMING_SNAKE_CASE : str = FaissIndex(string_factory='''Flat''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
SCREAMING_SNAKE_CASE : Optional[Any] = FaissIndex(string_factory='''LSH''' )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(_lowerCamelCase ):
SCREAMING_SNAKE_CASE : Optional[Any] = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) )
def __lowerCAmelCase ( self ) ->int:
import faiss
SCREAMING_SNAKE_CASE : Tuple = faiss.IndexFlat(5 )
SCREAMING_SNAKE_CASE : Union[str, Any] = FaissIndex(custom_index=_lowerCamelCase )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def __lowerCAmelCase ( self ) ->Dict:
import faiss
SCREAMING_SNAKE_CASE : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=_lowerCamelCase ) as tmp_file:
index.save(tmp_file.name )
SCREAMING_SNAKE_CASE : Union[str, Any] = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
SCREAMING_SNAKE_CASE : Tuple = np.zeros(5 , dtype=np.floataa )
SCREAMING_SNAKE_CASE : int = 1
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = index.search(_lowerCamelCase )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def UpperCAmelCase_( a__ ):
"""simple docstring"""
import faiss
SCREAMING_SNAKE_CASE : str = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
SCREAMING_SNAKE_CASE : str = '''index.faiss'''
SCREAMING_SNAKE_CASE : Optional[int] = F"""mock://{index_name}"""
index.save(a__ , storage_options=mockfs.storage_options )
SCREAMING_SNAKE_CASE : List[Any] = FaissIndex.load(a__ , storage_options=mockfs.storage_options )
SCREAMING_SNAKE_CASE : Union[str, Any] = np.zeros(5 , dtype=np.floataa )
SCREAMING_SNAKE_CASE : Optional[Any] = 1
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = index.search(a__ )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class a_ ( a__ ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->str:
from elasticsearch import Elasticsearch
with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch(
'''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk:
SCREAMING_SNAKE_CASE : Dict = Elasticsearch()
SCREAMING_SNAKE_CASE : List[Any] = {'''acknowledged''': True}
SCREAMING_SNAKE_CASE : str = ElasticSearchIndex(es_client=_lowerCamelCase )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(['''foo''', '''bar''', '''foobar'''] )
# single query
SCREAMING_SNAKE_CASE : List[Any] = '''foo'''
SCREAMING_SNAKE_CASE : Optional[Any] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = index.search(_lowerCamelCase )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
SCREAMING_SNAKE_CASE : Tuple = '''foo'''
SCREAMING_SNAKE_CASE : int = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}}
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = index.search(_lowerCamelCase , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
SCREAMING_SNAKE_CASE : List[Any] = ['''foo''', '''bar''', '''foobar''']
SCREAMING_SNAKE_CASE : List[Any] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = index.search_batch(_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = [scores[0] for scores in total_scores]
SCREAMING_SNAKE_CASE : Any = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_lowerCamelCase ) , 0 )
self.assertListEqual([1, 1, 1] , _lowerCamelCase )
# batched queries with timeout
SCREAMING_SNAKE_CASE : List[Any] = ['''foo''', '''bar''', '''foobar''']
SCREAMING_SNAKE_CASE : List[Any] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}}
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = index.search_batch(_lowerCamelCase , request_timeout=30 )
SCREAMING_SNAKE_CASE : Tuple = [scores[0] for scores in total_scores]
SCREAMING_SNAKE_CASE : Any = [indices[0] for indices in total_indices]
self.assertGreater(np.min(_lowerCamelCase ) , 0 )
self.assertListEqual([1, 1, 1] , _lowerCamelCase )
| 19 |
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class a_ ( a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = DDIMPipeline
__SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
__SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - {
'num_images_per_prompt',
'latents',
'callback',
'callback_steps',
}
__SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
__SCREAMING_SNAKE_CASE : List[Any] = False
def __lowerCAmelCase ( self ) ->int:
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler()
SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler}
return components
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int:
if str(_lowerCamelCase ).startswith('''mps''' ):
SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase )
else:
SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = {
'''batch_size''': 1,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : Optional[int] = '''cpu'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components()
SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase )
pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images
SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 32, 32, 3) )
SCREAMING_SNAKE_CASE : int = np.array(
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] )
SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_lowerCamelCase , 1e-3 )
def __lowerCAmelCase ( self ) ->Optional[int]:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def __lowerCAmelCase ( self ) ->Any:
super().test_save_load_local(expected_max_difference=3e-3 )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
super().test_save_load_optional_components(expected_max_difference=3e-3 )
def __lowerCAmelCase ( self ) ->Any:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->List[Any]:
SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32'''
SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler()
SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase )
ddim.to(_lowerCamelCase )
ddim.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images
SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256'''
SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase )
ddpm.to(_lowerCamelCase )
ddpm.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images
SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 19 | 1 |
import math
a__ : List[str] = 10
a__ : Optional[int] = 7
a__ : int = BALLS_PER_COLOUR * NUM_COLOURS
def UpperCAmelCase_( a__ = 20 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ )
SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ )
SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total)
return F"""{result:.9f}"""
if __name__ == "__main__":
print(solution(20))
| 19 |
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
class a_ ( a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer
__SCREAMING_SNAKE_CASE : List[str] = False
__SCREAMING_SNAKE_CASE : Dict = True
def __lowerCAmelCase ( self ) ->Dict:
super().setUp()
# We have a SentencePiece fixture for testing
SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase )
tokenizer.save_pretrained(self.tmpdirname )
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : List[str] = '''[PAD]'''
SCREAMING_SNAKE_CASE : Tuple = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->List[Any]:
SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''[PAD]''' )
self.assertEqual(vocab_keys[1] , '''[CLS]''' )
self.assertEqual(vocab_keys[-1] , '''j''' )
self.assertEqual(len(_lowerCamelCase ) , 1012 )
def __lowerCAmelCase ( self ) ->List[str]:
self.assertEqual(self.get_tokenizer().vocab_size , 1012 )
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
_lowerCamelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase )
self.assertListEqual(
_lowerCamelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase )
self.assertListEqual(
_lowerCamelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''[UNK]''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''[UNK]''',
'''.''',
] , )
@cached_property
def __lowerCAmelCase ( self ) ->List[str]:
return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' )
@slow
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!'''
SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2]
self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) )
@slow
def __lowerCAmelCase ( self ) ->int:
# fmt: off
SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
| 19 | 1 |
def UpperCAmelCase_( a__ ):
"""simple docstring"""
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 19 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class a_ ( a__ , a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline
__SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS
__SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS
__SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
__SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
__SCREAMING_SNAKE_CASE : int = False
def __lowerCAmelCase ( self ) ->Optional[int]:
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
SCREAMING_SNAKE_CASE : int = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : str = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str:
if str(_lowerCamelCase ).startswith('''mps''' ):
SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase )
else:
SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = {
'''prompt''': '''.''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 1.0,
'''sag_scale''': 1.0,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self ) ->Optional[int]:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Dict:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' )
SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase )
sag_pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = '''.'''
SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = sag_pipe(
[prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' )
SCREAMING_SNAKE_CASE : int = output.images
SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase )
sag_pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = '''.'''
SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Any = sag_pipe(
[prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' )
SCREAMING_SNAKE_CASE : List[str] = output.images
SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' )
SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase )
sag_pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = '''.'''
SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[str] = sag_pipe(
[prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , )
SCREAMING_SNAKE_CASE : List[Any] = output.images
assert image.shape == (1, 512, 768, 3)
| 19 | 1 |
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
a__ : Tuple = False
class a_ ( unittest.TestCase ):
"""simple docstring"""
pass
@nightly
@require_torch_gpu
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : Optional[int] = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' )
# remove text_unet
pipe.remove_unused_weights()
pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = '''A painting of a squirrel eating a burger '''
SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[int] = pipe(
prompt=_lowerCamelCase , generator=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained(_lowerCamelCase )
pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = generator.manual_seed(0 )
SCREAMING_SNAKE_CASE : Optional[Any] = pipe(
prompt=_lowerCamelCase , generator=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images
assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass"
def __lowerCAmelCase ( self ) ->List[Any]:
SCREAMING_SNAKE_CASE : str = VersatileDiffusionTextToImagePipeline.from_pretrained(
'''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(_lowerCamelCase )
pipe.set_progress_bar_config(disable=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = '''A painting of a squirrel eating a burger '''
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE : List[Any] = pipe(
prompt=_lowerCamelCase , generator=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images
SCREAMING_SNAKE_CASE : Dict = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 19 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mobilebert import MobileBertTokenizer
a__ : Optional[Any] = logging.get_logger(__name__)
a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
a__ : Tuple = {
'''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''},
'''tokenizer_file''': {
'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json'''
},
}
a__ : Optional[Any] = {'''mobilebert-uncased''': 512}
a__ : List[Any] = {}
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION
__SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer
def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]:
super().__init__(
_lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , )
SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) )
SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case
SCREAMING_SNAKE_CASE : Optional[int] = strip_accents
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars
SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = do_lower_case
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any:
SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id]
SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase )
return tuple(_lowerCamelCase )
| 19 | 1 |
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = ArgumentParser(
description=(
'''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes'''
) )
# Optional arguments for the launch helper
parser.add_argument('''--num_cores''' , type=a__ , default=1 , help='''Number of TPU cores to use (1 or 8).''' )
# positional
parser.add_argument(
'''training_script''' , type=a__ , help=(
'''The full path to the single TPU training '''
'''program/script to be launched in parallel, '''
'''followed by all the arguments for the '''
'''training script'''
) , )
# rest from the training program
parser.add_argument('''training_script_args''' , nargs=a__ )
return parser.parse_args()
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = parse_args()
