code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case : Any = logging.get_logger(__name__) def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> int: A_ = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: A_ = 10_24 A_ = 40_96 A_ = 24 A_ = 16 A_ = [5, 11, 17, 23] A_ = [2_56, 5_12, 10_24, 10_24] A_ = (1, 3_84, 3_84) if "nyu" or "midas" in checkpoint_url: A_ = 7_68 A_ = [1, 1, 1, 0.5] A_ = [2_56, 5_12, 7_68, 7_68] A_ = 1_50 A_ = 16 A_ = (1, 3_84, 3_84) A_ = False A_ = '''project''' if "ade" in checkpoint_url: A_ = True A_ = 7_68 A_ = [1, 1, 1, 0.5] A_ = 1_50 A_ = 16 A_ = '''huggingface/label-files''' A_ = '''ade20k-id2label.json''' A_ = json.load(open(cached_download(hf_hub_url(_UpperCamelCase, _UpperCamelCase, repo_type='''dataset''' ) ), '''r''' ) ) A_ = {int(_UpperCamelCase ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} A_ = [1, 1_50, 4_80, 4_80] return config, expected_shape def _UpperCAmelCase ( _UpperCamelCase : Tuple ) -> Any: A_ = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(_UpperCamelCase, _UpperCamelCase ) def _UpperCAmelCase ( _UpperCamelCase : List[Any] ) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): A_ = name.replace('''pretrained.model''', '''dpt.encoder''' ) if "pretrained.model" in name: A_ = name.replace('''pretrained.model''', '''dpt.embeddings''' ) if "patch_embed" in name: A_ = name.replace('''patch_embed''', '''''' ) if "pos_embed" in name: A_ = name.replace('''pos_embed''', '''position_embeddings''' ) if "attn.proj" in name: A_ = name.replace('''attn.proj''', '''attention.output.dense''' ) if "proj" in name and "project" not in name: A_ = name.replace('''proj''', '''projection''' ) if "blocks" in name: A_ = name.replace('''blocks''', '''layer''' ) if "mlp.fc1" in name: A_ = name.replace('''mlp.fc1''', '''intermediate.dense''' ) if "mlp.fc2" in name: A_ = name.replace('''mlp.fc2''', '''output.dense''' ) if "norm1" in name and "backbone" not in name: A_ = name.replace('''norm1''', '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: A_ = name.replace('''norm2''', '''layernorm_after''' ) if "scratch.output_conv" in name: A_ = name.replace('''scratch.output_conv''', '''head''' ) if "scratch" in name: A_ = name.replace('''scratch''', '''neck''' ) if "layer1_rn" in name: A_ = name.replace('''layer1_rn''', '''convs.0''' ) if "layer2_rn" in name: A_ = name.replace('''layer2_rn''', '''convs.1''' ) if "layer3_rn" in name: A_ = name.replace('''layer3_rn''', '''convs.2''' ) if "layer4_rn" in name: A_ = name.replace('''layer4_rn''', '''convs.3''' ) if "refinenet" in name: A_ = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 A_ = name.replace(F'''refinenet{layer_idx}''', F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: A_ = name.replace('''out_conv''', '''projection''' ) if "resConfUnit1" in name: A_ = name.replace('''resConfUnit1''', '''residual_layer1''' ) if "resConfUnit2" in name: A_ = name.replace('''resConfUnit2''', '''residual_layer2''' ) if "conv1" in name: A_ = name.replace('''conv1''', '''convolution1''' ) if "conv2" in name: A_ = name.replace('''conv2''', '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: A_ = name.replace('''pretrained.act_postprocess1.0.project.0''', '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: A_ = name.replace('''pretrained.act_postprocess2.0.project.0''', '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: A_ = name.replace('''pretrained.act_postprocess3.0.project.0''', '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: A_ = name.replace('''pretrained.act_postprocess4.0.project.0''', '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: A_ = name.replace('''pretrained.act_postprocess1.3''', '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: A_ = name.replace('''pretrained.act_postprocess1.4''', '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: A_ = name.replace('''pretrained.act_postprocess2.3''', '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: A_ = name.replace('''pretrained.act_postprocess2.4''', '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: A_ = name.replace('''pretrained.act_postprocess3.3''', '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: A_ = name.replace('''pretrained.act_postprocess4.3''', '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: A_ = name.replace('''pretrained.act_postprocess4.4''', '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: A_ = name.replace('''pretrained''', '''dpt''' ) if "bn" in name: A_ = name.replace('''bn''', '''batch_norm''' ) if "head" in name: A_ = name.replace('''head''', '''head.head''' ) if "encoder.norm" in name: A_ = name.replace('''encoder.norm''', '''layernorm''' ) if "auxlayer" in name: A_ = name.replace('''auxlayer''', '''auxiliary_head.head''' ) if "backbone" in name: A_ = name.replace('''backbone''', '''backbone.bit.encoder''' ) if ".." in name: A_ = name.replace('''..''', '''.''' ) if "stem.conv" in name: A_ = name.replace('''stem.conv''', '''bit.embedder.convolution''' ) if "blocks" in name: A_ = name.replace('''blocks''', '''layers''' ) if "convolution" in name and "backbone" in name: A_ = name.replace('''convolution''', '''conv''' ) if "layer" in name and "backbone" in name: A_ = name.replace('''layer''', '''layers''' ) if "backbone.bit.encoder.bit" in name: A_ = name.replace('''backbone.bit.encoder.bit''', '''backbone.bit''' ) if "embedder.conv" in name: A_ = name.replace('''embedder.conv''', '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: A_ = name.replace('''backbone.bit.encoder.stem.norm''', '''backbone.bit.embedder.norm''' ) return name def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : Tuple ) -> List[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) A_ = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[: config.hidden_size, :] A_ = in_proj_bias[: config.hidden_size] A_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ = in_proj_weight[ -config.hidden_size :, : ] A_ = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( ) -> Union[str, Any]: A_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A_ = Image.open(requests.get(_UpperCamelCase, stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : int, _UpperCamelCase : List[Any], _UpperCamelCase : List[Any], _UpperCamelCase : Optional[int] ) -> List[str]: A_ ,A_ = get_dpt_config(_UpperCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") A_ = torch.load(_UpperCamelCase, map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(_UpperCamelCase ) # rename keys for key in state_dict.copy().keys(): A_ = state_dict.pop(_UpperCamelCase ) A_ = val # read in qkv matrices read_in_q_k_v(_UpperCamelCase, _UpperCamelCase ) # load HuggingFace model A_ = DPTForSemanticSegmentation(_UpperCamelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() # Check outputs on an image A_ = 4_80 if '''ade''' in checkpoint_url else 3_84 A_ = DPTImageProcessor(size=_UpperCamelCase ) A_ = prepare_img() A_ = image_processor(_UpperCamelCase, return_tensors='''pt''' ) # forward pass A_ = model(**_UpperCamelCase ).logits if '''ade''' in checkpoint_url else model(**_UpperCamelCase ).predicted_depth if show_prediction: A_ = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ), size=(image.size[1], image.size[0]), mode='''bicubic''', align_corners=_UpperCamelCase, ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_55 ).show() if pytorch_dump_folder_path is not None: Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_UpperCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_UpperCamelCase ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) __snake_case : str = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[int] = 'mgp-str' def __init__( self , _SCREAMING_SNAKE_CASE=[32, 128] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=27 , _SCREAMING_SNAKE_CASE=38 , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=3_0522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: super().__init__(**_SCREAMING_SNAKE_CASE ) A_ = image_size A_ = patch_size A_ = num_channels A_ = max_token_length A_ = num_character_labels A_ = num_bpe_labels A_ = num_wordpiece_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = mlp_ratio A_ = distilled A_ = layer_norm_eps A_ = drop_rate A_ = qkv_bias A_ = attn_drop_rate A_ = drop_path_rate A_ = output_aa_attentions A_ = initializer_range
18
1
'''simple docstring''' __snake_case : dict[tuple[int, int, int], int] = {} def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : int, _UpperCamelCase : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on A_ = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one A_ = _calculate(days - 1, _UpperCamelCase, late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 A_ = _calculate(days - 1, absent + 1, 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter A_ = _calculate(days - 1, _UpperCamelCase, 0 ) A_ = state_late + state_absent + state_ontime A_ = prizestrings return prizestrings def _UpperCAmelCase ( _UpperCamelCase : int = 30 ) -> int: return _calculate(_UpperCamelCase, absent=0, late=0 ) if __name__ == "__main__": print(solution())
18
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __UpperCAmelCase : '''simple docstring''' pass
18
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Dict: A_ = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } A_ = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: A_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , x.transpose() ) ) A_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def __A ( self ) -> Tuple: A_ = np.random.randn(3 , 4 ) A_ = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , transpose(_SCREAMING_SNAKE_CASE ).numpy() ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ).numpy() ) ) @require_tf def __A ( self ) -> int: A_ = np.random.randn(3 , 4 ) A_ = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , transpose(_SCREAMING_SNAKE_CASE ).numpy() ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ).numpy() ) ) @require_flax def __A ( self ) -> int: A_ = np.random.randn(3 , 4 ) A_ = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , np.asarray(transpose(_SCREAMING_SNAKE_CASE ) ) ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , np.asarray(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) ) ) ) def __A ( self ) -> List[str]: A_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , np.reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) ) ) A_ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , np.reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) ) ) @require_torch def __A ( self ) -> int: A_ = np.random.randn(3 , 4 ) A_ = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , reshape(_SCREAMING_SNAKE_CASE , (4, 3) ).numpy() ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , reshape(_SCREAMING_SNAKE_CASE , (12, 5) ).numpy() ) ) @require_tf def __A ( self ) -> str: A_ = np.random.randn(3 , 4 ) A_ = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , reshape(_SCREAMING_SNAKE_CASE , (4, 3) ).numpy() ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , reshape(_SCREAMING_SNAKE_CASE , (12, 5) ).numpy() ) ) @require_flax def __A ( self ) -> Optional[int]: A_ = np.random.randn(3 , 4 ) A_ = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) ) ) ) A_ = np.random.randn(3 , 4 , 5 ) A_ = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) ) ) ) def __A ( self ) -> Tuple: A_ = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , np.squeeze(_SCREAMING_SNAKE_CASE ) ) ) A_ = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , np.squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) ) ) @require_torch def __A ( self ) -> Dict: A_ = np.random.randn(1 , 3 , 4 ) A_ = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , squeeze(_SCREAMING_SNAKE_CASE ).numpy() ) ) A_ = np.random.randn(1 , 4 , 1 , 5 ) A_ = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , squeeze(_SCREAMING_SNAKE_CASE , axis=2 ).numpy() ) ) @require_tf def __A ( self ) -> Optional[Any]: A_ = np.random.randn(1 , 3 , 4 ) A_ = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , squeeze(_SCREAMING_SNAKE_CASE ).numpy() ) ) A_ = np.random.randn(1 , 4 , 1 , 5 ) A_ = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , squeeze(_SCREAMING_SNAKE_CASE , axis=2 ).numpy() ) ) @require_flax def __A ( self ) -> int: A_ = np.random.randn(1 , 3 , 4 ) A_ = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE ) ) ) ) A_ = np.random.randn(1 , 4 , 1 , 5 ) A_ = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) ) ) ) def __A ( self ) -> int: A_ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , np.expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) ) ) @require_torch def __A ( self ) -> List[str]: A_ = np.random.randn(3 , 4 ) A_ = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ).numpy() ) ) @require_tf def __A ( self ) -> int: A_ = np.random.randn(3 , 4 ) A_ = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ).numpy() ) ) @require_flax def __A ( self ) -> Optional[Any]: A_ = np.random.randn(3 , 4 ) A_ = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , np.asarray(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) ) ) )
