code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from numpy import exp, pi, sqrt def _UpperCAmelCase ( _UpperCamelCase : Dict, _UpperCamelCase : float = 0.0, _UpperCamelCase : float = 1.0 ) -> int: return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
367
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _UpperCAmelCase ( ) -> Dict: A_ = ArgumentParser('''Accelerate CLI tool''', usage='''accelerate <command> [<args>]''', allow_abbrev=_UpperCamelCase ) A_ = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=_UpperCamelCase ) env_command_parser(subparsers=_UpperCamelCase ) launch_command_parser(subparsers=_UpperCamelCase ) tpu_command_parser(subparsers=_UpperCamelCase ) test_command_parser(subparsers=_UpperCamelCase ) # Let's go A_ = parser.parse_args() if not hasattr(_UpperCamelCase, '''func''' ): parser.print_help() exit(1 ) # Run args.func(_UpperCamelCase ) if __name__ == "__main__": main()
18
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __UpperCAmelCase : '''simple docstring''' @staticmethod def __A ( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: pass @is_pipeline_test @require_vision @require_timm @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = MODEL_FOR_OBJECT_DETECTION_MAPPING def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: A_ = ObjectDetectionPipeline(model=lowercase_ , image_processor=lowercase_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: A_ = object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' , threshold=0.0 ) self.assertGreater(len(lowercase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowercase_ , { '''score''': ANY(lowercase_ ), '''label''': ANY(lowercase_ ), '''box''': {'''xmin''': ANY(lowercase_ ), '''ymin''': ANY(lowercase_ ), '''xmax''': ANY(lowercase_ ), '''ymax''': ANY(lowercase_ )}, } , ) import datasets A_ = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) A_ = [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] A_ = object_detector(lowercase_ , threshold=0.0 ) self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for outputs in batch_outputs: self.assertGreater(len(lowercase_ ) , 0 ) for detected_object in outputs: self.assertEqual( lowercase_ , { '''score''': ANY(lowercase_ ), '''label''': ANY(lowercase_ ), '''box''': {'''xmin''': ANY(lowercase_ ), '''ymin''': ANY(lowercase_ ), '''xmax''': ANY(lowercase_ ), '''ymax''': ANY(lowercase_ )}, } , ) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def __A ( self ) -> Optional[Any]: pass @require_torch def __A ( self ) -> Any: A_ = '''hf-internal-testing/tiny-detr-mobilenetsv3''' A_ = AutoModelForObjectDetection.from_pretrained(lowercase_ ) A_ = AutoFeatureExtractor.from_pretrained(lowercase_ ) A_ = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_ ) A_ = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=0.0 ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'''score''': 0.3_376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3_376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ] , ) A_ = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {'''score''': 0.3_376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3_376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], [ {'''score''': 0.3_376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3_376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], ] , ) @require_torch @slow def __A ( self ) -> Optional[Any]: A_ = '''facebook/detr-resnet-50''' A_ = AutoModelForObjectDetection.from_pretrained(lowercase_ ) A_ = AutoFeatureExtractor.from_pretrained(lowercase_ ) A_ = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_ ) A_ = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'''score''': 0.9_982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] , ) A_ = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {'''score''': 0.9_982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9_982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ] , ) @require_torch @slow def __A ( self ) -> Dict: A_ = '''facebook/detr-resnet-50''' A_ = pipeline('''object-detection''' , model=lowercase_ ) A_ = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'''score''': 0.9_982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] , ) A_ = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ [ {'''score''': 0.9_982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9_982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ] , ) @require_torch @slow def __A ( self ) -> List[Any]: A_ = 0.9_985 A_ = '''facebook/detr-resnet-50''' A_ = pipeline('''object-detection''' , model=lowercase_ ) A_ = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=lowercase_ ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'''score''': 0.9_988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] , ) @require_torch @require_pytesseract @slow def __A ( self ) -> Tuple: A_ = '''Narsil/layoutlmv3-finetuned-funsd''' A_ = 0.9_993 A_ = pipeline('''object-detection''' , model=lowercase_ , threshold=lowercase_ ) A_ = object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(lowercase_ , decimals=4 ) , [ {'''score''': 0.9_993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, {'''score''': 0.9_993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, ] , )
368
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __snake_case : Any = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' __snake_case : Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' __snake_case : Optional[int] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __A ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: if rouge_types is None: A_ = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] A_ = rouge_scorer.RougeScorer(rouge_types=_SCREAMING_SNAKE_CASE , use_stemmer=_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = scoring.BootstrapAggregator() else: A_ = [] for ref, pred in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = scorer.score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if use_aggregator: aggregator.add_scores(_SCREAMING_SNAKE_CASE ) else: scores.append(_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = aggregator.aggregate() else: A_ = {} for key in scores[0]: A_ = [score[key] for score in scores] return result
18
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : Any = logging.get_logger(__name__) __snake_case : Dict = { 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class __UpperCAmelCase ( a__ ): '''simple docstring''' __lowercase : Dict = 'data2vec-vision' def __init__( self , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[3, 5, 7, 11] , _SCREAMING_SNAKE_CASE=[1, 2, 3, 6] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.4 , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=255 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: super().__init__(**_SCREAMING_SNAKE_CASE ) A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = layer_norm_eps A_ = image_size A_ = patch_size A_ = num_channels A_ = use_mask_token A_ = use_absolute_position_embeddings A_ = use_relative_position_bias A_ = use_shared_relative_position_bias A_ = layer_scale_init_value A_ = drop_path_rate A_ = use_mean_pooling # decode head attributes (semantic segmentation) A_ = out_indices A_ = pool_scales # auxiliary head attributes (semantic segmentation) A_ = use_auxiliary_head A_ = auxiliary_loss_weight A_ = auxiliary_channels A_ = auxiliary_num_convs A_ = auxiliary_concat_input A_ = semantic_loss_ignore_index class __UpperCAmelCase ( a__ ): '''simple docstring''' __lowercase : Tuple = version.parse('1.11' ) @property def __A ( self ) -> List[Any]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __A ( self ) -> int: return 1E-4
369
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: super().__init__() A_ = module A_ = nn.Sequential( nn.Linear(module.in_features , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) , nn.Linear(_SCREAMING_SNAKE_CASE , module.out_features , bias=_SCREAMING_SNAKE_CASE ) , ) A_ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_SCREAMING_SNAKE_CASE ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __A ( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: return self.module(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) + self.adapter(_SCREAMING_SNAKE_CASE ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowercase : Dict = 'bigscience/bloom-1b7' # Constant values __lowercase : str = 2.109659552692574 __lowercase : int = 'Hello my name is' __lowercase : Optional[Any] = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __lowercase : Optional[Any] = 10 def __A ( self ) -> List[str]: # Models and tokenizer A_ = AutoTokenizer.from_pretrained(self.model_name ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[Any]: super().setUp() # Models and tokenizer A_ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> List[str]: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: A_ = self.model_abit.config self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''quantization_config''' ) ) A_ = config.to_dict() A_ = config.to_diff_dict() A_ = config.to_json_string() def __A ( self ) -> Union[str, Any]: from bitsandbytes.nn import Paramsabit A_ = self.model_fpaa.get_memory_footprint() A_ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A_ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __A ( self ) -> Union[str, Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __A ( self ) -> Optional[int]: A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Optional[int]: A_ = BitsAndBytesConfig() A_ = True A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Tuple: with self.assertRaises(_SCREAMING_SNAKE_CASE ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Tuple: A_ = BitsAndBytesConfig() with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def __A ( self ) -> Dict: with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_fpaa.to(torch.floataa ) A_ = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A_ = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error A_ = self.model_fpaa.half() # Check this does not throw an error A_ = self.model_fpaa.float() def __A ( self ) -> Optional[int]: A_ = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Optional[Any]: A_ = '''t5-small''' A_ = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense A_ = AutoTokenizer.from_pretrained(cls.model_name ) A_ = '''Translate in German: Hello, my dog is cute''' def __A ( self ) -> Any: gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: from transformers import TaForConditionalGeneration A_ = TaForConditionalGeneration._keep_in_fpaa_modules A_ = None # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) A_ = modules def __A ( self ) -> Dict: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> int: super().setUp() # model_name A_ = '''bigscience/bloom-560m''' A_ = '''t5-small''' # Different types of model A_ = AutoModel.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Sequence classification model A_ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # CausalLM model A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Seq2seq model A_ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> Union[str, Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __A ( self ) -> List[str]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> Tuple: super().setUp() def __A ( self ) -> List[Any]: del self.pipe gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[Any]: A_ = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A_ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[str]: super().setUp() def __A ( self ) -> Optional[int]: A_ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch A_ = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> str: A_ = '''facebook/opt-350m''' super().setUp() def __A ( self ) -> Optional[int]: if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A_ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A_ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_SCREAMING_SNAKE_CASE ) ): A_ = LoRALayer(module.q_proj , rank=16 ) A_ = LoRALayer(module.k_proj , rank=16 ) A_ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A_ = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A_ = model.forward(**_SCREAMING_SNAKE_CASE ) out.logits.norm().backward() for module in model.modules(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_SCREAMING_SNAKE_CASE , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : int = 'gpt2-xl' __lowercase : List[Any] = 3.3191854854152187
18
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , ) -> Optional[int]: A_ = parent A_ = 13 A_ = 7 A_ = True A_ = True A_ = True A_ = True A_ = 99 A_ = 384 A_ = 2 A_ = 4 A_ = 37 A_ = '''gelu''' A_ = 0.1 A_ = 0.1 A_ = 512 A_ = 16 A_ = 2 A_ = 0.02 A_ = 3 A_ = 4 A_ = 128 A_ = 2 A_ = 9 A_ = 1 A_ = None def __A ( self ) -> Dict: A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_SCREAMING_SNAKE_CASE , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: A_ = TFConvBertModel(config=_SCREAMING_SNAKE_CASE ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = [input_ids, input_mask] A_ = model(_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: A_ = TFConvBertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) A_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: A_ = self.num_labels A_ = TFConvBertForSequenceClassification(config=_SCREAMING_SNAKE_CASE ) A_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: A_ = self.num_choices A_ = TFConvBertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) A_ = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) A_ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: A_ = self.num_labels A_ = TFConvBertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) A_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: A_ = TFConvBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) A_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self ) -> Optional[Any]: A_ = self.prepare_config_and_inputs() ( A_ ) = config_and_inputs A_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Any = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __lowercase : Any = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __lowercase : Optional[Any] = False __lowercase : Optional[int] = False __lowercase : Any = False def __A ( self ) -> List[str]: A_ = TFConvBertModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> int: self.config_tester.run_common_tests() def __A ( self ) -> Any: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> int: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) @slow def __A ( self ) -> Optional[int]: A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = True if hasattr(_SCREAMING_SNAKE_CASE , '''use_cache''' ): A_ = True A_ = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) A_ = getattr(self.model_tester , '''key_length''' , _SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = len(model(_SCREAMING_SNAKE_CASE ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE , saved_model=_SCREAMING_SNAKE_CASE ) A_ = os.path.join(_SCREAMING_SNAKE_CASE , '''saved_model''' , '''1''' ) A_ = tf.keras.models.load_model(_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: A_ = outputs['''encoder_hidden_states'''] A_ = outputs['''encoder_attentions'''] else: A_ = outputs['''hidden_states'''] A_ = outputs['''attentions'''] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) A_ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __A ( self ) -> str: A_ = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) A_ = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) A_ = getattr(self.model_tester , '''key_length''' , _SCREAMING_SNAKE_CASE ) A_ = getattr(self.model_tester , '''key_length''' , _SCREAMING_SNAKE_CASE ) def check_decoder_attentions_output(_SCREAMING_SNAKE_CASE ): A_ = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(out_len % 2 , 0 ) A_ = outputs.decoder_attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ): A_ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A_ = True A_ = False A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_decoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A_ = True A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine A_ = True A_ = True A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_SCREAMING_SNAKE_CASE ) ) self.assertEqual(model.config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) @require_tf class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __A ( self ) -> str: A_ = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) A_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ = model(_SCREAMING_SNAKE_CASE )[0] A_ = [1, 6, 768] self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) A_ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
370
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _UpperCAmelCase ( _UpperCamelCase : Features ) -> Optional[int]: A_ = np.inf def set_batch_size(_UpperCamelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ) and feature.dtype == "binary": A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_UpperCamelCase, _UpperCamelCase ) return None if batch_size is np.inf else batch_size class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ = path_or_paths if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} A_ = _PACKAGED_DATASETS_MODULES['''parquet'''][1] A_ = Parquet( cache_dir=_SCREAMING_SNAKE_CASE , data_files=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , hash=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self ) -> str: # Build iterable dataset if self.streaming: A_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) A_ = self.builder.as_dataset( split=self.split , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Dict: A_ = dataset A_ = path_or_buf A_ = batch_size or get_writer_batch_size(dataset.features ) A_ = parquet_writer_kwargs def __A ( self ) -> int: A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: A_ = self._write(file_obj=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) else: A_ = self._write(file_obj=self.path_or_buf , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) return written def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: A_ = 0 A_ = parquet_writer_kwargs.pop('''path_or_buf''' , _SCREAMING_SNAKE_CASE ) A_ = self.dataset.features.arrow_schema A_ = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _SCREAMING_SNAKE_CASE ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): A_ = query_table( table=self.dataset._data , key=slice(_SCREAMING_SNAKE_CASE , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_SCREAMING_SNAKE_CASE ) written += batch.nbytes writer.close() return written
18
0
'''simple docstring''' import math import tensorflow as tf from packaging import version def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Any: A_ = tf.convert_to_tensor(lowerCamelCase__ ) A_ = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ), x.dtype ) )) return x * cdf def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> int: A_ = tf.convert_to_tensor(lowerCamelCase__ ) A_ = tf.cast(math.pi, x.dtype ) A_ = tf.cast(0.0_4_4_7_1_5, x.dtype ) A_ = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase__, 3 )) )) return x * cdf def _UpperCAmelCase ( _UpperCamelCase : Any ) -> str: A_ = tf.convert_to_tensor(lowerCamelCase__ ) return x * tf.tanh(tf.math.softplus(lowerCamelCase__ ) ) def _UpperCAmelCase ( _UpperCamelCase : List[Any] ) -> Optional[int]: A_ = tf.convert_to_tensor(lowerCamelCase__ ) A_ = tf.cast(0.0_4_4_7_1_5, x.dtype ) A_ = tf.cast(0.7_9_7_8_8_4_5_6_0_8, x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def _UpperCAmelCase ( _UpperCamelCase : str ) -> List[str]: A_ = tf.convert_to_tensor(lowerCamelCase__ ) A_ = tf.cast(1.7_0_2, x.dtype ) return x * tf.math.sigmoid(coeff * x ) def _UpperCAmelCase ( _UpperCamelCase : List[str] ) -> Any: return tf.clip_by_value(_gelu(lowerCamelCase__ ), -10, 10 ) def _UpperCAmelCase ( _UpperCamelCase : Any, _UpperCamelCase : Optional[int]=-1 ) -> int: A_ ,A_ = tf.split(lowerCamelCase__, 2, axis=lowerCamelCase__ ) return a * tf.math.sigmoid(lowerCamelCase__ ) if version.parse(tf.version.VERSION) >= version.parse('2.4'): def _UpperCAmelCase ( _UpperCamelCase : List[str] ) -> List[str]: return tf.keras.activations.gelu(lowerCamelCase__, approximate=lowerCamelCase__ ) __snake_case : Union[str, Any] = tf.keras.activations.gelu __snake_case : Optional[Any] = approximate_gelu_wrap else: __snake_case : List[Any] = _gelu __snake_case : str = _gelu_new __snake_case : Union[str, Any] = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def _UpperCAmelCase ( _UpperCamelCase : List[Any] ) -> Any: if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
371
'''simple docstring''' from statistics import mean, stdev def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = min(_UpperCamelCase ) A_ = max(_UpperCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min), _UpperCamelCase ) for x in data] def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = mean(_UpperCamelCase ) A_ = stdev(_UpperCamelCase ) # standardize data return [round((x - mu) / (sigma), _UpperCamelCase ) for x in data]
18
0
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : Optional[int] = { 'facebook/data2vec-base-960h': 'https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class __UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowercase : Dict = "data2vec-audio" def __init__( self , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 512, 512, 512) , _SCREAMING_SNAKE_CASE=(5, 2, 2, 2, 2, 2, 2) , _SCREAMING_SNAKE_CASE=(10, 3, 3, 3, 3, 2, 2) , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=19 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE="sum" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=(512, 512, 512, 512, 1500) , _SCREAMING_SNAKE_CASE=(5, 3, 3, 1, 1) , _SCREAMING_SNAKE_CASE=(1, 2, 3, 1, 1) , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> Any: super().__init__(**_snake_case , pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case ) A_ = hidden_size A_ = feat_extract_activation A_ = list(_snake_case ) A_ = list(_snake_case ) A_ = list(_snake_case ) A_ = conv_bias A_ = num_conv_pos_embeddings A_ = num_conv_pos_embedding_groups A_ = conv_pos_kernel_size A_ = len(self.conv_dim ) A_ = num_hidden_layers A_ = intermediate_size A_ = hidden_act A_ = num_attention_heads A_ = hidden_dropout A_ = attention_dropout A_ = activation_dropout A_ = feat_proj_dropout A_ = final_dropout A_ = layerdrop A_ = layer_norm_eps A_ = initializer_range A_ = vocab_size A_ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A_ = mask_time_prob A_ = mask_time_length A_ = mask_time_min_masks A_ = mask_feature_prob A_ = mask_feature_length A_ = mask_feature_min_masks # ctc loss A_ = ctc_loss_reduction A_ = ctc_zero_infinity # adapter A_ = add_adapter A_ = adapter_kernel_size A_ = adapter_stride A_ = num_adapter_layers A_ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. A_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. A_ = list(_snake_case ) A_ = list(_snake_case ) A_ = list(_snake_case ) A_ = xvector_output_dim @property def __A ( self ) -> int: return math.prod(self.conv_stride )
350
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') __snake_case : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __snake_case : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: with open(_UpperCamelCase, '''rb''' ) as f: A_ = Image.open(_UpperCamelCase ) return im.convert('''RGB''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the training data.'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the validation data.'} ) __lowercase : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __A ( self ) -> int: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_UpperCamelCase )} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) __lowercase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowercase : str = field(default=_UpperCamelCase , metadata={'help': 'Name or path of preprocessor config.'} ) __lowercase : bool = field( default=_UpperCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __lowercase : bool = field( default=_UpperCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> Dict: A_ = torch.stack([example['''pixel_values'''] for example in examples] ) A_ = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _UpperCAmelCase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A_ ,A_ ,A_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A_ ,A_ ,A_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''', _UpperCamelCase, _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A_ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. A_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: A_ = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, task='''image-classification''', use_auth_token=True if model_args.use_auth_token else None, ) else: A_ = {} if data_args.train_dir is not None: A_ = os.path.join(data_args.train_dir, '''**''' ) if data_args.validation_dir is not None: A_ = os.path.join(data_args.validation_dir, '''**''' ) A_ = load_dataset( '''imagefolder''', data_files=_UpperCamelCase, cache_dir=model_args.cache_dir, task='''image-classification''', ) # If we don't have a validation split, split off a percentage of train as validation. A_ = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, _UpperCamelCase ) and data_args.train_val_split > 0.0: A_ = dataset['''train'''].train_test_split(data_args.train_val_split ) A_ = split['''train'''] A_ = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A_ = dataset['''train'''].features['''labels'''].names A_ ,A_ = {}, {} for i, label in enumerate(_UpperCamelCase ): A_ = str(_UpperCamelCase ) A_ = label # Load the accuracy metric from the datasets package A_ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Optional[Any] ): return metric.compute(predictions=np.argmax(p.predictions, axis=1 ), references=p.label_ids ) A_ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(_UpperCamelCase ), labelaid=_UpperCamelCase, idalabel=_UpperCamelCase, finetuning_task='''image-classification''', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) A_ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=_UpperCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) A_ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: A_ = image_processor.size['''shortest_edge'''] else: A_ = (image_processor.size['''height'''], image_processor.size['''width''']) A_ = Normalize(mean=image_processor.image_mean, std=image_processor.image_std ) A_ = Compose( [ RandomResizedCrop(_UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) A_ = Compose( [ Resize(_UpperCamelCase ), CenterCrop(_UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(_UpperCamelCase : Dict ): A_ = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(_UpperCamelCase : Any ): A_ = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: A_ = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: A_ = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_UpperCamelCase ) # Initalize our trainer A_ = Trainer( model=_UpperCamelCase, args=_UpperCamelCase, train_dataset=dataset['''train'''] if training_args.do_train else None, eval_dataset=dataset['''validation'''] if training_args.do_eval else None, compute_metrics=_UpperCamelCase, tokenizer=_UpperCamelCase, data_collator=_UpperCamelCase, ) # Training if training_args.do_train: A_ = None if training_args.resume_from_checkpoint is not None: A_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A_ = last_checkpoint A_ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics ) trainer.save_metrics('''train''', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A_ = trainer.evaluate() trainer.log_metrics('''eval''', _UpperCamelCase ) trainer.save_metrics('''eval''', _UpperCamelCase ) # Write model card and (optionally) push to hub A_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
18
0
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel __snake_case : Any = logging.getLogger(__name__) def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : List[Any] ) -> str: # save results if os.path.exists(UpperCamelCase__ ): if os.path.exists(os.path.join(UpperCamelCase__, '''config.json''' ) ) and os.path.isfile( os.path.join(UpperCamelCase__, '''config.json''' ) ): os.remove(os.path.join(UpperCamelCase__, '''config.json''' ) ) if os.path.exists(os.path.join(UpperCamelCase__, '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(UpperCamelCase__, '''pytorch_model.bin''' ) ): os.remove(os.path.join(UpperCamelCase__, '''pytorch_model.bin''' ) ) else: os.makedirs(UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : List[str]=False ) -> Tuple: A_ = 2 if unlogit: A_ = torch.pow(UpperCamelCase__, UpperCamelCase__ ) A_ = p * torch.log(UpperCamelCase__ ) A_ = 0 return -plogp.sum(dim=-1 ) def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Optional[int]: logger.info('''lv, h >\t''' + '''\t'''.join(F'''{x + 1}''' for x in range(len(UpperCamelCase__ ) ) ) ) for row in range(len(UpperCamelCase__ ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def _UpperCAmelCase ( _UpperCamelCase : Any, _UpperCamelCase : List[Any], _UpperCamelCase : Optional[int], _UpperCamelCase : int=True, _UpperCamelCase : Any=True, _UpperCamelCase : List[str]=None, _UpperCamelCase : int=False ) -> Dict: A_ = model.config.num_hidden_layers, model.config.num_attention_heads A_ = torch.zeros(UpperCamelCase__, UpperCamelCase__ ).to(args.device ) A_ = torch.zeros(UpperCamelCase__, UpperCamelCase__ ).to(args.device ) if head_mask is None: A_ = torch.ones(UpperCamelCase__, UpperCamelCase__ ).to(args.device ) head_mask.requires_grad_(requires_grad=UpperCamelCase__ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: A_ = None A_ = 0.0 A_ = 0.0 for step, inputs in enumerate(tqdm(UpperCamelCase__, desc='''Iteration''', disable=args.local_rank not in [-1, 0] ) ): A_ = tuple(t.to(args.device ) for t in inputs ) (A_ ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) A_ = model(UpperCamelCase__, labels=UpperCamelCase__, head_mask=UpperCamelCase__ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) A_ = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(UpperCamelCase__ ): A_ = entropy(attn.detach(), UpperCamelCase__ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(UpperCamelCase__ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: A_ = 2 A_ = torch.pow(torch.pow(UpperCamelCase__, UpperCamelCase__ ).sum(-1 ), 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: A_ = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(UpperCamelCase__ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(UpperCamelCase__ ) logger.info('''Head ranked by importance scores''' ) A_ = torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device ) A_ = torch.arange( head_importance.numel(), device=args.device ) A_ = head_ranks.view_as(UpperCamelCase__ ) print_ad_tensor(UpperCamelCase__ ) return attn_entropy, head_importance, total_loss def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : List[Any], _UpperCamelCase : List[Any] ) -> str: A_ = compute_heads_importance(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, compute_entropy=UpperCamelCase__ ) A_ = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''', UpperCamelCase__, original_score * args.masking_threshold ) A_ = torch.ones_like(UpperCamelCase__ ) A_ = max(1, int(new_head_mask.numel() * args.masking_amount ) ) A_ = original_score while current_score >= original_score * args.masking_threshold: A_ = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads A_ = float('''Inf''' ) A_ = head_importance.view(-1 ).sort()[1] if len(UpperCamelCase__ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads A_ = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''', str(current_heads_to_mask.tolist() ) ) A_ = new_head_mask.view(-1 ) A_ = 0.0 A_ = new_head_mask.view_as(UpperCamelCase__ ) A_ = new_head_mask.clone().detach() print_ad_tensor(UpperCamelCase__ ) # Compute metric and head importance again A_ = compute_heads_importance( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, compute_entropy=UpperCamelCase__, head_mask=UpperCamelCase__ ) A_ = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''', UpperCamelCase__, new_head_mask.sum(), new_head_mask.sum() / new_head_mask.numel() * 1_00, ) logger.info('''Final head mask''' ) print_ad_tensor(UpperCamelCase__ ) np.save(os.path.join(args.output_dir, '''head_mask.npy''' ), head_mask.detach().cpu().numpy() ) return head_mask def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : Optional[int], _UpperCamelCase : Tuple, _UpperCamelCase : Tuple ) -> Any: A_ = datetime.now() A_ = compute_heads_importance( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, compute_entropy=UpperCamelCase__, compute_importance=UpperCamelCase__, head_mask=UpperCamelCase__ ) A_ = 1 / loss A_ = datetime.now() - before_time A_ = sum(p.numel() for p in model.parameters() ) A_ = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(UpperCamelCase__ ) ) } for k, v in heads_to_prune.items(): if isinstance(UpperCamelCase__, UpperCamelCase__ ): A_ = [ v, ] assert sum(len(UpperCamelCase__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(UpperCamelCase__ ) A_ = sum(p.numel() for p in model.parameters() ) A_ = datetime.now() A_ = compute_heads_importance( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, compute_entropy=UpperCamelCase__, compute_importance=UpperCamelCase__, head_mask=UpperCamelCase__, actually_pruned=UpperCamelCase__, ) A_ = 1 / loss A_ = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''', UpperCamelCase__, UpperCamelCase__, pruned_num_params / original_num_params * 1_00, ) logger.info('''Pruning: score with masking: %f score with pruning: %f''', UpperCamelCase__, UpperCamelCase__ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''', original_time / new_time * 1_00 ) save_model(UpperCamelCase__, args.output_dir ) def _UpperCAmelCase ( ) -> Optional[Any]: A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''', default=UpperCamelCase__, type=UpperCamelCase__, required=UpperCamelCase__, help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''', ) parser.add_argument( '''--model_name_or_path''', default=UpperCamelCase__, type=UpperCamelCase__, required=UpperCamelCase__, help='''Path to pretrained model or model identifier from huggingface.co/models''', ) parser.add_argument( '''--output_dir''', default=UpperCamelCase__, type=UpperCamelCase__, required=UpperCamelCase__, help='''The output directory where the model predictions and checkpoints will be written.''', ) # Other parameters parser.add_argument( '''--config_name''', default='''''', type=UpperCamelCase__, help='''Pretrained config name or path if not the same as model_name_or_path''', ) parser.add_argument( '''--tokenizer_name''', default='''''', type=UpperCamelCase__, help='''Pretrained tokenizer name or path if not the same as model_name_or_path''', ) parser.add_argument( '''--cache_dir''', default=UpperCamelCase__, type=UpperCamelCase__, help='''Where do you want to store the pre-trained models downloaded from s3''', ) parser.add_argument( '''--data_subset''', type=UpperCamelCase__, default=-1, help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''', action='''store_true''', help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''', action='''store_true''', help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''', action='''store_true''', help='''Don\'t normalize all importance scores between 0 and 1''', ) parser.add_argument( '''--try_masking''', action='''store_true''', help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''', default=0.9, type=UpperCamelCase__, help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''', ) parser.add_argument( '''--masking_amount''', default=0.1, type=UpperCamelCase__, help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''', default='''acc''', type=UpperCamelCase__, help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''', default=1_28, type=UpperCamelCase__, help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ), ) parser.add_argument('''--batch_size''', default=1, type=UpperCamelCase__, help='''Batch size.''' ) parser.add_argument('''--seed''', type=UpperCamelCase__, default=42 ) parser.add_argument('''--local_rank''', type=UpperCamelCase__, default=-1, help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''', action='''store_true''', help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''', type=UpperCamelCase__, default='''''', help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''', type=UpperCamelCase__, default='''''', help='''Can be used for distant debugging.''' ) A_ = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=UpperCamelCase__ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: A_ = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) A_ = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) A_ = torch.device('''cuda''', args.local_rank ) A_ = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device, args.n_gpu, bool(args.local_rank != -1 ) ) ) A_ = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: A_ = nn.parallel.DistributedDataParallel( UpperCamelCase__, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=UpperCamelCase__ ) elif args.n_gpu > 1: A_ = nn.DataParallel(UpperCamelCase__ ) # Print/save training arguments os.makedirs(args.output_dir, exist_ok=UpperCamelCase__ ) torch.save(UpperCamelCase__, os.path.join(args.output_dir, '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''', UpperCamelCase__ ) # Prepare dataset A_ = np.concatenate( [ np.loadtxt(args.data_dir, dtype=np.intaa ), ] ) A_ = (torch.from_numpy(UpperCamelCase__ ),) A_ = TensorDataset(*UpperCamelCase__ ) A_ = RandomSampler(UpperCamelCase__ ) A_ = DataLoader(UpperCamelCase__, sampler=UpperCamelCase__, batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: A_ = mask_heads(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) prune_heads(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) if __name__ == "__main__": main()
351
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __snake_case : str = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Dict: A_ = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def __A ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __A ( self ) -> str: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id='''test-model-flax''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def __A ( self ) -> List[str]: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Tuple ) -> Dict: A_ = True A_ = flatten_dict(modela.params ) A_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: A_ = False return models_are_equal @require_flax class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> List[str]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> List[Any]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , max_shard_size='''10KB''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> Dict: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
18
0
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' __lowercase : Dict = ['vqvae'] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Optional[Any]: super().__init__() self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , mel=_SCREAMING_SNAKE_CASE , vqvae=_SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: return 50 if isinstance(self.scheduler , _SCREAMING_SNAKE_CASE ) else 1000 @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=True , ) -> List[Any]: A_ = steps or self.get_default_steps() self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) A_ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: A_ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: A_ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=_SCREAMING_SNAKE_CASE , device=self.device , ) A_ = noise A_ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = self.mel.audio_slice_to_image(_SCREAMING_SNAKE_CASE ) A_ = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) A_ = (input_image / 255) * 2 - 1 A_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: A_ = self.vqvae.encode(torch.unsqueeze(_SCREAMING_SNAKE_CASE , 0 ) ).latent_dist.sample( generator=_SCREAMING_SNAKE_CASE )[0] A_ = self.vqvae.config.scaling_factor * input_images if start_step > 0: A_ = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.scheduler.timesteps[start_step - 1] ) A_ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) A_ = int(mask_start_secs * pixels_per_second ) A_ = int(mask_end_secs * pixels_per_second ) A_ = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , _SCREAMING_SNAKE_CASE ): A_ = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )['''sample'''] else: A_ = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )['''sample'''] if isinstance(self.scheduler , _SCREAMING_SNAKE_CASE ): A_ = self.scheduler.step( model_output=_SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , sample=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , )['''prev_sample'''] else: A_ = self.scheduler.step( model_output=_SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , sample=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , )['''prev_sample'''] if mask is not None: if mask_start > 0: A_ = mask[:, step, :, :mask_start] if mask_end > 0: A_ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance A_ = 1 / self.vqvae.config.scaling_factor * images A_ = self.vqvae.decode(_SCREAMING_SNAKE_CASE )['''sample'''] A_ = (images / 2 + 0.5).clamp(0 , 1 ) A_ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() A_ = (images * 255).round().astype('''uint8''' ) A_ = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_SCREAMING_SNAKE_CASE , mode='''RGB''' ).convert('''L''' ) for _ in images) ) A_ = [self.mel.image_to_audio(_SCREAMING_SNAKE_CASE ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_SCREAMING_SNAKE_CASE )[:, np.newaxis, :] ) , **ImagePipelineOutput(_SCREAMING_SNAKE_CASE ) ) @torch.no_grad() def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 50 ) -> Any: assert isinstance(self.scheduler , _SCREAMING_SNAKE_CASE ) self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) A_ = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) A_ = (sample / 255) * 2 - 1 A_ = torch.Tensor(_SCREAMING_SNAKE_CASE ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): A_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps A_ = self.scheduler.alphas_cumprod[t] A_ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) A_ = 1 - alpha_prod_t A_ = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )['''sample'''] A_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output A_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) A_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __A ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: A_ = acos(torch.dot(torch.flatten(_SCREAMING_SNAKE_CASE ) , torch.flatten(_SCREAMING_SNAKE_CASE ) ) / torch.norm(_SCREAMING_SNAKE_CASE ) / torch.norm(_SCREAMING_SNAKE_CASE ) ) return sin((1 - alpha) * theta ) * xa / sin(_SCREAMING_SNAKE_CASE ) + sin(alpha * theta ) * xa / sin(_SCREAMING_SNAKE_CASE )
352
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Dict: A_ = 1 A_ = 2 while i * i <= n: A_ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _UpperCAmelCase ( ) -> Optional[int]: A_ = 1 A_ = 1 while True: i += 1 t_num += i if count_divisors(_UpperCamelCase ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
18
0
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging __snake_case : int = logging.get_logger(__name__) class __UpperCAmelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> int: warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , _SCREAMING_SNAKE_CASE , ) super().__init__(args=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
353
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=[1, 384, 24, 24] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = backbone_out_indices A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = num_labels A_ = backbone_featmap_shape A_ = scope A_ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = num_patches + 1 def __A ( self ) -> Optional[Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Optional[Any]: A_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = DPTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: A_ = self.num_labels A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: A_ = self.num_labels A_ = DPTForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __A ( self ) -> Optional[int]: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __lowercase : Optional[int] = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : Any = False __lowercase : Tuple = False __lowercase : List[Any] = False def __A ( self ) -> Tuple: A_ = DPTModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def __A ( self ) -> Union[str, Any]: pass def __A ( self ) -> Dict: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> Optional[int]: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ): continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = False A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Tuple: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: A_ = model_class(config=_SCREAMING_SNAKE_CASE ) # Skip the check for the backbone A_ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": A_ = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> int: pass @slow def __A ( self ) -> Dict: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: A_ = DPTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = '''add''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Optional[int]: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Any: A_ = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) A_ = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(_SCREAMING_SNAKE_CASE ) A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE ) A_ = outputs.predicted_depth # verify the predicted depth A_ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
18