# Import training_script as a module.
SCREAMING_SNAKE_CASE : Optional[Any] = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
SCREAMING_SNAKE_CASE : Optional[int] = script_fpath.stem
SCREAMING_SNAKE_CASE : List[Any] = importlib.import_module(a__ )
# Patch sys.argv
SCREAMING_SNAKE_CASE : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 19 |
import math
a__ : List[str] = 10
a__ : Optional[int] = 7
a__ : int = BALLS_PER_COLOUR * NUM_COLOURS
def UpperCAmelCase_( a__ = 20 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ )
SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ )
SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total)
return F"""{result:.9f}"""
if __name__ == "__main__":
print(solution(20))
| 19 | 1 |
import os
import pickle
import unittest
from transformers import AutoTokenizer
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.models.bert_japanese.tokenization_bert_japanese import (
VOCAB_FILES_NAMES,
BertJapaneseTokenizer,
CharacterTokenizer,
JumanppTokenizer,
MecabTokenizer,
SudachiTokenizer,
WordpieceTokenizer,
)
from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi
from ...test_tokenization_common import TokenizerTesterMixin
@custom_tokenizers
class a_ ( a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = BertJapaneseTokenizer
__SCREAMING_SNAKE_CASE : int = False
__SCREAMING_SNAKE_CASE : Tuple = True
def __lowerCAmelCase ( self ) ->List[str]:
super().setUp()
SCREAMING_SNAKE_CASE : Optional[int] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''こんにちは''',
'''こん''',
'''にちは''',
'''ばんは''',
'''##こん''',
'''##にちは''',
'''##ばんは''',
'''世界''',
'''##世界''',
'''、''',
'''##、''',
'''。''',
'''##。''',
]
SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tuple:
SCREAMING_SNAKE_CASE : Tuple = '''こんにちは、世界。 \nこんばんは、世界。'''
SCREAMING_SNAKE_CASE : str = '''こんにちは 、 世界 。 こんばんは 、 世界 。'''
return input_text, output_text
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tuple:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.get_input_output_texts(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.decode(_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase )
return text, ids
def __lowerCAmelCase ( self ) ->Tuple:
pass # TODO add if relevant
def __lowerCAmelCase ( self ) ->Optional[int]:
pass # TODO add if relevant
def __lowerCAmelCase ( self ) ->Optional[Any]:
pass # TODO add if relevant
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : str = self.tokenizer_class(self.vocab_file )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' )
self.assertListEqual(_lowerCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
def __lowerCAmelCase ( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''mecab''' )
self.assertIsNotNone(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = '''こんにちは、世界。\nこんばんは、世界。'''
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.tokenize(_lowerCamelCase )
self.assertListEqual(_lowerCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
SCREAMING_SNAKE_CASE : Tuple = os.path.join(self.tmpdirname , '''tokenizer.bin''' )
with open(_lowerCamelCase , '''wb''' ) as handle:
pickle.dump(_lowerCamelCase , _lowerCamelCase )
with open(_lowerCamelCase , '''rb''' ) as handle:
SCREAMING_SNAKE_CASE : Any = pickle.load(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = tokenizer_new.tokenize(_lowerCamelCase )
self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : Optional[Any] = MecabTokenizer(mecab_dic='''ipadic''' )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , )
def __lowerCAmelCase ( self ) ->str:
try:
SCREAMING_SNAKE_CASE : Any = MecabTokenizer(mecab_dic='''unidic_lite''' )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , )
def __lowerCAmelCase ( self ) ->str:
try:
SCREAMING_SNAKE_CASE : str = MecabTokenizer(mecab_dic='''unidic''' )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , )
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : Union[str, Any] = MecabTokenizer(do_lower_case=_lowerCamelCase , mecab_dic='''ipadic''' )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , )
def __lowerCAmelCase ( self ) ->Any:
try:
SCREAMING_SNAKE_CASE : List[str] = MecabTokenizer(
do_lower_case=_lowerCamelCase , normalize_text=_lowerCamelCase , mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' )
except RuntimeError:
# if dict doesn't exist in the system, previous code raises this error.
return
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , )
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : Any = MecabTokenizer(normalize_text=_lowerCamelCase , mecab_dic='''ipadic''' )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] , )
@require_sudachi
def __lowerCAmelCase ( self ) ->str:
SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''sudachi''' )
self.assertIsNotNone(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = '''こんにちは、世界。\nこんばんは、世界。'''
SCREAMING_SNAKE_CASE : Dict = tokenizer.tokenize(_lowerCamelCase )
self.assertListEqual(_lowerCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname , '''tokenizer.bin''' )
with open(_lowerCamelCase , '''wb''' ) as handle:
pickle.dump(_lowerCamelCase , _lowerCamelCase )
with open(_lowerCamelCase , '''rb''' ) as handle:
SCREAMING_SNAKE_CASE : int = pickle.load(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_new.tokenize(_lowerCamelCase )
self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
@require_sudachi
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : List[Any] = SudachiTokenizer(sudachi_dict_type='''core''' )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , )
@require_sudachi
def __lowerCAmelCase ( self ) ->str:
SCREAMING_SNAKE_CASE : Any = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''A''' )
self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国''', '''人''', '''参政''', '''権'''] )
@require_sudachi
def __lowerCAmelCase ( self ) ->int:
SCREAMING_SNAKE_CASE : Dict = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''B''' )
self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人''', '''参政権'''] )
@require_sudachi
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : str = SudachiTokenizer(sudachi_dict_type='''core''' , sudachi_split_mode='''C''' )
self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) , ['''外国人参政権'''] )
@require_sudachi
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : Dict = SudachiTokenizer(do_lower_case=_lowerCamelCase , sudachi_dict_type='''core''' )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] , )
@require_sudachi
def __lowerCAmelCase ( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Optional[int] = SudachiTokenizer(normalize_text=_lowerCamelCase , sudachi_dict_type='''core''' )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , [''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] , )
@require_sudachi
def __lowerCAmelCase ( self ) ->str:
SCREAMING_SNAKE_CASE : Any = SudachiTokenizer(trim_whitespace=_lowerCamelCase , sudachi_dict_type='''core''' )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] , )
@require_jumanpp
def __lowerCAmelCase ( self ) ->str:
SCREAMING_SNAKE_CASE : Any = self.tokenizer_class(self.vocab_file , word_tokenizer_type='''jumanpp''' )
self.assertIsNotNone(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = '''こんにちは、世界。\nこんばんは、世界。'''
SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize(_lowerCamelCase )
self.assertListEqual(_lowerCamelCase , ['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , '''tokenizer.bin''' )
with open(_lowerCamelCase , '''wb''' ) as handle:
pickle.dump(_lowerCamelCase , _lowerCamelCase )
with open(_lowerCamelCase , '''rb''' ) as handle:
SCREAMING_SNAKE_CASE : Any = pickle.load(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = tokenizer_new.tokenize(_lowerCamelCase )
self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
@require_jumanpp
def __lowerCAmelCase ( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : List[str] = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , )
@require_jumanpp
def __lowerCAmelCase ( self ) ->List[Any]:
SCREAMING_SNAKE_CASE : Dict = JumanppTokenizer(do_lower_case=_lowerCamelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , )
@require_jumanpp
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Any = JumanppTokenizer(normalize_text=_lowerCamelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] , )
@require_jumanpp
def __lowerCAmelCase ( self ) ->List[Any]:
SCREAMING_SNAKE_CASE : Optional[int] = JumanppTokenizer(trim_whitespace=_lowerCamelCase )
self.assertListEqual(
tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) , ['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] , )
@require_jumanpp
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Optional[int] = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) , ['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] , )
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''']
SCREAMING_SNAKE_CASE : List[Any] = {}
for i, token in enumerate(_lowerCamelCase ):
SCREAMING_SNAKE_CASE : Any = i
SCREAMING_SNAKE_CASE : Tuple = WordpieceTokenizer(vocab=_lowerCamelCase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こんにちは'''] )
self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) , ['''こん''', '''##ばんは'''] )
self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) , ['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : str = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' )
SCREAMING_SNAKE_CASE : List[str] = tokenizer.subword_tokenizer
SCREAMING_SNAKE_CASE : str = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' )
self.assertListEqual(_lowerCamelCase , ['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] )
SCREAMING_SNAKE_CASE : int = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' )
self.assertListEqual(_lowerCamelCase , ['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] )
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' )
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode('''ありがとう。''' , add_special_tokens=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class a_ ( a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = BertJapaneseTokenizer
__SCREAMING_SNAKE_CASE : int = False
def __lowerCAmelCase ( self ) ->Union[str, Any]:
super().setUp()
SCREAMING_SNAKE_CASE : Optional[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。''']
SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __lowerCAmelCase ( self , **_lowerCamelCase ) ->List[Any]:
return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='''character''' , **_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]:
SCREAMING_SNAKE_CASE : int = '''こんにちは、世界。 \nこんばんは、世界。'''
SCREAMING_SNAKE_CASE : Optional[int] = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。'''
return input_text, output_text
def __lowerCAmelCase ( self ) ->Optional[int]:
pass # TODO add if relevant
def __lowerCAmelCase ( self ) ->Any:
pass # TODO add if relevant
def __lowerCAmelCase ( self ) ->Union[str, Any]:
pass # TODO add if relevant
def __lowerCAmelCase ( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='''character''' )
SCREAMING_SNAKE_CASE : List[str] = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' )
self.assertListEqual(
_lowerCamelCase , ['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] )
def __lowerCAmelCase ( self ) ->str:
SCREAMING_SNAKE_CASE : Any = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。''']
SCREAMING_SNAKE_CASE : str = {}
for i, token in enumerate(_lowerCamelCase ):
SCREAMING_SNAKE_CASE : Optional[int] = i
SCREAMING_SNAKE_CASE : Dict = CharacterTokenizer(vocab=_lowerCamelCase , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''は'''] )
self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) , ['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] )
def __lowerCAmelCase ( self ) ->List[Any]:
SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode('''ありがとう。''' , add_special_tokens=_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = tokenizer.encode('''どういたしまして。''' , add_special_tokens=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : str = '''cl-tohoku/bert-base-japanese'''
SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained(_lowerCamelCase )
self.assertIsInstance(_lowerCamelCase , _lowerCamelCase )
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->List[Any]:
SCREAMING_SNAKE_CASE : Union[str, Any] = '''cl-tohoku/bert-base-japanese'''
with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm:
BertTokenizer.from_pretrained(_lowerCamelCase )
self.assertTrue(
cm.records[0].message.startswith(
'''The tokenizer class you load from this checkpoint is not the same type as the class this function'''
''' is called from.''' ) )
SCREAMING_SNAKE_CASE : Optional[Any] = '''bert-base-cased'''
with self.assertLogs('''transformers''' , level='''WARNING''' ) as cm:
BertJapaneseTokenizer.from_pretrained(_lowerCamelCase )
self.assertTrue(
cm.records[0].message.startswith(
'''The tokenizer class you load from this checkpoint is not the same type as the class this function'''
''' is called from.''' ) )
| 19 |
from typing import Optional, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_mobilenet_va import MobileNetVaConfig
a__ : List[str] = logging.get_logger(__name__)
# General docstring
a__ : Tuple = '''MobileNetV1Config'''
# Base docstring
a__ : Optional[Any] = '''google/mobilenet_v1_1.0_224'''
a__ : Tuple = [1, 1_024, 7, 7]
# Image classification docstring
a__ : Optional[int] = '''google/mobilenet_v1_1.0_224'''
a__ : int = '''tabby, tabby cat'''
a__ : List[Any] = [
'''google/mobilenet_v1_1.0_224''',
'''google/mobilenet_v1_0.75_192''',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
]
def UpperCAmelCase_( a__ , a__ , a__=None ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = {}
if isinstance(a__ , a__ ):
SCREAMING_SNAKE_CASE : List[str] = model.mobilenet_va
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = model
SCREAMING_SNAKE_CASE : Optional[int] = '''MobilenetV1/Conv2d_0/'''
SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight
SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.normalization.bias
SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.weight
SCREAMING_SNAKE_CASE : Union[str, Any] = backbone.conv_stem.normalization.running_mean
SCREAMING_SNAKE_CASE : Any = backbone.conv_stem.normalization.running_var
for i in range(13 ):
SCREAMING_SNAKE_CASE : Dict = i + 1
SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2
SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index]
SCREAMING_SNAKE_CASE : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/"""
SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight
SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.bias
SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.weight
SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean
SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_var
SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index + 1]
SCREAMING_SNAKE_CASE : Any = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/"""
SCREAMING_SNAKE_CASE : Dict = pointer.convolution.weight
SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias
SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight
SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean
SCREAMING_SNAKE_CASE : str = pointer.normalization.running_var
if isinstance(a__ , a__ ):
SCREAMING_SNAKE_CASE : List[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/'''
SCREAMING_SNAKE_CASE : List[str] = model.classifier.weight
SCREAMING_SNAKE_CASE : List[str] = model.classifier.bias
return tf_to_pt_map
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
'''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see '''
'''https://www.tensorflow.org/install/ for installation instructions.''' )
raise
# Load weights from TF model
SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.list_variables(a__ )
SCREAMING_SNAKE_CASE : List[Any] = {}
for name, shape in init_vars:
logger.info(F"""Loading TF weight {name} with shape {shape}""" )
SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(a__ , a__ )
SCREAMING_SNAKE_CASE : Dict = array
# Build TF to PyTorch weights loading map
SCREAMING_SNAKE_CASE : int = _build_tf_to_pytorch_map(a__ , a__ , a__ )
for name, pointer in tf_to_pt_map.items():
logger.info(F"""Importing {name}""" )
if name not in tf_weights:
logger.info(F"""{name} not in tf pre-trained weights, skipping""" )
continue
SCREAMING_SNAKE_CASE : Union[str, Any] = tf_weights[name]
if "depthwise_weights" in name:
logger.info('''Transposing depthwise''' )
SCREAMING_SNAKE_CASE : Tuple = np.transpose(a__ , (2, 3, 0, 1) )
elif "weights" in name:
logger.info('''Transposing''' )
if len(pointer.shape ) == 2: # copying into linear layer
SCREAMING_SNAKE_CASE : Union[str, Any] = array.squeeze().transpose()
else:
SCREAMING_SNAKE_CASE : Optional[int] = np.transpose(a__ , (3, 2, 0, 1) )
if pointer.shape != array.shape:
raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" )
logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" )
SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ )
tf_weights.pop(a__ , a__ )
tf_weights.pop(name + '''/RMSProp''' , a__ )
tf_weights.pop(name + '''/RMSProp_1''' , a__ )
tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ )
logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" )
return model
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = features.shape[-2:]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = conv_layer.stride
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = conv_layer.kernel_size
if in_height % stride_height == 0:
SCREAMING_SNAKE_CASE : List[str] = max(kernel_height - stride_height , 0 )
else:
SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height) , 0 )
if in_width % stride_width == 0:
SCREAMING_SNAKE_CASE : int = max(kernel_width - stride_width , 0 )
else:
SCREAMING_SNAKE_CASE : Tuple = max(kernel_width - (in_width % stride_width) , 0 )
SCREAMING_SNAKE_CASE : List[str] = pad_along_width // 2
SCREAMING_SNAKE_CASE : Any = pad_along_width - pad_left
SCREAMING_SNAKE_CASE : str = pad_along_height // 2
SCREAMING_SNAKE_CASE : Optional[int] = pad_along_height - pad_top
SCREAMING_SNAKE_CASE : List[Any] = (pad_left, pad_right, pad_top, pad_bottom)
return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 )
class a_ ( nn.Module ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = True , ) ->None:
super().__init__()
SCREAMING_SNAKE_CASE : Any = config
if in_channels % groups != 0:
raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" )
if out_channels % groups != 0:
raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" )
SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 )
SCREAMING_SNAKE_CASE : List[str] = nn.Convad(
in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='''zeros''' , )
if use_normalization:
SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad(
num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , )
else:
SCREAMING_SNAKE_CASE : Dict = None
if use_activation:
if isinstance(_lowerCamelCase , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : Any = ACTaFN[use_activation]
elif isinstance(config.hidden_act , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act]
else:
SCREAMING_SNAKE_CASE : List[Any] = config.hidden_act
else:
SCREAMING_SNAKE_CASE : Optional[Any] = None
def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor:
if self.config.tf_padding:
SCREAMING_SNAKE_CASE : List[Any] = apply_tf_padding(_lowerCamelCase , self.convolution )
SCREAMING_SNAKE_CASE : Dict = self.convolution(_lowerCamelCase )
if self.normalization is not None:
SCREAMING_SNAKE_CASE : int = self.normalization(_lowerCamelCase )
if self.activation is not None:
SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase )
return features
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = MobileNetVaConfig
__SCREAMING_SNAKE_CASE : List[Any] = load_tf_weights_in_mobilenet_va
__SCREAMING_SNAKE_CASE : int = 'mobilenet_v1'
__SCREAMING_SNAKE_CASE : int = 'pixel_values'
__SCREAMING_SNAKE_CASE : List[str] = False
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(_lowerCamelCase , nn.BatchNormad ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
a__ : str = r'''
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
'''
a__ : Union[str, Any] = r'''
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`MobileNetV1ImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
'''
@add_start_docstrings(
'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , a__ , )
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase = True ) ->Dict:
super().__init__(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = config
SCREAMING_SNAKE_CASE : Dict = 32
SCREAMING_SNAKE_CASE : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth )
SCREAMING_SNAKE_CASE : str = MobileNetVaConvLayer(
_lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , )
SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
SCREAMING_SNAKE_CASE : Any = nn.ModuleList()
for i in range(13 ):
SCREAMING_SNAKE_CASE : int = out_channels
if strides[i] == 2 or i == 0:
depth *= 2
SCREAMING_SNAKE_CASE : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth )
self.layer.append(
MobileNetVaConvLayer(
_lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) )
self.layer.append(
MobileNetVaConvLayer(
_lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) )
SCREAMING_SNAKE_CASE : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]:
raise NotImplementedError
@add_start_docstrings_to_model_forward(_lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
SCREAMING_SNAKE_CASE : Union[str, Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
SCREAMING_SNAKE_CASE : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError('''You have to specify pixel_values''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_stem(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer ):
SCREAMING_SNAKE_CASE : Optional[int] = layer_module(_lowerCamelCase )
if output_hidden_states:
SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,)
SCREAMING_SNAKE_CASE : List[str] = hidden_states
if self.pooler is not None:
SCREAMING_SNAKE_CASE : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 )
else:
SCREAMING_SNAKE_CASE : List[Any] = None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None )
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , )
@add_start_docstrings(
'\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , )
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase ) ->None:
super().__init__(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels
SCREAMING_SNAKE_CASE : str = MobileNetVaModel(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va.layer[-1].convolution.out_channels
# Classifier head
SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]:
SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict
SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = outputs.pooler_output if return_dict else outputs[1]
SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(_lowerCamelCase ) )
SCREAMING_SNAKE_CASE : int = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
SCREAMING_SNAKE_CASE : Any = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification'''
else:
SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification'''
if self.config.problem_type == "regression":
SCREAMING_SNAKE_CASE : Any = MSELoss()
if self.num_labels == 1:
SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() )
else:
SCREAMING_SNAKE_CASE : Dict = loss_fct(_lowerCamelCase , _lowerCamelCase )
elif self.config.problem_type == "single_label_classification":
SCREAMING_SNAKE_CASE : str = CrossEntropyLoss()
SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
SCREAMING_SNAKE_CASE : List[Any] = BCEWithLogitsLoss()
SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase )
if not return_dict:
SCREAMING_SNAKE_CASE : Optional[Any] = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
| 19 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a__ : Optional[int] = logging.get_logger(__name__)
a__ : int = {'''vocab_file''': '''sentencepiece.model'''}
a__ : Dict = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
}
a__ : List[Any] = {
'''google/rembert''': 256,
}
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase="[CLS]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , **_lowerCamelCase , ) ->Optional[int]:
super().__init__(
do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , **_lowerCamelCase , )
SCREAMING_SNAKE_CASE : Tuple = do_lower_case
SCREAMING_SNAKE_CASE : str = remove_space
SCREAMING_SNAKE_CASE : Optional[Any] = keep_accents
SCREAMING_SNAKE_CASE : Optional[Any] = vocab_file
SCREAMING_SNAKE_CASE : Union[str, Any] = spm.SentencePieceProcessor()
self.sp_model.Load(_lowerCamelCase )
@property
def __lowerCAmelCase ( self ) ->Optional[int]:
return len(self.sp_model )
def __lowerCAmelCase ( self ) ->str:
SCREAMING_SNAKE_CASE : int = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) ->List[str]:
SCREAMING_SNAKE_CASE : Dict = self.__dict__.copy()
SCREAMING_SNAKE_CASE : Dict = None
return state
def __setstate__( self , _lowerCamelCase ) ->Tuple:
SCREAMING_SNAKE_CASE : List[str] = d
SCREAMING_SNAKE_CASE : List[str] = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->Dict:
SCREAMING_SNAKE_CASE : Optional[int] = self.sp_model.EncodeAsPieces(_lowerCamelCase )
return pieces
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
return self.sp_model.PieceToId(_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]:
return self.sp_model.IdToPiece(_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Optional[int] = self.sp_model.decode_pieces(_lowerCamelCase )
return out_string
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id]
SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1]
return [1] + ([0] * len(_lowerCamelCase )) + [1]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
SCREAMING_SNAKE_CASE : List[Any] = [self.sep_token_id]
SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
if not os.path.isdir(_lowerCamelCase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) )
return
SCREAMING_SNAKE_CASE : Dict = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ):
copyfile(self.vocab_file , _lowerCamelCase )
return (out_vocab_file,)
| 19 |
import math
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 )
return exponent == int(a__ )
def UpperCAmelCase_( a__ = 1 / 12_345 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = 0
SCREAMING_SNAKE_CASE : Dict = 0
SCREAMING_SNAKE_CASE : int = 3
while True:
SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4
# if candidate is an integer, then there is a partition for k
if partition_candidate == int(a__ ):
SCREAMING_SNAKE_CASE : List[str] = int(a__ )
total_partitions += 1
if check_partition_perfect(a__ ):
perfect_partitions += 1
if perfect_partitions > 0:
if perfect_partitions / total_partitions < max_proportion:
return int(a__ )
integer += 1
if __name__ == "__main__":
print(F"{solution() = }")
| 19 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
a__ : Optional[int] = {
'''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''],
'''tokenization_tapas''': ['''TapasTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Any = [
'''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TapasForMaskedLM''',
'''TapasForQuestionAnswering''',
'''TapasForSequenceClassification''',
'''TapasModel''',
'''TapasPreTrainedModel''',
'''load_tf_weights_in_tapas''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
'''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFTapasForMaskedLM''',
'''TFTapasForQuestionAnswering''',
'''TFTapasForSequenceClassification''',
'''TFTapasModel''',
'''TFTapasPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig
from .tokenization_tapas import TapasTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tapas import (
TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasPreTrainedModel,
load_tf_weights_in_tapas,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_tapas import (
TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTapasForMaskedLM,
TFTapasForQuestionAnswering,
TFTapasForSequenceClassification,
TFTapasModel,
TFTapasPreTrainedModel,
)
else:
import sys
a__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 19 |
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
a__ : Any = TypeVar('''T''')
def UpperCAmelCase_( a__ ):
"""simple docstring"""
return (position - 1) // 2
def UpperCAmelCase_( a__ ):
"""simple docstring"""
return (2 * position) + 1
def UpperCAmelCase_( a__ ):
"""simple docstring"""
return (2 * position) + 2
class a_ ( Generic[T] ):
"""simple docstring"""
def __init__( self ) ->None:
SCREAMING_SNAKE_CASE : list[tuple[T, int]] = []
SCREAMING_SNAKE_CASE : dict[T, int] = {}
SCREAMING_SNAKE_CASE : int = 0
def __len__( self ) ->int:
return self.elements
def __repr__( self ) ->str:
return str(self.heap )
def __lowerCAmelCase ( self ) ->bool:
# Check if the priority queue is empty
return self.elements == 0
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None:
# Add an element with given priority to the queue
self.heap.append((elem, weight) )
SCREAMING_SNAKE_CASE : Tuple = self.elements
self.elements += 1
self._bubble_up(_lowerCamelCase )
def __lowerCAmelCase ( self ) ->T:
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[0]
self._bubble_down(_lowerCamelCase )
return elem
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None:
# Update the weight of the given key
SCREAMING_SNAKE_CASE : List[Any] = self.position_map[elem]
SCREAMING_SNAKE_CASE : Any = (elem, weight)
if position > 0:
SCREAMING_SNAKE_CASE : List[Any] = get_parent_position(_lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(_lowerCamelCase )
else:
self._bubble_down(_lowerCamelCase )
else:
self._bubble_down(_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem]
if curr_pos == 0:
return None
SCREAMING_SNAKE_CASE : str = get_parent_position(_lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.heap[curr_pos]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(_lowerCamelCase , _lowerCamelCase )