18
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _UpperCAmelCase ( ) -> Dict: A_ = ArgumentParser('''Accelerate CLI tool''', usage='''accelerate <command> [<args>]''', allow_abbrev=_UpperCamelCase ) A_ = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=_UpperCamelCase ) env_command_parser(subparsers=_UpperCamelCase ) launch_command_parser(subparsers=_UpperCamelCase ) tpu_command_parser(subparsers=_UpperCamelCase ) test_command_parser(subparsers=_UpperCamelCase ) # Let's go A_ = parser.parse_args() if not hasattr(_UpperCamelCase, '''func''' ): parser.print_help() exit(1 ) # Run args.func(_UpperCamelCase ) if __name__ == "__main__": main()
18
1
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig __snake_case : Union[str, Any] = logging.get_logger(__name__) # General docstring __snake_case : Optional[Any] = 'RegNetConfig' # Base docstring __snake_case : List[str] = 'facebook/regnet-y-040' __snake_case : Optional[Any] = [1, 1_088, 7, 7] # Image classification docstring __snake_case : Any = 'facebook/regnet-y-040' __snake_case : List[str] = 'tabby, tabby cat' __snake_case : Union[str, Any] = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 3 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = "relu" , ) -> Optional[int]: super().__init__() A_ = nn.Convad( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , padding=kernel_size // 2 , groups=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE , ) A_ = nn.BatchNormad(_SCREAMING_SNAKE_CASE ) A_ = ACTaFN[activation] if activation is not None else nn.Identity() def __A ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: A_ = self.convolution(_SCREAMING_SNAKE_CASE ) A_ = self.normalization(_SCREAMING_SNAKE_CASE ) A_ = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE ) -> Any: super().__init__() A_ = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) A_ = config.num_channels def __A ( self , _SCREAMING_SNAKE_CASE ) -> int: A_ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) A_ = self.embedder(_SCREAMING_SNAKE_CASE ) return hidden_state class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 2 ) -> List[str]: super().__init__() A_ = nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 , stride=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) A_ = nn.BatchNormad(_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> Tensor: A_ = self.convolution(_SCREAMING_SNAKE_CASE ) A_ = self.normalization(_SCREAMING_SNAKE_CASE ) return hidden_state class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: super().__init__() A_ = nn.AdaptiveAvgPoolad((1, 1) ) A_ = nn.Sequential( nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 ) , nn.ReLU() , nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 ) , nn.Sigmoid() , ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> int: # b c h w -> b c 1 1 A_ = self.pooler(_SCREAMING_SNAKE_CASE ) A_ = self.attention(_SCREAMING_SNAKE_CASE ) A_ = hidden_state * attention return hidden_state class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 ) -> int: super().__init__() A_ = in_channels != out_channels or stride != 1 A_ = max(1 , out_channels // config.groups_width ) A_ = ( RegNetShortCut(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) A_ = nn.Sequential( RegNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , groups=_SCREAMING_SNAKE_CASE , activation=config.hidden_act ) , RegNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 , activation=_SCREAMING_SNAKE_CASE ) , ) A_ = ACTaFN[config.hidden_act] def __A ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = hidden_state A_ = self.layer(_SCREAMING_SNAKE_CASE ) A_ = self.shortcut(_SCREAMING_SNAKE_CASE ) hidden_state += residual A_ = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 ) -> str: super().__init__() A_ = in_channels != out_channels or stride != 1 A_ = max(1 , out_channels // config.groups_width ) A_ = ( RegNetShortCut(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) A_ = nn.Sequential( RegNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , groups=_SCREAMING_SNAKE_CASE , activation=config.hidden_act ) , RegNetSELayer(_SCREAMING_SNAKE_CASE , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 , activation=_SCREAMING_SNAKE_CASE ) , ) A_ = ACTaFN[config.hidden_act] def __A ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = hidden_state A_ = self.layer(_SCREAMING_SNAKE_CASE ) A_ = self.shortcut(_SCREAMING_SNAKE_CASE ) hidden_state += residual A_ = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 2 , ) -> List[str]: super().__init__() A_ = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer A_ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , ) , *[layer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for _ in range(depth - 1 )] , ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: A_ = self.layers(_SCREAMING_SNAKE_CASE ) return hidden_state class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: super().__init__() A_ = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _SCREAMING_SNAKE_CASE , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) A_ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_SCREAMING_SNAKE_CASE , config.depths[1:] ): self.stages.append(RegNetStage(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , depth=_SCREAMING_SNAKE_CASE ) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = True ) -> BaseModelOutputWithNoAttention: A_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: A_ = hidden_states + (hidden_state,) A_ = stage_module(_SCREAMING_SNAKE_CASE ) if output_hidden_states: A_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_SCREAMING_SNAKE_CASE , hidden_states=_SCREAMING_SNAKE_CASE ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : List[str] = RegNetConfig __lowercase : int = 'regnet' __lowercase : Union[str, Any] = 'pixel_values' __lowercase : str = True def __A ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: if isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(_SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> int: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = value __snake_case : str = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __snake_case : Union[str, Any] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , _UpperCamelCase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE ) -> List[str]: super().__init__(_SCREAMING_SNAKE_CASE ) A_ = config A_ = RegNetEmbeddings(_SCREAMING_SNAKE_CASE ) A_ = RegNetEncoder(_SCREAMING_SNAKE_CASE ) A_ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None ) -> BaseModelOutputWithPoolingAndNoAttention: A_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ = return_dict if return_dict is not None else self.config.use_return_dict A_ = self.embedder(_SCREAMING_SNAKE_CASE ) A_ = self.encoder( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) A_ = encoder_outputs[0] A_ = self.pooler(_SCREAMING_SNAKE_CASE ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_SCREAMING_SNAKE_CASE , pooler_output=_SCREAMING_SNAKE_CASE , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , _UpperCamelCase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: super().__init__(_SCREAMING_SNAKE_CASE ) A_ = config.num_labels A_ = RegNetModel(_SCREAMING_SNAKE_CASE ) # classification head A_ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __A ( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , ) -> ImageClassifierOutputWithNoAttention: A_ = return_dict if return_dict is not None else self.config.use_return_dict A_ = self.regnet(_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) A_ = outputs.pooler_output if return_dict else outputs[1] A_ = self.classifier(_SCREAMING_SNAKE_CASE ) A_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: A_ = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): A_ = '''single_label_classification''' else: A_ = '''multi_label_classification''' if self.config.problem_type == "regression": A_ = MSELoss() if self.num_labels == 1: A_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: A_ = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config.problem_type == "single_label_classification": A_ = CrossEntropyLoss() A_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": A_ = BCEWithLogitsLoss() A_ = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not return_dict: A_ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_SCREAMING_SNAKE_CASE , logits=_SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states )
18
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __snake_case : Any = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' __snake_case : Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' __snake_case : Optional[int] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __A ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: if rouge_types is None: A_ = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] A_ = rouge_scorer.RougeScorer(rouge_types=_SCREAMING_SNAKE_CASE , use_stemmer=_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = scoring.BootstrapAggregator() else: A_ = [] for ref, pred in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = scorer.score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if use_aggregator: aggregator.add_scores(_SCREAMING_SNAKE_CASE ) else: scores.append(_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = aggregator.aggregate() else: A_ = {} for key in scores[0]: A_ = [score[key] for score in scores] return result
18
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE ) -> None: A_ = value A_ = None A_ = None class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE ) -> None: A_ = tree def __A ( self , _SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
18