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Tuple: A_ = 3_84 A_ = 7 if "tiny" in model_name: A_ = 96 A_ = (2, 2, 6, 2) A_ = (3, 6, 12, 24) elif "small" in model_name: A_ = 96 A_ = (2, 2, 18, 2) A_ = (3, 6, 12, 24) elif "base" in model_name: A_ = 1_28 A_ = (2, 2, 18, 2) A_ = (4, 8, 16, 32) A_ = 12 A_ = 5_12 elif "large" in model_name: A_ = 1_92 A_ = (2, 2, 18, 2) A_ = (6, 12, 24, 48) A_ = 12 A_ = 7_68 # set label information A_ = 1_50 A_ = '''huggingface/label-files''' A_ = '''ade20k-id2label.json''' A_ = json.load(open(hf_hub_download(_UpperCamelCase, _UpperCamelCase, repo_type='''dataset''' ), '''r''' ) ) A_ = {int(_UpperCamelCase ): v for k, v in idalabel.items()} A_ = {v: k for k, v in idalabel.items()} A_ = SwinConfig( embed_dim=_UpperCamelCase, depths=_UpperCamelCase, num_heads=_UpperCamelCase, window_size=_UpperCamelCase, out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''], ) A_ = UperNetConfig( backbone_config=_UpperCamelCase, auxiliary_in_channels=_UpperCamelCase, num_labels=_UpperCamelCase, idalabel=_UpperCamelCase, labelaid=_UpperCamelCase, ) return config def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Tuple: A_ = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.stages.{i}.downsample.reduction.weight''', F'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.weight''', F'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.bias''', F'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def _UpperCAmelCase ( _UpperCamelCase : List[str], _UpperCamelCase : List[str], _UpperCamelCase : Dict ) -> Any: A_ = dct.pop(_UpperCamelCase ) A_ = val def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : List[str] ) -> List[Any]: A_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A_ = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) A_ = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[:dim, :] A_ = in_proj_bias[: dim] A_ = in_proj_weight[ dim : dim * 2, : ] A_ = in_proj_bias[ dim : dim * 2 ] A_ = in_proj_weight[ -dim :, : ] A_ = in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( _UpperCamelCase : Optional[int] ) -> Optional[Any]: A_ ,A_ = x.shape A_ = x.reshape(_UpperCamelCase, 4, in_channel // 4 ) A_ = x[:, [0, 2, 1, 3], :].transpose(1, 2 ).reshape(_UpperCamelCase, _UpperCamelCase ) return x def _UpperCAmelCase ( _UpperCamelCase : int ) -> Dict: A_ ,A_ = x.shape A_ = x.reshape(_UpperCamelCase, in_channel // 4, 4 ) A_ = x[:, :, [0, 2, 1, 3]].transpose(1, 2 ).reshape(_UpperCamelCase, _UpperCamelCase ) return x def _UpperCAmelCase ( _UpperCamelCase : List[Any] ) -> Dict: A_ = x.shape[0] A_ = x.reshape(4, in_channel // 4 ) A_ = x[[0, 2, 1, 3], :].transpose(0, 1 ).reshape(_UpperCamelCase ) return x def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> List[str]: A_ = x.shape[0] A_ = x.reshape(in_channel // 4, 4 ) A_ = x[:, [0, 2, 1, 3]].transpose(0, 1 ).reshape(_UpperCamelCase ) return x def _UpperCAmelCase ( _UpperCamelCase : Any, _UpperCamelCase : int, _UpperCamelCase : Dict ) -> Union[str, Any]: A_ = { '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } A_ = model_name_to_url[model_name] A_ = torch.hub.load_state_dict_from_url(_UpperCamelCase, map_location='''cpu''', file_name=_UpperCamelCase )[ '''state_dict''' ] for name, param in state_dict.items(): print(_UpperCamelCase, param.shape ) A_ = get_upernet_config(_UpperCamelCase ) A_ = UperNetForSemanticSegmentation(_UpperCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A_ = state_dict.pop(_UpperCamelCase ) if "bn" in key: A_ = key.replace('''bn''', '''batch_norm''' ) A_ = val # rename keys A_ = create_rename_keys(_UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) read_in_q_k_v(_UpperCamelCase, config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: A_ = reverse_correct_unfold_reduction_order(_UpperCamelCase ) if "norm" in key: A_ = reverse_correct_unfold_norm_order(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) # verify on image A_ = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' A_ = Image.open(requests.get(_UpperCamelCase, stream=_UpperCamelCase ).raw ).convert('''RGB''' ) A_ = SegformerImageProcessor() A_ = processor(_UpperCamelCase, return_tensors='''pt''' ).pixel_values with torch.no_grad(): A_ = model(_UpperCamelCase ) A_ = outputs.logits print(logits.shape ) print('''First values of logits:''', logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": A_ = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ) elif model_name == "upernet-swin-small": A_ = torch.tensor( [[-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.0_9_0_8, -7.0_9_0_8, -6.8_5_3_4]] ) elif model_name == "upernet-swin-base": A_ = torch.tensor( [[-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.4_7_6_3, -6.4_7_6_3, -6.3_2_5_4]] ) elif model_name == "upernet-swin-large": A_ = torch.tensor( [[-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.4_0_4_4, -7.4_0_4_4, -7.2_5_8_6]] ) print('''Logits:''', outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], _UpperCamelCase, atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_UpperCamelCase ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_UpperCamelCase ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-swin-tiny', type=str, choices=[F"""upernet-swin-{size}""" for size in ['tiny', 'small', 'base', 'large']], help='Name of the Swin + UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __snake_case : int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
354
'''simple docstring''' import math def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : float ) -> float: if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
18
0
from __future__ import annotations def _UpperCAmelCase ( _UpperCamelCase : List[Any], _UpperCamelCase : int, _UpperCamelCase : int ) -> tuple[float, list[float]]: A_ = list(range(len(__UpperCAmelCase ) ) ) A_ = [v / w for v, w in zip(__UpperCAmelCase, __UpperCAmelCase )] index.sort(key=lambda _UpperCamelCase : ratio[i], reverse=__UpperCAmelCase ) A_ = 0 A_ = [0] * len(__UpperCAmelCase ) for i in index: if weight[i] <= capacity: A_ = 1 max_value += value[i] capacity -= weight[i] else: A_ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
355
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
18
0
'''simple docstring''' from typing import Any class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE ) -> int: A_ = data A_ = None class __UpperCAmelCase : '''simple docstring''' def __init__( self ) -> List[Any]: A_ = None def __A ( self ) -> int: A_ = self.head while temp is not None: print(temp.data , end=''' ''' ) A_ = temp.next print() def __A ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = Node(lowerCamelCase__ ) A_ = self.head A_ = new_node def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: if node_data_a == node_data_a: return else: A_ = self.head while node_a is not None and node_a.data != node_data_a: A_ = node_a.next A_ = self.head while node_a is not None and node_a.data != node_data_a: A_ = node_a.next if node_a is None or node_a is None: return A_ ,A_ = node_a.data, node_a.data if __name__ == "__main__": __snake_case : Optional[int] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
356
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : Any = logging.get_logger(__name__) def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> List[str]: A_ = torch.load(_UpperCamelCase, map_location='''cpu''' ) if "model" in sd.keys(): A_ = torch.load(_UpperCamelCase, map_location='''cpu''' )['''model'''] # pop unnecessary weights A_ = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(_UpperCamelCase ) A_ = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: A_ = sd.pop(_UpperCamelCase ) A_ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: A_ = sd[key] # We split QKV in separate Q,K,V A_ = key.replace('''.qkv_proj.''', '''.q_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.k_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.v_proj.''' ) A_ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 A_ ,A_ ,A_ = torch.split(_UpperCamelCase, depth // 3, dim=0 ) A_ = q A_ = k A_ = v del sd[key] return sd @torch.no_grad() def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : Optional[Any], _UpperCamelCase : List[str]=None ) -> Dict: A_ = load_checkpoint(_UpperCamelCase ) if config is not None: A_ = OPTConfig.from_pretrained(_UpperCamelCase ) else: A_ = OPTConfig() A_ = OPTModel(_UpperCamelCase ).half().eval() model.load_state_dict(_UpperCamelCase ) # Check results Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') __snake_case : Optional[Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
18
0
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : List[str] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __snake_case : Tuple = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } __snake_case : List[Any] = { '''facebook/blenderbot_small-90M''': 512, } class __UpperCAmelCase ( a_ ): '''simple docstring''' __lowercase : Optional[int] = VOCAB_FILES_NAMES __lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Dict = BlenderbotSmallTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<|endoftext|>" , _SCREAMING_SNAKE_CASE="<|endoftext|>" , _SCREAMING_SNAKE_CASE="<|endoftext|>" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> Tuple: super().__init__( ByteLevelBPETokenizer( vocab=lowercase_ , merges=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ , ) , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , **lowercase_ , ) A_ = add_prefix_space def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[Any]: A_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Optional[int]: A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
357
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __snake_case : Optional[Any] = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } __snake_case : Tuple = {'allegro/herbert-base-cased': 514} __snake_case : List[str] = {} class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Any = VOCAB_FILES_NAMES __lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Dict = PRETRAINED_INIT_CONFIGURATION __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = HerbertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE="</s>" , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.cls_token_id] A_ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: A_ = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
18
0
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def _UpperCAmelCase ( ) -> Optional[int]: A_ = [randint(-10_00, 10_00 ) for i in range(10 )] A_ = randint(-50_00, 50_00 ) return (arr, r) __snake_case : Tuple = make_dataset() def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : Union[str, Any] ) -> Dict: for triplet in permutations(_lowercase, 3 ): if sum(_lowercase ) == target: return tuple(sorted(_lowercase ) ) return (0, 0, 0) def _UpperCAmelCase ( _UpperCamelCase : Any, _UpperCamelCase : Optional[int] ) -> str: arr.sort() A_ = len(_lowercase ) for i in range(n - 1 ): A_ ,A_ = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def _UpperCAmelCase ( ) -> Union[str, Any]: A_ = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' A_ = ''' triplet_sum1(*dataset) ''' A_ = ''' triplet_sum2(*dataset) ''' A_ = repeat(setup=_lowercase, stmt=_lowercase, repeat=5, number=1_00_00 ) A_ = repeat(setup=_lowercase, stmt=_lowercase, repeat=5, number=1_00_00 ) return (min(_lowercase ), min(_lowercase )) if __name__ == "__main__": from doctest import testmod testmod() __snake_case : Dict = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
358
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any]=None ) -> List[Any]: if subparsers is not None: A_ = subparsers.add_parser('''env''' ) else: A_ = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''', default=_UpperCamelCase, help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=_UpperCamelCase ) return parser def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> Dict: A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = is_xpu_available() A_ = is_npu_available() A_ = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(_UpperCamelCase ): A_ = load_config_from_file(args.config_file ).to_dict() A_ = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(_UpperCamelCase ), '''PyTorch NPU available''': str(_UpperCamelCase ), '''System RAM''': F'''{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB''', } if pt_cuda_available: A_ = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) A_ = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_UpperCamelCase, _UpperCamelCase ) else F'''\t{accelerate_config}''' ) print(_UpperCamelCase ) A_ = accelerate_config return info def _UpperCAmelCase ( ) -> int: A_ = env_command_parser() A_ = parser.parse_args() env_command(_UpperCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
18
0
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def _UpperCAmelCase ( ) -> List[str]: raise RuntimeError('''CUDA out of memory.''' ) class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self ) -> str: super().__init__() A_ = nn.Linear(3 , 4 ) A_ = nn.BatchNormad(4 ) A_ = nn.Linear(4 , 5 ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: return self.lineara(self.batchnorm(self.lineara(_SCREAMING_SNAKE_CASE ) ) ) class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Any: A_ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_SCREAMING_SNAKE_CASE ): nonlocal batch_sizes batch_sizes.append(_SCREAMING_SNAKE_CASE ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_SCREAMING_SNAKE_CASE , [128, 64, 32, 16, 8] ) def __A ( self ) -> int: A_ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): nonlocal batch_sizes batch_sizes.append(_SCREAMING_SNAKE_CASE ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga A_ = mock_training_loop_function('''hello''' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def __A ( self ) -> str: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(_SCREAMING_SNAKE_CASE ): pass with self.assertRaises(_SCREAMING_SNAKE_CASE ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def __A ( self ) -> Tuple: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_SCREAMING_SNAKE_CASE ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_SCREAMING_SNAKE_CASE ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def __A ( self ) -> Any: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_SCREAMING_SNAKE_CASE ) as cm: mock_training_loop_function(128 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def __A ( self ) -> Dict: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_SCREAMING_SNAKE_CASE ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def __A ( self ) -> Tuple: A_ = torch.cuda.memory_allocated() A_ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , _SCREAMING_SNAKE_CASE ) A_ = release_memory(_SCREAMING_SNAKE_CASE ) self.assertEqual(torch.cuda.memory_allocated() , _SCREAMING_SNAKE_CASE )
359
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=0.6 , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = type_sequence_label_size A_ = initializer_range A_ = mask_ratio A_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __A ( self ) -> Union[str, Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: A_ = ViTMAEModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) A_ = (self.image_size // self.patch_size) ** 2 A_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images A_ = 1 A_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ = model(_SCREAMING_SNAKE_CASE ) A_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __A ( self ) -> int: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : int = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __lowercase : List[Any] = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} __lowercase : Union[str, Any] = False __lowercase : List[Any] = False __lowercase : List[str] = False __lowercase : List[str] = False def __A ( self ) -> Any: A_ = ViTMAEModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __A ( self ) -> int: pass def __A ( self ) -> int: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> int: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Union[str, Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: # make masks reproducible np.random.seed(2 ) A_ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) A_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument A_ = pt_noise super().check_pt_tf_models(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ = outputs[0].cpu().numpy() A_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ = model_class.from_pretrained(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Make sure we don't have nans A_ = after_outputs[0].cpu().numpy() A_ = 0 A_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> List[str]: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> Dict: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> Tuple: pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __A ( self ) -> str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> Union[str, Any]: pass @slow def __A ( self ) -> Dict: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = ViTMAEModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Dict: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __A ( self ) -> List[str]: return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __A ( self ) -> List[str]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) A_ = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(_SCREAMING_SNAKE_CASE ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) A_ = ViTMAEConfig() A_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) A_ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE , noise=torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ) ) # verify the logits A_ = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_SCREAMING_SNAKE_CASE ) , atol=1E-4 ) )
18
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Any = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __snake_case : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
360
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : int = logging.get_logger(__name__) __snake_case : str = { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[Any] = 'xlm-prophetnet' __lowercase : Optional[int] = ['past_key_values'] __lowercase : int = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = "gelu" , _SCREAMING_SNAKE_CASE = 3_0522 , _SCREAMING_SNAKE_CASE = 1024 , _SCREAMING_SNAKE_CASE = 4096 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 4096 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 0.02 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = 128 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 2 , **_SCREAMING_SNAKE_CASE , ) -> int: A_ = vocab_size A_ = hidden_size A_ = encoder_ffn_dim A_ = num_encoder_layers A_ = num_encoder_attention_heads A_ = decoder_ffn_dim A_ = num_decoder_layers A_ = num_decoder_attention_heads A_ = max_position_embeddings A_ = init_std # Normal(0, this parameter) A_ = activation_function # parameters for xlmprophetnet A_ = ngram A_ = num_buckets A_ = relative_max_distance A_ = disable_ngram_loss A_ = eps # 3 Types of Dropout A_ = attention_dropout A_ = activation_dropout A_ = dropout A_ = use_cache super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , add_cross_attention=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @property def __A ( self ) -> int: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def __A ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
18
0
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( _UpperCamelCase : List[str], _UpperCamelCase : Dict, _UpperCamelCase : Optional[int], ) -> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
361
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : list[float] ) -> float: if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) A_ = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_UpperCamelCase ) ) return round(_UpperCamelCase, ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __snake_case : int = logging.get_logger(__name__) __snake_case : Tuple = TypeVar('DatasetType', Dataset, IterableDataset) def _UpperCAmelCase ( _UpperCamelCase : List[DatasetType], _UpperCamelCase : Optional[List[float]] = None, _UpperCamelCase : Optional[int] = None, _UpperCamelCase : Optional[DatasetInfo] = None, _UpperCamelCase : Optional[NamedSplit] = None, _UpperCamelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted", ) -> DatasetType: from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(_lowercase ): if not isinstance(_lowercase, (Dataset, IterableDataset) ): if isinstance(_lowercase, (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' '''is an empty dataset dictionary.''' ) raise ValueError( F'''Dataset at position {i} has at least one split: {list(_lowercase )}\n''' F'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_lowercase ) )}\']''' ) raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_lowercase ).__name__}.''' ) if i == 0: A_ = ( (Dataset, IterableDataset) if isinstance(_lowercase, _lowercase ) else (IterableDataset, Dataset) ) elif not isinstance(_lowercase, _lowercase ): raise ValueError( F'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'''{stopping_strategy} is not supported. Please enter a valid stopping_strategy.''' ) if dataset_type is Dataset: return _interleave_map_style_datasets( _lowercase, _lowercase, _lowercase, info=_lowercase, split=_lowercase, stopping_strategy=_lowercase ) else: return _interleave_iterable_datasets( _lowercase, _lowercase, _lowercase, info=_lowercase, split=_lowercase, stopping_strategy=_lowercase ) def _UpperCAmelCase ( _UpperCamelCase : List[DatasetType], _UpperCamelCase : Optional[DatasetInfo] = None, _UpperCamelCase : Optional[NamedSplit] = None, _UpperCamelCase : int = 0, ) -> DatasetType: if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(_lowercase ): if not isinstance(_lowercase, (Dataset, IterableDataset) ): if isinstance(_lowercase, (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' '''is an empty dataset dictionary.''' ) raise ValueError( F'''Dataset at position {i} has at least one split: {list(_lowercase )}\n''' F'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(_lowercase ) )}\']''' ) raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_lowercase ).__name__}.''' ) if i == 0: A_ = ( (Dataset, IterableDataset) if isinstance(_lowercase, _lowercase ) else (IterableDataset, Dataset) ) elif not isinstance(_lowercase, _lowercase ): raise ValueError( F'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_lowercase, info=_lowercase, split=_lowercase, axis=_lowercase ) else: return _concatenate_iterable_datasets(_lowercase, info=_lowercase, split=_lowercase, axis=_lowercase )
362
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( _UpperCamelCase : int | str ) -> bool: A_ = str(_UpperCamelCase ) return n == n[::-1] def _UpperCAmelCase ( _UpperCamelCase : int = 1_00_00_00 ) -> Any: A_ = 0 for i in range(1, _UpperCamelCase ): if is_palindrome(_UpperCamelCase ) and is_palindrome(bin(_UpperCamelCase ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
18
0
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : int ) -> "list[int]": if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) A_ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 A_ = 1 if upper_limit > 0: A_ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2, upper_limit + 1 ): for j in range(_UpperCamelCase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: __snake_case : int = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(F"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
363
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Tuple, _UpperCamelCase : List[str] ) -> int: A_ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] A_ = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } A_ = F'''{src_lang}-{tgt_lang}''' A_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(_UpperCamelCase, exist_ok=_UpperCamelCase ) A_ = os.path.join(_UpperCamelCase, '''README.md''' ) print(F'''Generating {path}''' ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(_UpperCamelCase ) # make sure we are under the root of the project __snake_case : Any = Path(__file__).resolve().parent.parent.parent __snake_case : Tuple = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __snake_case , __snake_case , __snake_case : Any = model_name.split('-') __snake_case : int = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
18
0
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE = "cpu" , _SCREAMING_SNAKE_CASE = "openai/clip-vit-large-patch14" ) -> None: A_ = device A_ = CLIPTokenizerFast.from_pretrained(lowerCAmelCase_ ) A_ = [0.48_145_466, 0.4_578_275, 0.40_821_073] A_ = [0.26_862_954, 0.26_130_258, 0.27_577_711] A_ = torchvision.transforms.Normalize(self.image_mean , self.image_std ) A_ = torchvision.transforms.Resize(224 ) A_ = torchvision.transforms.CenterCrop(224 ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> Tuple: A_ = self.resize(lowerCAmelCase_ ) A_ = self.center_crop(lowerCAmelCase_ ) A_ = self.normalize(lowerCAmelCase_ ) return images def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> Tuple: A_ = self.tokenizer(text=lowerCAmelCase_ , **lowerCAmelCase_ ) A_ = self.preprocess_img(lowerCAmelCase_ ) A_ = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.01 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="image" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , ) -> None: super().__init__() A_ = None A_ = device if device else get_device() if vqgan: A_ = vqgan else: A_ = load_vqgan(self.device , conf_path=lowerCAmelCase_ , ckpt_path=lowerCAmelCase_ ) self.vqgan.eval() if clip: A_ = clip else: A_ = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) A_ = ProcessorGradientFlow(device=self.device ) A_ = iterations A_ = lr A_ = log A_ = make_grid A_ = return_val A_ = quantize A_ = self.vqgan.decoder.z_shape def __A ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=True ) -> Any: A_ = [] if output_path is None: A_ = '''./animation.gif''' if input_path is None: A_ = self.save_path A_ = sorted(glob(input_path + '''/*''' ) ) if not len(lowerCAmelCase_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(lowerCAmelCase_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) A_ = total_duration / len(lowerCAmelCase_ ) A_ = [frame_duration] * len(lowerCAmelCase_ ) if extend_frames: A_ = 1.5 A_ = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(lowerCAmelCase_ ) ) imageio.mimsave(lowerCAmelCase_ , lowerCAmelCase_ , duration=lowerCAmelCase_ ) print(F'''gif saved to {output_path}''' ) def __A ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> str: if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError A_ = preprocess(Image.open(lowerCAmelCase_ ) , target_image_size=256 ).to(self.device ) A_ = preprocess_vqgan(lowerCAmelCase_ ) A_ , *A_ = self.vqgan.encode(lowerCAmelCase_ ) return z def __A ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: A_ = self.latent.detach().requires_grad_() A_ = base_latent + transform_vector if self.quantize: A_ , *A_ = self.vqgan.quantize(lowerCAmelCase_ ) else: A_ = trans_latent return self.vqgan.decode(lowerCAmelCase_ ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: A_ = self.clip_preprocessor(text=lowerCAmelCase_ , images=lowerCAmelCase_ , return_tensors='''pt''' , padding=lowerCAmelCase_ ) A_ = self.clip(**lowerCAmelCase_ ) A_ = clip_outputs.logits_per_image if weights is not None: A_ = similarity_logits * weights return similarity_logits.sum() def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: A_ = self._get_clip_similarity(pos_prompts['''prompts'''] , lowerCAmelCase_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: A_ = self._get_clip_similarity(neg_prompts['''prompts'''] , lowerCAmelCase_ , weights=neg_prompts['''weights'''] ) else: A_ = torch.tensor([1] , device=self.device ) A_ = -torch.log(lowerCAmelCase_ ) + torch.log(lowerCAmelCase_ ) return loss def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: A_ = torch.randn_like(self.latent , requires_grad=lowerCAmelCase_ , device=self.device ) A_ = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() A_ = self._add_vector(lowerCAmelCase_ ) A_ = loop_post_process(lowerCAmelCase_ ) A_ = self._get_CLIP_loss(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) print('''CLIP loss''' , lowerCAmelCase_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=lowerCAmelCase_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: wandb.init(reinit=lowerCAmelCase_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: A_ = Image.open(lowerCAmelCase_ ) A_ = image.resize((256, 256) ) wandb.log('''Original Image''' , wandb.Image(lowerCAmelCase_ ) ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> int: if not prompts: return [] A_ = [] A_ = [] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): A_ = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(lowerCAmelCase_ , (tuple, list) ): A_ = prompt[0] A_ = float(prompt[1] ) elif ":" in prompt: A_ , A_ = prompt.split(''':''' ) A_ = float(lowerCAmelCase_ ) else: A_ = prompt A_ = 1.0 processed_prompts.append(lowerCAmelCase_ ) weights.append(lowerCAmelCase_ ) return { "prompts": processed_prompts, "weights": torch.tensor(lowerCAmelCase_ , device=self.device ), } def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , ) -> str: if image_path: A_ = self._get_latent(lowerCAmelCase_ ) else: A_ = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) assert pos_prompts, "You must provide at least one positive prompt." A_ = self.process_prompts(lowerCAmelCase_ ) A_ = self.process_prompts(lowerCAmelCase_ ) if save_final and save_path is None: A_ = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) else: A_ = save_path + '''_''' + get_timestamp() os.makedirs(lowerCAmelCase_ ) A_ = save_path A_ = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(lowerCAmelCase_ ) ) A_ = loop_post_process(lowerCAmelCase_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ): if show_intermediate: show_pil(lowerCAmelCase_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({'''Image''': wandb.Image(lowerCAmelCase_ )} ) if show_final: show_pil(lowerCAmelCase_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}_final.png''' ) )
364
'''simple docstring''' from collections import defaultdict def _UpperCAmelCase ( _UpperCamelCase : int ) -> int: A_ = 1 A_ = True for v in tree[start]: if v not in visited: ret += dfs(_UpperCamelCase ) if ret % 2 == 0: cuts.append(_UpperCamelCase ) return ret def _UpperCAmelCase ( ) -> Optional[Any]: dfs(1 ) if __name__ == "__main__": __snake_case , __snake_case : Union[str, Any] = 10, 9 __snake_case : int = defaultdict(list) __snake_case : dict[int, bool] = {} __snake_case : list[int] = [] __snake_case : Union[str, Any] = 0 __snake_case : int = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
0
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __snake_case : Optional[Any] = logging.get_logger(__name__) class __UpperCAmelCase ( _lowerCAmelCase ): __lowercase : str = ['pixel_values'] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE_ ) A_ = size if size is not None else {"""shortest_edge""": 256} A_ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) A_ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} A_ = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) A_ = do_resize A_ = size A_ = resample A_ = do_center_crop A_ = crop_size A_ = do_rescale A_ = rescale_factor A_ = do_normalize A_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: A_ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) A_ = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: A_ = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE ) -> np.ndarray: return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ) -> Any: A_ = do_resize if do_resize is not None else self.do_resize A_ = size if size is not None else self.size A_ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) A_ = resample if resample is not None else self.resample A_ = do_center_crop if do_center_crop is not None else self.do_center_crop A_ = crop_size if crop_size is not None else self.crop_size A_ = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) A_ = do_rescale if do_rescale is not None else self.do_rescale A_ = rescale_factor if rescale_factor is not None else self.rescale_factor A_ = do_normalize if do_normalize is not None else self.do_normalize A_ = image_mean if image_mean is not None else self.image_mean A_ = image_std if image_std is not None else self.image_std A_ = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. A_ = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: A_ = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: A_ = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: A_ = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: A_ = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] A_ = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] A_ = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple: A_ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(SCREAMING_SNAKE_CASE_ ): A_ = target_sizes.numpy() A_ = [] for idx in range(len(SCREAMING_SNAKE_CASE_ ) ): A_ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=SCREAMING_SNAKE_CASE_ ) A_ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(SCREAMING_SNAKE_CASE_ ) else: A_ = logits.argmax(dim=1 ) A_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
365
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[int] = 'mgp-str' def __init__( self , _SCREAMING_SNAKE_CASE=[32, 128] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=27 , _SCREAMING_SNAKE_CASE=38 , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=3_0522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: super().__init__(**_SCREAMING_SNAKE_CASE ) A_ = image_size A_ = patch_size A_ = num_channels A_ = max_token_length A_ = num_character_labels A_ = num_bpe_labels A_ = num_wordpiece_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = mlp_ratio A_ = distilled A_ = layer_norm_eps A_ = drop_rate A_ = qkv_bias A_ = attn_drop_rate A_ = drop_path_rate A_ = output_aa_attentions A_ = initializer_range
18
0
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __snake_case : Any = 16 __snake_case : str = 32 def _UpperCAmelCase ( _UpperCamelCase : Optional[Any], _UpperCamelCase : List[str] = 16 ) -> str: A_ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A_ = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(_UpperCamelCase : str ): # max_length=None => use the model max length (it's actually the default) A_ = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A_ = datasets.map( SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A_ = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(_UpperCamelCase : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. A_ = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A_ = 16 elif accelerator.mixed_precision != "no": A_ = 8 else: A_ = None return tokenizer.pad( SCREAMING_SNAKE_CASE__, padding='''longest''', max_length=SCREAMING_SNAKE_CASE__, pad_to_multiple_of=SCREAMING_SNAKE_CASE__, return_tensors='''pt''', ) # Instantiate dataloaders. A_ = DataLoader( tokenized_datasets['''train'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__, drop_last=SCREAMING_SNAKE_CASE__ ) A_ = DataLoader( tokenized_datasets['''validation'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__, drop_last=(accelerator.mixed_precision == '''fp8'''), ) return train_dataloader, eval_dataloader def _UpperCAmelCase ( _UpperCamelCase : Any, _UpperCamelCase : str ) -> Any: A_ = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A_ = config['''lr'''] A_ = int(config['''num_epochs'''] ) A_ = int(config['''seed'''] ) A_ = int(config['''batch_size'''] ) A_ = evaluate.load('''glue''', '''mrpc''' ) # If the batch size is too big we use gradient accumulation A_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A_ = batch_size // MAX_GPU_BATCH_SIZE A_ = MAX_GPU_BATCH_SIZE set_seed(SCREAMING_SNAKE_CASE__ ) A_ = get_dataloaders(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A_ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=SCREAMING_SNAKE_CASE__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A_ = model.to(accelerator.device ) # Instantiate optimizer A_ = AdamW(params=model.parameters(), lr=SCREAMING_SNAKE_CASE__ ) # Instantiate scheduler A_ = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__, num_warmup_steps=1_00, num_training_steps=(len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A_ = accelerator.prepare( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE__ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A_ = model(**SCREAMING_SNAKE_CASE__ ) A_ = outputs.loss A_ = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A_ = model(**SCREAMING_SNAKE_CASE__ ) A_ = outputs.logits.argmax(dim=-1 ) A_ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE__, references=SCREAMING_SNAKE_CASE__, ) A_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''', SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( ) -> Any: A_ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) A_ = parser.parse_args() A_ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
366
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __UpperCAmelCase : '''simple docstring''' pass
18
0
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets __snake_case : List[Any] = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" __snake_case : Optional[int] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" __snake_case : List[Any] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _UpperCAmelCase ( _UpperCamelCase : List[str], _UpperCamelCase : Union[str, Any], _UpperCamelCase : List[Any], _UpperCamelCase : Dict, _UpperCamelCase : str = None, _UpperCamelCase : List[str] = False, ) -> int: if label_map is not None: for old_id, new_id in label_map.items(): A_ = new_id # turn into Numpy arrays A_ = np.array(lowerCamelCase_ ) A_ = np.array(lowerCamelCase_ ) if reduce_labels: A_ = 2_55 A_ = label - 1 A_ = 2_55 A_ = label != ignore_index A_ = np.not_equal(lowerCamelCase_, lowerCamelCase_ ) A_ = pred_label[mask] A_ = np.array(lowerCamelCase_ )[mask] A_ = pred_label[pred_label == label] A_ = np.histogram(lowerCamelCase_, bins=lowerCamelCase_, range=(0, num_labels - 1) )[0] A_ = np.histogram(lowerCamelCase_, bins=lowerCamelCase_, range=(0, num_labels - 1) )[0] A_ = np.histogram(lowerCamelCase_, bins=lowerCamelCase_, range=(0, num_labels - 1) )[0] A_ = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : List[str], _UpperCamelCase : Tuple, _UpperCamelCase : Optional[int], _UpperCamelCase : str = None, _UpperCamelCase : List[str] = False, ) -> int: A_ = np.zeros((num_labels,), dtype=np.floataa ) A_ = np.zeros((num_labels,), dtype=np.floataa ) A_ = np.zeros((num_labels,), dtype=np.floataa ) A_ = np.zeros((num_labels,), dtype=np.floataa ) for result, gt_seg_map in zip(lowerCamelCase_, lowerCamelCase_ ): A_ = intersect_and_union( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCAmelCase ( _UpperCamelCase : Dict, _UpperCamelCase : List[str], _UpperCamelCase : int, _UpperCamelCase : Optional[int], _UpperCamelCase : Union[str, Any] = None, _UpperCamelCase : int = None, _UpperCamelCase : List[str] = False, ) -> Optional[Any]: A_ = total_intersect_and_union( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # compute metrics A_ = {} A_ = total_area_intersect.sum() / total_area_label.sum() A_ = total_area_intersect / total_area_union A_ = total_area_intersect / total_area_label A_ = np.nanmean(lowerCamelCase_ ) A_ = np.nanmean(lowerCamelCase_ ) A_ = all_acc A_ = iou A_ = acc if nan_to_num is not None: A_ = {metric: np.nan_to_num(lowerCamelCase_, nan=lowerCamelCase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __A ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , ) -> List[Any]: A_ = mean_iou( results=_SCREAMING_SNAKE_CASE , gt_seg_maps=_SCREAMING_SNAKE_CASE , num_labels=_SCREAMING_SNAKE_CASE , ignore_index=_SCREAMING_SNAKE_CASE , nan_to_num=_SCREAMING_SNAKE_CASE , label_map=_SCREAMING_SNAKE_CASE , reduce_labels=_SCREAMING_SNAKE_CASE , ) return iou_result
367
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _UpperCAmelCase ( ) -> Dict: A_ = ArgumentParser('''Accelerate CLI tool''', usage='''accelerate <command> [<args>]''', allow_abbrev=_UpperCamelCase ) A_ = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=_UpperCamelCase ) env_command_parser(subparsers=_UpperCamelCase ) launch_command_parser(subparsers=_UpperCamelCase ) tpu_command_parser(subparsers=_UpperCamelCase ) test_command_parser(subparsers=_UpperCamelCase ) # Let's go A_ = parser.parse_args() if not hasattr(_UpperCamelCase, '''func''' ): parser.print_help() exit(1 ) # Run args.func(_UpperCamelCase ) if __name__ == "__main__": main()
18
0
'''simple docstring''' from __future__ import annotations import numpy as np def _UpperCAmelCase ( _UpperCamelCase : list[float] ) -> List[Any]: return np.maximum(0, __UpperCamelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
368
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __snake_case : Any = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' __snake_case : Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' __snake_case : Optional[int] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __A ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: if rouge_types is None: A_ = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] A_ = rouge_scorer.RougeScorer(rouge_types=_SCREAMING_SNAKE_CASE , use_stemmer=_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = scoring.BootstrapAggregator() else: A_ = [] for ref, pred in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = scorer.score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if use_aggregator: aggregator.add_scores(_SCREAMING_SNAKE_CASE ) else: scores.append(_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = aggregator.aggregate() else: A_ = {} for key in scores[0]: A_ = [score[key] for score in scores] return result
18
0
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __snake_case : Tuple = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } __snake_case : int = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Optional[Any]=False ) -> Tuple: A_ ,A_ = create_model( '''HTSAT-tiny''', '''roberta''', snake_case_, precision='''fp32''', device='''cuda:0''' if torch.cuda.is_available() else '''cpu''', enable_fusion=snake_case_, fusion_type='''aff_2d''' if enable_fusion else None, ) return model, model_cfg def _UpperCAmelCase ( _UpperCamelCase : Tuple ) -> Optional[int]: A_ = {} A_ = R'''.*sequential.(\d+).*''' A_ = R'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: A_ = key.replace(snake_case_, snake_case_ ) if re.match(snake_case_, snake_case_ ): # replace sequential layers with list A_ = re.match(snake_case_, snake_case_ ).group(1 ) A_ = key.replace(F'''sequential.{sequential_layer}.''', F'''layers.{int(snake_case_ )//3}.linear.''' ) elif re.match(snake_case_, snake_case_ ): A_ = int(re.match(snake_case_, snake_case_ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... A_ = 1 if projecton_layer == 0 else 2 A_ = key.replace(F'''_projection.{projecton_layer}.''', F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value A_ = value A_ = mixed_qkv.size(0 ) // 3 A_ = mixed_qkv[:qkv_dim] A_ = mixed_qkv[qkv_dim : qkv_dim * 2] A_ = mixed_qkv[qkv_dim * 2 :] A_ = query_layer A_ = key_layer A_ = value_layer else: A_ = value return model_state_dict def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Optional[int], _UpperCamelCase : Union[str, Any], _UpperCamelCase : Optional[Any]=False ) -> Any: A_ ,A_ = init_clap(snake_case_, enable_fusion=snake_case_ ) clap_model.eval() A_ = clap_model.state_dict() A_ = rename_state_dict(snake_case_ ) A_ = ClapConfig() A_ = enable_fusion A_ = ClapModel(snake_case_ ) # ignore the spectrogram embedding layer model.load_state_dict(snake_case_, strict=snake_case_ ) model.save_pretrained(snake_case_ ) transformers_config.save_pretrained(snake_case_ ) if __name__ == "__main__": __snake_case : List[str] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') __snake_case : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
369
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: super().__init__() A_ = module A_ = nn.Sequential( nn.Linear(module.in_features , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) , nn.Linear(_SCREAMING_SNAKE_CASE , module.out_features , bias=_SCREAMING_SNAKE_CASE ) , ) A_ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_SCREAMING_SNAKE_CASE ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __A ( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: return self.module(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) + self.adapter(_SCREAMING_SNAKE_CASE ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowercase : Dict = 'bigscience/bloom-1b7' # Constant values __lowercase : str = 2.109659552692574 __lowercase : int = 'Hello my name is' __lowercase : Optional[Any] = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __lowercase : Optional[Any] = 10 def __A ( self ) -> List[str]: # Models and tokenizer A_ = AutoTokenizer.from_pretrained(self.model_name ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[Any]: super().setUp() # Models and tokenizer A_ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> List[str]: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: A_ = self.model_abit.config self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''quantization_config''' ) ) A_ = config.to_dict() A_ = config.to_diff_dict() A_ = config.to_json_string() def __A ( self ) -> Union[str, Any]: from bitsandbytes.nn import Paramsabit A_ = self.model_fpaa.get_memory_footprint() A_ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A_ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __A ( self ) -> Union[str, Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __A ( self ) -> Optional[int]: A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Optional[int]: A_ = BitsAndBytesConfig() A_ = True A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Tuple: with self.assertRaises(_SCREAMING_SNAKE_CASE ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Tuple: A_ = BitsAndBytesConfig() with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def __A ( self ) -> Dict: with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_fpaa.to(torch.floataa ) A_ = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A_ = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error A_ = self.model_fpaa.half() # Check this does not throw an error A_ = self.model_fpaa.float() def __A ( self ) -> Optional[int]: A_ = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Optional[Any]: A_ = '''t5-small''' A_ = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense A_ = AutoTokenizer.from_pretrained(cls.model_name ) A_ = '''Translate in German: Hello, my dog is cute''' def __A ( self ) -> Any: gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: from transformers import TaForConditionalGeneration A_ = TaForConditionalGeneration._keep_in_fpaa_modules A_ = None # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) A_ = modules def __A ( self ) -> Dict: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> int: super().setUp() # model_name A_ = '''bigscience/bloom-560m''' A_ = '''t5-small''' # Different types of model A_ = AutoModel.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Sequence classification model A_ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # CausalLM model A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Seq2seq model A_ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> Union[str, Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __A ( self ) -> List[str]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> Tuple: super().setUp() def __A ( self ) -> List[Any]: del self.pipe gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[Any]: A_ = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A_ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[str]: super().setUp() def __A ( self ) -> Optional[int]: A_ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch A_ = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> str: A_ = '''facebook/opt-350m''' super().setUp() def __A ( self ) -> Optional[int]: if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A_ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A_ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_SCREAMING_SNAKE_CASE ) ): A_ = LoRALayer(module.q_proj , rank=16 ) A_ = LoRALayer(module.k_proj , rank=16 ) A_ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A_ = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A_ = model.forward(**_SCREAMING_SNAKE_CASE ) out.logits.norm().backward() for module in model.modules(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_SCREAMING_SNAKE_CASE , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : int = 'gpt2-xl' __lowercase : List[Any] = 3.3191854854152187