return self._bubble_up(_lowerCamelCase )
return None
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[curr_pos]
SCREAMING_SNAKE_CASE : List[str] = get_child_left_position(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = get_child_right_position(_lowerCamelCase )
if child_left_position < self.elements and child_right_position < self.elements:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[child_left_position]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(_lowerCamelCase , _lowerCamelCase )
return self._bubble_down(_lowerCamelCase )
if child_left_position < self.elements:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(_lowerCamelCase , _lowerCamelCase )
return self._bubble_down(_lowerCamelCase )
else:
return None
if child_right_position < self.elements:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(_lowerCamelCase , _lowerCamelCase )
return self._bubble_down(_lowerCamelCase )
return None
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None:
# Swap the nodes at the given positions
SCREAMING_SNAKE_CASE : Optional[int] = self.heap[nodea_pos][0]
SCREAMING_SNAKE_CASE : Any = self.heap[nodea_pos][0]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
SCREAMING_SNAKE_CASE : Optional[int] = nodea_pos
SCREAMING_SNAKE_CASE : List[str] = nodea_pos
class a_ ( Generic[T] ):
"""simple docstring"""
def __init__( self ) ->None:
SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {}
SCREAMING_SNAKE_CASE : int = 0
def __repr__( self ) ->str:
return str(self.connections )
def __len__( self ) ->int:
return self.nodes
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
# Add a node in the graph if it is not in the graph
if node not in self.connections:
SCREAMING_SNAKE_CASE : Any = {}
self.nodes += 1
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None:
# Add an edge between 2 nodes in the graph
self.add_node(_lowerCamelCase )
self.add_node(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = weight
SCREAMING_SNAKE_CASE : str = weight
def UpperCAmelCase_( a__ , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : dict[T, int] = {node: maxsize for node in graph.connections}
SCREAMING_SNAKE_CASE : dict[T, T | None] = {node: None for node in graph.connections}
SCREAMING_SNAKE_CASE : MinPriorityQueue[T] = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(a__ , a__ )
if priority_queue.is_empty():
return dist, parent
# initialization
SCREAMING_SNAKE_CASE : List[Any] = priority_queue.extract_min()
SCREAMING_SNAKE_CASE : Union[str, Any] = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
SCREAMING_SNAKE_CASE : Any = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(a__ , dist[neighbour] )
SCREAMING_SNAKE_CASE : str = node
# running prim's algorithm
while not priority_queue.is_empty():
SCREAMING_SNAKE_CASE : List[str] = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
SCREAMING_SNAKE_CASE : List[Any] = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(a__ , dist[neighbour] )
SCREAMING_SNAKE_CASE : str = node
return dist, parent
| 19 | 1 |
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = 0
while b > 0:
if b & 1:
SCREAMING_SNAKE_CASE : int = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 19 |
from math import pi, sqrt, tan
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if side_length < 0:
raise ValueError('''surface_area_cube() only accepts non-negative values''' )
return 6 * side_length**2
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if length < 0 or breadth < 0 or height < 0:
raise ValueError('''surface_area_cuboid() only accepts non-negative values''' )
return 2 * ((length * breadth) + (breadth * height) + (length * height))
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if radius < 0:
raise ValueError('''surface_area_sphere() only accepts non-negative values''' )
return 4 * pi * radius**2
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if radius < 0:
raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' )
return 3 * pi * radius**2
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if radius < 0 or height < 0:
raise ValueError('''surface_area_cone() only accepts non-negative values''' )
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if radius_a < 0 or radius_a < 0 or height < 0:
raise ValueError(
'''surface_area_conical_frustum() only accepts non-negative values''' )
SCREAMING_SNAKE_CASE : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5
return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2)
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if radius < 0 or height < 0:
raise ValueError('''surface_area_cylinder() only accepts non-negative values''' )
return 2 * pi * radius * (height + radius)
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if torus_radius < 0 or tube_radius < 0:
raise ValueError('''surface_area_torus() only accepts non-negative values''' )
if torus_radius < tube_radius:
raise ValueError(
'''surface_area_torus() does not support spindle or self intersecting tori''' )
return 4 * pow(a__ , 2 ) * torus_radius * tube_radius
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if length < 0 or width < 0:
raise ValueError('''area_rectangle() only accepts non-negative values''' )
return length * width
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if side_length < 0:
raise ValueError('''area_square() only accepts non-negative values''' )
return side_length**2
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if base < 0 or height < 0:
raise ValueError('''area_triangle() only accepts non-negative values''' )
return (base * height) / 2
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if sidea < 0 or sidea < 0 or sidea < 0:
raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' )
elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea:
raise ValueError('''Given three sides do not form a triangle''' )
SCREAMING_SNAKE_CASE : int = (sidea + sidea + sidea) / 2
SCREAMING_SNAKE_CASE : List[str] = sqrt(
semi_perimeter
* (semi_perimeter - sidea)
* (semi_perimeter - sidea)
* (semi_perimeter - sidea) )
return area
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if base < 0 or height < 0:
raise ValueError('''area_parallelogram() only accepts non-negative values''' )
return base * height
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if basea < 0 or basea < 0 or height < 0:
raise ValueError('''area_trapezium() only accepts non-negative values''' )
return 1 / 2 * (basea + basea) * height
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if radius < 0:
raise ValueError('''area_circle() only accepts non-negative values''' )
return pi * radius**2
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if radius_x < 0 or radius_y < 0:
raise ValueError('''area_ellipse() only accepts non-negative values''' )
return pi * radius_x * radius_y
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if diagonal_a < 0 or diagonal_a < 0:
raise ValueError('''area_rhombus() only accepts non-negative values''' )
return 1 / 2 * diagonal_a * diagonal_a
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if not isinstance(a__ , a__ ) or sides < 3:
raise ValueError(
'''area_reg_polygon() only accepts integers greater than or \
equal to three as number of sides''' )
elif length < 0:
raise ValueError(
'''area_reg_polygon() only accepts non-negative values as \
length of a side''' )
return (sides * length**2) / (4 * tan(pi / sides ))
return (sides * length**2) / (4 * tan(pi / sides ))
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) # verbose so we can see methods missing tests
print('''[DEMO] Areas of various geometric shapes: \n''')
print(F"Rectangle: {area_rectangle(10, 20) = }")
print(F"Square: {area_square(10) = }")
print(F"Triangle: {area_triangle(10, 10) = }")
print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }")
print(F"Parallelogram: {area_parallelogram(10, 20) = }")
print(F"Rhombus: {area_rhombus(10, 20) = }")
print(F"Trapezium: {area_trapezium(10, 20, 30) = }")
print(F"Circle: {area_circle(20) = }")
print(F"Ellipse: {area_ellipse(10, 20) = }")
print('''\nSurface Areas of various geometric shapes: \n''')
print(F"Cube: {surface_area_cube(20) = }")
print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }")
print(F"Sphere: {surface_area_sphere(20) = }")
print(F"Hemisphere: {surface_area_hemisphere(20) = }")
print(F"Cone: {surface_area_cone(10, 20) = }")
print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }")
print(F"Cylinder: {surface_area_cylinder(10, 20) = }")
print(F"Torus: {surface_area_torus(20, 10) = }")
print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }")
print(F"Square: {area_reg_polygon(4, 10) = }")
print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
| 19 | 1 |
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->List[Any]:
SCREAMING_SNAKE_CASE : Dict = 10
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : str = [1, 2, 3, 4]
SCREAMING_SNAKE_CASE : Optional[int] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(_lowerCamelCase , self.block_size , 0 ) , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
SCREAMING_SNAKE_CASE : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_lowerCamelCase , self.block_size , 0 ) , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : str = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
SCREAMING_SNAKE_CASE : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_lowerCamelCase , self.block_size , 0 ) , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->List[Any]:
SCREAMING_SNAKE_CASE : List[str] = '''It was the year of Our Lord one thousand seven hundred and
seventy-five.\n\nSpiritual revelations were conceded to England at that
favoured period, as at this.'''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = process_story(_lowerCamelCase )
self.assertEqual(_lowerCamelCase , [] )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : List[Any] = ''''''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = process_story(_lowerCamelCase )
self.assertEqual(_lowerCamelCase , [] )
self.assertEqual(_lowerCamelCase , [] )
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : Any = (
'''It was the year of Our Lord one thousand seven hundred and '''
'''seventy-five\n\nSpiritual revelations were conceded to England '''
'''at that favoured period, as at this.\n@highlight\n\nIt was the best of times'''
)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = process_story(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = [
'''It was the year of Our Lord one thousand seven hundred and seventy-five.''',
'''Spiritual revelations were conceded to England at that favoured period, as at this.''',
]
self.assertEqual(_lowerCamelCase , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = ['''It was the best of times.''']
self.assertEqual(_lowerCamelCase , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([1, 2, 3, 4] )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(_lowerCamelCase , 0 ).numpy() , expected.numpy() )
def __lowerCAmelCase ( self ) ->Optional[int]:
SCREAMING_SNAKE_CASE : int = torch.tensor([1, 2, 3, 4, 23, 23, 23] )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(_lowerCamelCase , 23 ).numpy() , expected.numpy() )
def __lowerCAmelCase ( self ) ->List[Any]:
SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] )
SCREAMING_SNAKE_CASE : Dict = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(_lowerCamelCase , 1 ).numpy() , expected.numpy() )
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : Dict = 101
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
SCREAMING_SNAKE_CASE : List[str] = compute_token_type_ids(_lowerCamelCase , _lowerCamelCase )
np.testing.assert_array_equal(_lowerCamelCase , _lowerCamelCase )
| 19 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
a__ : List[str] = None
a__ : Any = logging.get_logger(__name__)
a__ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''}
a__ : Dict = {
'''vocab_file''': {
'''facebook/mbart-large-en-ro''': (
'''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model'''
),
'''facebook/mbart-large-cc25''': (
'''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model'''
),
},
'''tokenizer_file''': {
'''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''',
'''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''',
},
}
a__ : str = {
'''facebook/mbart-large-en-ro''': 1_024,
'''facebook/mbart-large-cc25''': 1_024,
}
# fmt: off
a__ : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''']
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask']
__SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer
__SCREAMING_SNAKE_CASE : List[int] = []
__SCREAMING_SNAKE_CASE : List[int] = []
def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->List[Any]:
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token
super().__init__(
vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , )
SCREAMING_SNAKE_CASE : Any = vocab_file
SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True
SCREAMING_SNAKE_CASE : Any = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
SCREAMING_SNAKE_CASE : int = {
lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX'''
SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang )
SCREAMING_SNAKE_CASE : List[Any] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def __lowerCAmelCase ( self ) ->str:
return self._src_lang
@src_lang.setter
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
SCREAMING_SNAKE_CASE : str = [self.sep_token_id]
SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]:
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang
SCREAMING_SNAKE_CASE : List[str] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = tgt_lang_id
return inputs
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ) ->BatchEncoding:
SCREAMING_SNAKE_CASE : List[str] = src_lang
SCREAMING_SNAKE_CASE : List[str] = tgt_lang
return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase )
def __lowerCAmelCase ( self ) ->Dict:
return self.set_src_lang_special_tokens(self.src_lang )
def __lowerCAmelCase ( self ) ->List[Any]:
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = []
SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code]
SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens )
SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens )
SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->None:
SCREAMING_SNAKE_CASE : str = self.convert_tokens_to_ids(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = []
SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code]
SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens )
SCREAMING_SNAKE_CASE : Any = self.convert_ids_to_tokens(self.suffix_tokens )
SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(_lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" )
return
SCREAMING_SNAKE_CASE : List[Any] = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ):
copyfile(self.vocab_file , _lowerCamelCase )
return (out_vocab_file,)
| 19 | 1 |
import argparse
import os
import re
a__ : Union[str, Any] = '''src/diffusers'''