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: super().__init__() A_ = module A_ = nn.Sequential( nn.Linear(module.in_features , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) , nn.Linear(_SCREAMING_SNAKE_CASE , module.out_features , bias=_SCREAMING_SNAKE_CASE ) , ) A_ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_SCREAMING_SNAKE_CASE ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __A ( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: return self.module(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) + self.adapter(_SCREAMING_SNAKE_CASE ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowercase : Dict = 'bigscience/bloom-1b7' # Constant values __lowercase : str = 2.109659552692574 __lowercase : int = 'Hello my name is' __lowercase : Optional[Any] = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __lowercase : Optional[Any] = 10 def __A ( self ) -> List[str]: # Models and tokenizer A_ = AutoTokenizer.from_pretrained(self.model_name ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[Any]: super().setUp() # Models and tokenizer A_ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> List[str]: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: A_ = self.model_abit.config self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''quantization_config''' ) ) A_ = config.to_dict() A_ = config.to_diff_dict() A_ = config.to_json_string() def __A ( self ) -> Union[str, Any]: from bitsandbytes.nn import Paramsabit A_ = self.model_fpaa.get_memory_footprint() A_ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A_ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __A ( self ) -> Union[str, Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __A ( self ) -> Optional[int]: A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Optional[int]: A_ = BitsAndBytesConfig() A_ = True A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Tuple: with self.assertRaises(_SCREAMING_SNAKE_CASE ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Tuple: A_ = BitsAndBytesConfig() with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def __A ( self ) -> Dict: with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_fpaa.to(torch.floataa ) A_ = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A_ = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error A_ = self.model_fpaa.half() # Check this does not throw an error A_ = self.model_fpaa.float() def __A ( self ) -> Optional[int]: A_ = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Optional[Any]: A_ = '''t5-small''' A_ = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense A_ = AutoTokenizer.from_pretrained(cls.model_name ) A_ = '''Translate in German: Hello, my dog is cute''' def __A ( self ) -> Any: gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: from transformers import TaForConditionalGeneration A_ = TaForConditionalGeneration._keep_in_fpaa_modules A_ = None # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) A_ = modules def __A ( self ) -> Dict: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> int: super().setUp() # model_name A_ = '''bigscience/bloom-560m''' A_ = '''t5-small''' # Different types of model A_ = AutoModel.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Sequence classification model A_ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # CausalLM model A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Seq2seq model A_ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> Union[str, Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __A ( self ) -> List[str]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> Tuple: super().setUp() def __A ( self ) -> List[Any]: del self.pipe gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[Any]: A_ = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A_ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[str]: super().setUp() def __A ( self ) -> Optional[int]: A_ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch A_ = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> str: A_ = '''facebook/opt-350m''' super().setUp() def __A ( self ) -> Optional[int]: if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A_ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A_ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_SCREAMING_SNAKE_CASE ) ): A_ = LoRALayer(module.q_proj , rank=16 ) A_ = LoRALayer(module.k_proj , rank=16 ) A_ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A_ = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A_ = model.forward(**_SCREAMING_SNAKE_CASE ) out.logits.norm().backward() for module in model.modules(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_SCREAMING_SNAKE_CASE , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : int = 'gpt2-xl' __lowercase : List[Any] = 3.3191854854152187
18
1
'''simple docstring''' from math import isqrt def _UpperCAmelCase ( _UpperCamelCase : int ) -> bool: return all(number % divisor != 0 for divisor in range(2, isqrt(_UpperCamelCase ) + 1 ) ) def _UpperCAmelCase ( _UpperCamelCase : int = 10**6 ) -> int: A_ = 0 A_ = 1 A_ = 7 while prime_candidate < max_prime: primes_count += is_prime(_UpperCamelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"""{solution() = }""")
18
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _UpperCAmelCase ( _UpperCamelCase : Features ) -> Optional[int]: A_ = np.inf def set_batch_size(_UpperCamelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ) and feature.dtype == "binary": A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_UpperCamelCase, _UpperCamelCase ) return None if batch_size is np.inf else batch_size class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ = path_or_paths if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} A_ = _PACKAGED_DATASETS_MODULES['''parquet'''][1] A_ = Parquet( cache_dir=_SCREAMING_SNAKE_CASE , data_files=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , hash=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self ) -> str: # Build iterable dataset if self.streaming: A_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) A_ = self.builder.as_dataset( split=self.split , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Dict: A_ = dataset A_ = path_or_buf A_ = batch_size or get_writer_batch_size(dataset.features ) A_ = parquet_writer_kwargs def __A ( self ) -> int: A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: A_ = self._write(file_obj=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) else: A_ = self._write(file_obj=self.path_or_buf , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) return written def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: A_ = 0 A_ = parquet_writer_kwargs.pop('''path_or_buf''' , _SCREAMING_SNAKE_CASE ) A_ = self.dataset.features.arrow_schema A_ = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _SCREAMING_SNAKE_CASE ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): A_ = query_table( table=self.dataset._data , key=slice(_SCREAMING_SNAKE_CASE , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_SCREAMING_SNAKE_CASE ) written += batch.nbytes writer.close() return written
18
1
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : int = 1_00 ) -> int: A_ = n * (n + 1) * (2 * n + 1) / 6 A_ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
18
'''simple docstring''' from statistics import mean, stdev def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = min(_UpperCamelCase ) A_ = max(_UpperCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min), _UpperCamelCase ) for x in data] def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = mean(_UpperCamelCase ) A_ = stdev(_UpperCamelCase ) # standardize data return [round((x - mu) / (sigma), _UpperCamelCase ) for x in data]
18
1
'''simple docstring''' import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput __snake_case : str = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) A_ = eval_examples A_ = post_process_function A_ = quant_trainer_args A_ = 128 # default number of calibration samples def __A ( self , _SCREAMING_SNAKE_CASE=None ) -> Dict: if calib_dataset is None and self.calib_dataset is None: raise ValueError('''Trainer: calibration requires an calib_dataset.''' ) A_ = calib_dataset if calib_dataset is not None else self.calib_dataset A_ = self._remove_unused_columns(_SCREAMING_SNAKE_CASE , description='''Calibration''' ) return DataLoader( _SCREAMING_SNAKE_CASE , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=_SCREAMING_SNAKE_CASE , ) def __A ( self , _SCREAMING_SNAKE_CASE=None ) -> str: A_ = self.train_dataset if calib_dataset is None else calib_dataset A_ = self.get_calib_dataloader(_SCREAMING_SNAKE_CASE ) A_ = self.model quant_trainer.configure_model(_SCREAMING_SNAKE_CASE , self.quant_trainer_args , calib=_SCREAMING_SNAKE_CASE ) model.eval() quant_trainer.enable_calibration(_SCREAMING_SNAKE_CASE ) logger.info('''***** Running calibration *****''' ) logger.info(F''' Num examples = {self.calib_num}''' ) logger.info(F''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(_SCREAMING_SNAKE_CASE ): # Prediction step A_ ,A_ ,A_ = self.prediction_step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prediction_loss_only=_SCREAMING_SNAKE_CASE ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(_SCREAMING_SNAKE_CASE , self.quant_trainer_args ) A_ = model def __A ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = "eval" ) -> Union[str, Any]: A_ = self.eval_dataset if eval_dataset is None else eval_dataset A_ = self.get_eval_dataloader(_SCREAMING_SNAKE_CASE ) A_ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. A_ = self.compute_metrics A_ = None A_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A_ = eval_loop( _SCREAMING_SNAKE_CASE , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_SCREAMING_SNAKE_CASE , ) finally: A_ = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: A_ = self.post_process_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , output.predictions ) A_ = self.compute_metrics(_SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): A_ = metrics.pop(_SCREAMING_SNAKE_CASE ) self.log(_SCREAMING_SNAKE_CASE ) else: A_ = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) A_ = self.callback_handler.on_evaluate(self.args , self.state , self.control , _SCREAMING_SNAKE_CASE ) return metrics def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = "test" ) -> Optional[Any]: A_ = self.get_test_dataloader(_SCREAMING_SNAKE_CASE ) # Temporarily disable metric computation, we will do it in the loop here. A_ = self.compute_metrics A_ = None A_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A_ = eval_loop( _SCREAMING_SNAKE_CASE , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_SCREAMING_SNAKE_CASE , ) finally: A_ = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output A_ = self.post_process_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , output.predictions , '''predict''' ) A_ = self.compute_metrics(_SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): A_ = metrics.pop(_SCREAMING_SNAKE_CASE ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE="./" ) -> str: A_ = self.eval_dataset A_ = self.get_eval_dataloader(_SCREAMING_SNAKE_CASE ) A_ = next(iter(_SCREAMING_SNAKE_CASE ) ) # saving device - to make it consistent A_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) # convert to tuple A_ = tuple(v.to(_SCREAMING_SNAKE_CASE ) for k, v in batch.items() ) logger.info('''Converting model to be onnx compatible''' ) from pytorch_quantization.nn import TensorQuantizer A_ = True A_ = self.model.to(_SCREAMING_SNAKE_CASE ) model.eval() model.float() A_ = model.module if hasattr(_SCREAMING_SNAKE_CASE , '''module''' ) else model quant_trainer.configure_model(_SCREAMING_SNAKE_CASE , self.quant_trainer_args ) A_ = os.path.join(_SCREAMING_SNAKE_CASE , '''model.onnx''' ) logger.info(F'''exporting model to {output_model_file}''' ) A_ = {0: '''batch_size''', 1: '''seq_len'''} torch.onnx.export( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , export_params=_SCREAMING_SNAKE_CASE , opset_version=13 , do_constant_folding=_SCREAMING_SNAKE_CASE , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={ '''input_ids''': axes, '''attention_mask''': axes, '''token_type_ids''': axes, '''output_start_logits''': axes, '''output_end_logits''': axes, } , verbose=_SCREAMING_SNAKE_CASE , ) logger.info('''onnx export finished''' )