18
0
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _UpperCAmelCase ( _UpperCamelCase : Union[dict, list, tuple, torch.Tensor] ) -> Dict: A_ = [] if isinstance(a__, a__ ): for v in tree.values(): shapes.extend(_fetch_dims(a__ ) ) elif isinstance(a__, (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(a__ ) ) elif isinstance(a__, torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : Tuple[int, ...] ) -> Dict: A_ = [] for d in reversed(a__ ): idx.append(flat_idx % d ) A_ = flat_idx // d return tuple(reversed(a__ ) ) @torch.jit.ignore def _UpperCAmelCase ( _UpperCamelCase : Sequence[int], _UpperCamelCase : Sequence[int], _UpperCamelCase : Sequence[int], _UpperCamelCase : Optional[Sequence[bool]] = None, _UpperCamelCase : Optional[Sequence[bool]] = None, ) -> Any: def reduce_edge_list(_UpperCamelCase : List[bool] ) -> None: A_ = True for i in range(len(a__ ) ): A_ = -1 * (i + 1) l[reversed_idx] &= tally A_ = l[reversed_idx] if start_edges is None: A_ = [s == 0 for s in start] reduce_edge_list(a__ ) if end_edges is None: A_ = [e == (d - 1) for e, d in zip(a__, a__ )] reduce_edge_list(a__ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(a__ ) == 0: return [()] elif len(a__ ) == 1: return [(slice(start[0], end[0] + 1 ),)] A_ = [] A_ = [] # Dimensions common to start and end can be selected directly for s, e in zip(a__, a__ ): if s == e: path_list.append(slice(a__, s + 1 ) ) else: break A_ = tuple(a__ ) A_ = len(a__ ) # start == end, and we're done if divergence_idx == len(a__ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None A_ = start[divergence_idx] return tuple( path + (slice(a__, sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :], [d - 1 for d in dims[divergence_idx + 1 :]], dims[divergence_idx + 1 :], start_edges=start_edges[divergence_idx + 1 :], end_edges=[True for _ in end_edges[divergence_idx + 1 :]], ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None A_ = end[divergence_idx] return tuple( path + (slice(a__, edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]], end[divergence_idx + 1 :], dims[divergence_idx + 1 :], start_edges=[True for _ in start_edges[divergence_idx + 1 :]], end_edges=end_edges[divergence_idx + 1 :], ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx], end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx], end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1, end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) A_ = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1, end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def _UpperCAmelCase ( _UpperCamelCase : torch.Tensor, _UpperCamelCase : int, _UpperCamelCase : int, _UpperCamelCase : int ) -> Optional[int]: A_ = t.shape[:no_batch_dims] A_ = list(_flat_idx_to_idx(a__, a__ ) ) # _get_minimal_slice_set is inclusive A_ = list(_flat_idx_to_idx(flat_end - 1, a__ ) ) # Get an ordered list of slices to perform A_ = _get_minimal_slice_set( a__, a__, a__, ) A_ = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def _UpperCAmelCase ( _UpperCamelCase : Callable, _UpperCamelCase : Dict[str, Any], _UpperCamelCase : int, _UpperCamelCase : int, _UpperCamelCase : bool = False, _UpperCamelCase : Any = None, _UpperCamelCase : bool = False, ) -> Union[str, Any]: if not (len(a__ ) > 0): raise ValueError('''Must provide at least one input''' ) A_ = [shape[:no_batch_dims] for shape in _fetch_dims(a__ )] A_ = tuple([max(a__ ) for s in zip(*a__ )] ) def _prep_inputs(_UpperCamelCase : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: A_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) A_ = t.reshape(-1, *t.shape[no_batch_dims:] ) else: A_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t A_ = tensor_tree_map(_prep_inputs, a__ ) A_ = None if _out is not None: A_ = tensor_tree_map(lambda _UpperCamelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ), _out ) A_ = 1 for d in orig_batch_dims: flat_batch_dim *= d A_ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(_UpperCamelCase : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t A_ = 0 A_ = prepped_outputs for _ in range(a__ ): # Chunk the input if not low_mem: A_ = _select_chunk else: A_ = partial( _chunk_slice, flat_start=a__, flat_end=min(a__, i + chunk_size ), no_batch_dims=len(a__ ), ) A_ = tensor_tree_map(a__, a__ ) # Run the layer on the chunk A_ = layer(**a__ ) # Allocate space for the output if out is None: A_ = tensor_tree_map(lambda _UpperCamelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ), a__ ) # Put the chunk in its pre-allocated space if isinstance(a__, a__ ): def assign(_UpperCamelCase : dict, _UpperCamelCase : dict ) -> None: for k, v in da.items(): if isinstance(a__, a__ ): assign(a__, da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: A_ = da[k] assign(a__, a__ ) elif isinstance(a__, a__ ): for xa, xa in zip(a__, a__ ): if _add_into_out: xa[i : i + chunk_size] += xa else: A_ = xa elif isinstance(a__, torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: A_ = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size A_ = tensor_tree_map(lambda _UpperCamelCase : t.view(orig_batch_dims + t.shape[1:] ), a__ ) return out class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE = 512 , ) -> str: A_ = max_chunk_size A_ = None A_ = None def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size A_ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] A_ = [c for c in candidates if c > min_chunk_size] A_ = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(_SCREAMING_SNAKE_CASE ) -> bool: try: with torch.no_grad(): fn(*__lowerCAmelCase , chunk_size=__lowerCAmelCase ) return True except RuntimeError: return False A_ = 0 A_ = len(__lowerCAmelCase ) - 1 while i > min_viable_chunk_size_index: A_ = test_chunk_size(candidates[i] ) if not viable: A_ = (min_viable_chunk_size_index + i) // 2 else: A_ = i A_ = (i + len(__lowerCAmelCase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: A_ = True for aa, aa in zip(__lowerCAmelCase , __lowerCAmelCase ): assert type(__lowerCAmelCase ) == type(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , (list, tuple) ): consistent &= self._compare_arg_caches(__lowerCAmelCase , __lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): A_ = [v for _, v in sorted(aa.items() , key=lambda _SCREAMING_SNAKE_CASE : x[0] )] A_ = [v for _, v in sorted(aa.items() , key=lambda _SCREAMING_SNAKE_CASE : x[0] )] consistent &= self._compare_arg_caches(__lowerCAmelCase , __lowerCAmelCase ) else: consistent &= aa == aa return consistent def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: A_ = True A_ = tree_map(lambda _SCREAMING_SNAKE_CASE : a.shape if isinstance(__lowerCAmelCase , torch.Tensor ) else a , __lowerCAmelCase , __lowerCAmelCase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(__lowerCAmelCase ) A_ = self._compare_arg_caches(self.cached_arg_data , __lowerCAmelCase ) else: # Otherwise, we can reuse the precomputed value A_ = False if not consistent: A_ = self._determine_favorable_chunk_size( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) A_ = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
370
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _UpperCAmelCase ( _UpperCamelCase : Features ) -> Optional[int]: A_ = np.inf def set_batch_size(_UpperCamelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ) and feature.dtype == "binary": A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_UpperCamelCase, _UpperCamelCase ) return None if batch_size is np.inf else batch_size class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ = path_or_paths if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} A_ = _PACKAGED_DATASETS_MODULES['''parquet'''][1] A_ = Parquet( cache_dir=_SCREAMING_SNAKE_CASE , data_files=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , hash=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self ) -> str: # Build iterable dataset if self.streaming: A_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) A_ = self.builder.as_dataset( split=self.split , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Dict: A_ = dataset A_ = path_or_buf A_ = batch_size or get_writer_batch_size(dataset.features ) A_ = parquet_writer_kwargs def __A ( self ) -> int: A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: A_ = self._write(file_obj=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) else: A_ = self._write(file_obj=self.path_or_buf , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) return written def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: A_ = 0 A_ = parquet_writer_kwargs.pop('''path_or_buf''' , _SCREAMING_SNAKE_CASE ) A_ = self.dataset.features.arrow_schema A_ = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _SCREAMING_SNAKE_CASE ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): A_ = query_table( table=self.dataset._data , key=slice(_SCREAMING_SNAKE_CASE , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_SCREAMING_SNAKE_CASE ) written += batch.nbytes writer.close() return written
18
0
'''simple docstring''' from math import factorial def _UpperCAmelCase ( _UpperCamelCase : Optional[Any], _UpperCamelCase : Dict ) -> Union[str, Any]: # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(__a ) // (factorial(__a ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', F"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( 'If a class of 40 students must be arranged into groups of', F"""4 for group projects, there are {combinations(40, 4)} ways""", 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', F"""are {combinations(10, 3)} ways that first, second and""", 'third place can be awarded.', )
371
'''simple docstring''' from statistics import mean, stdev def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = min(_UpperCamelCase ) A_ = max(_UpperCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min), _UpperCamelCase ) for x in data] def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = mean(_UpperCamelCase ) A_ = stdev(_UpperCamelCase ) # standardize data return [round((x - mu) / (sigma), _UpperCamelCase ) for x in data]
18
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : List[str] = logging.get_logger(__name__) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Tuple=False ) -> List[str]: A_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A_ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _UpperCAmelCase ( _UpperCamelCase : Any, _UpperCamelCase : Any, _UpperCamelCase : Tuple=False ) -> List[str]: for i in range(config.num_hidden_layers ): if base_model: A_ = """""" else: A_ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) A_ = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[ : config.hidden_size, : ] A_ = in_proj_bias[: config.hidden_size] A_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ = in_proj_weight[ -config.hidden_size :, : ] A_ = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( _UpperCamelCase : str ) -> List[Any]: A_ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(A__, A__ ) def _UpperCAmelCase ( _UpperCamelCase : List[Any], _UpperCamelCase : Optional[Any], _UpperCamelCase : Dict ) -> str: A_ = dct.pop(A__ ) A_ = val def _UpperCAmelCase ( ) -> Tuple: A_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ = Image.open(requests.get(A__, stream=A__ ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : List[Any] ) -> List[str]: A_ = ViTConfig() A_ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": A_ = True A_ = int(vit_name[-12:-10] ) A_ = int(vit_name[-9:-6] ) else: A_ = 10_00 A_ = """huggingface/label-files""" A_ = """imagenet-1k-id2label.json""" A_ = json.load(open(hf_hub_download(A__, A__, repo_type='''dataset''' ), '''r''' ) ) A_ = {int(A__ ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} A_ = int(vit_name[-6:-4] ) A_ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): A_ = 1_92 A_ = 7_68 A_ = 12 A_ = 3 elif vit_name[9:].startswith('''small''' ): A_ = 3_84 A_ = 15_36 A_ = 12 A_ = 6 else: pass else: if vit_name[4:].startswith('''small''' ): A_ = 7_68 A_ = 23_04 A_ = 8 A_ = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): A_ = 10_24 A_ = 40_96 A_ = 24 A_ = 16 elif vit_name[4:].startswith('''huge''' ): A_ = 12_80 A_ = 51_20 A_ = 32 A_ = 16 # load original model from timm A_ = timm.create_model(A__, pretrained=A__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys A_ = timm_model.state_dict() if base_model: remove_classification_head_(A__ ) A_ = create_rename_keys(A__, A__ ) for src, dest in rename_keys: rename_key(A__, A__, A__ ) read_in_q_k_v(A__, A__, A__ ) # load HuggingFace model if vit_name[-5:] == "in21k": A_ = ViTModel(A__ ).eval() else: A_ = ViTForImageClassification(A__ ).eval() model.load_state_dict(A__ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: A_ = DeiTImageProcessor(size=config.image_size ) else: A_ = ViTImageProcessor(size=config.image_size ) A_ = image_processor(images=prepare_img(), return_tensors='''pt''' ) A_ = encoding["""pixel_values"""] A_ = model(A__ ) if base_model: A_ = timm_model.forward_features(A__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(A__, outputs.pooler_output, atol=1E-3 ) else: A_ = timm_model(A__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A__, outputs.logits, atol=1E-3 ) Path(A__ ).mkdir(exist_ok=A__ ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __snake_case : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __snake_case : Union[str, Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
350
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') __snake_case : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __snake_case : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: with open(_UpperCamelCase, '''rb''' ) as f: A_ = Image.open(_UpperCamelCase ) return im.convert('''RGB''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the training data.'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the validation data.'} ) __lowercase : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __A ( self ) -> int: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_UpperCamelCase )} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) __lowercase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowercase : str = field(default=_UpperCamelCase , metadata={'help': 'Name or path of preprocessor config.'} ) __lowercase : bool = field( default=_UpperCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __lowercase : bool = field( default=_UpperCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> Dict: A_ = torch.stack([example['''pixel_values'''] for example in examples] ) A_ = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _UpperCAmelCase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A_ ,A_ ,A_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A_ ,A_ ,A_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''', _UpperCamelCase, _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A_ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. A_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: A_ = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, task='''image-classification''', use_auth_token=True if model_args.use_auth_token else None, ) else: A_ = {} if data_args.train_dir is not None: A_ = os.path.join(data_args.train_dir, '''**''' ) if data_args.validation_dir is not None: A_ = os.path.join(data_args.validation_dir, '''**''' ) A_ = load_dataset( '''imagefolder''', data_files=_UpperCamelCase, cache_dir=model_args.cache_dir, task='''image-classification''', ) # If we don't have a validation split, split off a percentage of train as validation. A_ = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, _UpperCamelCase ) and data_args.train_val_split > 0.0: A_ = dataset['''train'''].train_test_split(data_args.train_val_split ) A_ = split['''train'''] A_ = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A_ = dataset['''train'''].features['''labels'''].names A_ ,A_ = {}, {} for i, label in enumerate(_UpperCamelCase ): A_ = str(_UpperCamelCase ) A_ = label # Load the accuracy metric from the datasets package A_ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Optional[Any] ): return metric.compute(predictions=np.argmax(p.predictions, axis=1 ), references=p.label_ids ) A_ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(_UpperCamelCase ), labelaid=_UpperCamelCase, idalabel=_UpperCamelCase, finetuning_task='''image-classification''', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) A_ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=_UpperCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) A_ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: A_ = image_processor.size['''shortest_edge'''] else: A_ = (image_processor.size['''height'''], image_processor.size['''width''']) A_ = Normalize(mean=image_processor.image_mean, std=image_processor.image_std ) A_ = Compose( [ RandomResizedCrop(_UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) A_ = Compose( [ Resize(_UpperCamelCase ), CenterCrop(_UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(_UpperCamelCase : Dict ): A_ = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(_UpperCamelCase : Any ): A_ = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: A_ = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: A_ = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_UpperCamelCase ) # Initalize our trainer A_ = Trainer( model=_UpperCamelCase, args=_UpperCamelCase, train_dataset=dataset['''train'''] if training_args.do_train else None, eval_dataset=dataset['''validation'''] if training_args.do_eval else None, compute_metrics=_UpperCamelCase, tokenizer=_UpperCamelCase, data_collator=_UpperCamelCase, ) # Training if training_args.do_train: A_ = None if training_args.resume_from_checkpoint is not None: A_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A_ = last_checkpoint A_ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics ) trainer.save_metrics('''train''', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A_ = trainer.evaluate() trainer.log_metrics('''eval''', _UpperCamelCase ) trainer.save_metrics('''eval''', _UpperCamelCase ) # Write model card and (optionally) push to hub A_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
18
0
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : int, _UpperCamelCase : List[str], _UpperCamelCase : Any ) -> Tuple: if isinstance(lowerCAmelCase__, lowerCAmelCase__ ): A_ = np.full((len(lowerCAmelCase__ ), sequence_length, 2), lowerCAmelCase__ ) else: A_ = np.full((len(lowerCAmelCase__ ), sequence_length), lowerCAmelCase__ ) for i, tensor in enumerate(lowerCAmelCase__ ): if padding_side == "right": if isinstance(lowerCAmelCase__, lowerCAmelCase__ ): A_ = tensor[:sequence_length] else: A_ = tensor[:sequence_length] else: if isinstance(lowerCAmelCase__, lowerCAmelCase__ ): A_ = tensor[:sequence_length] else: A_ = tensor[:sequence_length] return out_tensor.tolist() def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> List[Any]: A_ = ord(lowerCAmelCase__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True A_ = unicodedata.category(lowerCAmelCase__ ) if cat.startswith('''P''' ): return True return False @dataclass class __UpperCAmelCase ( __lowercase ): '''simple docstring''' __lowercase : PreTrainedTokenizerBase __lowercase : Union[bool, str, PaddingStrategy] = True __lowercase : Optional[int] = None __lowercase : Optional[int] = None __lowercase : int = -100 __lowercase : str = "pt" def __A ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: import torch A_ = '''label''' if '''label''' in features[0].keys() else '''labels''' A_ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None A_ = self.tokenizer.pad( snake_case_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch A_ = torch.tensor(batch['''entity_ids'''] ).shape[1] A_ = self.tokenizer.padding_side if padding_side == "right": A_ = [ list(snake_case_ ) + [self.label_pad_token_id] * (sequence_length - len(snake_case_ )) for label in labels ] else: A_ = [ [self.label_pad_token_id] * (sequence_length - len(snake_case_ )) + list(snake_case_ ) for label in labels ] A_ = [feature['''ner_tags'''] for feature in features] A_ = padding_tensor(snake_case_ , -1 , snake_case_ , snake_case_ ) A_ = [feature['''original_entity_spans'''] for feature in features] A_ = padding_tensor(snake_case_ , (-1, -1) , snake_case_ , snake_case_ ) A_ = {k: torch.tensor(snake_case_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
351
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __snake_case : str = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Dict: A_ = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def __A ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __A ( self ) -> str: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id='''test-model-flax''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def __A ( self ) -> List[str]: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Tuple ) -> Dict: A_ = True A_ = flatten_dict(modela.params ) A_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: A_ = False return models_are_equal @require_flax class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> List[str]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> List[Any]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , max_shard_size='''10KB''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> Dict: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
18
0
'''simple docstring''' import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def _UpperCAmelCase ( _UpperCamelCase : List[str] ) -> Tuple: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: A_ = create_tensor(_UpperCamelCase ) A_ = gather(_UpperCamelCase ) assert gathered_tensor.tolist() == list(range(1, state.num_processes**2 + 1 ) ) def _UpperCAmelCase ( _UpperCamelCase : int ) -> List[Any]: A_ = [state.process_index] A_ = gather_object(_UpperCamelCase ) assert len(_UpperCamelCase ) == state.num_processes, F'''{gathered_obj}, {len(_UpperCamelCase )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), F'''{gathered_obj} != {list(range(state.num_processes ) )}''' def _UpperCAmelCase ( _UpperCamelCase : List[str] ) -> Any: A_ = create_tensor(_UpperCamelCase ) A_ = broadcast(_UpperCamelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1, state.num_processes + 1 ) ) def _UpperCAmelCase ( _UpperCamelCase : Any ) -> List[Any]: if state.is_main_process: A_ = torch.arange(state.num_processes + 1 ).to(state.device ) else: A_ = torch.arange(state.num_processes ).to(state.device ) A_ = pad_across_processes(_UpperCamelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0, state.num_processes ) ) + [0] def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> Tuple: if state.num_processes != 2: return A_ = create_tensor(_UpperCamelCase ) A_ = reduce(_UpperCamelCase, '''sum''' ) A_ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(_UpperCamelCase, _UpperCamelCase ), F'''{reduced_tensor} != {truth_tensor}''' def _UpperCAmelCase ( _UpperCamelCase : Optional[int] ) -> List[Any]: if state.num_processes != 2: return A_ = create_tensor(_UpperCamelCase ) A_ = reduce(_UpperCamelCase, '''mean''' ) A_ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(_UpperCamelCase, _UpperCamelCase ), F'''{reduced_tensor} != {truth_tensor}''' def _UpperCAmelCase ( _UpperCamelCase : Optional[int] ) -> Optional[int]: main() def _UpperCAmelCase ( ) -> List[str]: A_ = PartialState() state.print(F'''State: {state}''' ) state.print('''testing gather''' ) test_gather(_UpperCamelCase ) state.print('''testing gather_object''' ) test_gather_object(_UpperCamelCase ) state.print('''testing broadcast''' ) test_broadcast(_UpperCamelCase ) state.print('''testing pad_across_processes''' ) test_pad_across_processes(_UpperCamelCase ) state.print('''testing reduce_sum''' ) test_reduce_sum(_UpperCamelCase ) state.print('''testing reduce_mean''' ) test_reduce_mean(_UpperCamelCase ) if __name__ == "__main__": main()
352
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Dict: A_ = 1 A_ = 2 while i * i <= n: A_ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _UpperCAmelCase ( ) -> Optional[int]: A_ = 1 A_ = 1 while True: i += 1 t_num += i if count_divisors(_UpperCamelCase ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
18
0
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : list[int], _UpperCamelCase : int ) -> List[Any]: A_ = len(_UpperCamelCase ) A_ = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): A_ = True # sum is not zero and set is empty then false for i in range(1, required_sum + 1 ): A_ = False for i in range(1, arr_len + 1 ): for j in range(1, required_sum + 1 ): if arr[i - 1] > j: A_ = subset[i - 1][j] if arr[i - 1] <= j: A_ = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
353
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=[1, 384, 24, 24] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = backbone_out_indices A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = num_labels A_ = backbone_featmap_shape A_ = scope A_ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = num_patches + 1 def __A ( self ) -> Optional[Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Optional[Any]: A_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = DPTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: A_ = self.num_labels A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: A_ = self.num_labels A_ = DPTForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __A ( self ) -> Optional[int]: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __lowercase : Optional[int] = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : Any = False __lowercase : Tuple = False __lowercase : List[Any] = False def __A ( self ) -> Tuple: A_ = DPTModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def __A ( self ) -> Union[str, Any]: pass def __A ( self ) -> Dict: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> Optional[int]: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ): continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = False A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Tuple: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: A_ = model_class(config=_SCREAMING_SNAKE_CASE ) # Skip the check for the backbone A_ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": A_ = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> int: pass @slow def __A ( self ) -> Dict: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: A_ = DPTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = '''add''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Optional[int]: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Any: A_ = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) A_ = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(_SCREAMING_SNAKE_CASE ) A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE ) A_ = outputs.predicted_depth # verify the predicted depth A_ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
18
0
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): __snake_case : int = yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) __snake_case : List[Any] = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } __snake_case : List[str] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __snake_case : Tuple = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __snake_case : str = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } __snake_case : List[str] = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __snake_case : List[Any] = ( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) __snake_case : Dict = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __snake_case : Tuple = ( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) __snake_case : Dict = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __snake_case : str = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' __snake_case : List[str] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __snake_case : Dict = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' __snake_case : str = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' __snake_case : str = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' __snake_case : List[str] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' __snake_case : Optional[Any] = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' __snake_case : List[Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' __snake_case : Dict = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' __snake_case : Optional[Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __snake_case : Optional[int] = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' __snake_case : Dict = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' __snake_case : Dict = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' __snake_case : int = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __snake_case : str = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' __snake_case : Dict = '' __snake_case : Any = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' __snake_case : Union[str, Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' __snake_case : List[str] = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( '''readme_md, expected_dict''', [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ], ) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : List[str] ) -> str: assert ReadMe.from_string(_UpperCamelCase, _UpperCamelCase ).to_dict() == expected_dict @pytest.mark.parametrize( '''readme_md, expected_error''', [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ], ) def _UpperCAmelCase ( _UpperCamelCase : Dict, _UpperCamelCase : Optional[int] ) -> List[str]: with pytest.raises(_UpperCamelCase, match=re.escape(expected_error.format(path='''root''' ) ) ): A_ = ReadMe.from_string(_UpperCamelCase, _UpperCamelCase ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''', [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ], ) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Union[str, Any] ) -> int: with pytest.raises(_UpperCamelCase, match=re.escape(expected_error.format(path='''root''' ) ) ): ReadMe.from_string(_UpperCamelCase, _UpperCamelCase ) @pytest.mark.parametrize( '''readme_md,''', [ (README_MULTIPLE_SAME_HEADING_1), ], ) def _UpperCAmelCase ( _UpperCamelCase : Any ) -> Union[str, Any]: ReadMe.from_string(_UpperCamelCase, _UpperCamelCase, suppress_parsing_errors=_UpperCamelCase ) @pytest.mark.parametrize( '''readme_md, expected_dict''', [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ], ) def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : List[Any] ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: A_ = Path(_UpperCamelCase ) / '''README.md''' with open(_UpperCamelCase, '''w+''' ) as readme_file: readme_file.write(_UpperCamelCase ) A_ = ReadMe.from_readme(_UpperCamelCase, _UpperCamelCase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( '''readme_md, expected_error''', [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ], ) def _UpperCAmelCase ( _UpperCamelCase : Dict, _UpperCamelCase : Optional[int] ) -> int: with tempfile.TemporaryDirectory() as tmp_dir: A_ = Path(_UpperCamelCase ) / '''README.md''' with open(_UpperCamelCase, '''w+''' ) as readme_file: readme_file.write(_UpperCamelCase ) A_ = expected_error.format(path=_UpperCamelCase ) with pytest.raises(_UpperCamelCase, match=re.escape(_UpperCamelCase ) ): A_ = ReadMe.from_readme(_UpperCamelCase, _UpperCamelCase ) readme.validate() @pytest.mark.parametrize( '''readme_md, expected_error''', [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ], ) def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Optional[int] ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: A_ = Path(_UpperCamelCase ) / '''README.md''' with open(_UpperCamelCase, '''w+''' ) as readme_file: readme_file.write(_UpperCamelCase ) A_ = expected_error.format(path=_UpperCamelCase ) with pytest.raises(_UpperCamelCase, match=re.escape(_UpperCamelCase ) ): ReadMe.from_readme(_UpperCamelCase, _UpperCamelCase ) @pytest.mark.parametrize( '''readme_md,''', [ (README_MULTIPLE_SAME_HEADING_1), ], ) def _UpperCAmelCase ( _UpperCamelCase : List[str] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: A_ = Path(_UpperCamelCase ) / '''README.md''' with open(_UpperCamelCase, '''w+''' ) as readme_file: readme_file.write(_UpperCamelCase ) ReadMe.from_readme(_UpperCamelCase, _UpperCamelCase, suppress_parsing_errors=_UpperCamelCase )
354
'''simple docstring''' import math def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : float ) -> float: if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
18
0
import string import numpy def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : int ) -> List[str]: return b if a == 0 else greatest_common_divisor(b % a, lowerCamelCase_ ) class __UpperCAmelCase : '''simple docstring''' __lowercase : Dict = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) __lowercase : int = numpy.vectorize(lambda _UpperCamelCase : x % 36 ) __lowercase : List[Any] = numpy.vectorize(lowerCamelCase__ ) def __init__( self , _SCREAMING_SNAKE_CASE ) -> None: A_ = self.modulus(__lowerCamelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key A_ = encrypt_key.shape[0] def __A ( self , _SCREAMING_SNAKE_CASE ) -> int: return self.key_string.index(__lowerCamelCase ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> str: return self.key_string[round(__lowerCamelCase )] def __A ( self ) -> None: A_ = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: A_ = det % len(self.key_string ) A_ = len(self.key_string ) if greatest_common_divisor(__lowerCamelCase , len(self.key_string ) ) != 1: A_ = ( F'''determinant modular {req_l} of encryption key({det}) ''' F'''is not co prime w.r.t {req_l}.\nTry another key.''' ) raise ValueError(__lowerCamelCase ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> str: A_ = [char for char in text.upper() if char in self.key_string] A_ = chars[-1] while len(__lowerCamelCase ) % self.break_key != 0: chars.append(__lowerCamelCase ) return "".join(__lowerCamelCase ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> str: A_ = self.process_text(text.upper() ) A_ = '''''' for i in range(0 , len(__lowerCamelCase ) - self.break_key + 1 , self.break_key ): A_ = text[i : i + self.break_key] A_ = [self.replace_letters(__lowerCamelCase ) for char in batch] A_ = numpy.array([vec] ).T A_ = self.modulus(self.encrypt_key.dot(__lowerCamelCase ) ).T.tolist()[ 0 ] A_ = ''''''.join( self.replace_digits(__lowerCamelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def __A ( self ) -> numpy.ndarray: A_ = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: A_ = det % len(self.key_string ) A_ = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: A_ = i break A_ = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__lowerCamelCase ) ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> str: A_ = self.make_decrypt_key() A_ = self.process_text(text.upper() ) A_ = '''''' for i in range(0 , len(__lowerCamelCase ) - self.break_key + 1 , self.break_key ): A_ = text[i : i + self.break_key] A_ = [self.replace_letters(__lowerCamelCase ) for char in batch] A_ = numpy.array([vec] ).T A_ = self.modulus(decrypt_key.dot(__lowerCamelCase ) ).T.tolist()[0] A_ = ''''''.join( self.replace_digits(__lowerCamelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def _UpperCAmelCase ( ) -> List[str]: A_ = int(input('''Enter the order of the encryption key: ''' ) ) A_ = [] print('''Enter each row of the encryption key with space separated integers''' ) for _ in range(lowerCamelCase_ ): A_ = [int(lowerCamelCase_ ) for x in input().split()] hill_matrix.append(lowerCamelCase_ ) A_ = HillCipher(numpy.array(lowerCamelCase_ ) ) print('''Would you like to encrypt or decrypt some text? (1 or 2)''' ) A_ = input('''\n1. Encrypt\n2. Decrypt\n''' ) if option == "1": A_ = input('''What text would you like to encrypt?: ''' ) print('''Your encrypted text is:''' ) print(hc.encrypt(lowerCamelCase_ ) ) elif option == "2": A_ = input('''What text would you like to decrypt?: ''' ) print('''Your decrypted text is:''' ) print(hc.decrypt(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
355
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
18
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __snake_case : Optional[Any] = random.Random() def _UpperCAmelCase ( _UpperCamelCase : Optional[Any], _UpperCamelCase : str=1.0, _UpperCamelCase : Optional[Any]=None, _UpperCamelCase : Tuple=None ) -> Dict: if rng is None: A_ = global_rng A_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=2000 , _SCREAMING_SNAKE_CASE=24 , _SCREAMING_SNAKE_CASE=24 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=1_6000 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , ) -> Optional[Any]: A_ = parent A_ = batch_size A_ = min_seq_length A_ = max_seq_length A_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A_ = feature_size A_ = num_mel_bins A_ = padding_value A_ = sampling_rate A_ = return_attention_mask A_ = do_normalize def __A ( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __A ( self , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False ) -> str: def _flatten(_SCREAMING_SNAKE_CASE ): return list(itertools.chain(*_A ) ) if equal_length: A_ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A_ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A_ = [np.asarray(_A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def __A ( self ) -> Any: A_ = SpeechaTextFeatureExtractionTester(self ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> Any: self.assertTrue(np.all(np.mean(_A , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_A , axis=0 ) - 1 ) < 1E-3 ) ) def __A ( self ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = [np.asarray(_A ) for speech_input in speech_inputs] # Test feature size A_ = feature_extractor(_A , padding=_A , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input A_ = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features A_ = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) # Test batched A_ = feature_extractor(_A , return_tensors='''np''' ).input_features A_ = feature_extractor(_A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. A_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] A_ = np.asarray(_A ) A_ = feature_extractor(_A , return_tensors='''np''' ).input_features A_ = feature_extractor(_A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1E-3 ) ) def __A ( self ) -> Union[str, Any]: A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = ['longest', 'max_length', 'do_not_pad'] A_ = [None, 16, None] for max_length, padding in zip(_A , _A ): A_ = feature_extractor( _A , padding=_A , max_length=_A , return_attention_mask=_A ) A_ = inputs.input_features A_ = inputs.attention_mask A_ = [np.sum(_A ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __A ( self ) -> Optional[int]: A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = ['longest', 'max_length', 'do_not_pad'] A_ = [None, 16, None] for max_length, padding in zip(_A , _A ): A_ = feature_extractor( _A , max_length=_A , padding=_A , return_tensors='''np''' , return_attention_mask=_A ) A_ = inputs.input_features A_ = inputs.attention_mask A_ = [np.sum(_A ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __A ( self ) -> Optional[int]: A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = feature_extractor( _A , padding='''max_length''' , max_length=4 , truncation=_A , return_tensors='''np''' , return_attention_mask=_A , ) A_ = inputs.input_features A_ = inputs.attention_mask A_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def __A ( self ) -> Tuple: A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = feature_extractor( _A , padding='''longest''' , max_length=4 , truncation=_A , return_tensors='''np''' , return_attention_mask=_A , ) A_ = inputs.input_features A_ = inputs.attention_mask A_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = feature_extractor( _A , padding='''longest''' , max_length=16 , truncation=_A , return_tensors='''np''' , return_attention_mask=_A , ) A_ = inputs.input_features A_ = inputs.attention_mask A_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def __A ( self ) -> Dict: import torch A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = np.random.rand(100 , 32 ).astype(np.floataa ) A_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A_ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) A_ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: from datasets import load_dataset A_ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech A_ = ds.sort('''id''' ).select(range(_A ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def __A ( self ) -> List[Any]: # fmt: off A_ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on A_ = self._load_datasamples(1 ) A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = feature_extractor(_A , return_tensors='''pt''' ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , _A , atol=1E-4 ) )
356
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : Any = logging.get_logger(__name__) def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> List[str]: A_ = torch.load(_UpperCamelCase, map_location='''cpu''' ) if "model" in sd.keys(): A_ = torch.load(_UpperCamelCase, map_location='''cpu''' )['''model'''] # pop unnecessary weights A_ = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(_UpperCamelCase ) A_ = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: A_ = sd.pop(_UpperCamelCase ) A_ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: A_ = sd[key] # We split QKV in separate Q,K,V A_ = key.replace('''.qkv_proj.''', '''.q_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.k_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.v_proj.''' ) A_ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 A_ ,A_ ,A_ = torch.split(_UpperCamelCase, depth // 3, dim=0 ) A_ = q A_ = k A_ = v del sd[key] return sd @torch.no_grad() def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : Optional[Any], _UpperCamelCase : List[str]=None ) -> Dict: A_ = load_checkpoint(_UpperCamelCase ) if config is not None: A_ = OPTConfig.from_pretrained(_UpperCamelCase ) else: A_ = OPTConfig() A_ = OPTModel(_UpperCamelCase ).half().eval() model.load_state_dict(_UpperCamelCase ) # Check results Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') __snake_case : Optional[Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
18
0
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCAmelCase ( lowerCamelCase__ ): '''simple docstring''' __lowercase : Tuple = 'new-model' if is_tf_available(): class __UpperCAmelCase ( lowerCamelCase__ ): '''simple docstring''' __lowercase : Dict = NewModelConfig @require_tf class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __A ( self ) -> List[Any]: A_ = 'bert-base-cased' A_ = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) A_ = TFAutoModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def __A ( self ) -> List[Any]: A_ = 'bert-base-cased' A_ = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) A_ = TFAutoModelForPreTraining.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def __A ( self ) -> Optional[int]: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) A_ = TFAutoModelForCausalLM.from_pretrained(__snake_case ) A_ = TFAutoModelForCausalLM.from_pretrained(__snake_case , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def __A ( self ) -> List[Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) A_ = TFAutoModelWithLMHead.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def __A ( self ) -> Union[str, Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) A_ = TFAutoModelForMaskedLM.from_pretrained(__snake_case ) A_ = TFAutoModelForMaskedLM.from_pretrained(__snake_case , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def __A ( self ) -> Union[str, Any]: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) A_ = TFAutoModelForSeqaSeqLM.from_pretrained(__snake_case ) A_ = TFAutoModelForSeqaSeqLM.from_pretrained(__snake_case , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def __A ( self ) -> str: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: A_ = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) A_ = TFAutoModelForSequenceClassification.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def __A ( self ) -> Union[str, Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: A_ = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) A_ = TFAutoModelForQuestionAnswering.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow @require_tensorflow_probability def __A ( self ) -> Tuple: for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: A_ = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) A_ = TFAutoModelForTableQuestionAnswering.from_pretrained(__snake_case ) A_ = TFAutoModelForTableQuestionAnswering.from_pretrained( __snake_case , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def __A ( self ) -> Any: A_ = TFAutoModelWithLMHead.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__snake_case ) , 1_4410 ) def __A ( self ) -> Optional[int]: A_ = TFAutoModelWithLMHead.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__snake_case ) , 1_4410 ) def __A ( self ) -> Union[str, Any]: # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel A_ = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(__snake_case , __snake_case ) A_ = copy.deepcopy(model.config ) A_ = ['FunnelBaseModel'] A_ = TFAutoModel.from_config(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case ) A_ = TFAutoModel.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def __A ( self ) -> List[str]: try: AutoConfig.register('''new-model''' , __snake_case ) A_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(__snake_case ): auto_class.register(__snake_case , __snake_case ) auto_class.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): auto_class.register(__snake_case , __snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API A_ = BertModelTester(self ).get_config() A_ = NewModelConfig(**tiny_config.to_dict() ) A_ = auto_class.from_config(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case ) A_ = auto_class.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __A ( self ) -> Optional[int]: with self.assertRaisesRegex( __snake_case , '''bert-base is not a local folder and is not a valid model identifier''' ): A_ = TFAutoModel.from_pretrained('''bert-base''' ) def __A ( self ) -> Union[str, Any]: with self.assertRaisesRegex( __snake_case , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): A_ = TFAutoModel.from_pretrained(__snake_case , revision='''aaaaaa''' ) def __A ( self ) -> str: with self.assertRaisesRegex( __snake_case , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): A_ = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def __A ( self ) -> Optional[Any]: with self.assertRaisesRegex(__snake_case , '''Use `from_pt=True` to load this model''' ): A_ = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def __A ( self ) -> str: # Make sure we have cached the model. A_ = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: A_ = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint A_ = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: A_ = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