# Pattern that looks at the indentation in a line.
a__ : Tuple = re.compile(r'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
a__ : Tuple = re.compile(r'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
a__ : List[str] = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
a__ : List[str] = re.compile(r'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
a__ : int = re.compile(r'''\[([^\]]+)\]''')
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = _re_indent.search(a__ )
return "" if search is None else search.groups()[0]
def UpperCAmelCase_( a__ , a__="" , a__=None , a__=None ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = 0
SCREAMING_SNAKE_CASE : str = code.split('''\n''' )
if start_prompt is not None:
while not lines[index].startswith(a__ ):
index += 1
SCREAMING_SNAKE_CASE : Tuple = ['''\n'''.join(lines[:index] )]
else:
SCREAMING_SNAKE_CASE : Optional[Any] = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
SCREAMING_SNAKE_CASE : str = [lines[index]]
index += 1
while index < len(a__ ) and (end_prompt is None or not lines[index].startswith(a__ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(a__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ):
current_block.append(lines[index] )
blocks.append('''\n'''.join(a__ ) )
if index < len(a__ ) - 1:
SCREAMING_SNAKE_CASE : Tuple = [lines[index + 1]]
index += 1
else:
SCREAMING_SNAKE_CASE : int = []
else:
blocks.append('''\n'''.join(a__ ) )
SCREAMING_SNAKE_CASE : Dict = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(a__ ) > 0:
blocks.append('''\n'''.join(a__ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(a__ ):
blocks.append('''\n'''.join(lines[index:] ) )
return blocks
def UpperCAmelCase_( a__ ):
"""simple docstring"""
def _inner(a__ ):
return key(a__ ).lower().replace('''_''' , '''''' )
return _inner
def UpperCAmelCase_( a__ , a__=None ):
"""simple docstring"""
def noop(a__ ):
return x
if key is None:
SCREAMING_SNAKE_CASE : Any = noop
# Constants are all uppercase, they go first.
SCREAMING_SNAKE_CASE : Any = [obj for obj in objects if key(a__ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
SCREAMING_SNAKE_CASE : Optional[Any] = [obj for obj in objects if key(a__ )[0].isupper() and not key(a__ ).isupper()]
# Functions begin with a lowercase, they go last.
SCREAMING_SNAKE_CASE : Optional[int] = [obj for obj in objects if not key(a__ )[0].isupper()]
SCREAMING_SNAKE_CASE : Tuple = ignore_underscore(a__ )
return sorted(a__ , key=a__ ) + sorted(a__ , key=a__ ) + sorted(a__ , key=a__ )
def UpperCAmelCase_( a__ ):
"""simple docstring"""
def _replace(a__ ):
SCREAMING_SNAKE_CASE : List[Any] = match.groups()[0]
if "," not in imports:
return F"""[{imports}]"""
SCREAMING_SNAKE_CASE : Optional[int] = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
SCREAMING_SNAKE_CASE : Optional[Any] = keys[:-1]
return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(a__ )] ) + "]"
SCREAMING_SNAKE_CASE : Optional[Any] = import_statement.split('''\n''' )
if len(a__ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
SCREAMING_SNAKE_CASE : Any = 2 if lines[1].strip() == '''[''' else 1
SCREAMING_SNAKE_CASE : List[Any] = [(i, _re_strip_line.search(a__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
SCREAMING_SNAKE_CASE : List[Any] = sort_objects(a__ , key=lambda a__ : x[1] )
SCREAMING_SNAKE_CASE : Optional[Any] = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(a__ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
SCREAMING_SNAKE_CASE : Tuple = _re_bracket_content.sub(_replace , lines[1] )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
SCREAMING_SNAKE_CASE : Optional[int] = keys[:-1]
SCREAMING_SNAKE_CASE : Union[str, Any] = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(a__ )] )
return "\n".join(a__ )
else:
# Finally we have to deal with imports fitting on one line
SCREAMING_SNAKE_CASE : Optional[int] = _re_bracket_content.sub(_replace , a__ )
return import_statement
def UpperCAmelCase_( a__ , a__=True ):
"""simple docstring"""
with open(a__ , '''r''' ) as f:
SCREAMING_SNAKE_CASE : Optional[Any] = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
SCREAMING_SNAKE_CASE : List[Any] = split_code_in_indented_blocks(
a__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(a__ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
SCREAMING_SNAKE_CASE : Tuple = main_blocks[block_idx]
SCREAMING_SNAKE_CASE : int = block.split('''\n''' )
# Get to the start of the imports.
SCREAMING_SNAKE_CASE : Optional[Any] = 0
while line_idx < len(a__ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
SCREAMING_SNAKE_CASE : int = len(a__ )
else:
line_idx += 1
if line_idx >= len(a__ ):
continue
# Ignore beginning and last line: they don't contain anything.
SCREAMING_SNAKE_CASE : Optional[Any] = '''\n'''.join(block_lines[line_idx:-1] )
SCREAMING_SNAKE_CASE : Any = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
SCREAMING_SNAKE_CASE : Tuple = split_code_in_indented_blocks(a__ , indent_level=a__ )
# We have two categories of import key: list or _import_structure[key].append/extend
SCREAMING_SNAKE_CASE : Union[str, Any] = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
SCREAMING_SNAKE_CASE : Dict = [(pattern.search(a__ ).groups()[0] if pattern.search(a__ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
SCREAMING_SNAKE_CASE : Optional[int] = [(i, key) for i, key in enumerate(a__ ) if key is not None]
SCREAMING_SNAKE_CASE : Tuple = [x[0] for x in sorted(a__ , key=lambda a__ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
SCREAMING_SNAKE_CASE : Optional[Any] = 0
SCREAMING_SNAKE_CASE : Tuple = []
for i in range(len(a__ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
SCREAMING_SNAKE_CASE : List[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(a__ )
count += 1
# And we put our main block back together with its first and last line.
SCREAMING_SNAKE_CASE : Any = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(a__ ):
if check_only:
return True
else:
print(F"""Overwriting {file}.""" )
with open(a__ , '''w''' ) as f:
f.write('''\n'''.join(a__ ) )
def UpperCAmelCase_( a__=True ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = []
for root, _, files in os.walk(a__ ):
if "__init__.py" in files:
SCREAMING_SNAKE_CASE : Union[str, Any] = sort_imports(os.path.join(a__ , '''__init__.py''' ) , check_only=a__ )
if result:
SCREAMING_SNAKE_CASE : Union[str, Any] = [os.path.join(a__ , '''__init__.py''' )]
if len(a__ ) > 0:
raise ValueError(F"""Would overwrite {len(a__ )} files, run `make style`.""" )
if __name__ == "__main__":
a__ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
a__ : Union[str, Any] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 19 |
import torch
from torch import nn
from transformers import CLIPPreTrainedModel, CLIPVisionModel
from ...models.attention import BasicTransformerBlock
from ...utils import logging
a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]:
super().__init__(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = proj_size
SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size )
SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size )
# uncondition for scaling
SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int:
SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output
SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] )
SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase )
if return_uncond_vector:
return latent_states, self.uncond_vector
return latent_states
class a_ ( nn.Module ):
"""simple docstring"""
def __init__( self , _lowerCamelCase ) ->List[str]:
super().__init__()
SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5
SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size
SCREAMING_SNAKE_CASE : Dict = 1
SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList(
[
BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase )
for _ in range(_lowerCamelCase )
] )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
for block in self.blocks:
SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase )
return hidden_states
| 19 | 1 |
class a_ :
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Optional[Any] = None
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Optional[int] = graph
self._normalize_graph(_lowerCamelCase , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Any = len(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = None
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Union[str, Any]:
if sources is int:
SCREAMING_SNAKE_CASE : Tuple = [sources]
if sinks is int:
SCREAMING_SNAKE_CASE : int = [sinks]
if len(_lowerCamelCase ) == 0 or len(_lowerCamelCase ) == 0:
return
SCREAMING_SNAKE_CASE : str = sources[0]
SCREAMING_SNAKE_CASE : Any = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(_lowerCamelCase ) > 1 or len(_lowerCamelCase ) > 1:
SCREAMING_SNAKE_CASE : List[str] = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
SCREAMING_SNAKE_CASE : int = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
SCREAMING_SNAKE_CASE : Dict = max_input_flow
SCREAMING_SNAKE_CASE : Union[str, Any] = 0
SCREAMING_SNAKE_CASE : Optional[Any] = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
SCREAMING_SNAKE_CASE : Union[str, Any] = max_input_flow
SCREAMING_SNAKE_CASE : int = size - 1
def __lowerCAmelCase ( self ) ->Optional[int]:
if self.maximum_flow_algorithm is None:
raise Exception('''You need to set maximum flow algorithm before.''' )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tuple:
SCREAMING_SNAKE_CASE : Any = algorithm(self )
class a_ :
"""simple docstring"""
def __init__( self , _lowerCamelCase ) ->List[str]:
SCREAMING_SNAKE_CASE : str = flow_network
SCREAMING_SNAKE_CASE : str = flow_network.verticesCount
SCREAMING_SNAKE_CASE : Dict = flow_network.sourceIndex
SCREAMING_SNAKE_CASE : Tuple = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
SCREAMING_SNAKE_CASE : int = flow_network.graph
SCREAMING_SNAKE_CASE : Optional[int] = False
def __lowerCAmelCase ( self ) ->int:
if not self.executed:
self._algorithm()
SCREAMING_SNAKE_CASE : Union[str, Any] = True
def __lowerCAmelCase ( self ) ->int:
pass
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase ) ->Optional[Any]:
super().__init__(_lowerCamelCase )
# use this to save your result
SCREAMING_SNAKE_CASE : Dict = -1
def __lowerCAmelCase ( self ) ->Tuple:
if not self.executed:
raise Exception('''You should execute algorithm before using its result!''' )
return self.maximum_flow
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , _lowerCamelCase ) ->Union[str, Any]:
super().__init__(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Any = [[0] * self.verticies_count for i in range(self.verticies_count )]
SCREAMING_SNAKE_CASE : Dict = [0] * self.verticies_count
SCREAMING_SNAKE_CASE : Any = [0] * self.verticies_count
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : List[str] = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
SCREAMING_SNAKE_CASE : Dict = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
SCREAMING_SNAKE_CASE : Any = 0
while i < len(_lowerCamelCase ):
SCREAMING_SNAKE_CASE : Tuple = vertices_list[i]
SCREAMING_SNAKE_CASE : Any = self.heights[vertex_index]
self.process_vertex(_lowerCamelCase )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(_lowerCamelCase ) )
SCREAMING_SNAKE_CASE : Any = 0
else:
i += 1
SCREAMING_SNAKE_CASE : str = sum(self.preflow[self.source_index] )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->str:
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(_lowerCamelCase , _lowerCamelCase )
self.relabel(_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->str:
SCREAMING_SNAKE_CASE : Optional[Any] = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
SCREAMING_SNAKE_CASE : Any = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
SCREAMING_SNAKE_CASE : Dict = self.heights[to_index]
if min_height is not None:
SCREAMING_SNAKE_CASE : Optional[Any] = min_height + 1
if __name__ == "__main__":
a__ : Dict = [0]
a__ : Optional[int] = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
a__ : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
a__ : str = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
a__ : str = flow_network.find_maximum_flow()
print(F"maximum flow is {maximum_flow}")
| 19 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a__ : Tuple = '''▁'''
a__ : List[Any] = {'''vocab_file''': '''spiece.model'''}
a__ : Optional[Any] = {
'''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''}
}
a__ : str = {
'''google/pegasus-xsum''': 512,
}
a__ : str = logging.get_logger(__name__)
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask']
def __init__( self , _lowerCamelCase , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<mask_2>" , _lowerCamelCase="<mask_1>" , _lowerCamelCase=None , _lowerCamelCase=103 , _lowerCamelCase = None , **_lowerCamelCase , ) ->None:
SCREAMING_SNAKE_CASE : Dict = offset
if additional_special_tokens is not None:
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise TypeError(
F"""additional_special_tokens should be of type {type(_lowerCamelCase )}, but is"""
F""" {type(_lowerCamelCase )}""" )
SCREAMING_SNAKE_CASE : List[Any] = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
F"""<unk_{i}>""" for i in range(len(_lowerCamelCase ) , self.offset - 1 )
]