18
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') __snake_case : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __snake_case : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: with open(_UpperCamelCase, '''rb''' ) as f: A_ = Image.open(_UpperCamelCase ) return im.convert('''RGB''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the training data.'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the validation data.'} ) __lowercase : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __A ( self ) -> int: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_UpperCamelCase )} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) __lowercase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowercase : str = field(default=_UpperCamelCase , metadata={'help': 'Name or path of preprocessor config.'} ) __lowercase : bool = field( default=_UpperCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __lowercase : bool = field( default=_UpperCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> Dict: A_ = torch.stack([example['''pixel_values'''] for example in examples] ) A_ = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _UpperCAmelCase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A_ ,A_ ,A_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A_ ,A_ ,A_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''', _UpperCamelCase, _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A_ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. A_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: A_ = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, task='''image-classification''', use_auth_token=True if model_args.use_auth_token else None, ) else: A_ = {} if data_args.train_dir is not None: A_ = os.path.join(data_args.train_dir, '''**''' ) if data_args.validation_dir is not None: A_ = os.path.join(data_args.validation_dir, '''**''' ) A_ = load_dataset( '''imagefolder''', data_files=_UpperCamelCase, cache_dir=model_args.cache_dir, task='''image-classification''', ) # If we don't have a validation split, split off a percentage of train as validation. A_ = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, _UpperCamelCase ) and data_args.train_val_split > 0.0: A_ = dataset['''train'''].train_test_split(data_args.train_val_split ) A_ = split['''train'''] A_ = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A_ = dataset['''train'''].features['''labels'''].names A_ ,A_ = {}, {} for i, label in enumerate(_UpperCamelCase ): A_ = str(_UpperCamelCase ) A_ = label # Load the accuracy metric from the datasets package A_ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Optional[Any] ): return metric.compute(predictions=np.argmax(p.predictions, axis=1 ), references=p.label_ids ) A_ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(_UpperCamelCase ), labelaid=_UpperCamelCase, idalabel=_UpperCamelCase, finetuning_task='''image-classification''', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) A_ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=_UpperCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) A_ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: A_ = image_processor.size['''shortest_edge'''] else: A_ = (image_processor.size['''height'''], image_processor.size['''width''']) A_ = Normalize(mean=image_processor.image_mean, std=image_processor.image_std ) A_ = Compose( [ RandomResizedCrop(_UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) A_ = Compose( [ Resize(_UpperCamelCase ), CenterCrop(_UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(_UpperCamelCase : Dict ): A_ = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(_UpperCamelCase : Any ): A_ = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: A_ = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: A_ = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_UpperCamelCase ) # Initalize our trainer A_ = Trainer( model=_UpperCamelCase, args=_UpperCamelCase, train_dataset=dataset['''train'''] if training_args.do_train else None, eval_dataset=dataset['''validation'''] if training_args.do_eval else None, compute_metrics=_UpperCamelCase, tokenizer=_UpperCamelCase, data_collator=_UpperCamelCase, ) # Training if training_args.do_train: A_ = None if training_args.resume_from_checkpoint is not None: A_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A_ = last_checkpoint A_ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics ) trainer.save_metrics('''train''', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A_ = trainer.evaluate() trainer.log_metrics('''eval''', _UpperCamelCase ) trainer.save_metrics('''eval''', _UpperCamelCase ) # Write model card and (optionally) push to hub A_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
18
1
'''simple docstring''' import argparse import os import re import packaging.version __snake_case : Tuple = 'examples/' __snake_case : List[str] = { 'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'), 'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } __snake_case : Dict = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } __snake_case : Optional[int] = 'README.md' def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : Any, _UpperCamelCase : List[str] ) -> Optional[int]: with open(_UpperCamelCase, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: A_ = f.read() A_ ,A_ = REPLACE_PATTERNS[pattern] A_ = replace.replace('''VERSION''', _UpperCamelCase ) A_ = re_pattern.sub(_UpperCamelCase, _UpperCamelCase ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.write(_UpperCamelCase ) def _UpperCAmelCase ( _UpperCamelCase : Optional[int] ) -> str: for folder, directories, fnames in os.walk(_UpperCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(_UpperCamelCase, _UpperCamelCase ), _UpperCamelCase, pattern='''examples''' ) def _UpperCAmelCase ( _UpperCamelCase : Optional[Any], _UpperCamelCase : List[str]=False ) -> List[Any]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) if not patch: update_version_in_examples(_UpperCamelCase ) def _UpperCAmelCase ( ) -> int: A_ = '''🤗 Transformers currently provides the following architectures''' A_ = '''1. Want to contribute a new model?''' with open(_UpperCamelCase, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: A_ = f.readlines() # Find the start of the list. A_ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 A_ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): A_ = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''', '''https://huggingface.co/docs/diffusers/model_doc''', ) index += 1 with open(_UpperCamelCase, '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.writelines(_UpperCamelCase ) def _UpperCAmelCase ( ) -> str: with open(REPLACE_FILES['''init'''], '''r''' ) as f: A_ = f.read() A_ = REPLACE_PATTERNS['''init'''][0].search(_UpperCamelCase ).groups()[0] return packaging.version.parse(_UpperCamelCase ) def _UpperCAmelCase ( _UpperCamelCase : List[Any]=False ) -> Tuple: A_ = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: A_ = default_version.base_version elif patch: A_ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: A_ = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. A_ = input(F'''Which version are you releasing? [{default_version}]''' ) if len(_UpperCamelCase ) == 0: A_ = default_version print(F'''Updating version to {version}.''' ) global_version_update(_UpperCamelCase, patch=_UpperCamelCase ) def _UpperCAmelCase ( ) -> str: A_ = get_version() A_ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' A_ = current_version.base_version # Check with the user we got that right. A_ = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(_UpperCamelCase ) == 0: A_ = dev_version print(F'''Updating version to {version}.''' ) global_version_update(_UpperCamelCase ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') __snake_case : str = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
18
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __snake_case : str = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Dict: A_ = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def __A ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __A ( self ) -> str: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id='''test-model-flax''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def __A ( self ) -> List[str]: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Tuple ) -> Dict: A_ = True A_ = flatten_dict(modela.params ) A_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: A_ = False return models_are_equal @require_flax class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> List[str]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> List[Any]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , max_shard_size='''10KB''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> Dict: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
18
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=0.9 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ) -> int: A_ = size if size is not None else {'''shortest_edge''': 30} A_ = crop_size if crop_size is not None else {'''height''': 30, '''width''': 30} A_ = parent A_ = batch_size A_ = num_channels A_ = min_resolution A_ = max_resolution A_ = do_resize_and_center_crop A_ = size A_ = crop_pct A_ = crop_size A_ = do_normalize A_ = image_mean A_ = image_std def __A ( self ) -> str: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Tuple = PoolFormerImageProcessor if is_vision_available() else None def __A ( self ) -> Optional[int]: A_ = PoolFormerImageProcessingTester(self ) @property def __A ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> int: A_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''size''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''crop_pct''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''image_mean''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''image_std''' ) ) def __A ( self ) -> Optional[Any]: A_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 30} ) self.assertEqual(image_processor.crop_size , {'''height''': 30, '''width''': 30} ) A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __A ( self ) -> Optional[int]: pass def __A ( self ) -> List[Any]: # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __A ( self ) -> Dict: # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __A ( self ) -> Optional[Any]: # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
18
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Dict: A_ = 1 A_ = 2 while i * i <= n: A_ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _UpperCAmelCase ( ) -> Optional[int]: A_ = 1 A_ = 1 while True: i += 1 t_num += i if count_divisors(_UpperCamelCase ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
18
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case : Any = { 'configuration_chinese_clip': [ 'CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ChineseCLIPConfig', 'ChineseCLIPOnnxConfig', 'ChineseCLIPTextConfig', 'ChineseCLIPVisionConfig', ], 'processing_chinese_clip': ['ChineseCLIPProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = ['ChineseCLIPFeatureExtractor'] __snake_case : Optional[int] = ['ChineseCLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ 'CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ChineseCLIPModel', 'ChineseCLIPPreTrainedModel', 'ChineseCLIPTextModel', 'ChineseCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