357
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __snake_case : Optional[Any] = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } __snake_case : Tuple = {'allegro/herbert-base-cased': 514} __snake_case : List[str] = {} class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Any = VOCAB_FILES_NAMES __lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Dict = PRETRAINED_INIT_CONFIGURATION __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = HerbertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE="</s>" , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.cls_token_id] A_ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: A_ = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
18
0
'''simple docstring''' import math import sys import cva import numpy as np def _UpperCAmelCase ( _UpperCamelCase : Optional[Any], _UpperCamelCase : Tuple ) -> Tuple: A_ = math.sqrt(lowerCAmelCase__ ) A_ = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : Union[str, Any], _UpperCamelCase : str, _UpperCamelCase : str ) -> int: A_ = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : Any ) -> List[Any]: A_ = np.zeros((kernel_size, kernel_size) ) for i in range(0, lowerCAmelCase__ ): for j in range(0, lowerCAmelCase__ ): A_ = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(lowerCAmelCase__, lowerCAmelCase__ ) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Tuple, _UpperCamelCase : Optional[Any], _UpperCamelCase : str, ) -> Any: A_ = np.zeros(img.shape ) A_ = get_gauss_kernel(lowerCAmelCase__, lowerCAmelCase__ ) A_ ,A_ = img.shape for i in range(kernel_size // 2, size_x - kernel_size // 2 ): for j in range(kernel_size // 2, size_y - kernel_size // 2 ): A_ = get_slice(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ) A_ = img_s - img_s[kernel_size // 2, kernel_size // 2] A_ = vec_gaussian(lowerCAmelCase__, lowerCAmelCase__ ) A_ = np.multiply(lowerCAmelCase__, lowerCAmelCase__ ) A_ = np.multiply(lowerCAmelCase__, lowerCAmelCase__ ) A_ = np.sum(lowerCAmelCase__ ) / np.sum(lowerCAmelCase__ ) A_ = val return imga def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> List[str]: A_ = args[1] if args[1:] else '''../image_data/lena.jpg''' A_ = float(args[2] ) if args[2:] else 1.0 A_ = float(args[3] ) if args[3:] else 1.0 if args[4:]: A_ = int(args[4] ) A_ = kernel_size + abs(kernel_size % 2 - 1 ) else: A_ = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": __snake_case : Any = parse_args(sys.argv) __snake_case : List[str] = cva.imread(filename, 0) cva.imshow('input image', img) __snake_case : List[str] = img / 255 __snake_case : Optional[int] = out.astype('float32') __snake_case : List[str] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) __snake_case : Optional[int] = out * 255 __snake_case : Optional[int] = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
358
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any]=None ) -> List[Any]: if subparsers is not None: A_ = subparsers.add_parser('''env''' ) else: A_ = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''', default=_UpperCamelCase, help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=_UpperCamelCase ) return parser def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> Dict: A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = is_xpu_available() A_ = is_npu_available() A_ = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(_UpperCamelCase ): A_ = load_config_from_file(args.config_file ).to_dict() A_ = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(_UpperCamelCase ), '''PyTorch NPU available''': str(_UpperCamelCase ), '''System RAM''': F'''{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB''', } if pt_cuda_available: A_ = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) A_ = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_UpperCamelCase, _UpperCamelCase ) else F'''\t{accelerate_config}''' ) print(_UpperCamelCase ) A_ = accelerate_config return info def _UpperCAmelCase ( ) -> int: A_ = env_command_parser() A_ = parser.parse_args() env_command(_UpperCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
18
0
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __snake_case : Dict = logging.get_logger(__name__) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> str: A_ = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''', out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) A_ = MaskFormerConfig(backbone_config=_UpperCamelCase ) A_ = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok A_ = 8_47 A_ = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok A_ = 1_50 A_ = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok A_ = 1_71 A_ = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO A_ = 1_33 A_ = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok A_ = 19 A_ = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok A_ = 65 A_ = '''mapillary-vistas-id2label.json''' A_ = json.load(open(hf_hub_download(_UpperCamelCase, _UpperCamelCase, repo_type='''dataset''' ), '''r''' ) ) A_ = {int(_UpperCamelCase ): v for k, v in idalabel.items()} return config def _UpperCAmelCase ( _UpperCamelCase : Tuple ) -> Tuple: A_ = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def _UpperCAmelCase ( _UpperCamelCase : List[Any], _UpperCamelCase : Optional[int], _UpperCamelCase : Optional[int] ) -> str: A_ = dct.pop(_UpperCamelCase ) A_ = val def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : List[Any] ) -> List[str]: A_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A_ = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) A_ = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[:dim, :] A_ = in_proj_bias[: dim] A_ = in_proj_weight[ dim : dim * 2, : ] A_ = in_proj_bias[ dim : dim * 2 ] A_ = in_proj_weight[ -dim :, : ] A_ = in_proj_bias[-dim :] # fmt: on def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : Optional[Any] ) -> int: A_ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) A_ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) A_ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[: hidden_size, :] A_ = in_proj_bias[:config.hidden_size] A_ = in_proj_weight[hidden_size : hidden_size * 2, :] A_ = in_proj_bias[hidden_size : hidden_size * 2] A_ = in_proj_weight[-hidden_size :, :] A_ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) A_ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) A_ = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[: hidden_size, :] A_ = in_proj_bias[:config.hidden_size] A_ = in_proj_weight[hidden_size : hidden_size * 2, :] A_ = in_proj_bias[hidden_size : hidden_size * 2] A_ = in_proj_weight[-hidden_size :, :] A_ = in_proj_bias[-hidden_size :] # fmt: on def _UpperCAmelCase ( ) -> torch.Tensor: A_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A_ = Image.open(requests.get(_UpperCamelCase, stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( _UpperCamelCase : Any, _UpperCamelCase : Tuple, _UpperCamelCase : Optional[int], _UpperCamelCase : Tuple = False ) -> Dict: A_ = get_maskformer_config(_UpperCamelCase ) # load original state_dict with open(_UpperCamelCase, '''rb''' ) as f: A_ = pickle.load(_UpperCamelCase ) A_ = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys A_ = create_rename_keys(_UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) read_in_swin_q_k_v(_UpperCamelCase, config.backbone_config ) read_in_decoder_q_k_v(_UpperCamelCase, _UpperCamelCase ) # update to torch tensors for key, value in state_dict.items(): A_ = torch.from_numpy(_UpperCamelCase ) # load 🤗 model A_ = MaskFormerForInstanceSegmentation(_UpperCamelCase ) model.eval() for name, param in model.named_parameters(): print(_UpperCamelCase, param.shape ) A_ ,A_ = model.load_state_dict(_UpperCamelCase, strict=_UpperCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(_UpperCamelCase ) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results A_ = prepare_img() if "vistas" in model_name: A_ = 65 elif "cityscapes" in model_name: A_ = 6_55_35 else: A_ = 2_55 A_ = True if '''ade''' in model_name else False A_ = MaskFormerImageProcessor(ignore_index=_UpperCamelCase, reduce_labels=_UpperCamelCase ) A_ = image_processor(_UpperCamelCase, return_tensors='''pt''' ) A_ = model(**_UpperCamelCase ) print('''Logits:''', outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": A_ = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], _UpperCamelCase, atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) image_processor.save_pretrained(_UpperCamelCase ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F'''nielsr/{model_name}''' ) image_processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __snake_case : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __snake_case : Optional[int] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
359
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=0.6 , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = type_sequence_label_size A_ = initializer_range A_ = mask_ratio A_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __A ( self ) -> Union[str, Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: A_ = ViTMAEModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) A_ = (self.image_size // self.patch_size) ** 2 A_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images A_ = 1 A_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ = model(_SCREAMING_SNAKE_CASE ) A_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __A ( self ) -> int: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : int = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __lowercase : List[Any] = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} __lowercase : Union[str, Any] = False __lowercase : List[Any] = False __lowercase : List[str] = False __lowercase : List[str] = False def __A ( self ) -> Any: A_ = ViTMAEModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __A ( self ) -> int: pass def __A ( self ) -> int: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> int: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Union[str, Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: # make masks reproducible np.random.seed(2 ) A_ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) A_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument A_ = pt_noise super().check_pt_tf_models(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ = outputs[0].cpu().numpy() A_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ = model_class.from_pretrained(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Make sure we don't have nans A_ = after_outputs[0].cpu().numpy() A_ = 0 A_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> List[str]: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> Dict: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> Tuple: pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __A ( self ) -> str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> Union[str, Any]: pass @slow def __A ( self ) -> Dict: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = ViTMAEModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Dict: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __A ( self ) -> List[str]: return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __A ( self ) -> List[str]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) A_ = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(_SCREAMING_SNAKE_CASE ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) A_ = ViTMAEConfig() A_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) A_ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE , noise=torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ) ) # verify the logits A_ = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_SCREAMING_SNAKE_CASE ) , atol=1E-4 ) )
18
0
'''simple docstring''' import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
360
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : int = logging.get_logger(__name__) __snake_case : str = { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[Any] = 'xlm-prophetnet' __lowercase : Optional[int] = ['past_key_values'] __lowercase : int = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = "gelu" , _SCREAMING_SNAKE_CASE = 3_0522 , _SCREAMING_SNAKE_CASE = 1024 , _SCREAMING_SNAKE_CASE = 4096 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 4096 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 0.02 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = 128 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 2 , **_SCREAMING_SNAKE_CASE , ) -> int: A_ = vocab_size A_ = hidden_size A_ = encoder_ffn_dim A_ = num_encoder_layers A_ = num_encoder_attention_heads A_ = decoder_ffn_dim A_ = num_decoder_layers A_ = num_decoder_attention_heads A_ = max_position_embeddings A_ = init_std # Normal(0, this parameter) A_ = activation_function # parameters for xlmprophetnet A_ = ngram A_ = num_buckets A_ = relative_max_distance A_ = disable_ngram_loss A_ = eps # 3 Types of Dropout A_ = attention_dropout A_ = activation_dropout A_ = dropout A_ = use_cache super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , add_cross_attention=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @property def __A ( self ) -> int: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def __A ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
18
0
'''simple docstring''' __snake_case : List[str] = [0, 2, 4, 6, 8] __snake_case : int = [1, 3, 5, 7, 9] def _UpperCAmelCase ( _UpperCamelCase : Any, _UpperCamelCase : Any, _UpperCamelCase : Dict, _UpperCamelCase : Dict ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 A_ = 0 for digit in range(10 ): A_ = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, __snake_case, __snake_case ) return result A_ = 0 for digita in range(10 ): A_ = digita if (remainder + digita) % 2 == 0: A_ = ODD_DIGITS else: A_ = EVEN_DIGITS for digita in other_parity_digits: A_ = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, __snake_case, __snake_case, ) return result def _UpperCAmelCase ( _UpperCamelCase : Any = 9 ) -> int: A_ = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(__snake_case, 0, [0] * length, __snake_case ) return result if __name__ == "__main__": print(F"""{solution() = }""")
361
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : list[float] ) -> float: if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) A_ = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_UpperCamelCase ) ) return round(_UpperCamelCase, ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def _UpperCAmelCase ( _UpperCamelCase : List[str], _UpperCamelCase : List[Any], _UpperCamelCase : str ) -> List[Any]: A_ = 0 if start < end: A_ = randint(UpperCAmelCase__, UpperCAmelCase__ ) A_ = a[end] A_ = a[pivot] A_ = temp A_ ,A_ = _in_place_partition(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) count += _in_place_quick_sort(UpperCAmelCase__, UpperCAmelCase__, p - 1 ) count += _in_place_quick_sort(UpperCAmelCase__, p + 1, UpperCAmelCase__ ) return count def _UpperCAmelCase ( _UpperCamelCase : List[str], _UpperCamelCase : Union[str, Any], _UpperCamelCase : Optional[int] ) -> List[str]: A_ = 0 A_ = randint(UpperCAmelCase__, UpperCAmelCase__ ) A_ = a[end] A_ = a[pivot] A_ = temp A_ = start - 1 for index in range(UpperCAmelCase__, UpperCAmelCase__ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value A_ = new_pivot_index + 1 A_ = a[new_pivot_index] A_ = a[index] A_ = temp A_ = a[new_pivot_index + 1] A_ = a[end] A_ = temp return new_pivot_index + 1, count __snake_case : List[str] = TemporaryFile() __snake_case : Optional[Any] = 100 # 1000 elements are to be sorted __snake_case , __snake_case : str = 0, 1 # mean and standard deviation __snake_case : Dict = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array __snake_case : Dict = np.load(outfile) __snake_case : Optional[Any] = len(M) - 1 __snake_case : Optional[int] = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
362
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( _UpperCamelCase : int | str ) -> bool: A_ = str(_UpperCamelCase ) return n == n[::-1] def _UpperCAmelCase ( _UpperCamelCase : int = 1_00_00_00 ) -> Any: A_ = 0 for i in range(1, _UpperCamelCase ): if is_palindrome(_UpperCamelCase ) and is_palindrome(bin(_UpperCamelCase ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
18
0
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : list[list[int]], _UpperCamelCase : int, _UpperCamelCase : int, _UpperCamelCase : set ) -> Any: A_ ,A_ = len(SCREAMING_SNAKE_CASE_ ), len(grid[0] ) if ( min(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) A_ = 0 count += depth_first_search(SCREAMING_SNAKE_CASE_, row + 1, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) count += depth_first_search(SCREAMING_SNAKE_CASE_, row - 1, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) count += depth_first_search(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, col + 1, SCREAMING_SNAKE_CASE_ ) count += depth_first_search(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, col - 1, SCREAMING_SNAKE_CASE_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
363
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Tuple, _UpperCamelCase : List[str] ) -> int: A_ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] A_ = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } A_ = F'''{src_lang}-{tgt_lang}''' A_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(_UpperCamelCase, exist_ok=_UpperCamelCase ) A_ = os.path.join(_UpperCamelCase, '''README.md''' ) print(F'''Generating {path}''' ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(_UpperCamelCase ) # make sure we are under the root of the project __snake_case : Any = Path(__file__).resolve().parent.parent.parent __snake_case : Tuple = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __snake_case , __snake_case , __snake_case : Any = model_name.split('-') __snake_case : int = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
18
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __snake_case : List[Any] = logging.get_logger(__name__) class __UpperCAmelCase ( a__ ): '''simple docstring''' __lowercase : List[Any] = ["pixel_values"] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE_ ) A_ = size if size is not None else {'shortest_edge': 256} A_ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) A_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} A_ = get_size_dict(SCREAMING_SNAKE_CASE_ ) A_ = do_resize A_ = size A_ = resample A_ = do_center_crop A_ = crop_size A_ = do_rescale A_ = rescale_factor A_ = do_normalize A_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: A_ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) A_ = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: A_ = get_size_dict(SCREAMING_SNAKE_CASE_ ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE ) -> np.ndarray: return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ) -> Any: A_ = do_resize if do_resize is not None else self.do_resize A_ = size if size is not None else self.size A_ = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) A_ = resample if resample is not None else self.resample A_ = do_center_crop if do_center_crop is not None else self.do_center_crop A_ = crop_size if crop_size is not None else self.crop_size A_ = get_size_dict(SCREAMING_SNAKE_CASE_ ) A_ = do_rescale if do_rescale is not None else self.do_rescale A_ = rescale_factor if rescale_factor is not None else self.rescale_factor A_ = do_normalize if do_normalize is not None else self.do_normalize A_ = image_mean if image_mean is not None else self.image_mean A_ = image_std if image_std is not None else self.image_std A_ = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. A_ = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: A_ = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: A_ = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: A_ = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: A_ = [self.normalize(image=SCREAMING_SNAKE_CASE_ , mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ ) for image in images] A_ = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] A_ = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
364
'''simple docstring''' from collections import defaultdict def _UpperCAmelCase ( _UpperCamelCase : int ) -> int: A_ = 1 A_ = True for v in tree[start]: if v not in visited: ret += dfs(_UpperCamelCase ) if ret % 2 == 0: cuts.append(_UpperCamelCase ) return ret def _UpperCAmelCase ( ) -> Optional[Any]: dfs(1 ) if __name__ == "__main__": __snake_case , __snake_case : Union[str, Any] = 10, 9 __snake_case : int = defaultdict(list) __snake_case : dict[int, bool] = {} __snake_case : list[int] = [] __snake_case : Union[str, Any] = 0 __snake_case : int = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
0
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): __lowercase : List[str] = ['image_processor', 'tokenizer'] __lowercase : Any = 'AutoImageProcessor' __lowercase : Any = 'AutoTokenizer' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = self.image_processor def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> List[Any]: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: A_ = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if images is not None: A_ = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None and images is not None: A_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_SCREAMING_SNAKE_CASE ) , tensor_type=_SCREAMING_SNAKE_CASE ) def __A ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __A ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def __A ( self ) -> List[str]: return ["input_ids", "attention_mask", "pixel_values"]
365
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[int] = 'mgp-str' def __init__( self , _SCREAMING_SNAKE_CASE=[32, 128] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=27 , _SCREAMING_SNAKE_CASE=38 , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=3_0522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: super().__init__(**_SCREAMING_SNAKE_CASE ) A_ = image_size A_ = patch_size A_ = num_channels A_ = max_token_length A_ = num_character_labels A_ = num_bpe_labels A_ = num_wordpiece_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = mlp_ratio A_ = distilled A_ = layer_norm_eps A_ = drop_rate A_ = qkv_bias A_ = attn_drop_rate A_ = drop_path_rate A_ = output_aa_attentions A_ = initializer_range
18
0
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : Optional[Any], _UpperCamelCase : Any ) -> Tuple: assert x is not None assert y is not None A_ = len(_UpperCamelCase ) A_ = len(_UpperCamelCase ) # declaring the array for storing the dp values A_ = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1, m + 1 ): for j in range(1, n + 1 ): A_ = 1 if x[i - 1] == y[j - 1] else 0 A_ = max(l[i - 1][j], l[i][j - 1], l[i - 1][j - 1] + match ) A_ = '''''' A_ = m, n while i > 0 and j > 0: A_ = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: A_ = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": __snake_case : str = 'AGGTAB' __snake_case : Optional[int] = 'GXTXAYB' __snake_case : Optional[int] = 4 __snake_case : int = 'GTAB' __snake_case , __snake_case : Any = longest_common_subsequence(a, b) print('len =', ln, ', sub-sequence =', subseq) import doctest doctest.testmod()
366
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __UpperCAmelCase : '''simple docstring''' pass
18
0
'''simple docstring''' import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __snake_case : Optional[int] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model __snake_case : List[str] = { # fairseq: 'wmt19-ru-en': {'length_penalty': 1.1}, 'wmt19-en-ru': {'length_penalty': 1.15}, 'wmt19-en-de': {'length_penalty': 1.0}, 'wmt19-de-en': {'length_penalty': 1.1}, # allenai: 'wmt16-en-de-dist-12-1': {'length_penalty': 0.6}, 'wmt16-en-de-dist-6-1': {'length_penalty': 0.6}, 'wmt16-en-de-12-1': {'length_penalty': 0.8}, 'wmt19-de-en-6-6-base': {'length_penalty': 0.6}, 'wmt19-de-en-6-6-big': {'length_penalty': 0.6}, } # this remaps the different models to their organization names __snake_case : Optional[int] = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __snake_case : Any = 'facebook' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: __snake_case : int = 'allenai' def _UpperCAmelCase ( _UpperCamelCase : List[str] ) -> Dict: A_ = dict((re.sub(R'''@@$''', '''''', snake_case_ ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''', '''</w>''', snake_case_ ), v) for k, v in d.items() ) A_ = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] A_ = d[k] # restore return da def _UpperCAmelCase ( _UpperCamelCase : Dict, _UpperCamelCase : Dict ) -> Optional[int]: assert os.path.exists(snake_case_ ) os.makedirs(snake_case_, exist_ok=snake_case_ ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models A_ = basename(snake_case_ ) A_ = dirname(snake_case_ ) A_ = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel A_ = cls.hub_models() A_ = {'''bpe''': '''fastbpe''', '''tokenizer''': '''moses'''} A_ = '''.''' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F'''using checkpoint {checkpoint_file}''' ) A_ = hub_utils.from_pretrained( snake_case_, snake_case_, snake_case_, archive_map=snake_case_, **snake_case_ ) A_ = vars(chkpt['''args''']['''model'''] ) A_ = args['''source_lang'''] A_ = args['''target_lang'''] A_ = dirname(snake_case_ ) A_ = basename(snake_case_ ) # dicts A_ = os.path.join(snake_case_, F'''dict.{src_lang}.txt''' ) A_ = os.path.join(snake_case_, F'''dict.{tgt_lang}.txt''' ) A_ = Dictionary.load(snake_case_ ) A_ = rewrite_dict_keys(src_dict.indices ) A_ = len(snake_case_ ) A_ = os.path.join(snake_case_, '''vocab-src.json''' ) print(F'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(snake_case_, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case_, ensure_ascii=snake_case_, indent=snake_case_ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab A_ = True for k in src_vocab.keys(): if not k.islower(): A_ = False break A_ = Dictionary.load(snake_case_ ) A_ = rewrite_dict_keys(tgt_dict.indices ) A_ = len(snake_case_ ) A_ = os.path.join(snake_case_, '''vocab-tgt.json''' ) print(F'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(snake_case_, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case_, ensure_ascii=snake_case_, indent=snake_case_ ) ) # merges_file (bpecodes) A_ = os.path.join(snake_case_, VOCAB_FILES_NAMES['''merges_file'''] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" A_ = os.path.join(snake_case_, snake_case_ ) if os.path.exists(snake_case_ ): break with open(snake_case_, encoding='''utf-8''' ) as fin: A_ = fin.read() A_ = re.sub(R''' \d+$''', '''''', snake_case_, 0, re.M ) # remove frequency number print(F'''Generating {merges_file}''' ) with open(snake_case_, '''w''', encoding='''utf-8''' ) as fout: fout.write(snake_case_ ) # model config A_ = os.path.join(snake_case_, '''config.json''' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", F'''need to extend tokenizer to support bpe={args['tokenizer']}''' A_ = { '''architectures''': ['''FSMTForConditionalGeneration'''], '''model_type''': '''fsmt''', '''activation_dropout''': args['''activation_dropout'''], '''activation_function''': '''relu''', '''attention_dropout''': args['''attention_dropout'''], '''d_model''': args['''decoder_embed_dim'''], '''dropout''': args['''dropout'''], '''init_std''': 0.0_2, '''max_position_embeddings''': args['''max_source_positions'''], '''num_hidden_layers''': args['''encoder_layers'''], '''src_vocab_size''': src_vocab_size, '''tgt_vocab_size''': tgt_vocab_size, '''langs''': [src_lang, tgt_lang], '''encoder_attention_heads''': args['''encoder_attention_heads'''], '''encoder_ffn_dim''': args['''encoder_ffn_embed_dim'''], '''encoder_layerdrop''': args['''encoder_layerdrop'''], '''encoder_layers''': args['''encoder_layers'''], '''decoder_attention_heads''': args['''decoder_attention_heads'''], '''decoder_ffn_dim''': args['''decoder_ffn_embed_dim'''], '''decoder_layerdrop''': args['''decoder_layerdrop'''], '''decoder_layers''': args['''decoder_layers'''], '''bos_token_id''': 0, '''pad_token_id''': 1, '''eos_token_id''': 2, '''is_encoder_decoder''': True, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_all_embeddings'''], } # good hparam defaults to start with A_ = 5 A_ = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: A_ = best_score_hparams[model_dir]['''length_penalty'''] else: A_ = 1.0 print(F'''Generating {fsmt_model_config_file}''' ) with open(snake_case_, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case_, ensure_ascii=snake_case_, indent=snake_case_ ) ) # tokenizer config A_ = os.path.join(snake_case_, snake_case_ ) A_ = { '''langs''': [src_lang, tgt_lang], '''model_max_length''': 10_24, '''do_lower_case''': do_lower_case, } print(F'''Generating {fsmt_tokenizer_config_file}''' ) with open(snake_case_, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case_, ensure_ascii=snake_case_, indent=snake_case_ ) ) # model A_ = chkpt['''models'''][0] A_ = model.state_dict() # rename keys to start with 'model.' A_ = OrderedDict(('''model.''' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys A_ = [ '''model.model''', '''model.encoder.version''', '''model.decoder.version''', '''model.encoder_embed_tokens.weight''', '''model.decoder_embed_tokens.weight''', '''model.encoder.embed_positions._float_tensor''', '''model.decoder.embed_positions._float_tensor''', ] for k in ignore_keys: model_state_dict.pop(snake_case_, snake_case_ ) A_ = FSMTConfig.from_pretrained(snake_case_ ) A_ = FSMTForConditionalGeneration(snake_case_ ) # check that it loads ok model_new.load_state_dict(snake_case_, strict=snake_case_ ) # save A_ = os.path.join(snake_case_, snake_case_ ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(snake_case_, snake_case_ ) print('''Conversion is done!''' ) print('''\nLast step is to upload the files to s3''' ) print(F'''cd {data_root}''' ) print(F'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": __snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fsmt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __snake_case : int = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
367
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _UpperCAmelCase ( ) -> Dict: A_ = ArgumentParser('''Accelerate CLI tool''', usage='''accelerate <command> [<args>]''', allow_abbrev=_UpperCamelCase ) A_ = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=_UpperCamelCase ) env_command_parser(subparsers=_UpperCamelCase ) launch_command_parser(subparsers=_UpperCamelCase ) tpu_command_parser(subparsers=_UpperCamelCase ) test_command_parser(subparsers=_UpperCamelCase ) # Let's go A_ = parser.parse_args() if not hasattr(_UpperCamelCase, '''func''' ): parser.print_help() exit(1 ) # Run args.func(_UpperCamelCase ) if __name__ == "__main__": main()
18
0
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __snake_case : List[Any] = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __snake_case : int = logging.get_logger(__name__) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[Any] = 'maskformer' __lowercase : Optional[int] = {'hidden_size': 'mask_feature_size'} __lowercase : int = ['resnet', 'swin'] __lowercase : Any = ['detr'] def __init__( self , _SCREAMING_SNAKE_CASE = 256 , _SCREAMING_SNAKE_CASE = 256 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0.02 , _SCREAMING_SNAKE_CASE = 1.0 , _SCREAMING_SNAKE_CASE = 1.0 , _SCREAMING_SNAKE_CASE = 1.0 , _SCREAMING_SNAKE_CASE = 20.0 , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> str: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k A_ = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): A_ = backbone_config.pop('''model_type''' ) A_ = CONFIG_MAPPING[backbone_model_type] A_ = config_class.from_dict(_UpperCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' F'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 A_ = DetrConfig() else: # verify that the decoder is supported A_ = ( decoder_config.pop('''model_type''' ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'''Transformer Decoder {decoder_type} not supported, please use one of''' F''' {','.join(self.decoders_supported )}''' ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): A_ = CONFIG_MAPPING[decoder_type] A_ = config_class.from_dict(_UpperCAmelCase ) A_ = backbone_config A_ = decoder_config # main feature dimension for the model A_ = fpn_feature_size A_ = mask_feature_size # initializer A_ = init_std A_ = init_xavier_std # Hungarian matcher && loss A_ = cross_entropy_weight A_ = dice_weight A_ = mask_weight A_ = use_auxiliary_loss A_ = no_object_weight A_ = output_auxiliary_logits A_ = self.decoder_config.encoder_attention_heads A_ = self.decoder_config.num_hidden_layers super().__init__(**_UpperCAmelCase ) @classmethod def __A ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: return cls( backbone_config=_UpperCAmelCase , decoder_config=_UpperCAmelCase , **_UpperCAmelCase , ) def __A ( self ) -> int: A_ = copy.deepcopy(self.__dict__ ) A_ = self.backbone_config.to_dict() A_ = self.decoder_config.to_dict() A_ = self.__class__.model_type return output
368
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __snake_case : Any = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' __snake_case : Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' __snake_case : Optional[int] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __A ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: if rouge_types is None: A_ = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] A_ = rouge_scorer.RougeScorer(rouge_types=_SCREAMING_SNAKE_CASE , use_stemmer=_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = scoring.BootstrapAggregator() else: A_ = [] for ref, pred in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = scorer.score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if use_aggregator: aggregator.add_scores(_SCREAMING_SNAKE_CASE ) else: scores.append(_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = aggregator.aggregate() else: A_ = {} for key in scores[0]: A_ = [score[key] for score in scores] return result
18
0
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=33 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , ) -> Optional[Any]: A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope def __A ( self ) -> Any: A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> List[str]: return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = EsmModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: A_ = EsmForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: A_ = self.num_labels A_ = EsmForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self ) -> Dict: A_ = self.prepare_config_and_inputs() ( A_ ) = config_and_inputs A_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __lowercase : List[Any] = False __lowercase : str = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __lowercase : Optional[int] = () __lowercase : Optional[Any] = ( { """feature-extraction""": EsmModel, """fill-mask""": EsmForMaskedLM, """text-classification""": EsmForSequenceClassification, """token-classification""": EsmForTokenClassification, """zero-shot""": EsmForSequenceClassification, } if is_torch_available() else {} ) __lowercase : Dict = True def __A ( self ) -> Optional[int]: A_ = EsmModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def __A ( self ) -> Tuple: self.config_tester.run_common_tests() def __A ( self ) -> Any: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __A ( self ) -> Dict: A_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __A ( self ) -> Tuple: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def __A ( self ) -> str: for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = EsmModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __A ( self ) -> int: A_ = self.model_tester.prepare_config_and_inputs()[0] A_ = EsmEmbeddings(config=UpperCamelCase__ ) A_ = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) A_ = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) A_ = create_position_ids_from_input_ids(UpperCamelCase__ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCamelCase__ , UpperCamelCase__ ) ) ) def __A ( self ) -> int: A_ = self.model_tester.prepare_config_and_inputs()[0] A_ = EsmEmbeddings(config=UpperCamelCase__ ) A_ = torch.empty(2 , 4 , 30 ) A_ = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] A_ = torch.as_tensor([expected_single_positions, expected_single_positions] ) A_ = embeddings.create_position_ids_from_inputs_embeds(UpperCamelCase__ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCamelCase__ , UpperCamelCase__ ) ) ) @unittest.skip('''Esm does not support embedding resizing''' ) def __A ( self ) -> Optional[int]: pass @unittest.skip('''Esm does not support embedding resizing''' ) def __A ( self ) -> Optional[Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> Tuple: pass @require_torch class __UpperCAmelCase ( __snake_case ): '''simple docstring''' @slow def __A ( self ) -> Union[str, Any]: with torch.no_grad(): A_ = EsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() A_ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) A_ = model(UpperCamelCase__ )[0] A_ = 33 A_ = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase__ ) A_ = torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1E-4 ) ) @slow def __A ( self ) -> Tuple: with torch.no_grad(): A_ = EsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) model.eval() A_ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A_ = model(UpperCamelCase__ )[0] # compare the actual values for a slice. A_ = torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1E-4 ) )
369
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: super().__init__() A_ = module A_ = nn.Sequential( nn.Linear(module.in_features , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) , nn.Linear(_SCREAMING_SNAKE_CASE , module.out_features , bias=_SCREAMING_SNAKE_CASE ) , ) A_ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_SCREAMING_SNAKE_CASE ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __A ( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: return self.module(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) + self.adapter(_SCREAMING_SNAKE_CASE ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowercase : Dict = 'bigscience/bloom-1b7' # Constant values __lowercase : str = 2.109659552692574 __lowercase : int = 'Hello my name is' __lowercase : Optional[Any] = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __lowercase : Optional[Any] = 10 def __A ( self ) -> List[str]: # Models and tokenizer A_ = AutoTokenizer.from_pretrained(self.model_name ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[Any]: super().setUp() # Models and tokenizer A_ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> List[str]: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: A_ = self.model_abit.config self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''quantization_config''' ) ) A_ = config.to_dict() A_ = config.to_diff_dict() A_ = config.to_json_string() def __A ( self ) -> Union[str, Any]: from bitsandbytes.nn import Paramsabit A_ = self.model_fpaa.get_memory_footprint() A_ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A_ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __A ( self ) -> Union[str, Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __A ( self ) -> Optional[int]: A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Optional[int]: A_ = BitsAndBytesConfig() A_ = True A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Tuple: with self.assertRaises(_SCREAMING_SNAKE_CASE ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Tuple: A_ = BitsAndBytesConfig() with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def __A ( self ) -> Dict: with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_fpaa.to(torch.floataa ) A_ = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A_ = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error A_ = self.model_fpaa.half() # Check this does not throw an error A_ = self.model_fpaa.float() def __A ( self ) -> Optional[int]: A_ = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Optional[Any]: A_ = '''t5-small''' A_ = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense A_ = AutoTokenizer.from_pretrained(cls.model_name ) A_ = '''Translate in German: Hello, my dog is cute''' def __A ( self ) -> Any: gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: from transformers import TaForConditionalGeneration A_ = TaForConditionalGeneration._keep_in_fpaa_modules A_ = None # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) A_ = modules def __A ( self ) -> Dict: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> int: super().setUp() # model_name A_ = '''bigscience/bloom-560m''' A_ = '''t5-small''' # Different types of model A_ = AutoModel.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Sequence classification model A_ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # CausalLM model A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Seq2seq model A_ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> Union[str, Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __A ( self ) -> List[str]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> Tuple: super().setUp() def __A ( self ) -> List[Any]: del self.pipe gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[Any]: A_ = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A_ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[str]: super().setUp() def __A ( self ) -> Optional[int]: A_ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch A_ = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> str: A_ = '''facebook/opt-350m''' super().setUp() def __A ( self ) -> Optional[int]: if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A_ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A_ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_SCREAMING_SNAKE_CASE ) ): A_ = LoRALayer(module.q_proj , rank=16 ) A_ = LoRALayer(module.k_proj , rank=16 ) A_ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A_ = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A_ = model.forward(**_SCREAMING_SNAKE_CASE ) out.logits.norm().backward() for module in model.modules(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_SCREAMING_SNAKE_CASE , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : int = 'gpt2-xl' __lowercase : List[Any] = 3.3191854854152187
18
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case : List[str] = logging.get_logger(__name__) if is_vision_available(): import PIL class __UpperCAmelCase ( lowerCamelCase_ ): '''simple docstring''' __lowercase : int = ['''pixel_values'''] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , **_SCREAMING_SNAKE_CASE , ) -> None: super().__init__(**__snake_case ) A_ = size if size is not None else {'''shortest_edge''': 224} A_ = get_size_dict(__snake_case , default_to_square=__snake_case ) A_ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} A_ = get_size_dict(__snake_case , default_to_square=__snake_case , param_name='''crop_size''' ) A_ = do_resize A_ = size A_ = resample A_ = do_center_crop A_ = crop_size A_ = do_rescale A_ = rescale_factor A_ = do_normalize A_ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A_ = image_std if image_std is not None else OPENAI_CLIP_STD A_ = do_convert_rgb def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: A_ = get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) A_ = get_resize_output_image_size(__snake_case , size=size['''shortest_edge'''] , default_to_square=__snake_case ) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: A_ = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__snake_case , size=(size['''height'''], size['''width''']) , data_format=__snake_case , **__snake_case ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image: A_ = do_resize if do_resize is not None else self.do_resize A_ = size if size is not None else self.size A_ = get_size_dict(__snake_case , param_name='''size''' , default_to_square=__snake_case ) A_ = resample if resample is not None else self.resample A_ = do_center_crop if do_center_crop is not None else self.do_center_crop A_ = crop_size if crop_size is not None else self.crop_size A_ = get_size_dict(__snake_case , param_name='''crop_size''' , default_to_square=__snake_case ) A_ = do_rescale if do_rescale is not None else self.do_rescale A_ = rescale_factor if rescale_factor is not None else self.rescale_factor A_ = do_normalize if do_normalize is not None else self.do_normalize A_ = image_mean if image_mean is not None else self.image_mean A_ = image_std if image_std is not None else self.image_std A_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A_ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A_ = [convert_to_rgb(__snake_case ) for image in images] # All transformations expect numpy arrays. A_ = [to_numpy_array(__snake_case ) for image in images] if do_resize: A_ = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_center_crop: A_ = [self.center_crop(image=__snake_case , size=__snake_case ) for image in images] if do_rescale: A_ = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_normalize: A_ = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images] A_ = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] A_ = {'''pixel_values''': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
370