if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ):
raise ValueError(
'''Please make sure that the provided additional_special_tokens do not contain an incorrectly'''
F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" )
SCREAMING_SNAKE_CASE : Dict = additional_special_tokens_extended
else:
SCREAMING_SNAKE_CASE : str = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )]
SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , )
SCREAMING_SNAKE_CASE : List[str] = mask_token_sent
SCREAMING_SNAKE_CASE : Optional[int] = vocab_file
SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCamelCase )
# add special tokens to encoder dict
SCREAMING_SNAKE_CASE : Dict[int, str] = {
0: self.pad_token,
1: self.eos_token,
}
if self.mask_token_sent is not None:
self.encoder.update(
{
2: self.mask_token_sent,
3: self.mask_token,
} )
if self.offset > 0:
# entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102
# mask_token_sent is already added to list -> so start at 1
self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} )
SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()}
@property
def __lowerCAmelCase ( self ) ->int:
return len(self.sp_model ) + self.offset
def __lowerCAmelCase ( self ) ->Dict[str, int]:
SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy()
SCREAMING_SNAKE_CASE : str = None
return state
def __setstate__( self , _lowerCamelCase ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Optional[Any] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
SCREAMING_SNAKE_CASE : List[str] = {}
SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]:
return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
if token in self.decoder:
return self.decoder[token]
elif token in self.added_tokens_decoder:
return self.added_tokens_decoder[token]
SCREAMING_SNAKE_CASE : List[str] = self.sp_model.piece_to_id(_lowerCamelCase )
return sp_id + self.offset
def __lowerCAmelCase ( self , _lowerCamelCase ) ->str:
if index in self.encoder:
return self.encoder[index]
elif index in self.added_tokens_encoder:
return self.added_tokens_encoder[index]
else:
SCREAMING_SNAKE_CASE : Dict = self.sp_model.IdToPiece(index - self.offset )
return token
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : Dict = []
SCREAMING_SNAKE_CASE : int = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(_lowerCamelCase ) + token
SCREAMING_SNAKE_CASE : Optional[Any] = []
else:
current_sub_tokens.append(_lowerCamelCase )
out_string += self.sp_model.decode(_lowerCamelCase )
return out_string.strip()
def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->str:
return 1
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
SCREAMING_SNAKE_CASE : Dict = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
return [1 if x in all_special_ids else 0 for x in seq]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]:
if already_has_special_tokens:
return self._special_token_mask(_lowerCamelCase )
elif token_ids_a is None:
return self._special_token_mask(_lowerCamelCase ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]:
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
if not os.path.isdir(_lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
SCREAMING_SNAKE_CASE : int = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _lowerCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCamelCase , '''wb''' ) as fi:
SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto()
fi.write(_lowerCamelCase )
return (out_vocab_file,)
| 19 | 1 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import YolosImageProcessor
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=True , _lowerCamelCase=1 / 255 , _lowerCamelCase=True , ) ->Optional[Any]:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
SCREAMING_SNAKE_CASE : Optional[int] = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333}
SCREAMING_SNAKE_CASE : Optional[Any] = parent
SCREAMING_SNAKE_CASE : List[Any] = batch_size
SCREAMING_SNAKE_CASE : Optional[int] = num_channels
SCREAMING_SNAKE_CASE : Optional[int] = min_resolution
SCREAMING_SNAKE_CASE : Dict = max_resolution
SCREAMING_SNAKE_CASE : Optional[int] = do_resize
SCREAMING_SNAKE_CASE : Optional[int] = size
SCREAMING_SNAKE_CASE : Union[str, Any] = do_normalize
SCREAMING_SNAKE_CASE : Optional[int] = image_mean
SCREAMING_SNAKE_CASE : Optional[Any] = image_std
SCREAMING_SNAKE_CASE : Tuple = do_rescale
SCREAMING_SNAKE_CASE : Union[str, Any] = rescale_factor
SCREAMING_SNAKE_CASE : Dict = do_pad
def __lowerCAmelCase ( self ) ->Optional[int]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int:
if not batched:
SCREAMING_SNAKE_CASE : Optional[int] = image_inputs[0]
if isinstance(_lowerCamelCase , Image.Image ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = image.size
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = image.shape[1], image.shape[2]
if w < h:
SCREAMING_SNAKE_CASE : Dict = int(self.size['''shortest_edge'''] * h / w )
SCREAMING_SNAKE_CASE : str = self.size['''shortest_edge''']
elif w > h:
SCREAMING_SNAKE_CASE : List[str] = self.size['''shortest_edge''']
SCREAMING_SNAKE_CASE : int = int(self.size['''shortest_edge'''] * w / h )
else:
SCREAMING_SNAKE_CASE : Optional[int] = self.size['''shortest_edge''']
SCREAMING_SNAKE_CASE : Any = self.size['''shortest_edge''']
else:
SCREAMING_SNAKE_CASE : Any = []
for image in image_inputs:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
SCREAMING_SNAKE_CASE : Optional[int] = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[0] )[0]
SCREAMING_SNAKE_CASE : Tuple = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class a_ ( a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Union[str, Any] = YolosImageProcessor if is_vision_available() else None
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE : Any = YolosImageProcessingTester(self )
@property
def __lowerCAmelCase ( self ) ->Union[str, Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCamelCase , '''image_mean''' ) )
self.assertTrue(hasattr(_lowerCamelCase , '''image_std''' ) )
self.assertTrue(hasattr(_lowerCamelCase , '''do_normalize''' ) )
self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) )
self.assertTrue(hasattr(_lowerCamelCase , '''size''' ) )
def __lowerCAmelCase ( self ) ->int:
SCREAMING_SNAKE_CASE : int = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} )
self.assertEqual(image_processor.do_pad , _lowerCamelCase )
SCREAMING_SNAKE_CASE : int = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowerCamelCase )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} )
self.assertEqual(image_processor.do_pad , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->int:
pass
def __lowerCAmelCase ( self ) ->Optional[int]:
# Initialize image_processing
SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
# Initialize image_processing
SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.image_processor_tester.get_expected_values(_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
SCREAMING_SNAKE_CASE : Optional[int] = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __lowerCAmelCase ( self ) ->Any:
# Initialize image_processing
SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
SCREAMING_SNAKE_CASE : List[Any] = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __lowerCAmelCase ( self ) ->int:
# Initialize image_processings
SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class(**self.image_processor_dict )
SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(do_resize=_lowerCamelCase , do_normalize=_lowerCamelCase , do_rescale=_lowerCamelCase )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCamelCase , torch.Tensor )
# Test whether the method "pad" and calling the image processor return the same tensors
SCREAMING_SNAKE_CASE : List[Any] = image_processing_a.pad(_lowerCamelCase , return_tensors='''pt''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing_a(_lowerCamelCase , return_tensors='''pt''' )
self.assertTrue(
torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) )
@slow
def __lowerCAmelCase ( self ) ->List[str]:
# prepare image and target
SCREAMING_SNAKE_CASE : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
SCREAMING_SNAKE_CASE : Union[str, Any] = json.loads(f.read() )
SCREAMING_SNAKE_CASE : str = {'''image_id''': 3_9769, '''annotations''': target}
# encode them
SCREAMING_SNAKE_CASE : Union[str, Any] = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' )
SCREAMING_SNAKE_CASE : Tuple = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , return_tensors='''pt''' )
# verify pixel values
SCREAMING_SNAKE_CASE : Optional[int] = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , _lowerCamelCase )
SCREAMING_SNAKE_CASE : int = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4 ) )
# verify area
SCREAMING_SNAKE_CASE : Dict = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _lowerCamelCase ) )
# verify boxes
SCREAMING_SNAKE_CASE : Dict = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _lowerCamelCase )
SCREAMING_SNAKE_CASE : int = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _lowerCamelCase , atol=1e-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : int = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _lowerCamelCase ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _lowerCamelCase ) )
# verify class_labels
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _lowerCamelCase ) )
# verify orig_size
SCREAMING_SNAKE_CASE : Any = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _lowerCamelCase ) )
# verify size
SCREAMING_SNAKE_CASE : str = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _lowerCamelCase ) )
@slow
def __lowerCAmelCase ( self ) ->Union[str, Any]:
# prepare image, target and masks_path
SCREAMING_SNAKE_CASE : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
SCREAMING_SNAKE_CASE : Tuple = json.loads(f.read() )
SCREAMING_SNAKE_CASE : str = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target}
SCREAMING_SNAKE_CASE : str = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
SCREAMING_SNAKE_CASE : Optional[int] = YolosImageProcessor(format='''coco_panoptic''' )
SCREAMING_SNAKE_CASE : int = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , masks_path=_lowerCamelCase , return_tensors='''pt''' )
# verify pixel values
SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , _lowerCamelCase )
SCREAMING_SNAKE_CASE : int = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4 ) )
# verify area
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _lowerCamelCase ) )
# verify boxes
SCREAMING_SNAKE_CASE : str = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _lowerCamelCase )
SCREAMING_SNAKE_CASE : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _lowerCamelCase , atol=1e-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : Any = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _lowerCamelCase ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : Dict = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _lowerCamelCase ) )
# verify class_labels
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _lowerCamelCase ) )
# verify masks
SCREAMING_SNAKE_CASE : Union[str, Any] = 82_2873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _lowerCamelCase )
# verify orig_size
SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _lowerCamelCase ) )
# verify size
SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _lowerCamelCase ) )
| 19 |
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
SCREAMING_SNAKE_CASE : Tuple = 1
SCREAMING_SNAKE_CASE : Tuple = 1
while repunit:
SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def UpperCAmelCase_( a__ = 1_000_000 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(a__ ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(F"{solution() = }")
| 19 | 1 |
from __future__ import annotations
from bisect import bisect_left
from functools import total_ordering
from heapq import merge
@total_ordering
class a_ ( a__ ):
"""simple docstring"""
def __lt__( self , _lowerCamelCase ) ->List[Any]:
return self[-1] < other[-1]
def __eq__( self , _lowerCamelCase ) ->List[Any]:
return self[-1] == other[-1]
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : list[Stack] = []
# sort into stacks
for element in collection:
SCREAMING_SNAKE_CASE : Union[str, Any] = Stack([element] )
SCREAMING_SNAKE_CASE : Union[str, Any] = bisect_left(a__ , a__ )
if i != len(a__ ):
stacks[i].append(a__ )
else:
stacks.append(a__ )
# use a heap-based merge to merge stack efficiently
SCREAMING_SNAKE_CASE : Optional[int] = merge(*(reversed(a__ ) for stack in stacks) )
return collection
if __name__ == "__main__":
a__ : Tuple = input('''Enter numbers separated by a comma:\n''').strip()
a__ : Dict = [int(item) for item in user_input.split(''',''')]
print(patience_sort(unsorted))
| 19 |
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class a_ :
"""simple docstring"""
def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict:
SCREAMING_SNAKE_CASE : Any = parent
SCREAMING_SNAKE_CASE : Optional[Any] = batch_size
SCREAMING_SNAKE_CASE : Optional[Any] = image_size
SCREAMING_SNAKE_CASE : str = num_channels
SCREAMING_SNAKE_CASE : Any = num_stages
SCREAMING_SNAKE_CASE : List[str] = hidden_sizes
SCREAMING_SNAKE_CASE : Optional[Any] = depths
SCREAMING_SNAKE_CASE : Any = is_training
SCREAMING_SNAKE_CASE : Tuple = use_labels
SCREAMING_SNAKE_CASE : Any = intermediate_size