18
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=[1, 384, 24, 24] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = backbone_out_indices A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = num_labels A_ = backbone_featmap_shape A_ = scope A_ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = num_patches + 1 def __A ( self ) -> Optional[Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Optional[Any]: A_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = DPTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: A_ = self.num_labels A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: A_ = self.num_labels A_ = DPTForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __A ( self ) -> Optional[int]: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __lowercase : Optional[int] = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : Any = False __lowercase : Tuple = False __lowercase : List[Any] = False def __A ( self ) -> Tuple: A_ = DPTModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def __A ( self ) -> Union[str, Any]: pass def __A ( self ) -> Dict: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> Optional[int]: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ): continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = False A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Tuple: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: A_ = model_class(config=_SCREAMING_SNAKE_CASE ) # Skip the check for the backbone A_ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": A_ = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> int: pass @slow def __A ( self ) -> Dict: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: A_ = DPTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = '''add''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Optional[int]: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Any: A_ = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) A_ = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(_SCREAMING_SNAKE_CASE ) A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE ) A_ = outputs.predicted_depth # verify the predicted depth A_ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
18
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 / 255 , _SCREAMING_SNAKE_CASE=True , ) -> Any: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p A_ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} A_ = parent A_ = batch_size A_ = num_channels A_ = min_resolution A_ = max_resolution A_ = do_resize A_ = size A_ = do_normalize A_ = image_mean A_ = image_std A_ = do_rescale A_ = rescale_factor A_ = do_pad def __A ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> str: if not batched: A_ = image_inputs[0] if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ): A_ ,A_ = image.size else: A_ ,A_ = image.shape[1], image.shape[2] if w < h: A_ = int(self.size['''shortest_edge'''] * h / w ) A_ = self.size['''shortest_edge'''] elif w > h: A_ = self.size['''shortest_edge'''] A_ = int(self.size['''shortest_edge'''] * w / h ) else: A_ = self.size['''shortest_edge'''] A_ = self.size['''shortest_edge'''] else: A_ = [] for image in image_inputs: A_ ,A_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0] A_ = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Union[str, Any] = DetaImageProcessor if is_vision_available() else None def __A ( self ) -> int: A_ = DetaImageProcessingTester(self ) @property def __A ( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Union[str, Any]: A_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''image_mean''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''image_std''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_rescale''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_pad''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''size''' ) ) def __A ( self ) -> Optional[Any]: A_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: pass def __A ( self ) -> Tuple: # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values A_ ,A_ = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ ,A_ = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) A_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self ) -> int: # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values A_ ,A_ = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values A_ ,A_ = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self ) -> Dict: # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values A_ ,A_ = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values A_ ,A_ = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __A ( self ) -> Optional[Any]: # prepare image and target A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: A_ = json.loads(f.read() ) A_ = {'''image_id''': 3_9769, '''annotations''': target} # encode them A_ = DetaImageProcessor() A_ = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) # verify pixel values A_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) # verify area A_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _SCREAMING_SNAKE_CASE ) ) # verify boxes A_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # verify image_id A_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd A_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels A_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _SCREAMING_SNAKE_CASE ) ) # verify orig_size A_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _SCREAMING_SNAKE_CASE ) ) # verify size A_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _SCREAMING_SNAKE_CASE ) ) @slow def __A ( self ) -> Optional[int]: # prepare image, target and masks_path A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: A_ = json.loads(f.read() ) A_ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} A_ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them A_ = DetaImageProcessor(format='''coco_panoptic''' ) A_ = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , masks_path=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) # verify pixel values A_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) # verify area A_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _SCREAMING_SNAKE_CASE ) ) # verify boxes A_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # verify image_id A_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd A_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels A_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _SCREAMING_SNAKE_CASE ) ) # verify masks A_ = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _SCREAMING_SNAKE_CASE ) # verify orig_size A_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _SCREAMING_SNAKE_CASE ) ) # verify size A_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _SCREAMING_SNAKE_CASE ) )
18
'''simple docstring''' import math def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : float ) -> float: if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
18
1
'''simple docstring''' from statistics import mean, stdev def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = min(_UpperCamelCase ) A_ = max(_UpperCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min), _UpperCamelCase ) for x in data] def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = mean(_UpperCamelCase ) A_ = stdev(_UpperCamelCase ) # standardize data return [round((x - mu) / (sigma), _UpperCamelCase ) for x in data]
18
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
18
1
'''simple docstring''' import os def _UpperCAmelCase ( ) -> List[str]: A_ = os.path.join(os.path.dirname(_UpperCamelCase ), '''num.txt''' ) with open(_UpperCamelCase ) as file_hand: return str(sum(int(_UpperCamelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
18
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : Any = logging.get_logger(__name__) def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> List[str]: A_ = torch.load(_UpperCamelCase, map_location='''cpu''' ) if "model" in sd.keys(): A_ = torch.load(_UpperCamelCase, map_location='''cpu''' )['''model'''] # pop unnecessary weights A_ = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(_UpperCamelCase ) A_ = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: A_ = sd.pop(_UpperCamelCase ) A_ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: A_ = sd[key] # We split QKV in separate Q,K,V A_ = key.replace('''.qkv_proj.''', '''.q_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.k_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.v_proj.''' ) A_ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 A_ ,A_ ,A_ = torch.split(_UpperCamelCase, depth // 3, dim=0 ) A_ = q A_ = k A_ = v del sd[key] return sd @torch.no_grad() def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : Optional[Any], _UpperCamelCase : List[str]=None ) -> Dict: A_ = load_checkpoint(_UpperCamelCase ) if config is not None: A_ = OPTConfig.from_pretrained(_UpperCamelCase ) else: A_ = OPTConfig() A_ = OPTModel(_UpperCamelCase ).half().eval() model.load_state_dict(_UpperCamelCase ) # Check results Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') __snake_case : Optional[Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
18
1
'''simple docstring''' import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowercase : Tuple = inspect.getfile(accelerate.test_utils ) __lowercase : Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_cli.py'] ) __lowercase : List[str] = ['accelerate', 'launch'] __lowercase : List[Any] = Path.home() / '.cache/huggingface/accelerate' __lowercase : Optional[int] = 'default_config.yaml' __lowercase : int = config_folder / config_file __lowercase : List[Any] = config_folder / '_default_config.yaml' __lowercase : Optional[int] = Path('tests/test_configs' ) @classmethod def __A ( cls ) -> List[Any]: if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def __A ( cls ) -> Optional[Any]: if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def __A ( self ) -> List[str]: A_ = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def __A ( self ) -> Dict: for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=_SCREAMING_SNAKE_CASE ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(_SCREAMING_SNAKE_CASE ), self.test_file_path] , env=os.environ.copy() ) def __A ( self ) -> List[Any]: execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowercase : int = 'test-tpu' __lowercase : List[str] = 'us-central1-a' __lowercase : str = 'ls' __lowercase : Union[str, Any] = ['accelerate', 'tpu-config'] __lowercase : List[str] = 'cd /usr/share' __lowercase : int = 'tests/test_samples/test_command_file.sh' __lowercase : Any = 'Running gcloud compute tpus tpu-vm ssh' def __A ( self ) -> int: A_ = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=_SCREAMING_SNAKE_CASE , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _SCREAMING_SNAKE_CASE , ) def __A ( self ) -> Tuple: A_ = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_SCREAMING_SNAKE_CASE , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _SCREAMING_SNAKE_CASE , ) def __A ( self ) -> Tuple: A_ = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=_SCREAMING_SNAKE_CASE ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _SCREAMING_SNAKE_CASE , ) def __A ( self ) -> int: A_ = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=_SCREAMING_SNAKE_CASE , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _SCREAMING_SNAKE_CASE , ) def __A ( self ) -> List[str]: A_ = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=_SCREAMING_SNAKE_CASE , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , _SCREAMING_SNAKE_CASE , ) def __A ( self ) -> str: A_ = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=_SCREAMING_SNAKE_CASE , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _SCREAMING_SNAKE_CASE , ) def __A ( self ) -> Dict: A_ = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_SCREAMING_SNAKE_CASE , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _SCREAMING_SNAKE_CASE , ) def __A ( self ) -> int: A_ = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=_SCREAMING_SNAKE_CASE , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , _SCREAMING_SNAKE_CASE , ) def __A ( self ) -> int: A_ = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=_SCREAMING_SNAKE_CASE , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , _SCREAMING_SNAKE_CASE , )