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _UpperCAmelCase ( _UpperCamelCase : Features ) -> Optional[int]: A_ = np.inf def set_batch_size(_UpperCamelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ) and feature.dtype == "binary": A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_UpperCamelCase, _UpperCamelCase ) return None if batch_size is np.inf else batch_size class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ = path_or_paths if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} A_ = _PACKAGED_DATASETS_MODULES['''parquet'''][1] A_ = Parquet( cache_dir=_SCREAMING_SNAKE_CASE , data_files=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , hash=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self ) -> str: # Build iterable dataset if self.streaming: A_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) A_ = self.builder.as_dataset( split=self.split , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Dict: A_ = dataset A_ = path_or_buf A_ = batch_size or get_writer_batch_size(dataset.features ) A_ = parquet_writer_kwargs def __A ( self ) -> int: A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: A_ = self._write(file_obj=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) else: A_ = self._write(file_obj=self.path_or_buf , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) return written def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: A_ = 0 A_ = parquet_writer_kwargs.pop('''path_or_buf''' , _SCREAMING_SNAKE_CASE ) A_ = self.dataset.features.arrow_schema A_ = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _SCREAMING_SNAKE_CASE ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): A_ = query_table( table=self.dataset._data , key=slice(_SCREAMING_SNAKE_CASE , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_SCREAMING_SNAKE_CASE ) written += batch.nbytes writer.close() return written
18
0
'''simple docstring''' class __UpperCAmelCase : '''simple docstring''' def __init__( self ) -> Any: A_ = '''''' A_ = '''''' A_ = [] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: A_ = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: A_ = self.__min_dist_top_down_dp(A_ , n - 1 ) A_ = self.__min_dist_top_down_dp(m - 1 , A_ ) A_ = self.__min_dist_top_down_dp(m - 1 , n - 1 ) A_ = 1 + min(A_ , A_ , A_ ) return self.dp[m][n] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: A_ = worda A_ = worda A_ = [[-1 for _ in range(len(A_ ) )] for _ in range(len(A_ ) )] return self.__min_dist_top_down_dp(len(A_ ) - 1 , len(A_ ) - 1 ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: A_ = worda A_ = worda A_ = len(A_ ) A_ = len(A_ ) A_ = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty A_ = j elif j == 0: # second string is empty A_ = i elif worda[i - 1] == worda[j - 1]: # last characters are equal A_ = self.dp[i - 1][j - 1] else: A_ = self.dp[i][j - 1] A_ = self.dp[i - 1][j] A_ = self.dp[i - 1][j - 1] A_ = 1 + min(A_ , A_ , A_ ) return self.dp[m][n] if __name__ == "__main__": __snake_case : Tuple = EditDistance() print('****************** Testing Edit Distance DP Algorithm ******************') print() __snake_case : Dict = input('Enter the first string: ').strip() __snake_case : List[Any] = input('Enter the second string: ').strip() print() print(F"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""") print(F"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""") print() print('*************** End of Testing Edit Distance DP Algorithm ***************')
371
'''simple docstring''' from statistics import mean, stdev def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = min(_UpperCamelCase ) A_ = max(_UpperCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min), _UpperCamelCase ) for x in data] def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = mean(_UpperCamelCase ) A_ = stdev(_UpperCamelCase ) # standardize data return [round((x - mu) / (sigma), _UpperCamelCase ) for x in data]
18
0
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' @slow @require_torch def __A ( self ) -> int: A_ = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) A_ = BertTokenizer.from_pretrained('''bert-base-uncased''' ) A_ = bertabert.config.encoder.vocab_size A_ = tokenizer.sep_token_id A_ = tokenizer.cls_token_id A_ = 128 A_ = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) A_ = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) A_ = train_dataset.select(range(32 ) ) A_ = val_dataset.select(range(16 ) ) A_ = 4 def _map_to_encoder_decoder_inputs(_SCREAMING_SNAKE_CASE ): # Tokenizer will automatically set [BOS] <text> [EOS] A_ = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=_SCREAMING_SNAKE_CASE , max_length=512 ) A_ = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=_SCREAMING_SNAKE_CASE , max_length=128 ) A_ = inputs.input_ids A_ = inputs.attention_mask A_ = outputs.input_ids A_ = outputs.input_ids.copy() A_ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] A_ = outputs.attention_mask assert all(len(_SCREAMING_SNAKE_CASE ) == 512 for x in inputs.input_ids ) assert all(len(_SCREAMING_SNAKE_CASE ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_SCREAMING_SNAKE_CASE ): A_ = pred.label_ids A_ = pred.predictions # all unnecessary tokens are removed A_ = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) A_ = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) A_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_SCREAMING_SNAKE_CASE ) )] ) / len(_SCREAMING_SNAKE_CASE ) return {"accuracy": accuracy} # map train dataset A_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset A_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) A_ = self.get_auto_remove_tmp_dir() A_ = SeqaSeqTrainingArguments( output_dir=_SCREAMING_SNAKE_CASE , per_device_train_batch_size=_SCREAMING_SNAKE_CASE , per_device_eval_batch_size=_SCREAMING_SNAKE_CASE , predict_with_generate=_SCREAMING_SNAKE_CASE , evaluation_strategy='''steps''' , do_train=_SCREAMING_SNAKE_CASE , do_eval=_SCREAMING_SNAKE_CASE , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer A_ = SeqaSeqTrainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , compute_metrics=_compute_metrics , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , ) # start training trainer.train()
350
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') __snake_case : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __snake_case : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: with open(_UpperCamelCase, '''rb''' ) as f: A_ = Image.open(_UpperCamelCase ) return im.convert('''RGB''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the training data.'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the validation data.'} ) __lowercase : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __A ( self ) -> int: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_UpperCamelCase )} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) __lowercase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowercase : str = field(default=_UpperCamelCase , metadata={'help': 'Name or path of preprocessor config.'} ) __lowercase : bool = field( default=_UpperCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __lowercase : bool = field( default=_UpperCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> Dict: A_ = torch.stack([example['''pixel_values'''] for example in examples] ) A_ = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _UpperCAmelCase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A_ ,A_ ,A_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A_ ,A_ ,A_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''', _UpperCamelCase, _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A_ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. A_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: A_ = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, task='''image-classification''', use_auth_token=True if model_args.use_auth_token else None, ) else: A_ = {} if data_args.train_dir is not None: A_ = os.path.join(data_args.train_dir, '''**''' ) if data_args.validation_dir is not None: A_ = os.path.join(data_args.validation_dir, '''**''' ) A_ = load_dataset( '''imagefolder''', data_files=_UpperCamelCase, cache_dir=model_args.cache_dir, task='''image-classification''', ) # If we don't have a validation split, split off a percentage of train as validation. A_ = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, _UpperCamelCase ) and data_args.train_val_split > 0.0: A_ = dataset['''train'''].train_test_split(data_args.train_val_split ) A_ = split['''train'''] A_ = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A_ = dataset['''train'''].features['''labels'''].names A_ ,A_ = {}, {} for i, label in enumerate(_UpperCamelCase ): A_ = str(_UpperCamelCase ) A_ = label # Load the accuracy metric from the datasets package A_ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Optional[Any] ): return metric.compute(predictions=np.argmax(p.predictions, axis=1 ), references=p.label_ids ) A_ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(_UpperCamelCase ), labelaid=_UpperCamelCase, idalabel=_UpperCamelCase, finetuning_task='''image-classification''', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) A_ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=_UpperCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) A_ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: A_ = image_processor.size['''shortest_edge'''] else: A_ = (image_processor.size['''height'''], image_processor.size['''width''']) A_ = Normalize(mean=image_processor.image_mean, std=image_processor.image_std ) A_ = Compose( [ RandomResizedCrop(_UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) A_ = Compose( [ Resize(_UpperCamelCase ), CenterCrop(_UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(_UpperCamelCase : Dict ): A_ = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(_UpperCamelCase : Any ): A_ = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: A_ = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: A_ = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_UpperCamelCase ) # Initalize our trainer A_ = Trainer( model=_UpperCamelCase, args=_UpperCamelCase, train_dataset=dataset['''train'''] if training_args.do_train else None, eval_dataset=dataset['''validation'''] if training_args.do_eval else None, compute_metrics=_UpperCamelCase, tokenizer=_UpperCamelCase, data_collator=_UpperCamelCase, ) # Training if training_args.do_train: A_ = None if training_args.resume_from_checkpoint is not None: A_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A_ = last_checkpoint A_ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics ) trainer.save_metrics('''train''', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A_ = trainer.evaluate() trainer.log_metrics('''eval''', _UpperCamelCase ) trainer.save_metrics('''eval''', _UpperCamelCase ) # Write model card and (optionally) push to hub A_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
18
0
'''simple docstring''' from math import factorial class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: A_ = real if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = [1] * rank else: A_ = rank def __repr__( self ) -> Optional[Any]: return ( F'''{self.real}+''' F'''{'+'.join(str(_SCREAMING_SNAKE_CASE )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def __A ( self ) -> Any: A_ = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , _SCREAMING_SNAKE_CASE ) def __add__( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return Dual(self.real + other , self.duals ) A_ = self.duals.copy() A_ = other.duals.copy() if len(_SCREAMING_SNAKE_CASE ) > len(_SCREAMING_SNAKE_CASE ): o_dual.extend([1] * (len(_SCREAMING_SNAKE_CASE ) - len(_SCREAMING_SNAKE_CASE )) ) elif len(_SCREAMING_SNAKE_CASE ) < len(_SCREAMING_SNAKE_CASE ): s_dual.extend([1] * (len(_SCREAMING_SNAKE_CASE ) - len(_SCREAMING_SNAKE_CASE )) ) A_ = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , _SCREAMING_SNAKE_CASE ) __lowercase : int = __add__ def __sub__( self , _SCREAMING_SNAKE_CASE ) -> Any: return self + other * -1 def __mul__( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , _SCREAMING_SNAKE_CASE ) A_ = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , _SCREAMING_SNAKE_CASE ) __lowercase : Optional[Any] = __mul__ def __truediv__( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , _SCREAMING_SNAKE_CASE ) raise ValueError def __floordiv__( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , _SCREAMING_SNAKE_CASE ) raise ValueError def __pow__( self , _SCREAMING_SNAKE_CASE ) -> str: if n < 0 or isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('''power must be a positive integer''' ) if n == 0: return 1 if n == 1: return self A_ = self for _ in range(n - 1 ): x *= self return x def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : Tuple, _UpperCamelCase : int ) -> Dict: if not callable(_UpperCamelCase ): raise ValueError('''differentiate() requires a function as input for func''' ) if not isinstance(_UpperCamelCase, (float, int) ): raise ValueError('''differentiate() requires a float as input for position''' ) if not isinstance(_UpperCamelCase, _UpperCamelCase ): raise ValueError('''differentiate() requires an int as input for order''' ) A_ = Dual(_UpperCamelCase, 1 ) A_ = func(_UpperCamelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Optional[int]: return y**2 * y**4 print(differentiate(f, 9, 2))
351
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __snake_case : str = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Dict: A_ = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def __A ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __A ( self ) -> str: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id='''test-model-flax''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def __A ( self ) -> List[str]: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Tuple ) -> Dict: A_ = True A_ = flatten_dict(modela.params ) A_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: A_ = False return models_are_equal @require_flax class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> List[str]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> List[Any]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , max_shard_size='''10KB''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> Dict: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
18
0
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : int ) -> int: while b: A_ ,A_ = b, a % b return a def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : int ) -> int: return a if b == 0 else euclidean_gcd_recursive(_UpperCamelCase, a % b ) def _UpperCAmelCase ( ) -> List[str]: print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3, 5 )}''' ) print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5, 3 )}''' ) print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1, 3 )}''' ) print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3, 6 )}''' ) print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6, 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3, 5 )}''' ) print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5, 3 )}''' ) print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1, 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3, 6 )}''' ) print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6, 3 )}''' ) if __name__ == "__main__": main()
352
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Dict: A_ = 1 A_ = 2 while i * i <= n: A_ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _UpperCAmelCase ( ) -> Optional[int]: A_ = 1 A_ = 1 while True: i += 1 t_num += i if count_divisors(_UpperCamelCase ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
18
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=None , ) -> Dict: A_ = size if size is not None else {'''shortest_edge''': 18} A_ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} A_ = parent A_ = batch_size A_ = num_channels A_ = num_frames A_ = image_size A_ = min_resolution A_ = max_resolution A_ = do_resize A_ = size A_ = do_normalize A_ = image_mean A_ = image_std A_ = crop_size def __A ( self ) -> Optional[int]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Any = VivitImageProcessor if is_vision_available() else None def __A ( self ) -> Union[str, Any]: A_ = VivitImageProcessingTester(self ) @property def __A ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> List[str]: A_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''image_mean''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''image_std''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_center_crop''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''size''' ) ) def __A ( self ) -> Optional[Any]: A_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __A ( self ) -> Dict: # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos A_ = prepare_video_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for video in video_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input A_ = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __A ( self ) -> Optional[Any]: # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ = prepare_video_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for video in video_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input A_ = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __A ( self ) -> str: # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ = prepare_video_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for video in video_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input A_ = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
353
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=[1, 384, 24, 24] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = backbone_out_indices A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = num_labels A_ = backbone_featmap_shape A_ = scope A_ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = num_patches + 1 def __A ( self ) -> Optional[Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Optional[Any]: A_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = DPTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: A_ = self.num_labels A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: A_ = self.num_labels A_ = DPTForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __A ( self ) -> Optional[int]: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __lowercase : Optional[int] = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : Any = False __lowercase : Tuple = False __lowercase : List[Any] = False def __A ( self ) -> Tuple: A_ = DPTModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def __A ( self ) -> Union[str, Any]: pass def __A ( self ) -> Dict: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> Optional[int]: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ): continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = False A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Tuple: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: A_ = model_class(config=_SCREAMING_SNAKE_CASE ) # Skip the check for the backbone A_ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": A_ = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> int: pass @slow def __A ( self ) -> Dict: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: A_ = DPTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = '''add''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Optional[int]: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Any: A_ = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) A_ = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(_SCREAMING_SNAKE_CASE ) A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE ) A_ = outputs.predicted_depth # verify the predicted depth A_ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
18
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __snake_case : str = logging.get_logger(__name__) def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Optional[int]: A_ = R'''\w+[.]\d+''' A_ = re.findall(_UpperCamelCase, _UpperCamelCase ) for pat in pats: A_ = key.replace(_UpperCamelCase, '''_'''.join(pat.split('''.''' ) ) ) return key def _UpperCAmelCase ( _UpperCamelCase : Dict, _UpperCamelCase : List[Any], _UpperCamelCase : Optional[int] ) -> Any: A_ = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A_ = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A_ = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A_ = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer A_ = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A_ = pt_tensor.transpose(2, 3, 1, 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A_ = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": A_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A_ = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A_ = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : Dict, _UpperCamelCase : Union[str, Any]=42 ) -> Union[str, Any]: # Step 1: Convert pytorch tensor to numpy A_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A_ = flax_model.init_weights(PRNGKey(_UpperCamelCase ) ) A_ = flatten_dict(_UpperCamelCase ) A_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A_ = rename_key(_UpperCamelCase ) A_ = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters A_ ,A_ = rename_key_and_reshape_tensor(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown A_ = jnp.asarray(_UpperCamelCase ) return unflatten_dict(_UpperCamelCase )
354
'''simple docstring''' import math def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : float ) -> float: if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
18
0
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def _UpperCAmelCase ( _UpperCamelCase : List[str], _UpperCamelCase : str, _UpperCamelCase : Union[str, Any], _UpperCamelCase : int ) -> Dict: A_ = s.rsplit(_UpperCamelCase, _UpperCamelCase ) return new.join(_UpperCamelCase ) def _UpperCAmelCase ( _UpperCamelCase : int ) -> List[str]: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def _UpperCAmelCase ( _UpperCamelCase : int ) -> List[str]: A_ = {} A_ = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: A_ = key.replace(F'''{group_key}.''', F'''{group_key}.group.''' ) if "res_path" in key: A_ = key.replace('''res_path.''', '''res_path.path.''' ) if key.endswith('''.w''' ): A_ = rreplace(_UpperCamelCase, '''.w''', '''.weight''', 1 ) if key.endswith('''.b''' ): A_ = rreplace(_UpperCamelCase, '''.b''', '''.bias''', 1 ) A_ = value.float() return upgrade @torch.no_grad() def _UpperCAmelCase ( _UpperCamelCase : Optional[Any], _UpperCamelCase : Union[str, Any], _UpperCamelCase : Dict=None, _UpperCamelCase : Optional[Any]=True ) -> Any: from dall_e import Encoder A_ = Encoder() if os.path.exists(_UpperCamelCase ): A_ = torch.load(_UpperCamelCase ) else: A_ = torch.hub.load_state_dict_from_url(_UpperCamelCase ) if isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = ckpt.state_dict() encoder.load_state_dict(_UpperCamelCase ) if config_path is not None: A_ = FlavaImageCodebookConfig.from_pretrained(_UpperCamelCase ) else: A_ = FlavaImageCodebookConfig() A_ = FlavaImageCodebook(_UpperCamelCase ).eval() A_ = encoder.state_dict() A_ = upgrade_state_dict(_UpperCamelCase ) hf_model.load_state_dict(_UpperCamelCase ) A_ = hf_model.state_dict() A_ = count_parameters(_UpperCamelCase ) A_ = count_parameters(_UpperCamelCase ) assert torch.allclose(_UpperCamelCase, _UpperCamelCase, atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(_UpperCamelCase ) else: return hf_state_dict if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __snake_case : Any = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
355
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
18
0
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : int ) -> bool: return sum(i for i in range(1, number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') __snake_case : Any = int(input('Enter number: ').strip()) print(F"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
356
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : Any = logging.get_logger(__name__) def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> List[str]: A_ = torch.load(_UpperCamelCase, map_location='''cpu''' ) if "model" in sd.keys(): A_ = torch.load(_UpperCamelCase, map_location='''cpu''' )['''model'''] # pop unnecessary weights A_ = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(_UpperCamelCase ) A_ = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: A_ = sd.pop(_UpperCamelCase ) A_ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: A_ = sd[key] # We split QKV in separate Q,K,V A_ = key.replace('''.qkv_proj.''', '''.q_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.k_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.v_proj.''' ) A_ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 A_ ,A_ ,A_ = torch.split(_UpperCamelCase, depth // 3, dim=0 ) A_ = q A_ = k A_ = v del sd[key] return sd @torch.no_grad() def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : Optional[Any], _UpperCamelCase : List[str]=None ) -> Dict: A_ = load_checkpoint(_UpperCamelCase ) if config is not None: A_ = OPTConfig.from_pretrained(_UpperCamelCase ) else: A_ = OPTConfig() A_ = OPTModel(_UpperCamelCase ).half().eval() model.load_state_dict(_UpperCamelCase ) # Check results Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') __snake_case : Optional[Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
18
0
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np __snake_case : Optional[Any] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 __snake_case : List[Any] = typing.Union[np.floataa, int, float] # noqa: UP007 def _UpperCAmelCase ( _UpperCamelCase : Vector, _UpperCamelCase : Vector ) -> VectorOut: return np.sqrt(np.sum((np.asarray(_UpperCamelCase ) - np.asarray(_UpperCamelCase )) ** 2 ) ) def _UpperCAmelCase ( _UpperCamelCase : Vector, _UpperCamelCase : Vector ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(_UpperCamelCase, _UpperCamelCase ) ) ** (1 / 2) if __name__ == "__main__": def _UpperCAmelCase ( ) -> None: from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''', number=1_00_00, globals=globals(), ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''', number=1_00_00, globals=globals(), ) ) benchmark()
357
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __snake_case : Optional[Any] = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } __snake_case : Tuple = {'allegro/herbert-base-cased': 514} __snake_case : List[str] = {} class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Any = VOCAB_FILES_NAMES __lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Dict = PRETRAINED_INIT_CONFIGURATION __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = HerbertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE="</s>" , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.cls_token_id] A_ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: A_ = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
18
0
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: super().__init__() A_ = module A_ = nn.Sequential( nn.Linear(module.in_features , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) , nn.Linear(_SCREAMING_SNAKE_CASE , module.out_features , bias=_SCREAMING_SNAKE_CASE ) , ) A_ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_SCREAMING_SNAKE_CASE ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __A ( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: return self.module(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) + self.adapter(_SCREAMING_SNAKE_CASE ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowercase : Dict = 'bigscience/bloom-1b7' # Constant values __lowercase : str = 2.109659552692574 __lowercase : int = 'Hello my name is' __lowercase : Optional[Any] = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __lowercase : Optional[Any] = 10 def __A ( self ) -> List[str]: # Models and tokenizer A_ = AutoTokenizer.from_pretrained(self.model_name ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[Any]: super().setUp() # Models and tokenizer A_ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> List[str]: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: A_ = self.model_abit.config self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''quantization_config''' ) ) A_ = config.to_dict() A_ = config.to_diff_dict() A_ = config.to_json_string() def __A ( self ) -> Union[str, Any]: from bitsandbytes.nn import Paramsabit A_ = self.model_fpaa.get_memory_footprint() A_ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A_ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __A ( self ) -> Union[str, Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __A ( self ) -> Optional[int]: A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Optional[int]: A_ = BitsAndBytesConfig() A_ = True A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Tuple: with self.assertRaises(_SCREAMING_SNAKE_CASE ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Tuple: A_ = BitsAndBytesConfig() with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def __A ( self ) -> Dict: with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_fpaa.to(torch.floataa ) A_ = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A_ = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error A_ = self.model_fpaa.half() # Check this does not throw an error A_ = self.model_fpaa.float() def __A ( self ) -> Optional[int]: A_ = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Optional[Any]: A_ = '''t5-small''' A_ = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense A_ = AutoTokenizer.from_pretrained(cls.model_name ) A_ = '''Translate in German: Hello, my dog is cute''' def __A ( self ) -> Any: gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: from transformers import TaForConditionalGeneration A_ = TaForConditionalGeneration._keep_in_fpaa_modules A_ = None # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) A_ = modules def __A ( self ) -> Dict: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> int: super().setUp() # model_name A_ = '''bigscience/bloom-560m''' A_ = '''t5-small''' # Different types of model A_ = AutoModel.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Sequence classification model A_ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # CausalLM model A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Seq2seq model A_ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> Union[str, Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __A ( self ) -> List[str]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> Tuple: super().setUp() def __A ( self ) -> List[Any]: del self.pipe gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[Any]: A_ = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A_ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[str]: super().setUp() def __A ( self ) -> Optional[int]: A_ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch A_ = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> str: A_ = '''facebook/opt-350m''' super().setUp() def __A ( self ) -> Optional[int]: if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A_ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A_ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_SCREAMING_SNAKE_CASE ) ): A_ = LoRALayer(module.q_proj , rank=16 ) A_ = LoRALayer(module.k_proj , rank=16 ) A_ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A_ = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A_ = model.forward(**_SCREAMING_SNAKE_CASE ) out.logits.norm().backward() for module in model.modules(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_SCREAMING_SNAKE_CASE , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : int = 'gpt2-xl' __lowercase : List[Any] = 3.3191854854152187
358
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any]=None ) -> List[Any]: if subparsers is not None: A_ = subparsers.add_parser('''env''' ) else: A_ = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''', default=_UpperCamelCase, help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=_UpperCamelCase ) return parser def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> Dict: A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = is_xpu_available() A_ = is_npu_available() A_ = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(_UpperCamelCase ): A_ = load_config_from_file(args.config_file ).to_dict() A_ = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(_UpperCamelCase ), '''PyTorch NPU available''': str(_UpperCamelCase ), '''System RAM''': F'''{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB''', } if pt_cuda_available: A_ = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) A_ = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_UpperCamelCase, _UpperCamelCase ) else F'''\t{accelerate_config}''' ) print(_UpperCamelCase ) A_ = accelerate_config return info def _UpperCAmelCase ( ) -> int: A_ = env_command_parser() A_ = parser.parse_args() env_command(_UpperCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
18
0
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : list[float] ) -> float: if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) A_ = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_UpperCamelCase ) ) return round(_UpperCamelCase, ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
359
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=0.6 , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = type_sequence_label_size A_ = initializer_range A_ = mask_ratio A_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __A ( self ) -> Union[str, Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: A_ = ViTMAEModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) A_ = (self.image_size // self.patch_size) ** 2 A_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images A_ = 1 A_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ = model(_SCREAMING_SNAKE_CASE ) A_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __A ( self ) -> int: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : int = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __lowercase : List[Any] = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} __lowercase : Union[str, Any] = False __lowercase : List[Any] = False __lowercase : List[str] = False __lowercase : List[str] = False def __A ( self ) -> Any: A_ = ViTMAEModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __A ( self ) -> int: pass def __A ( self ) -> int: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> int: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Union[str, Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: # make masks reproducible np.random.seed(2 ) A_ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) A_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument A_ = pt_noise super().check_pt_tf_models(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ = outputs[0].cpu().numpy() A_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ = model_class.from_pretrained(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Make sure we don't have nans A_ = after_outputs[0].cpu().numpy() A_ = 0 A_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> List[str]: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> Dict: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> Tuple: pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __A ( self ) -> str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> Union[str, Any]: pass @slow def __A ( self ) -> Dict: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = ViTMAEModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Dict: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __A ( self ) -> List[str]: return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __A ( self ) -> List[str]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) A_ = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(_SCREAMING_SNAKE_CASE ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) A_ = ViTMAEConfig() A_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) A_ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE , noise=torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ) ) # verify the logits A_ = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_SCREAMING_SNAKE_CASE ) , atol=1E-4 ) )
18
0
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __snake_case : int = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Dict = 'ernie_m' __lowercase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , _SCREAMING_SNAKE_CASE = 25_0002 , _SCREAMING_SNAKE_CASE = 768 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 3072 , _SCREAMING_SNAKE_CASE = "gelu" , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 514 , _SCREAMING_SNAKE_CASE = 0.02 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 1E-05 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.0 , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = initializer_range A_ = layer_norm_eps A_ = classifier_dropout A_ = is_decoder A_ = act_dropout
360
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : int = logging.get_logger(__name__) __snake_case : str = { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[Any] = 'xlm-prophetnet' __lowercase : Optional[int] = ['past_key_values'] __lowercase : int = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = "gelu" , _SCREAMING_SNAKE_CASE = 3_0522 , _SCREAMING_SNAKE_CASE = 1024 , _SCREAMING_SNAKE_CASE = 4096 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 4096 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 0.02 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = 128 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 2 , **_SCREAMING_SNAKE_CASE , ) -> int: A_ = vocab_size A_ = hidden_size A_ = encoder_ffn_dim A_ = num_encoder_layers A_ = num_encoder_attention_heads A_ = decoder_ffn_dim A_ = num_decoder_layers A_ = num_decoder_attention_heads A_ = max_position_embeddings A_ = init_std # Normal(0, this parameter) A_ = activation_function # parameters for xlmprophetnet A_ = ngram A_ = num_buckets A_ = relative_max_distance A_ = disable_ngram_loss A_ = eps # 3 Types of Dropout A_ = attention_dropout A_ = activation_dropout A_ = dropout A_ = use_cache super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , add_cross_attention=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @property def __A ( self ) -> int: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def __A ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
18
0
'''simple docstring''' import argparse import os import re __snake_case : List[str] = 'src/diffusers' # Pattern that looks at the indentation in a line. __snake_case : Tuple = re.compile(R'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. __snake_case : Optional[Any] = re.compile(R'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __snake_case : Optional[Any] = re.compile(R'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. __snake_case : int = re.compile(R'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __snake_case : Union[str, Any] = re.compile(R'\[([^\]]+)\]') def _UpperCAmelCase ( _UpperCamelCase : str ) -> List[str]: A_ = _re_indent.search(_UpperCamelCase ) return "" if search is None else search.groups()[0] def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : str="", _UpperCamelCase : Union[str, Any]=None, _UpperCamelCase : Optional[int]=None ) -> Dict: A_ = 0 A_ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(_UpperCamelCase ): index += 1 A_ = ['''\n'''.join(lines[:index] )] else: A_ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). A_ = [lines[index]] index += 1 while index < len(_UpperCamelCase ) and (end_prompt is None or not lines[index].startswith(_UpperCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_UpperCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(_UpperCamelCase ) ) if index < len(_UpperCamelCase ) - 1: A_ = [lines[index + 1]] index += 1 else: A_ = [] else: blocks.append('''\n'''.join(_UpperCamelCase ) ) A_ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_UpperCamelCase ) > 0: blocks.append('''\n'''.join(_UpperCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_UpperCamelCase ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _UpperCAmelCase ( _UpperCamelCase : Optional[int] ) -> Union[str, Any]: def _inner(_UpperCamelCase : int ): return key(_UpperCamelCase ).lower().replace('''_''', '''''' ) return _inner def _UpperCAmelCase ( _UpperCamelCase : List[Any], _UpperCamelCase : Any=None ) -> Tuple: # If no key is provided, we use a noop. def noop(_UpperCamelCase : Dict ): return x if key is None: A_ = noop # Constants are all uppercase, they go first. A_ = [obj for obj in objects if key(_UpperCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. A_ = [obj for obj in objects if key(_UpperCamelCase )[0].isupper() and not key(_UpperCamelCase ).isupper()] # Functions begin with a lowercase, they go last. A_ = [obj for obj in objects if not key(_UpperCamelCase )[0].isupper()] A_ = ignore_underscore(_UpperCamelCase ) return sorted(_UpperCamelCase, key=_UpperCamelCase ) + sorted(_UpperCamelCase, key=_UpperCamelCase ) + sorted(_UpperCamelCase, key=_UpperCamelCase ) def _UpperCAmelCase ( _UpperCamelCase : List[str] ) -> Optional[int]: # This inner function sort imports between [ ]. def _replace(_UpperCamelCase : Dict ): A_ = match.groups()[0] if "," not in imports: return F'''[{imports}]''' A_ = [part.strip().replace('''"''', '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A_ = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(_UpperCamelCase )] ) + "]" A_ = import_statement.split('''\n''' ) if len(_UpperCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. A_ = 2 if lines[1].strip() == '''[''' else 1 A_ = [(i, _re_strip_line.search(_UpperCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] A_ = sort_objects(_UpperCamelCase, key=lambda _UpperCamelCase : x[1] ) A_ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_UpperCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: A_ = _re_bracket_content.sub(_replace, lines[1] ) else: A_ = [part.strip().replace('''"''', '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: A_ = keys[:-1] A_ = get_indent(lines[1] ) + ''', '''.join([F'''"{k}"''' for k in sort_objects(_UpperCamelCase )] ) return "\n".join(_UpperCamelCase ) else: # Finally we have to deal with imports fitting on one line A_ = _re_bracket_content.sub(_replace, _UpperCamelCase ) return import_statement def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : Optional[int]=True ) -> Union[str, Any]: with open(_UpperCamelCase, '''r''' ) as f: A_ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 A_ = split_code_in_indented_blocks( _UpperCamelCase, start_prompt='''_import_structure = {''', end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1, len(_UpperCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. A_ = main_blocks[block_idx] A_ = block.split('''\n''' ) # Get to the start of the imports. A_ = 0 while line_idx < len(_UpperCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: A_ = len(_UpperCamelCase ) else: line_idx += 1 if line_idx >= len(_UpperCamelCase ): continue # Ignore beginning and last line: they don't contain anything. A_ = '''\n'''.join(block_lines[line_idx:-1] ) A_ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. A_ = split_code_in_indented_blocks(_UpperCamelCase, indent_level=_UpperCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend A_ = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. A_ = [(pattern.search(_UpperCamelCase ).groups()[0] if pattern.search(_UpperCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. A_ = [(i, key) for i, key in enumerate(_UpperCamelCase ) if key is not None] A_ = [x[0] for x in sorted(_UpperCamelCase, key=lambda _UpperCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. A_ = 0 A_ = [] for i in range(len(_UpperCamelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: A_ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_UpperCamelCase ) count += 1 # And we put our main block back together with its first and last line. A_ = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_UpperCamelCase ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(_UpperCamelCase, '''w''' ) as f: f.write('''\n'''.join(_UpperCamelCase ) ) def _UpperCAmelCase ( _UpperCamelCase : Optional[Any]=True ) -> int: A_ = [] for root, _, files in os.walk(_UpperCamelCase ): if "__init__.py" in files: A_ = sort_imports(os.path.join(_UpperCamelCase, '''__init__.py''' ), check_only=_UpperCamelCase ) if result: A_ = [os.path.join(_UpperCamelCase, '''__init__.py''' )] if len(_UpperCamelCase ) > 0: raise ValueError(F'''Would overwrite {len(_UpperCamelCase )} files, run `make style`.''' ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') __snake_case : List[Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
361
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : list[float] ) -> float: if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) A_ = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_UpperCamelCase ) ) return round(_UpperCamelCase, ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel __snake_case : Optional[int] = HfApi() __snake_case : Tuple = {} # fmt: off __snake_case : Dict = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) __snake_case : Dict = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) __snake_case : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) __snake_case : str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) __snake_case : str = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) __snake_case : Union[str, Any] = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) __snake_case : str = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) __snake_case : List[str] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) __snake_case : Union[str, Any] = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) __snake_case : Optional[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) __snake_case : int = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) __snake_case : int = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) __snake_case : Union[str, Any] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) __snake_case : int = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) __snake_case : List[str] = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on __snake_case : Dict = api.list_models(filter='diffusers') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": __snake_case : int = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1] print(F"""Started running {mod.modelId}!!!""") if mod.modelId.startswith('CompVis'): __snake_case : List[str] = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet') else: __snake_case : Any = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) __snake_case : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) __snake_case : Dict = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): __snake_case : Tuple = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1E-3 ) print(F"""{mod.modelId} has passed successfully!!!""")