SCREAMING_SNAKE_CASE : Dict = hidden_act
SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size
SCREAMING_SNAKE_CASE : str = initializer_range
SCREAMING_SNAKE_CASE : int = out_features
SCREAMING_SNAKE_CASE : List[str] = num_labels
SCREAMING_SNAKE_CASE : int = scope
SCREAMING_SNAKE_CASE : Optional[Any] = num_stages
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : str = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def __lowerCAmelCase ( self ) ->List[Any]:
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def __lowerCAmelCase ( self ) ->Any:
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any:
SCREAMING_SNAKE_CASE : List[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) , (
SCREAMING_SNAKE_CASE
) ,
) : Tuple = config_and_inputs
SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class a_ ( a__ , a__ , unittest.TestCase ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
__SCREAMING_SNAKE_CASE : List[str] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {}
__SCREAMING_SNAKE_CASE : Tuple = False
__SCREAMING_SNAKE_CASE : Union[str, Any] = False
__SCREAMING_SNAKE_CASE : Any = False
__SCREAMING_SNAKE_CASE : Tuple = False
__SCREAMING_SNAKE_CASE : Dict = False
__SCREAMING_SNAKE_CASE : Any = False
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE : Optional[Any] = UperNetModelTester(self )
SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 )
def __lowerCAmelCase ( self ) ->str:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __lowerCAmelCase ( self ) ->str:
return
def __lowerCAmelCase ( self ) ->Tuple:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase )
@unittest.skip(reason='''UperNet does not use inputs_embeds''' )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
pass
@unittest.skip(reason='''UperNet does not support input and output embeddings''' )
def __lowerCAmelCase ( self ) ->int:
pass
@unittest.skip(reason='''UperNet does not have a base model''' )
def __lowerCAmelCase ( self ) ->int:
pass
@unittest.skip(reason='''UperNet does not have a base model''' )
def __lowerCAmelCase ( self ) ->str:
pass
@require_torch_multi_gpu
@unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' )
def __lowerCAmelCase ( self ) ->str:
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __lowerCAmelCase ( self ) ->Tuple:
pass
def __lowerCAmelCase ( self ) ->int:
def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) )
SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_stages
self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Optional[int] = True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : Union[str, Any] = True
check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
def __lowerCAmelCase ( self ) ->Any:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE : str = _config_zero_init(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : int = model_class(config=_lowerCamelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip(reason='''UperNet does not have tied weights''' )
def __lowerCAmelCase ( self ) ->List[Any]:
pass
@slow
def __lowerCAmelCase ( self ) ->List[Any]:
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download(
repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' )
SCREAMING_SNAKE_CASE : Any = Image.open(a__ ).convert('''RGB''' )
return image
@require_torch
@require_vision
@slow
class a_ ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Dict:
SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' )
SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = prepare_img()
SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase )
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = torch.tensor(
[[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
def __lowerCAmelCase ( self ) ->int:
SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' )
SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = prepare_img()
SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase )
with torch.no_grad():
SCREAMING_SNAKE_CASE : str = model(**_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(
[[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
| 19 | 1 |
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
a__ : Union[str, Any] = logging.get_logger(__name__)
a__ : Union[str, Any] = {'''vocab_file''': '''spiece.model'''}
a__ : Tuple = {
'''vocab_file''': {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''',
}
}
a__ : Optional[Any] = {
'''xlnet-base-cased''': None,
'''xlnet-large-cased''': None,
}
# Segments (not really needed)
a__ : Optional[Any] = 0
a__ : Dict = 1
a__ : Optional[Any] = 2
a__ : Any = 3
a__ : List[Any] = 4
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[str] = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__SCREAMING_SNAKE_CASE : int = 'left'
def __init__( self , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<sep>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<cls>" , _lowerCamelCase="<mask>" , _lowerCamelCase=["<eop>", "<eod>"] , _lowerCamelCase = None , **_lowerCamelCase , ) ->None:
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE : Union[str, Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token
SCREAMING_SNAKE_CASE : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_lowerCamelCase , remove_space=_lowerCamelCase , keep_accents=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , )
SCREAMING_SNAKE_CASE : List[str] = 3
SCREAMING_SNAKE_CASE : str = do_lower_case
SCREAMING_SNAKE_CASE : List[str] = remove_space
SCREAMING_SNAKE_CASE : Dict = keep_accents
SCREAMING_SNAKE_CASE : Any = vocab_file
SCREAMING_SNAKE_CASE : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCamelCase )
@property
def __lowerCAmelCase ( self ) ->int:
return len(self.sp_model )
def __lowerCAmelCase ( self ) ->str:
SCREAMING_SNAKE_CASE : Optional[int] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy()
SCREAMING_SNAKE_CASE : List[Any] = None
return state
def __setstate__( self , _lowerCamelCase ) ->List[Any]:
SCREAMING_SNAKE_CASE : Any = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
SCREAMING_SNAKE_CASE : str = {}
SCREAMING_SNAKE_CASE : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]:
if self.remove_space:
SCREAMING_SNAKE_CASE : Dict = ''' '''.join(inputs.strip().split() )
else:
SCREAMING_SNAKE_CASE : Tuple = inputs
SCREAMING_SNAKE_CASE : str = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' )
if not self.keep_accents:
SCREAMING_SNAKE_CASE : int = unicodedata.normalize('''NFKD''' , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Tuple = ''''''.join([c for c in outputs if not unicodedata.combining(_lowerCamelCase )] )
if self.do_lower_case:
SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.lower()
return outputs
def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]:
SCREAMING_SNAKE_CASE : List[str] = self.preprocess_text(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = []
for piece in pieces:
if len(_lowerCamelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit():
SCREAMING_SNAKE_CASE : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowerCamelCase , '''''' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
SCREAMING_SNAKE_CASE : Optional[int] = cur_pieces[1:]
else:
SCREAMING_SNAKE_CASE : List[Any] = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_lowerCamelCase )
else:
new_pieces.append(_lowerCamelCase )
return new_pieces
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]:
return self.sp_model.PieceToId(_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]:
return self.sp_model.IdToPiece(_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]:
SCREAMING_SNAKE_CASE : List[Any] = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase , ''' ''' ).strip()
return out_string
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = True , **_lowerCamelCase , ) ->str:
SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('''use_source_tokenizer''' , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.convert_ids_to_tokens(_lowerCamelCase , skip_special_tokens=_lowerCamelCase )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
SCREAMING_SNAKE_CASE : Optional[int] = []
SCREAMING_SNAKE_CASE : str = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) )
SCREAMING_SNAKE_CASE : Tuple = []
sub_texts.append(_lowerCamelCase )
else:
current_sub_text.append(_lowerCamelCase )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
SCREAMING_SNAKE_CASE : Optional[Any] = ''''''.join(_lowerCamelCase )
SCREAMING_SNAKE_CASE : str = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
SCREAMING_SNAKE_CASE : int = self.clean_up_tokenization(_lowerCamelCase )
return clean_text
else:
return text
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
SCREAMING_SNAKE_CASE : Any = [self.sep_token_id]
SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase )
if token_ids_a is not None:
return ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1, 1]
return ([0] * len(_lowerCamelCase )) + [1, 1]
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]:
SCREAMING_SNAKE_CASE : Any = [self.sep_token_id]
SCREAMING_SNAKE_CASE : Tuple = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
if not os.path.isdir(_lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
SCREAMING_SNAKE_CASE : List[Any] = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _lowerCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCamelCase , '''wb''' ) as fi:
SCREAMING_SNAKE_CASE : Any = self.sp_model.serialized_model_proto()
fi.write(_lowerCamelCase )
return (out_vocab_file,)
| 19 |
import datasets
from .evaluate import evaluate
a__ : Dict = '''\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
'''
a__ : List[str] = '''
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
'''
a__ : List[Any] = '''
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- \'id\': id of the question-answer pair as given in the references (see below)
- \'prediction_text\': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- \'id\': id of the question-answer pair (see above),
- \'answers\': a Dict in the CUAD dataset format
{
\'text\': list of possible texts for the answer, as a list of strings
\'answer_start\': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
\'exact_match\': Exact match (the normalized answer exactly match the gold answer)
\'f1\': The F-score of predicted tokens versus the gold answer
\'aupr\': Area Under the Precision-Recall curve
\'prec_at_80_recall\': Precision at 80% recall
\'prec_at_90_recall\': Precision at 90% recall
Examples:
>>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]
>>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]
>>> cuad_metric = datasets.load_metric("cuad")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Tuple:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': {
'''id''': datasets.Value('''string''' ),
'''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ),
},
'''references''': {
'''id''': datasets.Value('''string''' ),
'''answers''': datasets.features.Sequence(
{
'''text''': datasets.Value('''string''' ),
'''answer_start''': datasets.Value('''int32''' ),
} ),
},
} ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple:
SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions}
SCREAMING_SNAKE_CASE : int = [
{
'''paragraphs''': [
{
'''qas''': [
{
'''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']],
'''id''': ref['''id'''],
}
for ref in references
]
}
]
}
]
SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase )
return score
| 19 | 1 |
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'''split_dict''' , [
SplitDict(),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 , dataset_name='''my_dataset''' )} ),
SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 )} ),
SplitDict({'''train''': SplitInfo()} ),
] , )
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = split_dict._to_yaml_list()
assert len(a__ ) == len(a__ )
SCREAMING_SNAKE_CASE : Optional[int] = SplitDict._from_yaml_list(a__ )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
SCREAMING_SNAKE_CASE : Optional[int] = None
# the split name of split_dict takes over the name of the split info object
SCREAMING_SNAKE_CASE : Union[str, Any] = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'''split_info''' , [SplitInfo(), SplitInfo(dataset_name=a__ ), SplitInfo(dataset_name='''my_dataset''' )] )
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = asdict(SplitDict({'''train''': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 19 |
from sklearn.metrics import matthews_corrcoef
import datasets
a__ : Optional[Any] = '''
Compute the Matthews correlation coefficient (MCC)
The Matthews correlation coefficient is used in machine learning as a
measure of the quality of binary and multiclass classifications. It takes
into account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if the classes are of
very different sizes. The MCC is in essence a correlation coefficient value
between -1 and +1. A coefficient of +1 represents a perfect prediction, 0
an average random prediction and -1 an inverse prediction. The statistic
is also known as the phi coefficient. [source: Wikipedia]
'''
a__ : str = '''
Args:
predictions (list of int): Predicted labels, as returned by a model.
references (list of int): Ground truth labels.
sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.