18
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __snake_case : Optional[Any] = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } __snake_case : Tuple = {'allegro/herbert-base-cased': 514} __snake_case : List[str] = {} class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Any = VOCAB_FILES_NAMES __lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Dict = PRETRAINED_INIT_CONFIGURATION __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = HerbertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE="</s>" , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.cls_token_id] A_ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: A_ = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
18
1
'''simple docstring''' from __future__ import annotations __snake_case : Any = 'Muhammad Umer Farooq' __snake_case : Union[str, Any] = 'MIT' __snake_case : str = '1.0.0' __snake_case : Optional[Any] = 'Muhammad Umer Farooq' __snake_case : List[str] = '[email protected]' __snake_case : Optional[Any] = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE ) -> None: super().__init__() A_ = [] A_ = domain def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: A_ = parse.urljoin(self.domain , _SCREAMING_SNAKE_CASE ) self.urls.append(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> str: return ".".join(get_sub_domain_name(_UpperCamelCase ).split('''.''' )[-2:] ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> str: return parse.urlparse(_UpperCamelCase ).netloc def _UpperCAmelCase ( _UpperCamelCase : str = "https://github.com" ) -> list[str]: A_ = get_domain_name(_UpperCamelCase ) # Initialize the parser A_ = Parser(_UpperCamelCase ) try: # Open URL A_ = requests.get(_UpperCamelCase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through A_ = set() for link in parser.urls: # open URL. # read = requests.get(link) try: A_ = requests.get(_UpperCamelCase ) # Get the valid email. A_ = re.findall('''[a-zA-Z0-9]+@''' + domain, read.text ) # If not in list then append it. for email in emails: valid_emails.add(_UpperCamelCase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(_UpperCamelCase ) if __name__ == "__main__": __snake_case : int = emails_from_url('https://github.com') print(F"""{len(emails)} emails found:""") print('\n'.join(sorted(emails)))
18
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any]=None ) -> List[Any]: if subparsers is not None: A_ = subparsers.add_parser('''env''' ) else: A_ = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''', default=_UpperCamelCase, help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=_UpperCamelCase ) return parser def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> Dict: A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = is_xpu_available() A_ = is_npu_available() A_ = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(_UpperCamelCase ): A_ = load_config_from_file(args.config_file ).to_dict() A_ = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(_UpperCamelCase ), '''PyTorch NPU available''': str(_UpperCamelCase ), '''System RAM''': F'''{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB''', } if pt_cuda_available: A_ = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) A_ = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_UpperCamelCase, _UpperCamelCase ) else F'''\t{accelerate_config}''' ) print(_UpperCamelCase ) A_ = accelerate_config return info def _UpperCAmelCase ( ) -> int: A_ = env_command_parser() A_ = parser.parse_args() env_command(_UpperCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
18
1
'''simple docstring''' __snake_case : Optional[Any] = { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'a', 11: 'b', 12: 'c', 13: 'd', 14: 'e', 15: 'f', } def _UpperCAmelCase ( _UpperCamelCase : float ) -> str: assert type(_UpperCamelCase ) in (int, float) and decimal == int(_UpperCamelCase ) A_ = int(_UpperCamelCase ) A_ = '''''' A_ = False if decimal < 0: A_ = True decimal *= -1 while decimal > 0: A_ ,A_ = divmod(_UpperCamelCase, 16 ) A_ = values[remainder] + hexadecimal A_ = '''0x''' + hexadecimal if negative: A_ = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
18
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=0.6 , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = type_sequence_label_size A_ = initializer_range A_ = mask_ratio A_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __A ( self ) -> Union[str, Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: A_ = ViTMAEModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) A_ = (self.image_size // self.patch_size) ** 2 A_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images A_ = 1 A_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ = model(_SCREAMING_SNAKE_CASE ) A_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __A ( self ) -> int: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : int = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __lowercase : List[Any] = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} __lowercase : Union[str, Any] = False __lowercase : List[Any] = False __lowercase : List[str] = False __lowercase : List[str] = False def __A ( self ) -> Any: A_ = ViTMAEModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __A ( self ) -> int: pass def __A ( self ) -> int: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> int: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Union[str, Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: # make masks reproducible np.random.seed(2 ) A_ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) A_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument A_ = pt_noise super().check_pt_tf_models(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ = outputs[0].cpu().numpy() A_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ = model_class.from_pretrained(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Make sure we don't have nans A_ = after_outputs[0].cpu().numpy() A_ = 0 A_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> List[str]: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> Dict: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> Tuple: pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __A ( self ) -> str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> Union[str, Any]: pass @slow def __A ( self ) -> Dict: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = ViTMAEModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Dict: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __A ( self ) -> List[str]: return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __A ( self ) -> List[str]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) A_ = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(_SCREAMING_SNAKE_CASE ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) A_ = ViTMAEConfig() A_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) A_ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE , noise=torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ) ) # verify the logits A_ = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_SCREAMING_SNAKE_CASE ) , atol=1E-4 ) )
18
1
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np __snake_case : Optional[Any] = re.compile(R'\b(a|an|the)\b', re.UNICODE) __snake_case : int = None def _UpperCAmelCase ( ) -> Dict: A_ = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''', metavar='''data.json''', help='''Input data JSON file.''' ) parser.add_argument('''pred_file''', metavar='''pred.json''', help='''Model predictions.''' ) parser.add_argument( '''--out-file''', '''-o''', metavar='''eval.json''', help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''', '''-n''', metavar='''na_prob.json''', help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''', '''-t''', type=_UpperCamelCase, default=1.0, help='''Predict "" if no-answer probability exceeds this (default = 1.0).''', ) parser.add_argument( '''--out-image-dir''', '''-p''', metavar='''out_images''', default=_UpperCamelCase, help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''', '''-v''', action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _UpperCAmelCase ( _UpperCamelCase : Optional[int] ) -> Dict: A_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: A_ = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> Optional[Any]: def remove_articles(_UpperCamelCase : Any ): return ARTICLES_REGEX.sub(''' ''', _UpperCamelCase ) def white_space_fix(_UpperCamelCase : List[Any] ): return " ".join(text.split() ) def remove_punc(_UpperCamelCase : Dict ): A_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCamelCase : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCamelCase ) ) ) ) def _UpperCAmelCase ( _UpperCamelCase : Tuple ) -> Any: if not s: return [] return normalize_answer(_UpperCamelCase ).split() def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Optional[int] ) -> int: return int(normalize_answer(_UpperCamelCase ) == normalize_answer(_UpperCamelCase ) ) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : List[str] ) -> Any: A_ = get_tokens(_UpperCamelCase ) A_ = get_tokens(_UpperCamelCase ) A_ = collections.Counter(_UpperCamelCase ) & collections.Counter(_UpperCamelCase ) A_ = sum(common.values() ) if len(_UpperCamelCase ) == 0 or len(_UpperCamelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 A_ = 1.0 * num_same / len(_UpperCamelCase ) A_ = 1.0 * num_same / len(_UpperCamelCase ) A_ = (2 * precision * recall) / (precision + recall) return fa def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : int ) -> Tuple: A_ = {} A_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: A_ = qa['''id'''] A_ = [t for t in qa['''answers''']['''text'''] if normalize_answer(_UpperCamelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string A_ = [''''''] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue A_ = preds[qid] # Take max over all gold answers A_ = max(compute_exact(_UpperCamelCase, _UpperCamelCase ) for a in gold_answers ) A_ = max(compute_fa(_UpperCamelCase, _UpperCamelCase ) for a in gold_answers ) return exact_scores, fa_scores def _UpperCAmelCase ( _UpperCamelCase : List[str], _UpperCamelCase : Optional[Any], _UpperCamelCase : List[str], _UpperCamelCase : int ) -> str: A_ = {} for qid, s in scores.items(): A_ = na_probs[qid] > na_prob_thresh if pred_na: A_ = float(not qid_to_has_ans[qid] ) else: A_ = s return new_scores def _UpperCAmelCase ( _UpperCamelCase : Dict, _UpperCamelCase : int, _UpperCamelCase : Any=None ) -> Union[str, Any]: if not qid_list: A_ = len(_UpperCamelCase ) return collections.OrderedDict( [ ('''exact''', 1_0_0.0 * sum(exact_scores.values() ) / total), ('''f1''', 1_0_0.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: A_ = len(_UpperCamelCase ) return collections.OrderedDict( [ ('''exact''', 1_0_0.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 1_0_0.