362
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( _UpperCamelCase : int | str ) -> bool: A_ = str(_UpperCamelCase ) return n == n[::-1] def _UpperCAmelCase ( _UpperCamelCase : int = 1_00_00_00 ) -> Any: A_ = 0 for i in range(1, _UpperCamelCase ): if is_palindrome(_UpperCamelCase ) and is_palindrome(bin(_UpperCamelCase ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
18
0
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : float ) -> tuple: if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
363
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Tuple, _UpperCamelCase : List[str] ) -> int: A_ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] A_ = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } A_ = F'''{src_lang}-{tgt_lang}''' A_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(_UpperCamelCase, exist_ok=_UpperCamelCase ) A_ = os.path.join(_UpperCamelCase, '''README.md''' ) print(F'''Generating {path}''' ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(_UpperCamelCase ) # make sure we are under the root of the project __snake_case : Any = Path(__file__).resolve().parent.parent.parent __snake_case : Tuple = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __snake_case , __snake_case , __snake_case : Any = model_name.split('-') __snake_case : int = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
18
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Dict: A_ = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } A_ = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: A_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , x.transpose() ) ) A_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def __A ( self ) -> Tuple: A_ = np.random.randn(3 , 4 ) A_ = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , transpose(_SCREAMING_SNAKE_CASE ).numpy() ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ).numpy() ) ) @require_tf def __A ( self ) -> int: A_ = np.random.randn(3 , 4 ) A_ = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , transpose(_SCREAMING_SNAKE_CASE ).numpy() ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ).numpy() ) ) @require_flax def __A ( self ) -> int: A_ = np.random.randn(3 , 4 ) A_ = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , np.asarray(transpose(_SCREAMING_SNAKE_CASE ) ) ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , np.asarray(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) ) ) ) def __A ( self ) -> List[str]: A_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , np.reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) ) ) A_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , np.reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) ) ) @require_torch def __A ( self ) -> int: A_ = np.random.randn(3 , 4 ) A_ = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , reshape(_SCREAMING_SNAKE_CASE , (4, 3) ).numpy() ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , reshape(_SCREAMING_SNAKE_CASE , (12, 5) ).numpy() ) ) @require_tf def __A ( self ) -> str: A_ = np.random.randn(3 , 4 ) A_ = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , reshape(_SCREAMING_SNAKE_CASE , (4, 3) ).numpy() ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , reshape(_SCREAMING_SNAKE_CASE , (12, 5) ).numpy() ) ) @require_flax def __A ( self ) -> Optional[int]: A_ = np.random.randn(3 , 4 ) A_ = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) ) ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) ) ) ) def __A ( self ) -> Tuple: A_ = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , np.squeeze(_SCREAMING_SNAKE_CASE ) ) ) A_ = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , np.squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) ) ) @require_torch def __A ( self ) -> Dict: A_ = np.random.randn(1 , 3 , 4 ) A_ = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , squeeze(_SCREAMING_SNAKE_CASE ).numpy() ) ) A_ = np.random.randn(1 , 4 , 1 , 5 ) A_ = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , squeeze(_SCREAMING_SNAKE_CASE , axis=2 ).numpy() ) ) @require_tf def __A ( self ) -> Optional[Any]: A_ = np.random.randn(1 , 3 , 4 ) A_ = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , squeeze(_SCREAMING_SNAKE_CASE ).numpy() ) ) A_ = np.random.randn(1 , 4 , 1 , 5 ) A_ = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , squeeze(_SCREAMING_SNAKE_CASE , axis=2 ).numpy() ) ) @require_flax def __A ( self ) -> int: A_ = np.random.randn(1 , 3 , 4 ) A_ = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE ) ) ) ) A_ = np.random.randn(1 , 4 , 1 , 5 ) A_ = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) ) ) ) def __A ( self ) -> int: A_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , np.expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) ) ) @require_torch def __A ( self ) -> List[str]: A_ = np.random.randn(3 , 4 ) A_ = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ).numpy() ) ) @require_tf def __A ( self ) -> int: A_ = np.random.randn(3 , 4 ) A_ = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ).numpy() ) ) @require_flax def __A ( self ) -> Optional[Any]: A_ = np.random.randn(3 , 4 ) A_ = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , np.asarray(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) ) ) )
364
'''simple docstring''' from collections import defaultdict def _UpperCAmelCase ( _UpperCamelCase : int ) -> int: A_ = 1 A_ = True for v in tree[start]: if v not in visited: ret += dfs(_UpperCamelCase ) if ret % 2 == 0: cuts.append(_UpperCamelCase ) return ret def _UpperCAmelCase ( ) -> Optional[Any]: dfs(1 ) if __name__ == "__main__": __snake_case , __snake_case : Union[str, Any] = 10, 9 __snake_case : int = defaultdict(list) __snake_case : dict[int, bool] = {} __snake_case : list[int] = [] __snake_case : Union[str, Any] = 0 __snake_case : int = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
0
'''simple docstring''' import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __UpperCAmelCase : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) A_ = img A_ = img.shape[1] A_ = img.shape[0] A_ = dst_width A_ = dst_height A_ = self.src_w / self.dst_w A_ = self.src_h / self.dst_h A_ = A_ = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def __A ( self ) -> Optional[Any]: for i in range(self.dst_h ): for j in range(self.dst_w ): A_ = self.img[self.get_y(_SCREAMING_SNAKE_CASE )][self.get_x(_SCREAMING_SNAKE_CASE )] def __A ( self , _SCREAMING_SNAKE_CASE ) -> int: return int(self.ratio_x * x ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> int: return int(self.ratio_y * y ) if __name__ == "__main__": __snake_case : List[str] = 800, 600 __snake_case : int = imread('image_data/lena.jpg', 1) __snake_case : Union[str, Any] = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output ) waitKey(0) destroyAllWindows()
365
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[int] = 'mgp-str' def __init__( self , _SCREAMING_SNAKE_CASE=[32, 128] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=27 , _SCREAMING_SNAKE_CASE=38 , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=3_0522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: super().__init__(**_SCREAMING_SNAKE_CASE ) A_ = image_size A_ = patch_size A_ = num_channels A_ = max_token_length A_ = num_character_labels A_ = num_bpe_labels A_ = num_wordpiece_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = mlp_ratio A_ = distilled A_ = layer_norm_eps A_ = drop_rate A_ = qkv_bias A_ = attn_drop_rate A_ = drop_path_rate A_ = output_aa_attentions A_ = initializer_range
18
0
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( _UpperCamelCase : list[list[int]] ) -> bool: A_ = len(_UpperCamelCase ) # We need to create solution object to save path. A_ = [[0 for _ in range(_UpperCamelCase )] for _ in range(_UpperCamelCase )] A_ = run_maze(_UpperCamelCase, 0, 0, _UpperCamelCase ) if solved: print('''\n'''.join(str(_UpperCamelCase ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def _UpperCAmelCase ( _UpperCamelCase : list[list[int]], _UpperCamelCase : int, _UpperCamelCase : int, _UpperCamelCase : list[list[int]] ) -> bool: A_ = len(_UpperCamelCase ) # Final check point. if i == j == (size - 1): A_ = 1 return True A_ = (not i < 0) and (not j < 0) # Check lower bounds A_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. A_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited A_ = 1 # check for directions if ( run_maze(_UpperCamelCase, i + 1, _UpperCamelCase, _UpperCamelCase ) or run_maze(_UpperCamelCase, _UpperCamelCase, j + 1, _UpperCamelCase ) or run_maze(_UpperCamelCase, i - 1, _UpperCamelCase, _UpperCamelCase ) or run_maze(_UpperCamelCase, _UpperCamelCase, j - 1, _UpperCamelCase ) ): return True A_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
366
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __UpperCAmelCase : '''simple docstring''' pass
18
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __snake_case : Optional[int] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
367
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _UpperCAmelCase ( ) -> Dict: A_ = ArgumentParser('''Accelerate CLI tool''', usage='''accelerate <command> [<args>]''', allow_abbrev=_UpperCamelCase ) A_ = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=_UpperCamelCase ) env_command_parser(subparsers=_UpperCamelCase ) launch_command_parser(subparsers=_UpperCamelCase ) tpu_command_parser(subparsers=_UpperCamelCase ) test_command_parser(subparsers=_UpperCamelCase ) # Let's go A_ = parser.parse_args() if not hasattr(_UpperCamelCase, '''func''' ): parser.print_help() exit(1 ) # Run args.func(_UpperCamelCase ) if __name__ == "__main__": main()
18
0
'''simple docstring''' class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: A_ = None A_ = None A_ = graph self._normalize_graph(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = len(_SCREAMING_SNAKE_CASE ) A_ = None def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: if sources is int: A_ = [sources] if sinks is int: A_ = [sinks] if len(_SCREAMING_SNAKE_CASE ) == 0 or len(_SCREAMING_SNAKE_CASE ) == 0: return A_ = sources[0] A_ = sinks[0] # make fake vertex if there are more # than one source or sink if len(_SCREAMING_SNAKE_CASE ) > 1 or len(_SCREAMING_SNAKE_CASE ) > 1: A_ = 0 for i in sources: max_input_flow += sum(self.graph[i] ) A_ = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: A_ = max_input_flow A_ = 0 A_ = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: A_ = max_input_flow A_ = size - 1 def __A ( self ) -> Any: if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def __A ( self , _SCREAMING_SNAKE_CASE ) -> Any: A_ = algorithm(self ) class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE ) -> Tuple: A_ = flow_network A_ = flow_network.verticesCount A_ = flow_network.sourceIndex A_ = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that A_ = flow_network.graph A_ = False def __A ( self ) -> Dict: if not self.executed: self._algorithm() A_ = True def __A ( self ) -> Any: pass class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE ) -> Tuple: super().__init__(_SCREAMING_SNAKE_CASE ) # use this to save your result A_ = -1 def __A ( self ) -> Tuple: if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE ) -> Any: super().__init__(_SCREAMING_SNAKE_CASE ) A_ = [[0] * self.verticies_count for i in range(self.verticies_count )] A_ = [0] * self.verticies_count A_ = [0] * self.verticies_count def __A ( self ) -> str: A_ = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule A_ = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list A_ = 0 while i < len(_SCREAMING_SNAKE_CASE ): A_ = vertices_list[i] A_ = self.heights[vertex_index] self.process_vertex(_SCREAMING_SNAKE_CASE ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_SCREAMING_SNAKE_CASE ) ) A_ = 0 else: i += 1 A_ = sum(self.preflow[self.source_index] ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> Any: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.relabel(_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: A_ = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def __A ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: A_ = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): A_ = self.heights[to_index] if min_height is not None: A_ = min_height + 1 if __name__ == "__main__": __snake_case : int = [0] __snake_case : Tuple = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __snake_case : Optional[Any] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __snake_case : Union[str, Any] = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __snake_case : Optional[Any] = flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
368
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __snake_case : Any = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' __snake_case : Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' __snake_case : Optional[int] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __A ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: if rouge_types is None: A_ = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] A_ = rouge_scorer.RougeScorer(rouge_types=_SCREAMING_SNAKE_CASE , use_stemmer=_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = scoring.BootstrapAggregator() else: A_ = [] for ref, pred in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = scorer.score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if use_aggregator: aggregator.add_scores(_SCREAMING_SNAKE_CASE ) else: scores.append(_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = aggregator.aggregate() else: A_ = {} for key in scores[0]: A_ = [score[key] for score in scores] return result
18
0
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 __snake_case : Tuple = get_tests_dir('fixtures/dummy_feature_extractor_config.json') __snake_case : List[str] = get_tests_dir('fixtures/vocab.json') __snake_case : Any = get_tests_dir('fixtures') class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowercase : str = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] def __A ( self ) -> Any: A_ = 0 def __A ( self ) -> List[Any]: A_ = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: A_ = WavaVecaConfig() A_ = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' ) # save in new folder model_config.save_pretrained(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) copyfile(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , '''vocab.json''' ) ) A_ = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: A_ = WavaVecaFeatureExtractor() A_ = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A_ = WavaVecaProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # save in new folder processor.save_pretrained(_SCREAMING_SNAKE_CASE ) # drop `processor_class` in tokenizer with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , '''r''' ) as f: A_ = json.load(_SCREAMING_SNAKE_CASE ) config_dict.pop('''processor_class''' ) with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , '''w''' ) as f: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) A_ = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdirname: A_ = WavaVecaFeatureExtractor() A_ = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' ) A_ = WavaVecaProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # save in new folder processor.save_pretrained(_SCREAMING_SNAKE_CASE ) # drop `processor_class` in feature extractor with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , '''r''' ) as f: A_ = json.load(_SCREAMING_SNAKE_CASE ) config_dict.pop('''processor_class''' ) with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , '''w''' ) as f: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) A_ = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: A_ = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' ) model_config.save_pretrained(_SCREAMING_SNAKE_CASE ) # copy relevant files copyfile(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , '''vocab.json''' ) ) # create emtpy sample processor with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , '''w''' ) as f: f.write('''{}''' ) A_ = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_SCREAMING_SNAKE_CASE ) A_ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) A_ = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) A_ = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version A_ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE ) A_ = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def __A ( self ) -> Optional[int]: try: AutoConfig.register('''custom''' , _SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE , slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) AutoProcessor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoProcessor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API A_ = CustomFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: A_ = os.path.join(_SCREAMING_SNAKE_CASE , '''vocab.txt''' ) with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A_ = CustomTokenizer(_SCREAMING_SNAKE_CASE ) A_ = CustomProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __A ( self ) -> Tuple: class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[int] = False class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Any = False class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Any = 'AutoFeatureExtractor' __lowercase : List[str] = 'AutoTokenizer' __lowercase : Dict = False try: AutoConfig.register('''custom''' , _SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE , slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) AutoProcessor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local classes. A_ = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. A_ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. A_ = AutoProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def __A ( self ) -> List[Any]: A_ = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' ) def __A ( self ) -> Any: A_ = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' ) self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' ) @is_staging_test class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowercase : str = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def __A ( cls ) -> str: A_ = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def __A ( cls ) -> Optional[Any]: try: delete_repo(token=cls._token , repo_id='''test-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' ) except HTTPError: pass def __A ( self ) -> Optional[Any]: A_ = WavaVecaProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_SCREAMING_SNAKE_CASE , '''test-processor''' ) , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = WavaVecaProcessor.from_pretrained(F'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , _SCREAMING_SNAKE_CASE ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __A ( self ) -> Optional[int]: A_ = WavaVecaProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_SCREAMING_SNAKE_CASE , '''test-processor-org''' ) , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token , organization='''valid_org''' , ) A_ = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , _SCREAMING_SNAKE_CASE ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def __A ( self ) -> List[Any]: CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() A_ = CustomFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: A_ = os.path.join(_SCREAMING_SNAKE_CASE , '''vocab.txt''' ) with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) A_ = CustomTokenizer(_SCREAMING_SNAKE_CASE ) A_ = CustomProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'''{USER}/test-dynamic-processor''' , token=self._token ) A_ = Repository(_SCREAMING_SNAKE_CASE , clone_from=F'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { '''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''', '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) ) as f: A_ = json.load(_SCREAMING_SNAKE_CASE ) self.assertDictEqual( tokenizer_config['''auto_map'''] , { '''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None], '''AutoProcessor''': '''custom_processing.CustomProcessor''', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(_SCREAMING_SNAKE_CASE , '''custom_feature_extraction.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(_SCREAMING_SNAKE_CASE , '''custom_tokenization.py''' ) ) ) self.assertTrue(os.path.isfile(os.path.join(_SCREAMING_SNAKE_CASE , '''custom_processing.py''' ) ) ) repo.push_to_hub() A_ = AutoProcessor.from_pretrained(F'''{USER}/test-dynamic-processor''' , trust_remote_code=_SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
369
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: super().__init__() A_ = module A_ = nn.Sequential( nn.Linear(module.in_features , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) , nn.Linear(_SCREAMING_SNAKE_CASE , module.out_features , bias=_SCREAMING_SNAKE_CASE ) , ) A_ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_SCREAMING_SNAKE_CASE ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __A ( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: return self.module(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) + self.adapter(_SCREAMING_SNAKE_CASE ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowercase : Dict = 'bigscience/bloom-1b7' # Constant values __lowercase : str = 2.109659552692574 __lowercase : int = 'Hello my name is' __lowercase : Optional[Any] = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __lowercase : Optional[Any] = 10 def __A ( self ) -> List[str]: # Models and tokenizer A_ = AutoTokenizer.from_pretrained(self.model_name ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[Any]: super().setUp() # Models and tokenizer A_ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> List[str]: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: A_ = self.model_abit.config self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''quantization_config''' ) ) A_ = config.to_dict() A_ = config.to_diff_dict() A_ = config.to_json_string() def __A ( self ) -> Union[str, Any]: from bitsandbytes.nn import Paramsabit A_ = self.model_fpaa.get_memory_footprint() A_ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A_ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __A ( self ) -> Union[str, Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __A ( self ) -> Optional[int]: A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Optional[int]: A_ = BitsAndBytesConfig() A_ = True A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Tuple: with self.assertRaises(_SCREAMING_SNAKE_CASE ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Tuple: A_ = BitsAndBytesConfig() with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def __A ( self ) -> Dict: with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_fpaa.to(torch.floataa ) A_ = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A_ = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error A_ = self.model_fpaa.half() # Check this does not throw an error A_ = self.model_fpaa.float() def __A ( self ) -> Optional[int]: A_ = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Optional[Any]: A_ = '''t5-small''' A_ = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense A_ = AutoTokenizer.from_pretrained(cls.model_name ) A_ = '''Translate in German: Hello, my dog is cute''' def __A ( self ) -> Any: gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: from transformers import TaForConditionalGeneration A_ = TaForConditionalGeneration._keep_in_fpaa_modules A_ = None # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) A_ = modules def __A ( self ) -> Dict: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> int: super().setUp() # model_name A_ = '''bigscience/bloom-560m''' A_ = '''t5-small''' # Different types of model A_ = AutoModel.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Sequence classification model A_ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # CausalLM model A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Seq2seq model A_ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> Union[str, Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __A ( self ) -> List[str]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> Tuple: super().setUp() def __A ( self ) -> List[Any]: del self.pipe gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[Any]: A_ = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A_ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[str]: super().setUp() def __A ( self ) -> Optional[int]: A_ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch A_ = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> str: A_ = '''facebook/opt-350m''' super().setUp() def __A ( self ) -> Optional[int]: if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A_ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A_ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_SCREAMING_SNAKE_CASE ) ): A_ = LoRALayer(module.q_proj , rank=16 ) A_ = LoRALayer(module.k_proj , rank=16 ) A_ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A_ = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A_ = model.forward(**_SCREAMING_SNAKE_CASE ) out.logits.norm().backward() for module in model.modules(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_SCREAMING_SNAKE_CASE , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : int = 'gpt2-xl' __lowercase : List[Any] = 3.3191854854152187
18
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : Dict = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
370
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _UpperCAmelCase ( _UpperCamelCase : Features ) -> Optional[int]: A_ = np.inf def set_batch_size(_UpperCamelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ) and feature.dtype == "binary": A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_UpperCamelCase, _UpperCamelCase ) return None if batch_size is np.inf else batch_size class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ = path_or_paths if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} A_ = _PACKAGED_DATASETS_MODULES['''parquet'''][1] A_ = Parquet( cache_dir=_SCREAMING_SNAKE_CASE , data_files=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , hash=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self ) -> str: # Build iterable dataset if self.streaming: A_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) A_ = self.builder.as_dataset( split=self.split , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Dict: A_ = dataset A_ = path_or_buf A_ = batch_size or get_writer_batch_size(dataset.features ) A_ = parquet_writer_kwargs def __A ( self ) -> int: A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: A_ = self._write(file_obj=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) else: A_ = self._write(file_obj=self.path_or_buf , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) return written def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: A_ = 0 A_ = parquet_writer_kwargs.pop('''path_or_buf''' , _SCREAMING_SNAKE_CASE ) A_ = self.dataset.features.arrow_schema A_ = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _SCREAMING_SNAKE_CASE ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): A_ = query_table( table=self.dataset._data , key=slice(_SCREAMING_SNAKE_CASE , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_SCREAMING_SNAKE_CASE ) written += batch.nbytes writer.close() return written
18
0
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : str, **_UpperCamelCase : List[str] ) -> Union[str, Any]: A_ = AutoConfig.from_pretrained(_UpperCamelCase, **_UpperCamelCase ) A_ = AutoModelForSeqaSeqLM.from_config(_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) AutoTokenizer.from_pretrained(_UpperCamelCase ).save_pretrained(_UpperCamelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
371
'''simple docstring''' from statistics import mean, stdev def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = min(_UpperCamelCase ) A_ = max(_UpperCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min), _UpperCamelCase ) for x in data] def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = mean(_UpperCamelCase ) A_ = stdev(_UpperCamelCase ) # standardize data return [round((x - mu) / (sigma), _UpperCamelCase ) for x in data]
18
0
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : str = StableUnCLIPPipeline __lowercase : int = TEXT_TO_IMAGE_PARAMS __lowercase : Dict = TEXT_TO_IMAGE_BATCH_PARAMS __lowercase : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS __lowercase : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __lowercase : Dict = False def __A ( self ) -> Any: A_ = 32 A_ = embedder_hidden_size # prior components torch.manual_seed(0 ) A_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) A_ = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_SCREAMING_SNAKE_CASE , projection_dim=_SCREAMING_SNAKE_CASE , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) A_ = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_SCREAMING_SNAKE_CASE , num_layers=1 , ) torch.manual_seed(0 ) A_ = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_SCREAMING_SNAKE_CASE , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) A_ = StableUnCLIPImageNormalizer(embedding_dim=_SCREAMING_SNAKE_CASE ) A_ = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) A_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) A_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_SCREAMING_SNAKE_CASE , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) A_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_SCREAMING_SNAKE_CASE , layers_per_block=1 , upcast_attention=_SCREAMING_SNAKE_CASE , use_linear_projection=_SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) A_ = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , ) torch.manual_seed(0 ) A_ = AutoencoderKL() A_ = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ) -> Tuple: if str(_SCREAMING_SNAKE_CASE ).startswith('''mps''' ): A_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: A_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) A_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __A ( self ) -> int: A_ = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_SCREAMING_SNAKE_CASE ) def __A ( self ) -> List[str]: A_ = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> List[str]: A_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) A_ = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A_ = torch.Generator(device='''cpu''' ).manual_seed(0 ) A_ = pipe('''anime turle''' , generator=_SCREAMING_SNAKE_CASE , output_type='''np''' ) A_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A_ = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) A_ = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A_ = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) A_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
350
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') __snake_case : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __snake_case : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: with open(_UpperCamelCase, '''rb''' ) as f: A_ = Image.open(_UpperCamelCase ) return im.convert('''RGB''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the training data.'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the validation data.'} ) __lowercase : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __A ( self ) -> int: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_UpperCamelCase )} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) __lowercase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowercase : str = field(default=_UpperCamelCase , metadata={'help': 'Name or path of preprocessor config.'} ) __lowercase : bool = field( default=_UpperCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __lowercase : bool = field( default=_UpperCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> Dict: A_ = torch.stack([example['''pixel_values'''] for example in examples] ) A_ = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _UpperCAmelCase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A_ ,A_ ,A_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A_ ,A_ ,A_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''', _UpperCamelCase, _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A_ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. A_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: A_ = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, task='''image-classification''', use_auth_token=True if model_args.use_auth_token else None, ) else: A_ = {} if data_args.train_dir is not None: A_ = os.path.join(data_args.train_dir, '''**''' ) if data_args.validation_dir is not None: A_ = os.path.join(data_args.validation_dir, '''**''' ) A_ = load_dataset( '''imagefolder''', data_files=_UpperCamelCase, cache_dir=model_args.cache_dir, task='''image-classification''', ) # If we don't have a validation split, split off a percentage of train as validation. A_ = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, _UpperCamelCase ) and data_args.train_val_split > 0.0: A_ = dataset['''train'''].train_test_split(data_args.train_val_split ) A_ = split['''train'''] A_ = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A_ = dataset['''train'''].features['''labels'''].names A_ ,A_ = {}, {} for i, label in enumerate(_UpperCamelCase ): A_ = str(_UpperCamelCase ) A_ = label # Load the accuracy metric from the datasets package A_ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Optional[Any] ): return metric.compute(predictions=np.argmax(p.predictions, axis=1 ), references=p.label_ids ) A_ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(_UpperCamelCase ), labelaid=_UpperCamelCase, idalabel=_UpperCamelCase, finetuning_task='''image-classification''', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) A_ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=_UpperCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) A_ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: A_ = image_processor.size['''shortest_edge'''] else: A_ = (image_processor.size['''height'''], image_processor.size['''width''']) A_ = Normalize(mean=image_processor.image_mean, std=image_processor.image_std ) A_ = Compose( [ RandomResizedCrop(_UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) A_ = Compose( [ Resize(_UpperCamelCase ), CenterCrop(_UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(_UpperCamelCase : Dict ): A_ = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(_UpperCamelCase : Any ): A_ = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: A_ = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: A_ = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_UpperCamelCase ) # Initalize our trainer A_ = Trainer( model=_UpperCamelCase, args=_UpperCamelCase, train_dataset=dataset['''train'''] if training_args.do_train else None, eval_dataset=dataset['''validation'''] if training_args.do_eval else None, compute_metrics=_UpperCamelCase, tokenizer=_UpperCamelCase, data_collator=_UpperCamelCase, ) # Training if training_args.do_train: A_ = None if training_args.resume_from_checkpoint is not None: A_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A_ = last_checkpoint A_ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics ) trainer.save_metrics('''train''', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A_ = trainer.evaluate() trainer.log_metrics('''eval''', _UpperCamelCase ) trainer.save_metrics('''eval''', _UpperCamelCase ) # Write model card and (optionally) push to hub A_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
18
0
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : List[str] ) -> Tuple: assert isinstance(_UpperCamelCase, _UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''', [False, True] ) def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : List[Any], _UpperCamelCase : List[Any] ) -> Dict: A_ = tmp_path / '''cache''' A_ = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ = TextDatasetReader(_UpperCamelCase, cache_dir=_UpperCamelCase, keep_in_memory=_UpperCamelCase ).read() _check_text_dataset(_UpperCamelCase, _UpperCamelCase ) @pytest.mark.parametrize( '''features''', [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ], ) def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : Optional[Any], _UpperCamelCase : int ) -> str: A_ = tmp_path / '''cache''' A_ = {'''text''': '''string'''} A_ = features.copy() if features else default_expected_features A_ = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ = TextDatasetReader(_UpperCamelCase, features=_UpperCamelCase, cache_dir=_UpperCamelCase ).read() _check_text_dataset(_UpperCamelCase, _UpperCamelCase ) @pytest.mark.parametrize('''split''', [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _UpperCAmelCase ( _UpperCamelCase : List[str], _UpperCamelCase : Dict, _UpperCamelCase : List[str] ) -> List[str]: A_ = tmp_path / '''cache''' A_ = {'''text''': '''string'''} A_ = TextDatasetReader(_UpperCamelCase, cache_dir=_UpperCamelCase, split=_UpperCamelCase ).read() _check_text_dataset(_UpperCamelCase, _UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''', [str, list] ) def _UpperCAmelCase ( _UpperCamelCase : Dict, _UpperCamelCase : Any, _UpperCamelCase : List[str] ) -> List[str]: if issubclass(_UpperCamelCase, _UpperCamelCase ): A_ = text_path elif issubclass(_UpperCamelCase, _UpperCamelCase ): A_ = [text_path] A_ = tmp_path / '''cache''' A_ = {'''text''': '''string'''} A_ = TextDatasetReader(_UpperCamelCase, cache_dir=_UpperCamelCase ).read() _check_text_dataset(_UpperCamelCase, _UpperCamelCase ) def _UpperCAmelCase ( _UpperCamelCase : Any, _UpperCamelCase : Dict, _UpperCamelCase : List[str]=("train",) ) -> List[Any]: assert isinstance(_UpperCamelCase, _UpperCamelCase ) for split in splits: A_ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''', [False, True] ) def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : List[str], _UpperCamelCase : Tuple ) -> Any: A_ = tmp_path / '''cache''' A_ = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ = TextDatasetReader({'''train''': text_path}, cache_dir=_UpperCamelCase, keep_in_memory=_UpperCamelCase ).read() _check_text_datasetdict(_UpperCamelCase, _UpperCamelCase ) @pytest.mark.parametrize( '''features''', [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ], ) def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : List[str], _UpperCamelCase : Union[str, Any] ) -> Tuple: A_ = tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" A_ = {'''text''': '''string'''} A_ = features.copy() if features else default_expected_features A_ = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ = TextDatasetReader({'''train''': text_path}, features=_UpperCamelCase, cache_dir=_UpperCamelCase ).read() _check_text_datasetdict(_UpperCamelCase, _UpperCamelCase ) @pytest.mark.parametrize('''split''', [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : Optional[int], _UpperCamelCase : Optional[int] ) -> Any: if split: A_ = {split: text_path} else: A_ = '''train''' A_ = {'''train''': text_path, '''test''': text_path} A_ = tmp_path / '''cache''' A_ = {'''text''': '''string'''} A_ = TextDatasetReader(_UpperCamelCase, cache_dir=_UpperCamelCase ).read() _check_text_datasetdict(_UpperCamelCase, _UpperCamelCase, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
351
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __snake_case : str = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Dict: A_ = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def __A ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __A ( self ) -> str: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id='''test-model-flax''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def __A ( self ) -> List[str]: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Tuple ) -> Dict: A_ = True A_ = flatten_dict(modela.params ) A_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: A_ = False return models_are_equal @require_flax class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> List[str]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> List[Any]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , max_shard_size='''10KB''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> Dict: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
18
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') __snake_case : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __snake_case : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: with open(_UpperCamelCase, '''rb''' ) as f: A_ = Image.open(_UpperCamelCase ) return im.convert('''RGB''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the training data.'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the validation data.'} ) __lowercase : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __A ( self ) -> int: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_UpperCamelCase )} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) __lowercase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowercase : str = field(default=_UpperCamelCase , metadata={'help': 'Name or path of preprocessor config.'} ) __lowercase : bool = field( default=_UpperCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __lowercase : bool = field( default=_UpperCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> Dict: A_ = torch.stack([example['''pixel_values'''] for example in examples] ) A_ = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _UpperCAmelCase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A_ ,A_ ,A_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A_ ,A_ ,A_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''', _UpperCamelCase, _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A_ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. A_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: A_ = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, task='''image-classification''', use_auth_token=True if model_args.use_auth_token else None, ) else: A_ = {} if data_args.train_dir is not None: A_ = os.path.join(data_args.train_dir, '''**''' ) if data_args.validation_dir is not None: A_ = os.path.join(data_args.validation_dir, '''**''' ) A_ = load_dataset( '''imagefolder''', data_files=_UpperCamelCase, cache_dir=model_args.cache_dir, task='''image-classification''', ) # If we don't have a validation split, split off a percentage of train as validation. A_ = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, _UpperCamelCase ) and data_args.train_val_split > 0.0: A_ = dataset['''train'''].train_test_split(data_args.train_val_split ) A_ = split['''train'''] A_ = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A_ = dataset['''train'''].features['''labels'''].names A_ ,A_ = {}, {} for i, label in enumerate(_UpperCamelCase ): A_ = str(_UpperCamelCase ) A_ = label # Load the accuracy metric from the datasets package A_ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Optional[Any] ): return metric.compute(predictions=np.argmax(p.predictions, axis=1 ), references=p.label_ids ) A_ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(_UpperCamelCase ), labelaid=_UpperCamelCase, idalabel=_UpperCamelCase, finetuning_task='''image-classification''', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) A_ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=_UpperCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) A_ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: A_ = image_processor.size['''shortest_edge'''] else: A_ = (image_processor.size['''height'''], image_processor.size['''width''']) A_ = Normalize(mean=image_processor.image_mean, std=image_processor.image_std ) A_ = Compose( [ RandomResizedCrop(_UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) A_ = Compose( [ Resize(_UpperCamelCase ), CenterCrop(_UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(_UpperCamelCase : Dict ): A_ = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(_UpperCamelCase : Any ): A_ = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: A_ = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: A_ = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_UpperCamelCase ) # Initalize our trainer A_ = Trainer( model=_UpperCamelCase, args=_UpperCamelCase, train_dataset=dataset['''train'''] if training_args.do_train else None, eval_dataset=dataset['''validation'''] if training_args.do_eval else None, compute_metrics=_UpperCamelCase, tokenizer=_UpperCamelCase, data_collator=_UpperCamelCase, ) # Training if training_args.do_train: A_ = None if training_args.resume_from_checkpoint is not None: A_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A_ = last_checkpoint A_ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics ) trainer.save_metrics('''train''', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A_ = trainer.evaluate() trainer.log_metrics('''eval''', _UpperCamelCase ) trainer.save_metrics('''eval''', _UpperCamelCase ) # Write model card and (optionally) push to hub A_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
352
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Dict: A_ = 1 A_ = 2 while i * i <= n: A_ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _UpperCAmelCase ( ) -> Optional[int]: A_ = 1 A_ = 1 while True: i += 1 t_num += i if count_divisors(_UpperCamelCase ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
18
0
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _UpperCAmelCase ( ) -> Dict: A_ = ArgumentParser('''Transformers CLI tool''', usage='''transformers-cli <command> [<args>]''' ) A_ = parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(_UpperCamelCase ) DownloadCommand.register_subcommand(_UpperCamelCase ) EnvironmentCommand.register_subcommand(_UpperCamelCase ) RunCommand.register_subcommand(_UpperCamelCase ) ServeCommand.register_subcommand(_UpperCamelCase ) UserCommands.register_subcommand(_UpperCamelCase ) AddNewModelCommand.register_subcommand(_UpperCamelCase ) AddNewModelLikeCommand.register_subcommand(_UpperCamelCase ) LfsCommands.register_subcommand(_UpperCamelCase ) PTtoTFCommand.register_subcommand(_UpperCamelCase ) # Let's go A_ = parser.parse_args() if not hasattr(_UpperCamelCase, '''func''' ): parser.print_help() exit(1 ) # Run A_ = args.func(_UpperCamelCase ) service.run() if __name__ == "__main__": main()
353
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=[1, 384, 24, 24] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = backbone_out_indices A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = num_labels A_ = backbone_featmap_shape A_ = scope A_ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = num_patches + 1 def __A ( self ) -> Optional[Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Optional[Any]: A_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = DPTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: A_ = self.num_labels A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: A_ = self.num_labels A_ = DPTForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __A ( self ) -> Optional[int]: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __lowercase : Optional[int] = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : Any = False __lowercase : Tuple = False __lowercase : List[Any] = False def __A ( self ) -> Tuple: A_ = DPTModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def __A ( self ) -> Union[str, Any]: pass def __A ( self ) -> Dict: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> Optional[int]: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ): continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = False A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Tuple: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: A_ = model_class(config=_SCREAMING_SNAKE_CASE ) # Skip the check for the backbone A_ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": A_ = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> int: pass @slow def __A ( self ) -> Dict: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: A_ = DPTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = '''add''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Optional[int]: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Any: A_ = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) A_ = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(_SCREAMING_SNAKE_CASE ) A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE ) A_ = outputs.predicted_depth # verify the predicted depth A_ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
18
0