Returns:
matthews_correlation (dict containing float): Matthews correlation.
Examples:
Example 1, a basic example with only predictions and references as inputs:
>>> matthews_metric = datasets.load_metric("matthews_correlation")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3])
>>> print(round(results[\'matthews_correlation\'], 2))
0.54
Example 2, the same example as above, but also including sample weights:
>>> matthews_metric = datasets.load_metric("matthews_correlation")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 3, 1, 1, 1, 2])
>>> print(round(results[\'matthews_correlation\'], 2))
0.1
Example 3, the same example as above, but with sample weights that cause a negative correlation:
>>> matthews_metric = datasets.load_metric("matthews_correlation")
>>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],
... predictions=[1, 2, 2, 0, 3, 3],
... sample_weight=[0.5, 1, 0, 0, 0, 1])
>>> print(round(results[\'matthews_correlation\'], 2))
-0.25
'''
a__ : Union[str, Any] = '''\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
"""simple docstring"""
def __lowerCAmelCase ( self ) ->Union[str, Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''int32''' ),
'''references''': datasets.Value('''int32''' ),
} ) , reference_urls=[
'''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html'''
] , )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]:
return {
"matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ),
}
| 19 | 1 |
from __future__ import annotations
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
if b == 0:
return (1, 0)
((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Tuple = extended_euclid(a__ , a % b )
SCREAMING_SNAKE_CASE : int = a // b
return (y, x - k * y)
def UpperCAmelCase_( a__ , a__ , a__ , a__ ):
"""simple docstring"""
((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Union[str, Any] = extended_euclid(a__ , a__ )
SCREAMING_SNAKE_CASE : Tuple = na * na
SCREAMING_SNAKE_CASE : Dict = ra * x * na + ra * y * na
return (n % m + m) % m
def UpperCAmelCase_( a__ , a__ ):
"""simple docstring"""
((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Tuple = extended_euclid(a__ , a__ )
if b < 0:
SCREAMING_SNAKE_CASE : List[str] = (b % n + n) % n
return b
def UpperCAmelCase_( a__ , a__ , a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = invert_modulo(a__ , a__ ), invert_modulo(a__ , a__ )
SCREAMING_SNAKE_CASE : List[Any] = na * na
SCREAMING_SNAKE_CASE : Tuple = ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name='''chinese_remainder_theorem''', verbose=True)
testmod(name='''chinese_remainder_theorem2''', verbose=True)
testmod(name='''invert_modulo''', verbose=True)
testmod(name='''extended_euclid''', verbose=True)
| 19 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from argparse import ArgumentParser
from accelerate.commands.config import get_config_parser
from accelerate.commands.env import env_command_parser
from accelerate.commands.launch import launch_command_parser
from accelerate.commands.test import test_command_parser
from accelerate.commands.tpu import tpu_command_parser
def UpperCAmelCase_( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a__ )
SCREAMING_SNAKE_CASE : int = parser.add_subparsers(help='''accelerate command helpers''' )
# Register commands
get_config_parser(subparsers=a__ )
env_command_parser(subparsers=a__ )
launch_command_parser(subparsers=a__ )
tpu_command_parser(subparsers=a__ )
test_command_parser(subparsers=a__ )
# Let's go
SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args()
if not hasattr(a__ , '''func''' ):
parser.print_help()
exit(1 )
# Run
args.func(a__ )
if __name__ == "__main__":
main()
| 19 | 1 |
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class a_ ( a__ ):
"""simple docstring"""
def __init__( self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int:
super().__init__(*_lowerCamelCase , **_lowerCamelCase )
SCREAMING_SNAKE_CASE : Dict = eval_examples
SCREAMING_SNAKE_CASE : Optional[int] = post_process_function
def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ) ->Dict[str, float]:
SCREAMING_SNAKE_CASE : Any = gen_kwargs.copy()
SCREAMING_SNAKE_CASE : str = (
gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length
)
SCREAMING_SNAKE_CASE : Dict = (
gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams
)
SCREAMING_SNAKE_CASE : Any = gen_kwargs
SCREAMING_SNAKE_CASE : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset
SCREAMING_SNAKE_CASE : str = self.get_eval_dataloader(_lowerCamelCase )
SCREAMING_SNAKE_CASE : List[str] = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_metrics
SCREAMING_SNAKE_CASE : str = None
SCREAMING_SNAKE_CASE : Optional[Any] = time.time()
SCREAMING_SNAKE_CASE : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE : Tuple = eval_loop(
_lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , )
finally:
SCREAMING_SNAKE_CASE : Dict = compute_metrics
SCREAMING_SNAKE_CASE : Tuple = self.args.eval_batch_size * self.args.world_size
if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics:
start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""]
output.metrics.update(
speed_metrics(
_lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(_lowerCamelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"""{metric_key_prefix}_""" ):
SCREAMING_SNAKE_CASE : Optional[int] = metrics.pop(_lowerCamelCase )
metrics.update(output.metrics )
else:
SCREAMING_SNAKE_CASE : List[Any] = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(_lowerCamelCase )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
SCREAMING_SNAKE_CASE : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase )
return metrics
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ) ->int:
SCREAMING_SNAKE_CASE : str = gen_kwargs.copy()
SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(_lowerCamelCase )
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE : Dict = self.compute_metrics
SCREAMING_SNAKE_CASE : Tuple = None
SCREAMING_SNAKE_CASE : List[str] = time.time()
SCREAMING_SNAKE_CASE : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE : Any = eval_loop(
_lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , )
finally:
SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics
SCREAMING_SNAKE_CASE : List[Any] = self.args.eval_batch_size * self.args.world_size
if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics:
start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""]
output.metrics.update(
speed_metrics(
_lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' )
SCREAMING_SNAKE_CASE : Dict = self.compute_metrics(_lowerCamelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"""{metric_key_prefix}_""" ):
SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(_lowerCamelCase )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
| 19 |
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a__ : str = logging.get_logger(__name__)
a__ : Optional[Any] = {'''vocab_file''': '''vocab.json'''}
a__ : str = {
'''vocab_file''': {
'''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''',
}
}
a__ : Tuple = {'''mgp-str''': 27}
class a_ ( a__ ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) ->Dict:
super().__init__(
unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , pad_token=_lowerCamelCase , **_lowerCamelCase , )
with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle:
SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowerCamelCase )
SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.vocab.items()}
@property
def __lowerCAmelCase ( self ) ->List[Any]:
return len(self.vocab )
def __lowerCAmelCase ( self ) ->Union[str, Any]:
return dict(self.vocab , **self.added_tokens_encoder )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
SCREAMING_SNAKE_CASE : Union[str, Any] = []
for s in text:
char_tokens.extend(_lowerCamelCase )
return char_tokens
def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict:
return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) )
def __lowerCAmelCase ( self , _lowerCamelCase ) ->int:
return self.decoder.get(_lowerCamelCase )
def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]:
if not os.path.isdir(_lowerCamelCase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) )
return
SCREAMING_SNAKE_CASE : str = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' )
return (vocab_file,)
| 19 | 1 |
def UpperCAmelCase_( a__ , a__ , a__ ):
"""simple docstring"""
if principal <= 0:
raise Exception('''Principal borrowed must be > 0''' )
if rate_per_annum < 0:
raise Exception('''Rate of interest must be >= 0''' )
if years_to_repay <= 0 or not isinstance(a__ , a__ ):
raise Exception('''Years to repay must be an integer > 0''' )
# Yearly rate is divided by 12 to get monthly rate
SCREAMING_SNAKE_CASE : int = rate_per_annum / 12
# Years to repay is multiplied by 12 to get number of payments as payment is monthly
SCREAMING_SNAKE_CASE : int = years_to_repay * 12
return (
principal
* rate_per_month
* (1 + rate_per_month) ** number_of_payments
/ ((1 + rate_per_month) ** number_of_payments - 1)
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 19 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[Any] = ['''DeiTFeatureExtractor''']
a__ : Any = ['''DeiTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''DeiTForImageClassification''',
'''DeiTForImageClassificationWithTeacher''',
'''DeiTForMaskedImageModeling''',
'''DeiTModel''',
'''DeiTPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[str] = [
'''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFDeiTForImageClassification''',
'''TFDeiTForImageClassificationWithTeacher''',
'''TFDeiTForMaskedImageModeling''',
'''TFDeiTModel''',
'''TFDeiTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_deit import DeiTFeatureExtractor
from .image_processing_deit import DeiTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deit import (
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
DeiTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deit import (
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
TFDeiTPreTrainedModel,
)
else:
import sys
a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 19 | 1 |
import math
def UpperCAmelCase_( a__ , a__ = 0 , a__ = 0 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = end or len(a__ )
for i in range(a__ , a__ ):
SCREAMING_SNAKE_CASE : Any = i
SCREAMING_SNAKE_CASE : List[str] = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
SCREAMING_SNAKE_CASE : Optional[int] = array[temp_index - 1]
temp_index -= 1
SCREAMING_SNAKE_CASE : List[Any] = temp_index_value
return array
def UpperCAmelCase_( a__ , a__ , a__ ): # Max Heap
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = index
SCREAMING_SNAKE_CASE : Tuple = 2 * index + 1 # Left Node
SCREAMING_SNAKE_CASE : int = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
SCREAMING_SNAKE_CASE : int = left_index
if right_index < heap_size and array[largest] < array[right_index]:
SCREAMING_SNAKE_CASE : Optional[int] = right_index
if largest != index:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = array[largest], array[index]
heapify(a__ , a__ , a__ )
def UpperCAmelCase_( a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = len(a__ )
for i in range(n // 2 , -1 , -1 ):
heapify(a__ , a__ , a__ )
for i in range(n - 1 , 0 , -1 ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = array[0], array[i]
heapify(a__ , 0 , a__ )
return array
def UpperCAmelCase_( a__ , a__ , a__ , a__ ):
"""simple docstring"""
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def UpperCAmelCase_( a__ , a__ , a__ , a__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = low
SCREAMING_SNAKE_CASE : List[Any] = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = array[j], array[i]
i += 1
def UpperCAmelCase_( a__ ):
"""simple docstring"""
if len(a__ ) == 0:
return array
SCREAMING_SNAKE_CASE : List[str] = 2 * math.ceil(math.loga(len(a__ ) ) )
SCREAMING_SNAKE_CASE : int = 16
return intro_sort(a__ , 0 , len(a__ ) , a__ , a__ )
def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__ ):
"""simple docstring"""
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(a__ )
max_depth -= 1
SCREAMING_SNAKE_CASE : int = median_of_a(a__ , a__ , start + ((end - start) // 2) + 1 , end - 1 )
SCREAMING_SNAKE_CASE : Dict = partition(a__ , a__ , a__ , a__ )
intro_sort(a__ , a__ , a__ , a__ , a__ )
SCREAMING_SNAKE_CASE : Optional[int] = p
return insertion_sort(a__ , a__ , a__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
a__ : int = input('''Enter numbers separated by a comma : ''').strip()
a__ : Dict = [float(item) for item in user_input.split(''',''')]
print(sort(unsorted))
| 19 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Dict = ['''XGLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : List[Any] = ['''XGLMTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : int = [
'''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XGLMForCausalLM''',
'''XGLMModel''',
'''XGLMPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'''FlaxXGLMForCausalLM''',
'''FlaxXGLMModel''',
'''FlaxXGLMPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = [
'''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXGLMForCausalLM''',
'''TFXGLMModel''',
'''TFXGLMPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 19 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.