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def _UpperCAmelCase ( _UpperCamelCase : Dict, _UpperCamelCase : Tuple, _UpperCamelCase : int ) -> List[str]: for k in new_eval: A_ = new_eval[k] def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : Any, _UpperCamelCase : List[Any], _UpperCamelCase : Tuple ) -> Dict: plt.step(_UpperCamelCase, _UpperCamelCase, color='''b''', alpha=0.2, where='''post''' ) plt.fill_between(_UpperCamelCase, _UpperCamelCase, step='''post''', alpha=0.2, color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.0_5] ) plt.ylim([0.0, 1.0_5] ) plt.title(_UpperCamelCase ) plt.savefig(_UpperCamelCase ) plt.clf() def _UpperCAmelCase ( _UpperCamelCase : Any, _UpperCamelCase : Union[str, Any], _UpperCamelCase : Tuple, _UpperCamelCase : Dict, _UpperCamelCase : Union[str, Any]=None, _UpperCamelCase : int=None ) -> List[str]: A_ = sorted(_UpperCamelCase, key=lambda _UpperCamelCase : na_probs[k] ) A_ = 0.0 A_ = 1.0 A_ = 0.0 A_ = [1.0] A_ = [0.0] A_ = 0.0 for i, qid in enumerate(_UpperCamelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] A_ = true_pos / float(i + 1 ) A_ = true_pos / float(_UpperCamelCase ) if i == len(_UpperCamelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_UpperCamelCase ) recalls.append(_UpperCamelCase ) if out_image: plot_pr_curve(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) return {"ap": 1_0_0.0 * avg_prec} def _UpperCAmelCase ( _UpperCamelCase : Any, _UpperCamelCase : Dict, _UpperCamelCase : Optional[Any], _UpperCamelCase : str, _UpperCamelCase : Union[str, Any], _UpperCamelCase : List[str] ) -> int: if out_image_dir and not os.path.exists(_UpperCamelCase ): os.makedirs(_UpperCamelCase ) A_ = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return A_ = make_precision_recall_eval( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, out_image=os.path.join(_UpperCamelCase, '''pr_exact.png''' ), title='''Precision-Recall curve for Exact Match score''', ) A_ = make_precision_recall_eval( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, out_image=os.path.join(_UpperCamelCase, '''pr_f1.png''' ), title='''Precision-Recall curve for F1 score''', ) A_ = {k: float(_UpperCamelCase ) for k, v in qid_to_has_ans.items()} A_ = make_precision_recall_eval( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, out_image=os.path.join(_UpperCamelCase, '''pr_oracle.png''' ), title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''', ) merge_eval(_UpperCamelCase, _UpperCamelCase, '''pr_exact''' ) merge_eval(_UpperCamelCase, _UpperCamelCase, '''pr_f1''' ) merge_eval(_UpperCamelCase, _UpperCamelCase, '''pr_oracle''' ) def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : Any, _UpperCamelCase : List[Any], _UpperCamelCase : Tuple ) -> Union[str, Any]: if not qid_list: return A_ = [na_probs[k] for k in qid_list] A_ = np.ones_like(_UpperCamelCase ) / float(len(_UpperCamelCase ) ) plt.hist(_UpperCamelCase, weights=_UpperCamelCase, bins=20, range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(_UpperCamelCase, F'''na_prob_hist_{name}.png''' ) ) plt.clf() def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Union[str, Any], _UpperCamelCase : Dict, _UpperCamelCase : List[Any] ) -> Optional[Any]: A_ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) A_ = num_no_ans A_ = cur_score A_ = 0.0 A_ = sorted(_UpperCamelCase, key=lambda _UpperCamelCase : na_probs[k] ) for i, qid in enumerate(_UpperCamelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: A_ = scores[qid] else: if preds[qid]: A_ = -1 else: A_ = 0 cur_score += diff if cur_score > best_score: A_ = cur_score A_ = na_probs[qid] return 1_0_0.0 * best_score / len(_UpperCamelCase ), best_thresh def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Optional[Any], _UpperCamelCase : Optional[Any], _UpperCamelCase : Optional[int], _UpperCamelCase : List[str], _UpperCamelCase : Tuple ) -> Optional[int]: A_ ,A_ = find_best_thresh(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) A_ ,A_ = find_best_thresh(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) A_ = best_exact A_ = exact_thresh A_ = best_fa A_ = fa_thresh def _UpperCAmelCase ( ) -> Any: with open(OPTS.data_file ) as f: A_ = json.load(_UpperCamelCase ) A_ = dataset_json['''data'''] with open(OPTS.pred_file ) as f: A_ = json.load(_UpperCamelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: A_ = json.load(_UpperCamelCase ) else: A_ = {k: 0.0 for k in preds} A_ = make_qid_to_has_ans(_UpperCamelCase ) # maps qid to True/False A_ = [k for k, v in qid_to_has_ans.items() if v] A_ = [k for k, v in qid_to_has_ans.items() if not v] A_ ,A_ = get_raw_scores(_UpperCamelCase, _UpperCamelCase ) A_ = apply_no_ans_threshold(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, OPTS.na_prob_thresh ) A_ = apply_no_ans_threshold(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, OPTS.na_prob_thresh ) A_ = make_eval_dict(_UpperCamelCase, _UpperCamelCase ) if has_ans_qids: A_ = make_eval_dict(_UpperCamelCase, _UpperCamelCase, qid_list=_UpperCamelCase ) merge_eval(_UpperCamelCase, _UpperCamelCase, '''HasAns''' ) if no_ans_qids: A_ = make_eval_dict(_UpperCamelCase, _UpperCamelCase, qid_list=_UpperCamelCase ) merge_eval(_UpperCamelCase, _UpperCamelCase, '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, OPTS.out_image_dir ) histogram_na_prob(_UpperCamelCase, _UpperCamelCase, OPTS.out_image_dir, '''hasAns''' ) histogram_na_prob(_UpperCamelCase, _UpperCamelCase, OPTS.out_image_dir, '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file, '''w''' ) as f: json.dump(_UpperCamelCase, _UpperCamelCase ) else: print(json.dumps(_UpperCamelCase, indent=2 ) ) if __name__ == "__main__": __snake_case : List[str] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
18
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : int = logging.get_logger(__name__) __snake_case : str = { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[Any] = 'xlm-prophetnet' __lowercase : Optional[int] = ['past_key_values'] __lowercase : int = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = "gelu" , _SCREAMING_SNAKE_CASE = 3_0522 , _SCREAMING_SNAKE_CASE = 1024 , _SCREAMING_SNAKE_CASE = 4096 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 4096 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 0.02 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = 128 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 2 , **_SCREAMING_SNAKE_CASE , ) -> int: A_ = vocab_size A_ = hidden_size A_ = encoder_ffn_dim A_ = num_encoder_layers A_ = num_encoder_attention_heads A_ = decoder_ffn_dim A_ = num_decoder_layers A_ = num_decoder_attention_heads A_ = max_position_embeddings A_ = init_std # Normal(0, this parameter) A_ = activation_function # parameters for xlmprophetnet A_ = ngram A_ = num_buckets A_ = relative_max_distance A_ = disable_ngram_loss A_ = eps # 3 Types of Dropout A_ = attention_dropout A_ = activation_dropout A_ = dropout A_ = use_cache super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , add_cross_attention=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @property def __A ( self ) -> int: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def __A ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
18
1
'''simple docstring''' # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: super().__init__() self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , **_SCREAMING_SNAKE_CASE , ) -> Union[ImagePipelineOutput, Tuple]: A_ = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_SCREAMING_SNAKE_CASE , ) A_ = image.to(self.device ) # set step values self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output A_ = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A_ = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample A_ = (image / 2 + 0.5).clamp(0 , 1 ) A_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A_ = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE ), "This is a local test"
18
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : list[float] ) -> float: if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) A_ = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_UpperCamelCase ) ) return round(_UpperCamelCase, ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
18
1
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __snake_case : int = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _UpperCAmelCase ( _UpperCamelCase : str ) -> List[Any]: assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _UpperCAmelCase ( _UpperCamelCase : Optional[Any], _UpperCamelCase : Optional[int] ) -> int: if args.student_type == "roberta": A_ = False elif args.student_type == "gpt2": A_ = False def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : Union[str, Any] ) -> int: if args.student_type == "roberta": A_ = False def _UpperCAmelCase ( ) -> str: A_ = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''', action='''store_true''', help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''', type=_UpperCamelCase, required=_UpperCamelCase, help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''', type=_UpperCamelCase, required=_UpperCamelCase, help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''', ) parser.add_argument( '''--student_type''', type=_UpperCamelCase, choices=['''distilbert''', '''roberta''', '''gpt2'''], required=_UpperCamelCase, help='''The student type (DistilBERT, RoBERTa).''', ) parser.add_argument('''--student_config''', type=_UpperCamelCase, required=_UpperCamelCase, help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''', default=_UpperCamelCase, type=_UpperCamelCase, help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''', choices=['''bert''', '''roberta''', '''gpt2'''], required=_UpperCamelCase, help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''', type=_UpperCamelCase, required=_UpperCamelCase, help='''The teacher model.''' ) parser.add_argument('''--temperature''', default=2.0, type=_UpperCamelCase, help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''', default=0.5, type=_UpperCamelCase, help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''', default=0.0, type=_UpperCamelCase, help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''', ) parser.add_argument('''--alpha_clm''', default=0.5, type=_UpperCamelCase, help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''', default=0.0, type=_UpperCamelCase, help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''', default=0.0, type=_UpperCamelCase, help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''', action='''store_true''', help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''', default=0.1_5, type=_UpperCamelCase, help='''Proportion of tokens for which we need to make a prediction.''', ) parser.add_argument('''--word_mask''', default=0.8, type=_UpperCamelCase, help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''', default=0.1, type=_UpperCamelCase, help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''', default=0.1, type=_UpperCamelCase, help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''', default=0.7, type=_UpperCamelCase, help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''', ) parser.add_argument('''--token_counts''', type=_UpperCamelCase, help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''', action='''store_true''', help='''If true, compute the distillation loss only the [MLM] prediction distribution.''', ) parser.add_argument( '''--freeze_pos_embs''', action='''store_true''', help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''', ) parser.add_argument( '''--freeze_token_type_embds''', action='''store_true''', help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''', ) parser.add_argument('''--n_epoch''', type=_UpperCamelCase, default=3, help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''', type=_UpperCamelCase, default=5, help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''', action='''store_false''', help='''If