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class __UpperCAmelCase ( yaml.SafeLoader ): '''simple docstring''' def __A ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: A_ = [self.constructed_objects[key_node] for key_node, _ in node.value] A_ = [tuple(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else key for key in keys] A_ = Counter(_SCREAMING_SNAKE_CASE ) A_ = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'''Got duplicate yaml keys: {duplicate_keys}''' ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: A_ = super().construct_mapping(_SCREAMING_SNAKE_CASE , deep=_SCREAMING_SNAKE_CASE ) self._check_no_duplicates_on_constructed_node(_SCREAMING_SNAKE_CASE ) return mapping def _UpperCAmelCase ( _UpperCamelCase : str ) -> Tuple[Optional[str], str]: A_ = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: A_ = full_content[1:].index('''---''' ) + 1 A_ = '''\n'''.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(_UpperCamelCase ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Tuple = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def __A ( cls , _SCREAMING_SNAKE_CASE ) -> "DatasetMetadata": with open(_SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as readme_file: A_ ,A_ = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_SCREAMING_SNAKE_CASE ) else: return cls() def __A ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if path.exists(): with open(_SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as readme_file: A_ = readme_file.read() else: A_ = None A_ = self._to_readme(_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as readme_file: readme_file.write(_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE = None ) -> str: if readme_content is not None: A_ ,A_ = _split_yaml_from_readme(_SCREAMING_SNAKE_CASE ) A_ = '''---\n''' + self.to_yaml_string() + '''---\n''' + content else: A_ = '''---\n''' + self.to_yaml_string() + '''---\n''' return full_content @classmethod def __A ( cls , _SCREAMING_SNAKE_CASE ) -> "DatasetMetadata": A_ = yaml.load(_SCREAMING_SNAKE_CASE , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields A_ = { (key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: return yaml.safe_dump( { (key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=_SCREAMING_SNAKE_CASE , allow_unicode=_SCREAMING_SNAKE_CASE , encoding='''utf-8''' , ).decode('''utf-8''' ) __snake_case : Any = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser __snake_case : Optional[int] = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') __snake_case : List[str] = ap.parse_args() __snake_case : Union[str, Any] = Path(args.readme_filepath) __snake_case : List[Any] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
354
'''simple docstring''' import math def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : float ) -> float: if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
18
0
__snake_case : Optional[Any] = { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'a', 11: 'b', 12: 'c', 13: 'd', 14: 'e', 15: 'f', } def _UpperCAmelCase ( _UpperCamelCase : float ) -> str: assert type(_UpperCamelCase ) in (int, float) and decimal == int(_UpperCamelCase ) A_ = int(_UpperCamelCase ) A_ = '''''' A_ = False if decimal < 0: A_ = True decimal *= -1 while decimal > 0: A_ ,A_ = divmod(_UpperCamelCase, 16 ) A_ = values[remainder] + hexadecimal A_ = '''0x''' + hexadecimal if negative: A_ = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
355
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
18
0
'''simple docstring''' from math import sqrt def _UpperCAmelCase ( _UpperCamelCase : int ) -> bool: assert isinstance(_UpperCamelCase, _UpperCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" A_ = True # 0 and 1 are none primes. if number <= 1: A_ = False for divisor in range(2, int(round(sqrt(_UpperCamelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: A_ = False break # precondition assert isinstance(_UpperCamelCase, _UpperCamelCase ), "'status' must been from type bool" return status def _UpperCAmelCase ( _UpperCamelCase : Tuple ) -> Union[str, Any]: assert isinstance(_UpperCamelCase, _UpperCamelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N A_ = list(range(2, n + 1 ) ) A_ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_UpperCamelCase ) ): for j in range(i + 1, len(_UpperCamelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): A_ = 0 # filters actual prime numbers. A_ = [x for x in begin_list if x != 0] # precondition assert isinstance(_UpperCamelCase, _UpperCamelCase ), "'ans' must been from type list" return ans def _UpperCAmelCase ( _UpperCamelCase : List[str] ) -> List[Any]: assert isinstance(_UpperCamelCase, _UpperCamelCase ) and (n > 2), "'N' must been an int and > 2" A_ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1 ): if is_prime(_UpperCamelCase ): ans.append(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase, _UpperCamelCase ), "'ans' must been from type list" return ans def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Dict: assert isinstance(_UpperCamelCase, _UpperCamelCase ) and number >= 0, "'number' must been an int and >= 0" A_ = [] # this list will be returns of the function. # potential prime number factors. A_ = 2 A_ = number if number == 0 or number == 1: ans.append(_UpperCamelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_UpperCamelCase ): while quotient != 1: if is_prime(_UpperCamelCase ) and (quotient % factor == 0): ans.append(_UpperCamelCase ) quotient /= factor else: factor += 1 else: ans.append(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase, _UpperCamelCase ), "'ans' must been from type list" return ans def _UpperCAmelCase ( _UpperCamelCase : Optional[int] ) -> List[str]: assert isinstance(_UpperCamelCase, _UpperCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" A_ = 0 # prime factorization of 'number' A_ = prime_factorization(_UpperCamelCase ) A_ = max(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase, _UpperCamelCase ), "'ans' must been from type int" return ans def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> int: assert isinstance(_UpperCamelCase, _UpperCamelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" A_ = 0 # prime factorization of 'number' A_ = prime_factorization(_UpperCamelCase ) A_ = min(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase, _UpperCamelCase ), "'ans' must been from type int" return ans def _UpperCAmelCase ( _UpperCamelCase : Tuple ) -> Any: assert isinstance(_UpperCamelCase, _UpperCamelCase ), "'number' must been an int" assert isinstance(number % 2 == 0, _UpperCamelCase ), "compare bust been from type bool" return number % 2 == 0 def _UpperCAmelCase ( _UpperCamelCase : Any ) -> Union[str, Any]: assert isinstance(_UpperCamelCase, _UpperCamelCase ), "'number' must been an int" assert isinstance(number % 2 != 0, _UpperCamelCase ), "compare bust been from type bool" return number % 2 != 0 def _UpperCAmelCase ( _UpperCamelCase : Optional[int] ) -> Optional[int]: assert ( isinstance(_UpperCamelCase, _UpperCamelCase ) and (number > 2) and is_even(_UpperCamelCase ) ), "'number' must been an int, even and > 2" A_ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' A_ = get_prime_numbers(_UpperCamelCase ) A_ = len(_UpperCamelCase ) # run variable for while-loops. A_ = 0 A_ = None # exit variable. for break up the loops A_ = True while i < len_pn and loop: A_ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: A_ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_UpperCamelCase, _UpperCamelCase ) and (len(_UpperCamelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _UpperCAmelCase ( _UpperCamelCase : List[str], _UpperCamelCase : Dict ) -> Union[str, Any]: assert ( isinstance(_UpperCamelCase, _UpperCamelCase ) and isinstance(_UpperCamelCase, _UpperCamelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." A_ = 0 while numbera != 0: A_ = numbera % numbera A_ = numbera A_ = rest # precondition assert isinstance(_UpperCamelCase, _UpperCamelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _UpperCAmelCase ( _UpperCamelCase : Optional[Any], _UpperCamelCase : List[str] ) -> int: assert ( isinstance(_UpperCamelCase, _UpperCamelCase ) and isinstance(_UpperCamelCase, _UpperCamelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." A_ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' A_ = prime_factorization(_UpperCamelCase ) A_ = prime_factorization(_UpperCamelCase ) elif numbera == 1 or numbera == 1: A_ = [] A_ = [] A_ = max(_UpperCamelCase, _UpperCamelCase ) A_ = 0 A_ = 0 A_ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: A_ = prime_fac_a.count(_UpperCamelCase ) A_ = prime_fac_a.count(_UpperCamelCase ) for _ in range(max(_UpperCamelCase, _UpperCamelCase ) ): ans *= n else: A_ = prime_fac_a.count(_UpperCamelCase ) for _ in range(_UpperCamelCase ): ans *= n done.append(_UpperCamelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: A_ = prime_fac_a.count(_UpperCamelCase ) for _ in range(_UpperCamelCase ): ans *= n done.append(_UpperCamelCase ) # precondition assert isinstance(_UpperCamelCase, _UpperCamelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> int: assert isinstance(_UpperCamelCase, _UpperCamelCase ) and (n >= 0), "'number' must been a positive int" A_ = 0 A_ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_UpperCamelCase ): ans += 1 # precondition assert isinstance(_UpperCamelCase, _UpperCamelCase ) and is_prime( _UpperCamelCase ), "'ans' must been a prime number and from type int" return ans def _UpperCAmelCase ( _UpperCamelCase : List[str], _UpperCamelCase : Optional[Any] ) -> Tuple: assert ( is_prime(_UpperCamelCase ) and is_prime(_UpperCamelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" A_ = p_number_a + 1 # jump to the next number A_ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_UpperCamelCase ): number += 1 while number < p_number_a: ans.append(_UpperCamelCase ) number += 1 # fetch the next prime number. while not is_prime(_UpperCamelCase ): number += 1 # precondition assert ( isinstance(_UpperCamelCase, _UpperCamelCase ) and ans[0] != p_number_a and ans[len(_UpperCamelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _UpperCAmelCase ( _UpperCamelCase : Any ) -> Union[str, Any]: assert isinstance(_UpperCamelCase, _UpperCamelCase ) and (n >= 1), "'n' must been int and >= 1" A_ = [] # will be returned. for divisor in range(1, n + 1 ): if n % divisor == 0: ans.append(_UpperCamelCase ) # precondition assert ans[0] == 1 and ans[len(_UpperCamelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def _UpperCAmelCase ( _UpperCamelCase : Optional[int] ) -> Union[str, Any]: assert isinstance(_UpperCamelCase, _UpperCamelCase ) and ( number > 1 ), "'number' must been an int and >= 1" A_ = get_divisors(_UpperCamelCase ) # precondition assert ( isinstance(_UpperCamelCase, _UpperCamelCase ) and (divisors[0] == 1) and (divisors[len(_UpperCamelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _UpperCAmelCase ( _UpperCamelCase : Dict, _UpperCamelCase : Dict ) -> Tuple: assert ( isinstance(_UpperCamelCase, _UpperCamelCase ) and isinstance(_UpperCamelCase, _UpperCamelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. A_ = gcd(abs(_UpperCamelCase ), abs(_UpperCamelCase ) ) # precondition assert ( isinstance(_UpperCamelCase, _UpperCamelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> Union[str, Any]: assert isinstance(_UpperCamelCase, _UpperCamelCase ) and (n >= 0), "'n' must been a int and >= 0" A_ = 1 # this will be return. for factor in range(1, n + 1 ): ans *= factor return ans def _UpperCAmelCase ( _UpperCamelCase : Tuple ) -> Any: assert isinstance(_UpperCamelCase, _UpperCamelCase ) and (n >= 0), "'n' must been an int and >= 0" A_ = 0 A_ = 1 A_ = 1 # this will be return for _ in range(n - 1 ): A_ = ans ans += fiba A_ = tmp return ans
356
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : Any = logging.get_logger(__name__) def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> List[str]: A_ = torch.load(_UpperCamelCase, map_location='''cpu''' ) if "model" in sd.keys(): A_ = torch.load(_UpperCamelCase, map_location='''cpu''' )['''model'''] # pop unnecessary weights A_ = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(_UpperCamelCase ) A_ = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: A_ = sd.pop(_UpperCamelCase ) A_ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: A_ = sd[key] # We split QKV in separate Q,K,V A_ = key.replace('''.qkv_proj.''', '''.q_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.k_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.v_proj.''' ) A_ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 A_ ,A_ ,A_ = torch.split(_UpperCamelCase, depth // 3, dim=0 ) A_ = q A_ = k A_ = v del sd[key] return sd @torch.no_grad() def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : Optional[Any], _UpperCamelCase : List[str]=None ) -> Dict: A_ = load_checkpoint(_UpperCamelCase ) if config is not None: A_ = OPTConfig.from_pretrained(_UpperCamelCase ) else: A_ = OPTConfig() A_ = OPTModel(_UpperCamelCase ).half().eval() model.load_state_dict(_UpperCamelCase ) # Check results Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') __snake_case : Optional[Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
18
0
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : list ) -> list: A_ = len(_UpperCamelCase ) for i in range(1, _UpperCamelCase ): A_ = collection[i] A_ = 0 A_ = i - 1 while low <= high: A_ = (low + high) // 2 if val < collection[mid]: A_ = mid - 1 else: A_ = mid + 1 for j in range(_UpperCamelCase, _UpperCamelCase, -1 ): A_ = collection[j - 1] A_ = val return collection if __name__ == "__main__": __snake_case : List[str] = input('Enter numbers separated by a comma:\n').strip() __snake_case : List[Any] = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
357
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __snake_case : Optional[Any] = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } __snake_case : Tuple = {'allegro/herbert-base-cased': 514} __snake_case : List[str] = {} class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Any = VOCAB_FILES_NAMES __lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Dict = PRETRAINED_INIT_CONFIGURATION __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = HerbertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE="</s>" , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.cls_token_id] A_ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: A_ = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
18
0
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 * 4 , _SCREAMING_SNAKE_CASE=32 * 6 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=32 , ) -> List[Any]: A_ = parent A_ = batch_size A_ = is_training A_ = use_auxiliary_loss A_ = num_queries A_ = num_channels A_ = min_size A_ = max_size A_ = num_labels A_ = mask_feature_size def __A ( self ) -> Tuple: A_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _SCREAMING_SNAKE_CASE ) A_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_SCREAMING_SNAKE_CASE ) A_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_SCREAMING_SNAKE_CASE ) > 0.5 ).float() A_ = (torch.rand((self.batch_size, self.num_labels) , device=_SCREAMING_SNAKE_CASE ) > 0.5).long() A_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __A ( self ) -> Dict: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def __A ( self ) -> str: A_ ,A_ ,A_ ,A_ ,A_ = self.prepare_config_and_inputs() A_ = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = output.encoder_hidden_states A_ = output.pixel_decoder_hidden_states A_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , config.decoder_config.decoder_layers ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> List[Any]: with torch.no_grad(): A_ = MaskFormerModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: A_ = MaskFormerForInstanceSegmentation(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() def comm_check_on_output(_SCREAMING_SNAKE_CASE ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): A_ = model(pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE ) comm_check_on_output(_SCREAMING_SNAKE_CASE ) A_ = model( pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ) comm_check_on_output(_SCREAMING_SNAKE_CASE ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () __lowercase : Union[str, Any] = ( {'feature-extraction': MaskFormerModel, 'image-segmentation': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) __lowercase : List[Any] = False __lowercase : int = False __lowercase : Any = False __lowercase : Optional[int] = False def __A ( self ) -> Optional[Any]: A_ = MaskFormerModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: self.config_tester.run_common_tests() def __A ( self ) -> Dict: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Union[str, Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def __A ( self ) -> Union[str, Any]: pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def __A ( self ) -> Optional[int]: pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def __A ( self ) -> Dict: pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def __A ( self ) -> Dict: pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __A ( self ) -> Union[str, Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> List[Any]: pass def __A ( self ) -> Union[str, Any]: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @slow def __A ( self ) -> Optional[Any]: for model_name in ["facebook/maskformer-swin-small-coco"]: A_ = MaskFormerModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> int: A_ = (self.model_tester.min_size,) * 2 A_ = { '''pixel_values''': torch.randn((2, 3, *size) , device=_SCREAMING_SNAKE_CASE ), '''mask_labels''': torch.randn((2, 10, *size) , device=_SCREAMING_SNAKE_CASE ), '''class_labels''': torch.zeros(2 , 10 , device=_SCREAMING_SNAKE_CASE ).long(), } A_ = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None ) def __A ( self ) -> Optional[Any]: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.attentions is not None ) def __A ( self ) -> Union[str, Any]: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss A_ = self.all_model_classes[1] A_ ,A_ ,A_ ,A_ ,A_ = self.model_tester.prepare_config_and_inputs() A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() A_ = model(_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> int: # only MaskFormerForInstanceSegmentation has the loss A_ = self.all_model_classes[1] A_ ,A_ ,A_ ,A_ ,A_ = self.model_tester.prepare_config_and_inputs() A_ = True A_ = True A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() A_ = model(_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ) A_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() A_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't A_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() A_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __snake_case : Tuple = 1E-4 def _UpperCAmelCase ( ) -> List[Any]: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __A ( self ) -> Any: return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def __A ( self ) -> Optional[Any]: A_ = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(_SCREAMING_SNAKE_CASE ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) A_ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_SCREAMING_SNAKE_CASE , (1, 3, 800, 1088) ) with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) A_ = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) A_ = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> int: A_ = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_SCREAMING_SNAKE_CASE ) .eval() ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) A_ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_SCREAMING_SNAKE_CASE , (1, 3, 800, 1088) ) with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE ) # masks_queries_logits A_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) A_ = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] A_ = torch.tensor(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) # class_queries_logits A_ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) A_ = torch.tensor( [ [1.6_512E00, -5.2_572E00, -3.3_519E00], [3.6_169E-02, -5.9_025E00, -2.9_313E00], [1.0_766E-04, -7.7_630E00, -5.1_263E00], ] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> Optional[Any]: A_ = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(_SCREAMING_SNAKE_CASE ) .eval() ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) A_ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_SCREAMING_SNAKE_CASE , (1, 3, 800, 1088) ) with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE ) # masks_queries_logits A_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) A_ = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] A_ = torch.tensor(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) # class_queries_logits A_ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) A_ = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> List[str]: A_ = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_SCREAMING_SNAKE_CASE ) .eval() ) A_ = self.default_image_processor A_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) A_ = inputs['''pixel_values'''].to(_SCREAMING_SNAKE_CASE ) A_ = [el.to(_SCREAMING_SNAKE_CASE ) for el in inputs['''mask_labels''']] A_ = [el.to(_SCREAMING_SNAKE_CASE ) for el in inputs['''class_labels''']] with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None )
358
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any]=None ) -> List[Any]: if subparsers is not None: A_ = subparsers.add_parser('''env''' ) else: A_ = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''', default=_UpperCamelCase, help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=_UpperCamelCase ) return parser def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> Dict: A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = is_xpu_available() A_ = is_npu_available() A_ = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(_UpperCamelCase ): A_ = load_config_from_file(args.config_file ).to_dict() A_ = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(_UpperCamelCase ), '''PyTorch NPU available''': str(_UpperCamelCase ), '''System RAM''': F'''{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB''', } if pt_cuda_available: A_ = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) A_ = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_UpperCamelCase, _UpperCamelCase ) else F'''\t{accelerate_config}''' ) print(_UpperCamelCase ) A_ = accelerate_config return info def _UpperCAmelCase ( ) -> int: A_ = env_command_parser() A_ = parser.parse_args() env_command(_UpperCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
18
0
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np __snake_case : Optional[Any] = re.compile(R'\b(a|an|the)\b', re.UNICODE) __snake_case : int = None def _UpperCAmelCase ( ) -> Dict: A_ = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''', metavar='''data.json''', help='''Input data JSON file.''' ) parser.add_argument('''pred_file''', metavar='''pred.json''', help='''Model predictions.''' ) parser.add_argument( '''--out-file''', '''-o''', metavar='''eval.json''', help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''', '''-n''', metavar='''na_prob.json''', help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''', '''-t''', type=_UpperCamelCase, default=1.0, help='''Predict "" if no-answer probability exceeds this (default = 1.0).''', ) parser.add_argument( '''--out-image-dir''', '''-p''', metavar='''out_images''', default=_UpperCamelCase, help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''', '''-v''', action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _UpperCAmelCase ( _UpperCamelCase : Optional[int] ) -> Dict: A_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: A_ = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> Optional[Any]: def remove_articles(_UpperCamelCase : Any ): return ARTICLES_REGEX.sub(''' ''', _UpperCamelCase ) def white_space_fix(_UpperCamelCase : List[Any] ): return " ".join(text.split() ) def remove_punc(_UpperCamelCase : Dict ): A_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCamelCase : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCamelCase ) ) ) ) def _UpperCAmelCase ( _UpperCamelCase : Tuple ) -> Any: if not s: return [] return normalize_answer(_UpperCamelCase ).split() def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Optional[int] ) -> int: return int(normalize_answer(_UpperCamelCase ) == normalize_answer(_UpperCamelCase ) ) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : List[str] ) -> Any: A_ = get_tokens(_UpperCamelCase ) A_ = get_tokens(_UpperCamelCase ) A_ = collections.Counter(_UpperCamelCase ) & collections.Counter(_UpperCamelCase ) A_ = sum(common.values() ) if len(_UpperCamelCase ) == 0 or len(_UpperCamelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 A_ = 1.0 * num_same / len(_UpperCamelCase ) A_ = 1.0 * num_same / len(_UpperCamelCase ) A_ = (2 * precision * recall) / (precision + recall) return fa def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : int ) -> Tuple: A_ = {} A_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: A_ = qa['''id'''] A_ = [t for t in qa['''answers''']['''text'''] if normalize_answer(_UpperCamelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string A_ = [''''''] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue A_ = preds[qid] # Take max over all gold answers A_ = max(compute_exact(_UpperCamelCase, _UpperCamelCase ) for a in gold_answers ) A_ = max(compute_fa(_UpperCamelCase, _UpperCamelCase ) for a in gold_answers ) return exact_scores, fa_scores def _UpperCAmelCase ( _UpperCamelCase : List[str], _UpperCamelCase : Optional[Any], _UpperCamelCase : List[str], _UpperCamelCase : int ) -> str: A_ = {} for qid, s in scores.items(): A_ = na_probs[qid] > na_prob_thresh if pred_na: A_ = float(not qid_to_has_ans[qid] ) else: A_ = s return new_scores def _UpperCAmelCase ( _UpperCamelCase : Dict, _UpperCamelCase : int, _UpperCamelCase : Any=None ) -> Union[str, Any]: if not qid_list: A_ = len(_UpperCamelCase ) return collections.OrderedDict( [ ('''exact''', 1_00.0 * sum(exact_scores.values() ) / total), ('''f1''', 1_00.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: A_ = len(_UpperCamelCase ) return collections.OrderedDict( [ ('''exact''', 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def _UpperCAmelCase ( _UpperCamelCase : Dict, _UpperCamelCase : Tuple, _UpperCamelCase : int ) -> List[str]: for k in new_eval: A_ = new_eval[k] def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : Any, _UpperCamelCase : List[Any], _UpperCamelCase : Tuple ) -> Dict: plt.step(_UpperCamelCase, _UpperCamelCase, color='''b''', alpha=0.2, where='''post''' ) plt.fill_between(_UpperCamelCase, _UpperCamelCase, step='''post''', alpha=0.2, color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.0_5] ) plt.ylim([0.0, 1.0_5] ) plt.title(_UpperCamelCase ) plt.savefig(_UpperCamelCase ) plt.clf() def _UpperCAmelCase ( _UpperCamelCase : Any, _UpperCamelCase : Union[str, Any], _UpperCamelCase : Tuple, _UpperCamelCase : Dict, _UpperCamelCase : Union[str, Any]=None, _UpperCamelCase : int=None ) -> List[str]: A_ = sorted(_UpperCamelCase, key=lambda _UpperCamelCase : na_probs[k] ) A_ = 0.0 A_ = 1.0 A_ = 0.0 A_ = [1.0] A_ = [0.0] A_ = 0.0 for i, qid in enumerate(_UpperCamelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] A_ = true_pos / float(i + 1 ) A_ = true_pos / float(_UpperCamelCase ) if i == len(_UpperCamelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_UpperCamelCase ) recalls.append(_UpperCamelCase ) if out_image: plot_pr_curve(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) return {"ap": 1_00.0 * avg_prec} def _UpperCAmelCase ( _UpperCamelCase : Any, _UpperCamelCase : Dict, _UpperCamelCase : Optional[Any], _UpperCamelCase : str, _UpperCamelCase : Union[str, Any], _UpperCamelCase : List[str] ) -> int: if out_image_dir and not os.path.exists(_UpperCamelCase ): os.makedirs(_UpperCamelCase ) A_ = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return A_ = make_precision_recall_eval( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, out_image=os.path.join(_UpperCamelCase, '''pr_exact.png''' ), title='''Precision-Recall curve for Exact Match score''', ) A_ = make_precision_recall_eval( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, out_image=os.path.join(_UpperCamelCase, '''pr_f1.png''' ), title='''Precision-Recall curve for F1 score''', ) A_ = {k: float(_UpperCamelCase ) for k, v in qid_to_has_ans.items()} A_ = make_precision_recall_eval( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, out_image=os.path.join(_UpperCamelCase, '''pr_oracle.png''' ), title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''', ) merge_eval(_UpperCamelCase, _UpperCamelCase, '''pr_exact''' ) merge_eval(_UpperCamelCase, _UpperCamelCase, '''pr_f1''' ) merge_eval(_UpperCamelCase, _UpperCamelCase, '''pr_oracle''' ) def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : Any, _UpperCamelCase : List[Any], _UpperCamelCase : Tuple ) -> Union[str, Any]: if not qid_list: return A_ = [na_probs[k] for k in qid_list] A_ = np.ones_like(_UpperCamelCase ) / float(len(_UpperCamelCase ) ) plt.hist(_UpperCamelCase, weights=_UpperCamelCase, bins=20, range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(_UpperCamelCase, F'''na_prob_hist_{name}.png''' ) ) plt.clf() def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Union[str, Any], _UpperCamelCase : Dict, _UpperCamelCase : List[Any] ) -> Optional[Any]: A_ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) A_ = num_no_ans A_ = cur_score A_ = 0.0 A_ = sorted(_UpperCamelCase, key=lambda _UpperCamelCase : na_probs[k] ) for i, qid in enumerate(_UpperCamelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: A_ = scores[qid] else: if preds[qid]: A_ = -1 else: A_ = 0 cur_score += diff if cur_score > best_score: A_ = cur_score A_ = na_probs[qid] return 1_00.0 * best_score / len(_UpperCamelCase ), best_thresh def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Optional[Any], _UpperCamelCase : Optional[Any], _UpperCamelCase : Optional[int], _UpperCamelCase : List[str], _UpperCamelCase : Tuple ) -> Optional[int]: A_ ,A_ = find_best_thresh(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) A_ ,A_ = find_best_thresh(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) A_ = best_exact A_ = exact_thresh A_ = best_fa A_ = fa_thresh def _UpperCAmelCase ( ) -> Any: with open(OPTS.data_file ) as f: A_ = json.load(_UpperCamelCase ) A_ = dataset_json['''data'''] with open(OPTS.pred_file ) as f: A_ = json.load(_UpperCamelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: A_ = json.load(_UpperCamelCase ) else: A_ = {k: 0.0 for k in preds} A_ = make_qid_to_has_ans(_UpperCamelCase ) # maps qid to True/False A_ = [k for k, v in qid_to_has_ans.items() if v] A_ = [k for k, v in qid_to_has_ans.items() if not v] A_ ,A_ = get_raw_scores(_UpperCamelCase, _UpperCamelCase ) A_ = apply_no_ans_threshold(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, OPTS.na_prob_thresh ) A_ = apply_no_ans_threshold(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, OPTS.na_prob_thresh ) A_ = make_eval_dict(_UpperCamelCase, _UpperCamelCase ) if has_ans_qids: A_ = make_eval_dict(_UpperCamelCase, _UpperCamelCase, qid_list=_UpperCamelCase ) merge_eval(_UpperCamelCase, _UpperCamelCase, '''HasAns''' ) if no_ans_qids: A_ = make_eval_dict(_UpperCamelCase, _UpperCamelCase, qid_list=_UpperCamelCase ) merge_eval(_UpperCamelCase, _UpperCamelCase, '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, OPTS.out_image_dir ) histogram_na_prob(_UpperCamelCase, _UpperCamelCase, OPTS.out_image_dir, '''hasAns''' ) histogram_na_prob(_UpperCamelCase, _UpperCamelCase, OPTS.out_image_dir, '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file, '''w''' ) as f: json.dump(_UpperCamelCase, _UpperCamelCase ) else: print(json.dumps(_UpperCamelCase, indent=2 ) ) if __name__ == "__main__": __snake_case : List[str] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
359
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=0.6 , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = type_sequence_label_size A_ = initializer_range A_ = mask_ratio A_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __A ( self ) -> Union[str, Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: A_ = ViTMAEModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) A_ = (self.image_size // self.patch_size) ** 2 A_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images A_ = 1 A_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ = model(_SCREAMING_SNAKE_CASE ) A_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __A ( self ) -> int: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : int = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __lowercase : List[Any] = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} __lowercase : Union[str, Any] = False __lowercase : List[Any] = False __lowercase : List[str] = False __lowercase : List[str] = False def __A ( self ) -> Any: A_ = ViTMAEModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __A ( self ) -> int: pass def __A ( self ) -> int: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> int: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Union[str, Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: # make masks reproducible np.random.seed(2 ) A_ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) A_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument A_ = pt_noise super().check_pt_tf_models(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ = outputs[0].cpu().numpy() A_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ = model_class.from_pretrained(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Make sure we don't have nans A_ = after_outputs[0].cpu().numpy() A_ = 0 A_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> List[str]: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> Dict: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> Tuple: pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __A ( self ) -> str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> Union[str, Any]: pass @slow def __A ( self ) -> Dict: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = ViTMAEModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Dict: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __A ( self ) -> List[str]: return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __A ( self ) -> List[str]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) A_ = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(_SCREAMING_SNAKE_CASE ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) A_ = ViTMAEConfig() A_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) A_ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE , noise=torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ) ) # verify the logits A_ = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_SCREAMING_SNAKE_CASE ) , atol=1E-4 ) )
18
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Union[List[PIL.Image.Image], np.ndarray] __lowercase : Optional[List[bool]] __lowercase : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
360
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : int = logging.get_logger(__name__) __snake_case : str = { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[Any] = 'xlm-prophetnet' __lowercase : Optional[int] = ['past_key_values'] __lowercase : int = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = "gelu" , _SCREAMING_SNAKE_CASE = 3_0522 , _SCREAMING_SNAKE_CASE = 1024 , _SCREAMING_SNAKE_CASE = 4096 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 4096 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 0.02 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = 128 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 2 , **_SCREAMING_SNAKE_CASE , ) -> int: A_ = vocab_size A_ = hidden_size A_ = encoder_ffn_dim A_ = num_encoder_layers A_ = num_encoder_attention_heads A_ = decoder_ffn_dim A_ = num_decoder_layers A_ = num_decoder_attention_heads A_ = max_position_embeddings A_ = init_std # Normal(0, this parameter) A_ = activation_function # parameters for xlmprophetnet A_ = ngram A_ = num_buckets A_ = relative_max_distance A_ = disable_ngram_loss A_ = eps # 3 Types of Dropout A_ = attention_dropout A_ = activation_dropout A_ = dropout A_ = use_cache super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , add_cross_attention=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @property def __A ( self ) -> int: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def __A ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
18
0
'''simple docstring''' import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput __snake_case : str = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) A_ = eval_examples A_ = post_process_function A_ = quant_trainer_args A_ = 128 # default number of calibration samples def __A ( self , _SCREAMING_SNAKE_CASE=None ) -> Dict: if calib_dataset is None and self.calib_dataset is None: raise ValueError('''Trainer: calibration requires an calib_dataset.''' ) A_ = calib_dataset if calib_dataset is not None else self.calib_dataset A_ = self._remove_unused_columns(_SCREAMING_SNAKE_CASE , description='''Calibration''' ) return DataLoader( _SCREAMING_SNAKE_CASE , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=_SCREAMING_SNAKE_CASE , ) def __A ( self , _SCREAMING_SNAKE_CASE=None ) -> str: A_ = self.train_dataset if calib_dataset is None else calib_dataset A_ = self.get_calib_dataloader(_SCREAMING_SNAKE_CASE ) A_ = self.model quant_trainer.configure_model(_SCREAMING_SNAKE_CASE , self.quant_trainer_args , calib=_SCREAMING_SNAKE_CASE ) model.eval() quant_trainer.enable_calibration(_SCREAMING_SNAKE_CASE ) logger.info('''***** Running calibration *****''' ) logger.info(F''' Num examples = {self.calib_num}''' ) logger.info(F''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(_SCREAMING_SNAKE_CASE ): # Prediction step A_ ,A_ ,A_ = self.prediction_step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prediction_loss_only=_SCREAMING_SNAKE_CASE ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(_SCREAMING_SNAKE_CASE , self.quant_trainer_args ) A_ = model def __A ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = "eval" ) -> Union[str, Any]: A_ = self.eval_dataset if eval_dataset is None else eval_dataset A_ = self.get_eval_dataloader(_SCREAMING_SNAKE_CASE ) A_ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. A_ = self.compute_metrics A_ = None A_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A_ = eval_loop( _SCREAMING_SNAKE_CASE , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_SCREAMING_SNAKE_CASE , ) finally: A_ = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: A_ = self.post_process_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , output.predictions ) A_ = self.compute_metrics(_SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): A_ = metrics.pop(_SCREAMING_SNAKE_CASE ) self.log(_SCREAMING_SNAKE_CASE ) else: A_ = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) A_ = self.callback_handler.on_evaluate(self.args , self.state , self.control , _SCREAMING_SNAKE_CASE ) return metrics def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = "test" ) -> Optional[Any]: A_ = self.get_test_dataloader(_SCREAMING_SNAKE_CASE ) # Temporarily disable metric computation, we will do it in the loop here. A_ = self.compute_metrics A_ = None A_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A_ = eval_loop( _SCREAMING_SNAKE_CASE , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_SCREAMING_SNAKE_CASE , ) finally: A_ = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output A_ = self.post_process_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , output.predictions , '''predict''' ) A_ = self.compute_metrics(_SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): A_ = metrics.pop(_SCREAMING_SNAKE_CASE ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE="./" ) -> str: A_ = self.eval_dataset A_ = self.get_eval_dataloader(_SCREAMING_SNAKE_CASE ) A_ = next(iter(_SCREAMING_SNAKE_CASE ) ) # saving device - to make it consistent A_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) # convert to tuple A_ = tuple(v.to(_SCREAMING_SNAKE_CASE ) for k, v in batch.items() ) logger.info('''Converting model to be onnx compatible''' ) from pytorch_quantization.nn import TensorQuantizer A_ = True A_ = self.model.to(_SCREAMING_SNAKE_CASE ) model.eval() model.float() A_ = model.module if hasattr(_SCREAMING_SNAKE_CASE , '''module''' ) else model quant_trainer.configure_model(_SCREAMING_SNAKE_CASE , self.quant_trainer_args ) A_ = os.path.join(_SCREAMING_SNAKE_CASE , '''model.onnx''' ) logger.info(F'''exporting model to {output_model_file}''' ) A_ = {0: '''batch_size''', 1: '''seq_len'''} torch.onnx.export( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , export_params=_SCREAMING_SNAKE_CASE , opset_version=13 , do_constant_folding=_SCREAMING_SNAKE_CASE , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={ '''input_ids''': axes, '''attention_mask''': axes, '''token_type_ids''': axes, '''output_start_logits''': axes, '''output_end_logits''': axes, } , verbose=_SCREAMING_SNAKE_CASE , ) logger.info('''onnx export finished''' )
361
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : list[float] ) -> float: if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) A_ = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_UpperCamelCase ) ) return round(_UpperCamelCase, ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : int = 3, _UpperCamelCase : int = 7, _UpperCamelCase : int = 1_00_00_00 ) -> int: A_ = 0 A_ = 1 for current_denominator in range(1, limit + 1 ): A_ = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: A_ = current_numerator A_ = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_000_000))
362
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( _UpperCamelCase : int | str ) -> bool: A_ = str(_UpperCamelCase ) return n == n[::-1] def _UpperCAmelCase ( _UpperCamelCase : int = 1_00_00_00 ) -> Any: A_ = 0 for i in range(1, _UpperCamelCase ): if is_palindrome(_UpperCamelCase ) and is_palindrome(bin(_UpperCamelCase ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
18
0
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Union[str, Any]: A_ = len(_UpperCamelCase ) while cur > 1: # Find the maximum number in arr A_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi A_ = arr[mi::-1] + arr[mi + 1 : len(_UpperCamelCase )] # Reverse whole list A_ = arr[cur - 1 :: -1] + arr[cur : len(_UpperCamelCase )] cur -= 1 return arr if __name__ == "__main__": __snake_case : Dict = input('Enter numbers separated by a comma:\n').strip() __snake_case : Dict = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
363
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Tuple, _UpperCamelCase : List[str] ) -> int: A_ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] A_ = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } A_ = F'''{src_lang}-{tgt_lang}''' A_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(_UpperCamelCase, exist_ok=_UpperCamelCase ) A_ = os.path.join(_UpperCamelCase, '''README.md''' ) print(F'''Generating {path}''' ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(_UpperCamelCase ) # make sure we are under the root of the project __snake_case : Any = Path(__file__).resolve().parent.parent.parent __snake_case : Tuple = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __snake_case , __snake_case , __snake_case : Any = model_name.split('-') __snake_case : int = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
18
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __A ( self ) -> List[Any]: A_ = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) A_ = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" A_ = model(_SCREAMING_SNAKE_CASE )['''last_hidden_state'''] A_ = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. A_ = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
364
'''simple docstring''' from collections import defaultdict def _UpperCAmelCase ( _UpperCamelCase : int ) -> int: A_ = 1 A_ = True for v in tree[start]: if v not in visited: ret += dfs(_UpperCamelCase ) if ret % 2 == 0: cuts.append(_UpperCamelCase ) return ret def _UpperCAmelCase ( ) -> Optional[Any]: dfs(1 ) if __name__ == "__main__": __snake_case , __snake_case : Union[str, Any] = 10, 9 __snake_case : int = defaultdict(list) __snake_case : dict[int, bool] = {} __snake_case : list[int] = [] __snake_case : Union[str, Any] = 0 __snake_case : int = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
0
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _UpperCAmelCase ( _UpperCamelCase : int ) -> str: random.seed(_UpperCamelCase ) np.random.seed(_UpperCamelCase ) torch.manual_seed(_UpperCamelCase ) torch.cuda.manual_seed_all(_UpperCamelCase ) # ^^ safe to call this function even if cuda is not available class __UpperCAmelCase : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.9_999 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 1.0 , _SCREAMING_SNAKE_CASE = 2 / 3 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Optional[Any]: if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Module ): A_ = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE , ) A_ = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility A_ = True if kwargs.get('''max_value''' , _SCREAMING_SNAKE_CASE ) is not None: A_ = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE ) A_ = kwargs['''max_value'''] if kwargs.get('''min_value''' , _SCREAMING_SNAKE_CASE ) is not None: A_ = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE ) A_ = kwargs['''min_value'''] A_ = list(_SCREAMING_SNAKE_CASE ) A_ = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , _SCREAMING_SNAKE_CASE ) is not None: A_ = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE ) self.to(device=kwargs['''device'''] ) A_ = None A_ = decay A_ = min_decay A_ = update_after_step A_ = use_ema_warmup A_ = inv_gamma A_ = power A_ = 0 A_ = None # set in `step()` A_ = model_cls A_ = model_config @classmethod def __A ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> "EMAModel": A_ ,A_ = model_cls.load_config(_SCREAMING_SNAKE_CASE , return_unused_kwargs=_SCREAMING_SNAKE_CASE ) A_ = model_cls.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = cls(model.parameters() , model_cls=_SCREAMING_SNAKE_CASE , model_config=model.config ) ema_model.load_state_dict(_SCREAMING_SNAKE_CASE ) return ema_model def __A ( self , _SCREAMING_SNAKE_CASE ) -> int: if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) A_ = self.model_cls.from_config(self.model_config ) A_ = self.state_dict() state_dict.pop('''shadow_params''' , _SCREAMING_SNAKE_CASE ) model.register_to_config(**_SCREAMING_SNAKE_CASE ) self.copy_to(model.parameters() ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> float: A_ = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: A_ = 1 - (1 + step / self.inv_gamma) ** -self.power else: A_ = (1 + step) / (10 + step) A_ = min(_SCREAMING_SNAKE_CASE , self.decay ) # make sure decay is not smaller than min_decay A_ = max(_SCREAMING_SNAKE_CASE , self.min_decay ) return cur_decay_value @torch.no_grad() def __A ( self , _SCREAMING_SNAKE_CASE ) -> Tuple: if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Module ): A_ = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE , ) A_ = parameters.parameters() A_ = list(_SCREAMING_SNAKE_CASE ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. A_ = self.get_decay(self.optimization_step ) A_ = decay A_ = 1 - decay A_ = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , _SCREAMING_SNAKE_CASE ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): A_ = deepspeed.zero.GatheredParameters(_SCREAMING_SNAKE_CASE , modifier_rank=_SCREAMING_SNAKE_CASE ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> None: A_ = list(_SCREAMING_SNAKE_CASE ) for s_param, param in zip(self.shadow_params , _SCREAMING_SNAKE_CASE ): param.data.copy_(s_param.to(param.device ).data ) def __A ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> None: A_ = [ p.to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) if p.is_floating_point() else p.to(device=_SCREAMING_SNAKE_CASE ) for p in self.shadow_params ] def __A ( self ) -> dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def __A ( self , _SCREAMING_SNAKE_CASE ) -> None: A_ = [param.detach().cpu().clone() for param in parameters] def __A ( self , _SCREAMING_SNAKE_CASE ) -> None: if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , _SCREAMING_SNAKE_CASE ): param.data.copy_(c_param.data ) # Better memory-wise. A_ = None def __A ( self , _SCREAMING_SNAKE_CASE ) -> None: A_ = copy.deepcopy(_SCREAMING_SNAKE_CASE ) A_ = state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) A_ = state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , _SCREAMING_SNAKE_CASE ): raise ValueError('''Invalid min_decay''' ) A_ = state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , _SCREAMING_SNAKE_CASE ): raise ValueError('''Invalid optimization_step''' ) A_ = state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , _SCREAMING_SNAKE_CASE ): raise ValueError('''Invalid update_after_step''' ) A_ = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , _SCREAMING_SNAKE_CASE ): raise ValueError('''Invalid use_ema_warmup''' ) A_ = state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) A_ = state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) A_ = state_dict.get('''shadow_params''' , _SCREAMING_SNAKE_CASE ) if shadow_params is not None: A_ = shadow_params if not isinstance(self.shadow_params , _SCREAMING_SNAKE_CASE ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
365
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[int] = 'mgp-str' def __init__( self , _SCREAMING_SNAKE_CASE=[32, 128] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=27 , _SCREAMING_SNAKE_CASE=38 , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=3_0522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: super().__init__(**_SCREAMING_SNAKE_CASE ) A_ = image_size A_ = patch_size A_ = num_channels A_ = max_token_length A_ = num_character_labels A_ = num_bpe_labels A_ = num_wordpiece_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = mlp_ratio A_ = distilled A_ = layer_norm_eps A_ = drop_rate A_ = qkv_bias A_ = attn_drop_rate A_ = drop_path_rate A_ = output_aa_attentions A_ = initializer_range
18
0
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def _UpperCAmelCase ( _UpperCamelCase : int = 1_00_00_00, _UpperCamelCase : int = 10 ) -> int: A_ = defaultdict(_UpperCamelCase ) for outer_width in range(3, (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: A_ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ), 1 ) else: A_ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_UpperCamelCase, outer_width - 1, 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
366
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __UpperCAmelCase : '''simple docstring''' pass
18
0
'''simple docstring''' import csv import tweepy # Twitter API credentials __snake_case : Union[str, Any] = '' __snake_case : Any = '' __snake_case : int = '' __snake_case : int = '' def _UpperCAmelCase ( _UpperCamelCase : str ) -> None: # authorize twitter, initialize tweepy A_ = tweepy.OAuthHandler(_UpperCamelCase, _UpperCamelCase ) auth.set_access_token(_UpperCamelCase, _UpperCamelCase ) A_ = tweepy.API(_UpperCamelCase ) # initialize a list to hold all the tweepy Tweets A_ = [] # make initial request for most recent tweets (200 is the maximum allowed count) A_ = api.user_timeline(screen_name=_UpperCamelCase, count=2_00 ) # save most recent tweets alltweets.extend(_UpperCamelCase ) # save the id of the oldest tweet less one A_ = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_UpperCamelCase ) > 0: print(F'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates A_ = api.user_timeline( screen_name=_UpperCamelCase, count=2_00, max_id=_UpperCamelCase ) # save most recent tweets alltweets.extend(_UpperCamelCase ) # update the id of the oldest tweet less one A_ = alltweets[-1].id - 1 print(F'''...{len(_UpperCamelCase )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv A_ = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F'''new_{screen_name}_tweets.csv''', '''w''' ) as f: A_ = csv.writer(_UpperCamelCase ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(_UpperCamelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('FirePing32')
367
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _UpperCAmelCase ( ) -> Dict: A_ = ArgumentParser('''Accelerate CLI tool''', usage='''accelerate <command> [<args>]''', allow_abbrev=_UpperCamelCase ) A_ = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=_UpperCamelCase ) env_command_parser(subparsers=_UpperCamelCase ) launch_command_parser(subparsers=_UpperCamelCase ) tpu_command_parser(subparsers=_UpperCamelCase ) test_command_parser(subparsers=_UpperCamelCase ) # Let's go A_ = parser.parse_args() if not hasattr(_UpperCamelCase, '''func''' ): parser.print_help() exit(1 ) # Run args.func(_UpperCamelCase ) if __name__ == "__main__": main()
18
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __snake_case : Tuple = logging.get_logger(__name__) __snake_case : Dict = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off __snake_case : Tuple = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] __snake_case : Optional[int] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Union[str, Any] = 'whisper' __lowercase : Any = ['past_key_values'] __lowercase : Optional[int] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _SCREAMING_SNAKE_CASE=5_1865 , _SCREAMING_SNAKE_CASE=80 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=1536 , _SCREAMING_SNAKE_CASE=1536 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1500 , _SCREAMING_SNAKE_CASE=448 , _SCREAMING_SNAKE_CASE=5_0256 , _SCREAMING_SNAKE_CASE=5_0256 , _SCREAMING_SNAKE_CASE=5_0256 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=[220, 5_0256] , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=7 , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: A_ = vocab_size A_ = num_mel_bins A_ = d_model A_ = encoder_layers A_ = encoder_attention_heads A_ = decoder_layers A_ = decoder_attention_heads A_ = decoder_ffn_dim A_ = encoder_ffn_dim A_ = dropout A_ = attention_dropout A_ = activation_dropout A_ = activation_function A_ = init_std A_ = encoder_layerdrop A_ = decoder_layerdrop A_ = use_cache A_ = encoder_layers A_ = scale_embedding # scale factor will be sqrt(d_model) if True A_ = max_source_positions A_ = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. A_ = classifier_proj_size A_ = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A_ = apply_spec_augment A_ = mask_time_prob A_ = mask_time_length A_ = mask_time_min_masks A_ = mask_feature_prob A_ = mask_feature_length A_ = mask_feature_min_masks A_ = median_filter_width super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , suppress_tokens=_SCREAMING_SNAKE_CASE , begin_suppress_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: A_ = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: A_ = {0: '''batch'''} else: A_ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction='''inputs''' ) return common_inputs def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 2_2050 , _SCREAMING_SNAKE_CASE = 5.0 , _SCREAMING_SNAKE_CASE = 220 , ) -> Mapping[str, Any]: A_ = OrderedDict() A_ = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , time_duration=_SCREAMING_SNAKE_CASE , frequency=_SCREAMING_SNAKE_CASE , ) A_ = encoder_inputs['''input_features'''].shape[2] A_ = encoder_sequence_length // 2 if self.use_past else seq_length A_ = super().generate_dummy_inputs( preprocessor.tokenizer , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = encoder_inputs.pop('''input_features''' ) A_ = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: A_ = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def __A ( self ) -> float: return 1E-3
368
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __snake_case : Any = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' __snake_case : Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' __snake_case : Optional[int] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __A ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: if rouge_types is None: A_ = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] A_ = rouge_scorer.RougeScorer(rouge_types=_SCREAMING_SNAKE_CASE , use_stemmer=_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = scoring.BootstrapAggregator() else: A_ = [] for ref, pred in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = scorer.score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if use_aggregator: aggregator.add_scores(_SCREAMING_SNAKE_CASE ) else: scores.append(_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = aggregator.aggregate() else: A_ = {} for key in scores[0]: A_ = [score[key] for score in scores] return result
18
0
'''simple docstring''' import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=1 , ) -> Tuple: A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope A_ = q_groups A_ = k_groups A_ = v_groups A_ = post_attention_groups A_ = intermediate_groups A_ = output_groups def __A ( self ) -> List[Any]: A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Tuple: return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: A_ = SqueezeBertModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: A_ = SqueezeBertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: A_ = SqueezeBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: A_ = self.num_labels A_ = SqueezeBertForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = self.num_labels A_ = SqueezeBertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: A_ = self.num_choices A_ = SqueezeBertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ) -> Any: A_ = self.prepare_config_and_inputs() ((A_) ,(A_) ,(A_) ,(A_) ,(A_) ,(A_)) = config_and_inputs A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : List[Any] = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __lowercase : List[str] = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __lowercase : List[str] = False __lowercase : List[str] = True __lowercase : Optional[int] = False def __A ( self ) -> List[Any]: A_ = SqueezeBertModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , dim=37 ) def __A ( self ) -> str: self.config_tester.run_common_tests() def __A ( self ) -> Optional[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> List[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> List[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) @slow def __A ( self ) -> Dict: for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = SqueezeBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_sentencepiece @require_tokenizers @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __A ( self ) -> List[Any]: A_ = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) A_ = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) A_ = model(_SCREAMING_SNAKE_CASE )[0] A_ = torch.Size((1, 3) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor([[0.6_401, -0.0_349, -0.6_041]] ) self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
369
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: super().__init__() A_ = module A_ = nn.Sequential( nn.Linear(module.in_features , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) , nn.Linear(_SCREAMING_SNAKE_CASE , module.out_features , bias=_SCREAMING_SNAKE_CASE ) , ) A_ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_SCREAMING_SNAKE_CASE ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __A ( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: return self.module(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) + self.adapter(_SCREAMING_SNAKE_CASE ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowercase : Dict = 'bigscience/bloom-1b7' # Constant values __lowercase : str = 2.109659552692574 __lowercase : int = 'Hello my name is' __lowercase : Optional[Any] = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __lowercase : Optional[Any] = 10 def __A ( self ) -> List[str]: # Models and tokenizer A_ = AutoTokenizer.from_pretrained(self.model_name ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[Any]: super().setUp() # Models and tokenizer A_ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> List[str]: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: A_ = self.model_abit.config self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''quantization_config''' ) ) A_ = config.to_dict() A_ = config.to_diff_dict() A_ = config.to_json_string() def __A ( self ) -> Union[str, Any]: from bitsandbytes.nn import Paramsabit A_ = self.model_fpaa.get_memory_footprint() A_ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A_ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __A ( self ) -> Union[str, Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __A ( self ) -> Optional[int]: A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Optional[int]: A_ = BitsAndBytesConfig() A_ = True A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Tuple: with self.assertRaises(_SCREAMING_SNAKE_CASE ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Tuple: A_ = BitsAndBytesConfig() with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def __A ( self ) -> Dict: with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_fpaa.to(torch.floataa ) A_ = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A_ = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error A_ = self.model_fpaa.half() # Check this does not throw an error A_ = self.model_fpaa.float() def __A ( self ) -> Optional[int]: A_ = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Optional[Any]: A_ = '''t5-small''' A_ = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense A_ = AutoTokenizer.from_pretrained(cls.model_name ) A_ = '''Translate in German: Hello, my dog is cute''' def __A ( self ) -> Any: gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: from transformers import TaForConditionalGeneration A_ = TaForConditionalGeneration._keep_in_fpaa_modules A_ = None # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) A_ = modules def __A ( self ) -> Dict: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> int: super().setUp() # model_name A_ = '''bigscience/bloom-560m''' A_ = '''t5-small''' # Different types of model A_ = AutoModel.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Sequence classification model A_ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # CausalLM model A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Seq2seq model A_ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> Union[str, Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __A ( self ) -> List[str]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> Tuple: super().setUp() def __A ( self ) -> List[Any]: del self.pipe gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[Any]: A_ = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A_ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[str]: super().setUp() def __A ( self ) -> Optional[int]: A_ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch A_ = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> str: A_ = '''facebook/opt-350m''' super().setUp() def __A ( self ) -> Optional[int]: if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A_ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A_ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_SCREAMING_SNAKE_CASE ) ): A_ = LoRALayer(module.q_proj , rank=16 ) A_ = LoRALayer(module.k_proj , rank=16 ) A_ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A_ = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A_ = model.forward(**_SCREAMING_SNAKE_CASE ) out.logits.norm().backward() for module in model.modules(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_SCREAMING_SNAKE_CASE , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : int = 'gpt2-xl' __lowercase : List[Any] = 3.3191854854152187
18
0
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> List[str]: return getitem, k def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : int ) -> int: return setitem, k, v def _UpperCAmelCase ( _UpperCamelCase : Any ) -> List[str]: return delitem, k def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : List[str], *_UpperCamelCase : List[str] ) -> List[Any]: try: return fun(_UpperCamelCase, *_UpperCamelCase ), None except Exception as e: return None, e __snake_case : List[str] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) __snake_case : Optional[int] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] __snake_case : Any = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] __snake_case : Optional[int] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] __snake_case : Tuple = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __snake_case : int = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( '''operations''', ( pytest.param(_add_items, id='''add items''' ), pytest.param(_overwrite_items, id='''overwrite items''' ), pytest.param(_delete_items, id='''delete items''' ), pytest.param(_access_absent_items, id='''access absent items''' ), pytest.param(_add_with_resize_up, id='''add with resize up''' ), pytest.param(_add_with_resize_down, id='''add with resize down''' ), ), ) def _UpperCAmelCase ( _UpperCamelCase : Tuple ) -> Optional[int]: A_ = HashMap(initial_block_size=4 ) A_ = {} for _, (fun, *args) in enumerate(_UpperCamelCase ): A_ ,A_ = _run_operation(_UpperCamelCase, _UpperCamelCase, *_UpperCamelCase ) A_ ,A_ = _run_operation(_UpperCamelCase, _UpperCamelCase, *_UpperCamelCase ) assert my_res == py_res assert str(_UpperCamelCase ) == str(_UpperCamelCase ) assert set(_UpperCamelCase ) == set(_UpperCamelCase ) assert len(_UpperCamelCase ) == len(_UpperCamelCase ) assert set(my.items() ) == set(py.items() ) def _UpperCAmelCase ( ) -> Optional[Any]: def is_public(_UpperCamelCase : str ) -> bool: return not name.startswith('''_''' ) A_ = {name for name in dir({} ) if is_public(_UpperCamelCase )} A_ = {name for name in dir(HashMap() ) if is_public(_UpperCamelCase )} assert dict_public_names > hash_public_names
370
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _UpperCAmelCase ( _UpperCamelCase : Features ) -> Optional[int]: A_ = np.inf def set_batch_size(_UpperCamelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ) and feature.dtype == "binary": A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_UpperCamelCase, _UpperCamelCase ) return None if batch_size is np.inf else batch_size class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ = path_or_paths if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} A_ = _PACKAGED_DATASETS_MODULES['''parquet'''][1] A_ = Parquet( cache_dir=_SCREAMING_SNAKE_CASE , data_files=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , hash=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self ) -> str: # Build iterable dataset if self.streaming: A_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) A_ = self.builder.as_dataset( split=self.split , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Dict: A_ = dataset A_ = path_or_buf A_ = batch_size or get_writer_batch_size(dataset.features ) A_ = parquet_writer_kwargs def __A ( self ) -> int: A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: A_ = self._write(file_obj=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) else: A_ = self._write(file_obj=self.path_or_buf , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) return written def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: A_ = 0 A_ = parquet_writer_kwargs.pop('''path_or_buf''' , _SCREAMING_SNAKE_CASE ) A_ = self.dataset.features.arrow_schema A_ = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _SCREAMING_SNAKE_CASE ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): A_ = query_table( table=self.dataset._data , key=slice(_SCREAMING_SNAKE_CASE , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_SCREAMING_SNAKE_CASE ) written += batch.nbytes writer.close() return written
18
0
'''simple docstring''' import random from typing import Any def _UpperCAmelCase ( _UpperCamelCase : list ) -> list[Any]: for _ in range(len(_UpperCamelCase ) ): A_ = random.randint(0, len(_UpperCamelCase ) - 1 ) A_ = random.randint(0, len(_UpperCamelCase ) - 1 ) A_ ,A_ = data[b], data[a] return data if __name__ == "__main__": __snake_case : List[Any] = [0, 1, 2, 3, 4, 5, 6, 7] __snake_case : Optional[int] = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
371
'''simple docstring''' from statistics import mean, stdev def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = min(_UpperCamelCase ) A_ = max(_UpperCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min), _UpperCamelCase ) for x in data] def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = mean(_UpperCamelCase ) A_ = stdev(_UpperCamelCase ) # standardize data return [round((x - mu) / (sigma), _UpperCamelCase ) for x in data]
18
0
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : str, _UpperCamelCase : str, _UpperCamelCase : Path, _UpperCamelCase : str = None, _UpperCamelCase : str = None, _UpperCamelCase : str = None, ) -> List[Any]: if config_name_or_path is None: A_ = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: A_ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: A_ = question_encoder_name_or_path A_ = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. A_ = RagConfig.from_pretrained(_UpperCamelCase ) A_ = AutoConfig.from_pretrained(_UpperCamelCase ) A_ = AutoConfig.from_pretrained(_UpperCamelCase ) A_ = gen_config A_ = question_encoder_config A_ = model_class.from_pretrained_question_encoder_generator( _UpperCamelCase, _UpperCamelCase, config=_UpperCamelCase ) rag_model.save_pretrained(_UpperCamelCase ) # Sanity check. model_class.from_pretrained(_UpperCamelCase ) # Save tokenizers. A_ = AutoTokenizer.from_pretrained(_UpperCamelCase ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) A_ = AutoTokenizer.from_pretrained(_UpperCamelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": __snake_case : str = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) __snake_case : Optional[int] = parser.parse_args() __snake_case : List[Any] = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
350
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') __snake_case : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __snake_case : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: with open(_UpperCamelCase, '''rb''' ) as f: A_ = Image.open(_UpperCamelCase ) return im.convert('''RGB''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the training data.'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the validation data.'} ) __lowercase : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __A ( self ) -> int: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_UpperCamelCase )} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) __lowercase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowercase : str = field(default=_UpperCamelCase , metadata={'help': 'Name or path of preprocessor config.'} ) __lowercase : bool = field( default=_UpperCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __lowercase : bool = field( default=_UpperCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> Dict: A_ = torch.stack([example['''pixel_values'''] for example in examples] ) A_ = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _UpperCAmelCase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A_ ,A_ ,A_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A_ ,A_ ,A_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''', _UpperCamelCase, _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A_ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. A_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: A_ = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, task='''image-classification''', use_auth_token=True if model_args.use_auth_token else None, ) else: A_ = {} if data_args.train_dir is not None: A_ = os.path.join(data_args.train_dir, '''**''' ) if data_args.validation_dir is not None: A_ = os.path.join(data_args.validation_dir, '''**''' ) A_ = load_dataset( '''imagefolder''', data_files=_UpperCamelCase, cache_dir=model_args.cache_dir, task='''image-classification''', ) # If we don't have a validation split, split off a percentage of train as validation. A_ = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, _UpperCamelCase ) and data_args.train_val_split > 0.0: A_ = dataset['''train'''].train_test_split(data_args.train_val_split ) A_ = split['''train'''] A_ = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A_ = dataset['''train'''].features['''labels'''].names A_ ,A_ = {}, {} for i, label in enumerate(_UpperCamelCase ): A_ = str(_UpperCamelCase ) A_ = label # Load the accuracy metric from the datasets package A_ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Optional[Any] ): return metric.compute(predictions=np.argmax(p.predictions, axis=1 ), references=p.label_ids ) A_ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(_UpperCamelCase ), labelaid=_UpperCamelCase, idalabel=_UpperCamelCase, finetuning_task='''image-classification''', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) A_ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=_UpperCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) A_ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: A_ = image_processor.size['''shortest_edge'''] else: A_ = (image_processor.size['''height'''], image_processor.size['''width''']) A_ = Normalize(mean=image_processor.image_mean, std=image_processor.image_std ) A_ = Compose( [ RandomResizedCrop(_UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) A_ = Compose( [ Resize(_UpperCamelCase ), CenterCrop(_UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(_UpperCamelCase : Dict ): A_ = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(_UpperCamelCase : Any ): A_ = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: A_ = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: A_ = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_UpperCamelCase ) # Initalize our trainer A_ = Trainer( model=_UpperCamelCase, args=_UpperCamelCase, train_dataset=dataset['''train'''] if training_args.do_train else None, eval_dataset=dataset['''validation'''] if training_args.do_eval else None, compute_metrics=_UpperCamelCase, tokenizer=_UpperCamelCase, data_collator=_UpperCamelCase, ) # Training if training_args.do_train: A_ = None if training_args.resume_from_checkpoint is not None: A_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A_ = last_checkpoint A_ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics ) trainer.save_metrics('''train''', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A_ = trainer.evaluate() trainer.log_metrics('''eval''', _UpperCamelCase ) trainer.save_metrics('''eval''', _UpperCamelCase ) # Write model card and (optionally) push to hub A_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
18
0
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = KandinskyVaaPriorPipeline __lowercase : List[Any] = ['prompt'] __lowercase : Union[str, Any] = ['prompt', 'negative_prompt'] __lowercase : Tuple = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowercase : Optional[int] = False @property def __A ( self ) -> Optional[Any]: return 32 @property def __A ( self ) -> List[str]: return 32 @property def __A ( self ) -> List[str]: return self.time_input_dim @property def __A ( self ) -> Optional[Any]: return self.time_input_dim * 4 @property def __A ( self ) -> Any: return 100 @property def __A ( self ) -> Optional[int]: A_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __A ( self ) -> int: torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_SCREAMING_SNAKE_CASE ) @property def __A ( self ) -> Union[str, Any]: torch.manual_seed(0 ) A_ = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } A_ = PriorTransformer(**_SCREAMING_SNAKE_CASE ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def __A ( self ) -> Optional[Any]: torch.manual_seed(0 ) A_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A_ = CLIPVisionModelWithProjection(_SCREAMING_SNAKE_CASE ) return model @property def __A ( self ) -> Any: A_ = CLIPImageProcessor( crop_size=224 , do_center_crop=_SCREAMING_SNAKE_CASE , do_normalize=_SCREAMING_SNAKE_CASE , do_resize=_SCREAMING_SNAKE_CASE , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor def __A ( self ) -> Dict: A_ = self.dummy_prior A_ = self.dummy_image_encoder A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_image_processor A_ = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_SCREAMING_SNAKE_CASE , clip_sample_range=10.0 , ) A_ = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ) -> Union[str, Any]: if str(_SCREAMING_SNAKE_CASE ).startswith('''mps''' ): A_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: A_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) A_ = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __A ( self ) -> Dict: A_ = '''cpu''' A_ = self.get_dummy_components() A_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) A_ = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) A_ = output.image_embeds A_ = pipe( **self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) , return_dict=_SCREAMING_SNAKE_CASE , )[0] A_ = image[0, -10:] A_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A_ = np.array( [-0.0_532, 1.7_120, 0.3_656, -1.0_852, -0.8_946, -1.1_756, 0.4_348, 0.2_482, 0.5_146, -0.1_156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __A ( self ) -> Optional[int]: A_ = torch_device == '''cpu''' A_ = True A_ = False self._test_inference_batch_single_identical( test_max_difference=_SCREAMING_SNAKE_CASE , relax_max_difference=_SCREAMING_SNAKE_CASE , test_mean_pixel_difference=_SCREAMING_SNAKE_CASE , ) @skip_mps def __A ( self ) -> Union[str, Any]: A_ = torch_device == '''cpu''' A_ = False self._test_attention_slicing_forward_pass( test_max_difference=_SCREAMING_SNAKE_CASE , test_mean_pixel_difference=_SCREAMING_SNAKE_CASE , )
351
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __snake_case : str = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Dict: A_ = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def __A ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __A ( self ) -> str: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id='''test-model-flax''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def __A ( self ) -> List[str]: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Tuple ) -> Dict: A_ = True A_ = flatten_dict(modela.params ) A_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: A_ = False return models_are_equal @require_flax class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> List[str]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> List[Any]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , max_shard_size='''10KB''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> Dict: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
18
0
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : int = logging.get_logger(__name__) __snake_case : str = { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[Any] = 'xlm-prophetnet' __lowercase : Optional[int] = ['past_key_values'] __lowercase : int = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = "gelu" , _SCREAMING_SNAKE_CASE = 3_0522 , _SCREAMING_SNAKE_CASE = 1024 , _SCREAMING_SNAKE_CASE = 4096 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 4096 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 0.02 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = 128 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 2 , **_SCREAMING_SNAKE_CASE , ) -> int: A_ = vocab_size A_ = hidden_size A_ = encoder_ffn_dim A_ = num_encoder_layers A_ = num_encoder_attention_heads A_ = decoder_ffn_dim A_ = num_decoder_layers A_ = num_decoder_attention_heads A_ = max_position_embeddings A_ = init_std # Normal(0, this parameter) A_ = activation_function # parameters for xlmprophetnet A_ = ngram A_ = num_buckets A_ = relative_max_distance A_ = disable_ngram_loss A_ = eps # 3 Types of Dropout A_ = attention_dropout A_ = activation_dropout A_ = dropout A_ = use_cache super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , add_cross_attention=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @property def __A ( self ) -> int: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def __A ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
352
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Dict: A_ = 1 A_ = 2 while i * i <= n: A_ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _UpperCAmelCase ( ) -> Optional[int]: A_ = 1 A_ = 1 while True: i += 1 t_num += i if count_divisors(_UpperCamelCase ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
18
0
'''simple docstring''' import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : BigBirdConfig __lowercase : jnp.dtype = jnp.floataa __lowercase : bool = True def __A ( self ) -> Union[str, Any]: super().setup() A_ = nn.Dense(5 , dtype=self.dtype ) def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: A_ = super().__call__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) A_ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : List[Any] = FlaxBigBirdForNaturalQuestionsModule def _UpperCAmelCase ( _UpperCamelCase : Optional[Any], _UpperCamelCase : Tuple, _UpperCamelCase : Any, _UpperCamelCase : Tuple, _UpperCamelCase : Any, _UpperCamelCase : List[str] ) -> str: def cross_entropy(_UpperCamelCase : Optional[Any], _UpperCamelCase : Tuple, _UpperCamelCase : Any=None ): A_ = logits.shape[-1] A_ = (labels[..., None] == jnp.arange(_UpperCamelCase )[None]).astype('''f4''' ) A_ = jax.nn.log_softmax(_UpperCamelCase, axis=-1 ) A_ = -jnp.sum(labels * logits, axis=-1 ) if reduction is not None: A_ = reduction(_UpperCamelCase ) return loss A_ = partial(_UpperCamelCase, reduction=jnp.mean ) A_ = cross_entropy(_UpperCamelCase, _UpperCamelCase ) A_ = cross_entropy(_UpperCamelCase, _UpperCamelCase ) A_ = cross_entropy(_UpperCamelCase, _UpperCamelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : str = "google/bigbird-roberta-base" __lowercase : int = 3000 __lowercase : int = 10500 __lowercase : int = 128 __lowercase : int = 3 __lowercase : int = 1 __lowercase : int = 5 # tx_args __lowercase : float = 3E-5 __lowercase : float = 0.0 __lowercase : int = 20000 __lowercase : float = 0.0095 __lowercase : str = "bigbird-roberta-natural-questions" __lowercase : str = "training-expt" __lowercase : str = "data/nq-training.jsonl" __lowercase : str = "data/nq-validation.jsonl" def __A ( self ) -> Optional[int]: os.makedirs(self.base_dir , exist_ok=_SCREAMING_SNAKE_CASE ) A_ = os.path.join(self.base_dir , self.save_dir ) A_ = self.batch_size_per_device * jax.device_count() @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : int __lowercase : int = 4096 # no dynamic padding on TPUs def __call__( self , _SCREAMING_SNAKE_CASE ) -> Dict: A_ = self.collate_fn(_SCREAMING_SNAKE_CASE ) A_ = jax.tree_util.tree_map(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return batch def __A ( self , _SCREAMING_SNAKE_CASE ) -> Any: A_ ,A_ = self.fetch_inputs(features['''input_ids'''] ) A_ = { '''input_ids''': jnp.array(_SCREAMING_SNAKE_CASE , dtype=jnp.intaa ), '''attention_mask''': jnp.array(_SCREAMING_SNAKE_CASE , dtype=jnp.intaa ), '''start_labels''': jnp.array(features['''start_token'''] , dtype=jnp.intaa ), '''end_labels''': jnp.array(features['''end_token'''] , dtype=jnp.intaa ), '''pooled_labels''': jnp.array(features['''category'''] , dtype=jnp.intaa ), } return batch def __A ( self , _SCREAMING_SNAKE_CASE ) -> Dict: A_ = [self._fetch_inputs(_SCREAMING_SNAKE_CASE ) for ids in input_ids] return zip(*_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> str: A_ = [1 for _ in range(len(_SCREAMING_SNAKE_CASE ) )] while len(_SCREAMING_SNAKE_CASE ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Optional[int], _UpperCamelCase : Dict=None ) -> Union[str, Any]: if seed is not None: A_ = dataset.shuffle(seed=_UpperCamelCase ) for i in range(len(_UpperCamelCase ) // batch_size ): A_ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(_UpperCamelCase ) @partial(jax.pmap, axis_name='''batch''' ) def _UpperCAmelCase ( _UpperCamelCase : Dict, _UpperCamelCase : Optional[Any], **_UpperCamelCase : Optional[int] ) -> Optional[int]: def loss_fn(_UpperCamelCase : Tuple ): A_ = model_inputs.pop('''start_labels''' ) A_ = model_inputs.pop('''end_labels''' ) A_ = model_inputs.pop('''pooled_labels''' ) A_ = state.apply_fn(**_UpperCamelCase, params=_UpperCamelCase, dropout_rng=_UpperCamelCase, train=_UpperCamelCase ) A_ ,A_ ,A_ = outputs return state.loss_fn( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, ) A_ ,A_ = jax.random.split(_UpperCamelCase ) A_ = jax.value_and_grad(_UpperCamelCase ) A_ ,A_ = grad_fn(state.params ) A_ = jax.lax.pmean({'''loss''': loss}, axis_name='''batch''' ) A_ = jax.lax.pmean(_UpperCamelCase, '''batch''' ) A_ = state.apply_gradients(grads=_UpperCamelCase ) return state, metrics, new_drp_rng @partial(jax.pmap, axis_name='''batch''' ) def _UpperCAmelCase ( _UpperCamelCase : str, **_UpperCamelCase : str ) -> Union[str, Any]: A_ = model_inputs.pop('''start_labels''' ) A_ = model_inputs.pop('''end_labels''' ) A_ = model_inputs.pop('''pooled_labels''' ) A_ = state.apply_fn(**_UpperCamelCase, params=state.params, train=_UpperCamelCase ) A_ ,A_ ,A_ = outputs A_ = state.loss_fn(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) A_ = jax.lax.pmean({'''loss''': loss}, axis_name='''batch''' ) return metrics class __UpperCAmelCase ( train_state.TrainState ): '''simple docstring''' __lowercase : Callable = struct.field(pytree_node=_UpperCamelCase ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : Args __lowercase : Callable __lowercase : Callable __lowercase : Callable __lowercase : Callable __lowercase : wandb __lowercase : Callable = None def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: A_ = model.params A_ = TrainState.create( apply_fn=model.__call__ , params=_SCREAMING_SNAKE_CASE , tx=_SCREAMING_SNAKE_CASE , loss_fn=_SCREAMING_SNAKE_CASE , ) if ckpt_dir is not None: A_ ,A_ ,A_ ,A_ ,A_ = restore_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = { '''lr''': args.lr, '''init_lr''': args.init_lr, '''warmup_steps''': args.warmup_steps, '''num_train_steps''': num_train_steps, '''weight_decay''': args.weight_decay, } A_ ,A_ = build_tx(**_SCREAMING_SNAKE_CASE ) A_ = train_state.TrainState( step=_SCREAMING_SNAKE_CASE , apply_fn=model.__call__ , params=_SCREAMING_SNAKE_CASE , tx=_SCREAMING_SNAKE_CASE , opt_state=_SCREAMING_SNAKE_CASE , ) A_ = args A_ = data_collator A_ = lr A_ = params A_ = jax_utils.replicate(_SCREAMING_SNAKE_CASE ) return state def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: A_ = self.args A_ = len(_SCREAMING_SNAKE_CASE ) // args.batch_size A_ = jax.random.PRNGKey(0 ) A_ = jax.random.split(_SCREAMING_SNAKE_CASE , jax.device_count() ) for epoch in range(args.max_epochs ): A_ = jnp.array(0 , dtype=jnp.floataa ) A_ = get_batched_dataset(_SCREAMING_SNAKE_CASE , args.batch_size , seed=_SCREAMING_SNAKE_CASE ) A_ = 0 for batch in tqdm(_SCREAMING_SNAKE_CASE , total=_SCREAMING_SNAKE_CASE , desc=F'''Running EPOCH-{epoch}''' ): A_ = self.data_collator(_SCREAMING_SNAKE_CASE ) A_ ,A_ ,A_ = self.train_step_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 if i % args.logging_steps == 0: A_ = jax_utils.unreplicate(state.step ) A_ = running_loss.item() / i A_ = self.scheduler_fn(state_step - 1 ) A_ = self.evaluate(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = { '''step''': state_step.item(), '''eval_loss''': eval_loss.item(), '''tr_loss''': tr_loss, '''lr''': lr.item(), } tqdm.write(str(_SCREAMING_SNAKE_CASE ) ) self.logger.log(_SCREAMING_SNAKE_CASE , commit=_SCREAMING_SNAKE_CASE ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'''-e{epoch}-s{i}''' , state=_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: A_ = get_batched_dataset(_SCREAMING_SNAKE_CASE , self.args.batch_size ) A_ = len(_SCREAMING_SNAKE_CASE ) // self.args.batch_size A_ = jnp.array(0 , dtype=jnp.floataa ) A_ = 0 for batch in tqdm(_SCREAMING_SNAKE_CASE , total=_SCREAMING_SNAKE_CASE , desc='''Evaluating ... ''' ): A_ = self.data_collator(_SCREAMING_SNAKE_CASE ) A_ = self.val_step_fn(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) running_loss += jax_utils.unreplicate(metrics['''loss'''] ) i += 1 return running_loss / i def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: A_ = jax_utils.unreplicate(_SCREAMING_SNAKE_CASE ) print(F'''SAVING CHECKPOINT IN {save_dir}''' , end=''' ... ''' ) self.model_save_fn(_SCREAMING_SNAKE_CASE , params=state.params ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''opt_state.msgpack''' ) , '''wb''' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(_SCREAMING_SNAKE_CASE , '''args.joblib''' ) ) joblib.dump(self.data_collator , os.path.join(_SCREAMING_SNAKE_CASE , '''data_collator.joblib''' ) ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''training_state.json''' ) , '''w''' ) as f: json.dump({'''step''': state.step.item()} , _SCREAMING_SNAKE_CASE ) print('''DONE''' ) def _UpperCAmelCase ( _UpperCamelCase : Dict, _UpperCamelCase : Tuple ) -> List[str]: print(F'''RESTORING CHECKPOINT FROM {save_dir}''', end=''' ... ''' ) with open(os.path.join(_UpperCamelCase, '''flax_model.msgpack''' ), '''rb''' ) as f: A_ = from_bytes(state.params, f.read() ) with open(os.path.join(_UpperCamelCase, '''opt_state.msgpack''' ), '''rb''' ) as f: A_ = from_bytes(state.opt_state, f.read() ) A_ = joblib.load(os.path.join(_UpperCamelCase, '''args.joblib''' ) ) A_ = joblib.load(os.path.join(_UpperCamelCase, '''data_collator.joblib''' ) ) with open(os.path.join(_UpperCamelCase, '''training_state.json''' ), '''r''' ) as f: A_ = json.load(_UpperCamelCase ) A_ = training_state['''step'''] print('''DONE''' ) return params, opt_state, step, args, data_collator def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Dict, _UpperCamelCase : Optional[int], _UpperCamelCase : List[Any] ) -> Optional[Any]: A_ = num_train_steps - warmup_steps A_ = optax.linear_schedule(init_value=_UpperCamelCase, end_value=_UpperCamelCase, transition_steps=_UpperCamelCase ) A_ = optax.linear_schedule(init_value=_UpperCamelCase, end_value=1E-7, transition_steps=_UpperCamelCase ) A_ = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[warmup_steps] ) return lr def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : Optional[Any], _UpperCamelCase : Optional[int], _UpperCamelCase : List[str], _UpperCamelCase : Tuple ) -> Dict: def weight_decay_mask(_UpperCamelCase : Optional[int] ): A_ = traverse_util.flatten_dict(_UpperCamelCase ) A_ = {k: (v[-1] != '''bias''' and v[-2:] != ('''LayerNorm''', '''scale''')) for k, v in params.items()} return traverse_util.unflatten_dict(_UpperCamelCase ) A_ = scheduler_fn(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) A_ = optax.adamw(learning_rate=_UpperCamelCase, weight_decay=_UpperCamelCase, mask=_UpperCamelCase ) return tx, lr
353
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=[1, 384, 24, 24] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = backbone_out_indices A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = num_labels A_ = backbone_featmap_shape A_ = scope A_ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = num_patches + 1 def __A ( self ) -> Optional[Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Optional[Any]: A_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = DPTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: A_ = self.num_labels A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: A_ = self.num_labels A_ = DPTForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __A ( self ) -> Optional[int]: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __lowercase : Optional[int] = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : Any = False __lowercase : Tuple = False __lowercase : List[Any] = False def __A ( self ) -> Tuple: A_ = DPTModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def __A ( self ) -> Union[str, Any]: pass def __A ( self ) -> Dict: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> Optional[int]: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ): continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = False A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Tuple: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: A_ = model_class(config=_SCREAMING_SNAKE_CASE ) # Skip the check for the backbone A_ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": A_ = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> int: pass @slow def __A ( self ) -> Dict: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: A_ = DPTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = '''add''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Optional[int]: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Any: A_ = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) A_ = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(_SCREAMING_SNAKE_CASE ) A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE ) A_ = outputs.predicted_depth # verify the predicted depth A_ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
18
0
def _UpperCAmelCase ( _UpperCamelCase : int = 1_00 ) -> int: A_ = n * (n + 1) * (2 * n + 1) / 6 A_ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
354
'''simple docstring''' import math def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : float ) -> float: if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
18
0
from __future__ import annotations def _UpperCAmelCase ( _UpperCamelCase : Any, _UpperCamelCase : Union[str, Any], _UpperCamelCase : Optional[Any], _UpperCamelCase : List[Any] ) -> Any: # noqa: E741 while r - l > 1: A_ = (l + r) // 2 if v[m] >= key: A_ = m else: A_ = m # noqa: E741 return r def _UpperCAmelCase ( _UpperCamelCase : list[int] ) -> int: if len(_UpperCamelCase ) == 0: return 0 A_ = [0] * len(_UpperCamelCase ) A_ = 1 A_ = v[0] for i in range(1, len(_UpperCamelCase ) ): if v[i] < tail[0]: A_ = v[i] elif v[i] > tail[length - 1]: A_ = v[i] length += 1 else: A_ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
355
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
18
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , ) -> Any: A_ = parent A_ = 13 A_ = 7 A_ = True A_ = True A_ = True A_ = True A_ = 99 A_ = 384 A_ = 2 A_ = 4 A_ = 37 A_ = '''gelu''' A_ = 0.1 A_ = 0.1 A_ = 512 A_ = 16 A_ = 2 A_ = 0.02 A_ = 3 A_ = 4 A_ = 128 A_ = 2 A_ = 9 A_ = 1 A_ = None def __A ( self ) -> str: A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_SCREAMING_SNAKE_CASE , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: A_ = TFConvBertModel(config=_SCREAMING_SNAKE_CASE ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = [input_ids, input_mask] A_ = model(_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: A_ = TFConvBertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) A_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = self.num_labels A_ = TFConvBertForSequenceClassification(config=_SCREAMING_SNAKE_CASE ) A_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: A_ = self.num_choices A_ = TFConvBertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) A_ = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) A_ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: A_ = self.num_labels A_ = TFConvBertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) A_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: A_ = TFConvBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) A_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self ) -> Tuple: A_ = self.prepare_config_and_inputs() ( ( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) , ) = config_and_inputs A_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Any = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __lowercase : str = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __lowercase : List[Any] = False __lowercase : Union[str, Any] = False __lowercase : List[str] = False def __A ( self ) -> str: A_ = TFConvBertModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> List[Any]: self.config_tester.run_common_tests() def __A ( self ) -> List[str]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> List[str]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) @slow def __A ( self ) -> List[str]: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = True if hasattr(_SCREAMING_SNAKE_CASE , '''use_cache''' ): A_ = True A_ = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) A_ = getattr(self.model_tester , '''key_length''' , _SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = len(model(_SCREAMING_SNAKE_CASE ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE , saved_model=_SCREAMING_SNAKE_CASE ) A_ = os.path.join(_SCREAMING_SNAKE_CASE , '''saved_model''' , '''1''' ) A_ = tf.keras.models.load_model(_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: A_ = outputs['''encoder_hidden_states'''] A_ = outputs['''encoder_attentions'''] else: A_ = outputs['''hidden_states'''] A_ = outputs['''attentions'''] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) A_ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __A ( self ) -> List[Any]: A_ = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) A_ = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) A_ = getattr(self.model_tester , '''key_length''' , _SCREAMING_SNAKE_CASE ) A_ = getattr(self.model_tester , '''key_length''' , _SCREAMING_SNAKE_CASE ) def check_decoder_attentions_output(_SCREAMING_SNAKE_CASE ): A_ = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(out_len % 2 , 0 ) A_ = outputs.decoder_attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ): A_ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A_ = True A_ = False A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_decoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A_ = True A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine A_ = True A_ = True A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_SCREAMING_SNAKE_CASE ) ) self.assertEqual(model.config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) @require_tf class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __A ( self ) -> Optional[Any]: A_ = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) A_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ = model(_SCREAMING_SNAKE_CASE )[0] A_ = [1, 6, 768] self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) A_ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
356
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : Any = logging.get_logger(__name__) def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> List[str]: A_ = torch.load(_UpperCamelCase, map_location='''cpu''' ) if "model" in sd.keys(): A_ = torch.load(_UpperCamelCase, map_location='''cpu''' )['''model'''] # pop unnecessary weights A_ = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(_UpperCamelCase ) A_ = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: A_ = sd.pop(_UpperCamelCase ) A_ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: A_ = sd[key] # We split QKV in separate Q,K,V A_ = key.replace('''.qkv_proj.''', '''.q_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.k_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.v_proj.''' ) A_ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 A_ ,A_ ,A_ = torch.split(_UpperCamelCase, depth // 3, dim=0 ) A_ = q A_ = k A_ = v del sd[key] return sd @torch.no_grad() def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : Optional[Any], _UpperCamelCase : List[str]=None ) -> Dict: A_ = load_checkpoint(_UpperCamelCase ) if config is not None: A_ = OPTConfig.from_pretrained(_UpperCamelCase ) else: A_ = OPTConfig() A_ = OPTModel(_UpperCamelCase ).half().eval() model.load_state_dict(_UpperCamelCase ) # Check results Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') __snake_case : Optional[Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
18
0