true, group sequences that have similar length into the same batch. Default is true.''', ) parser.add_argument( '''--gradient_accumulation_steps''', type=_UpperCamelCase, default=50, help='''Gradient accumulation for larger training batches.''', ) parser.add_argument('''--warmup_prop''', default=0.0_5, type=_UpperCamelCase, help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''', default=0.0, type=_UpperCamelCase, help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''', default=5E-4, type=_UpperCamelCase, help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''', default=1E-6, type=_UpperCamelCase, help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''', default=5.0, type=_UpperCamelCase, help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''', default=0.0_2, type=_UpperCamelCase, help='''Random initialization range.''' ) parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''', ) parser.add_argument( '''--fp16_opt_level''', type=_UpperCamelCase, default='''O1''', help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ), ) parser.add_argument('''--n_gpu''', type=_UpperCamelCase, default=1, help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''', type=_UpperCamelCase, default=-1, help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''', type=_UpperCamelCase, default=56, help='''Random seed''' ) parser.add_argument('''--log_interval''', type=_UpperCamelCase, default=5_00, help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''', type=_UpperCamelCase, default=40_00, help='''Checkpoint interval.''' ) A_ = parser.parse_args() sanity_checks(_UpperCamelCase ) # ARGS # init_gpu_params(_UpperCamelCase ) set_seed(_UpperCamelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path, '''parameters.json''' ), '''w''' ) as f: json.dump(vars(_UpperCamelCase ), _UpperCamelCase, indent=4 ) git_log(args.dump_path ) A_ ,A_ ,A_ = MODEL_CLASSES[args.student_type] A_ ,A_ ,A_ = MODEL_CLASSES[args.teacher_type] # TOKENIZER # A_ = teacher_tokenizer_class.from_pretrained(args.teacher_name ) A_ = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): A_ = tokenizer.all_special_tokens.index(_UpperCamelCase ) A_ = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) A_ = special_tok_ids A_ = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file, '''rb''' ) as fp: A_ = pickle.load(_UpperCamelCase ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts, '''rb''' ) as fp: A_ = pickle.load(_UpperCamelCase ) A_ = np.maximum(_UpperCamelCase, 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): A_ = 0.0 # do not predict special tokens A_ = torch.from_numpy(_UpperCamelCase ) else: A_ = None A_ = LmSeqsDataset(params=_UpperCamelCase, data=_UpperCamelCase ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) A_ = student_config_class.from_pretrained(args.student_config ) A_ = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) A_ = student_model_class.from_pretrained(args.student_pretrained_weights, config=_UpperCamelCase ) else: A_ = student_model_class(_UpperCamelCase ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('''Student loaded.''' ) # TEACHER # A_ = teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=_UpperCamelCase ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_UpperCamelCase, _UpperCamelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_UpperCamelCase, _UpperCamelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() A_ = Distiller( params=_UpperCamelCase, dataset=_UpperCamelCase, token_probs=_UpperCamelCase, student=_UpperCamelCase, teacher=_UpperCamelCase ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
18
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( _UpperCamelCase : int | str ) -> bool: A_ = str(_UpperCamelCase ) return n == n[::-1] def _UpperCAmelCase ( _UpperCamelCase : int = 1_00_00_00 ) -> Any: A_ = 0 for i in range(1, _UpperCamelCase ): if is_palindrome(_UpperCamelCase ) and is_palindrome(bin(_UpperCamelCase ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
18
1
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel __snake_case : Optional[int] = HfApi() __snake_case : Tuple = {} # fmt: off __snake_case : Dict = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) __snake_case : Dict = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) __snake_case : int = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) __snake_case : str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) __snake_case : str = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) __snake_case : Union[str, Any] = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) __snake_case : str = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) __snake_case : List[str] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) __snake_case : Union[str, Any] = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) __snake_case : Optional[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) __snake_case : int = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) __snake_case : int = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) __snake_case : Union[str, Any] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) __snake_case : int = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) __snake_case : List[str] = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on __snake_case : Dict = api.list_models(filter='diffusers') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": __snake_case : int = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1] print(F"""Started running {mod.modelId}!!!""") if mod.modelId.startswith('CompVis'): __snake_case : List[str] = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet') else: __snake_case : Any = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) __snake_case : str = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) __snake_case : Dict = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): __snake_case : Tuple = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1E-3 ) print(F"""{mod.modelId} has passed successfully!!!""")
18
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Tuple, _UpperCamelCase : List[str] ) -> int: A_ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] A_ = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } A_ = F'''{src_lang}-{tgt_lang}''' A_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(_UpperCamelCase, exist_ok=_UpperCamelCase ) A_ = os.path.join(_UpperCamelCase, '''README.md''' ) print(F'''Generating {path}''' ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(_UpperCamelCase ) # make sure we are under the root of the project __snake_case : Any = Path(__file__).resolve().parent.parent.parent __snake_case : Tuple = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __snake_case , __snake_case , __snake_case : Any = model_name.split('-') __snake_case : int = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
18
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __snake_case : List[Any] = logging.get_logger(__name__) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Any ) -> Dict: A_ = b.T A_ = np.sum(np.square(_UpperCamelCase ), axis=1 ) A_ = np.sum(np.square(_UpperCamelCase ), axis=0 ) A_ = np.matmul(_UpperCamelCase, _UpperCamelCase ) A_ = aa[:, None] - 2 * ab + ba[None, :] return d def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Dict ) -> Optional[Any]: A_ = x.reshape(-1, 3 ) A_ = squared_euclidean_distance(_UpperCamelCase, _UpperCamelCase ) return np.argmin(_UpperCamelCase, axis=1 ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Dict = ['pixel_values'] def __init__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , **_SCREAMING_SNAKE_CASE , ) -> None: super().__init__(**_SCREAMING_SNAKE_CASE ) A_ = size if size is not None else {'''height''': 256, '''width''': 256} A_ = get_size_dict(_SCREAMING_SNAKE_CASE ) A_ = np.array(_SCREAMING_SNAKE_CASE ) if clusters is not None else None A_ = do_resize A_ = size A_ = resample A_ = do_normalize A_ = do_color_quantize def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: A_ = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( _SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , ) -> np.ndarray: A_ = rescale(image=_SCREAMING_SNAKE_CASE , scale=1 / 127.5 , data_format=_SCREAMING_SNAKE_CASE ) A_ = image - 1 return image def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image: A_ = do_resize if do_resize is not None else self.do_resize A_ = size if size is not None else self.size A_ = get_size_dict(_SCREAMING_SNAKE_CASE ) A_ = resample if resample is not None else self.resample A_ = do_normalize if do_normalize is not None else self.do_normalize A_ = do_color_quantize if do_color_quantize is not None else self.do_color_quantize A_ = clusters if clusters is not None else self.clusters A_ = np.array(_SCREAMING_SNAKE_CASE ) A_ = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. A_ = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: A_ = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: A_ = [self.normalize(image=_SCREAMING_SNAKE_CASE ) for image in images] if do_color_quantize: A_ = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) A_ = np.array(_SCREAMING_SNAKE_CASE ) A_ = color_quantize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) A_ = images.shape[0] A_ = images.reshape(_SCREAMING_SNAKE_CASE , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. A_ = list(_SCREAMING_SNAKE_CASE ) else: A_ = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] A_ = {'''input_ids''': images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
18
'''simple docstring''' from collections import defaultdict def _UpperCAmelCase ( _UpperCamelCase : int ) -> int: A_ = 1 A_ = True for v in tree[start]: if v not in visited: ret += dfs(_UpperCamelCase ) if ret % 2 == 0: cuts.append(_UpperCamelCase ) return ret def _UpperCAmelCase ( ) -> Optional[Any]: dfs(1 ) if __name__ == "__main__": __snake_case , __snake_case : Union[str, Any] = 10, 9 __snake_case : int = defaultdict(list) __snake_case : dict[int, bool] = {} __snake_case : list[int] = [] __snake_case : Union[str, Any] = 0 __snake_case : int = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
1
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( _UpperCamelCase : Any, _UpperCamelCase : Union[str, Any], _UpperCamelCase : Optional[Any], _UpperCamelCase : List[Any] ) -> Any: # noqa: E741 while r - l > 1: A_ = (l + r) // 2 if v[m] >= key: A_ = m else: A_ = m # noqa: E741 return r def _UpperCAmelCase ( _UpperCamelCase : list[int] ) -> int: if len(_UpperCamelCase ) == 0: return 0 A_ = [0] * len(_UpperCamelCase ) A_ = 1 A_ = v[0] for i in range(1, len(_UpperCamelCase ) ): if v[i] < tail[0]: A_ = v[i] elif v[i] > tail[length - 1]: A_ = v[i] length += 1 else: A_ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[int] = 'mgp-str' def __init__( self , _SCREAMING_SNAKE_CASE=[32, 128] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=27 , _SCREAMING_SNAKE_CASE=38 , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=3_0522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: super().__init__(**_SCREAMING_SNAKE_CASE ) A_ = image_size A_ = patch_size A_ = num_channels A_ = max_token_length A_ = num_character_labels A_ = num_bpe_labels A_ = num_wordpiece_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = mlp_ratio A_ = distilled A_ = layer_norm_eps A_ = drop_rate A_ = qkv_bias A_ = attn_drop_rate A_ = drop_path_rate A_ = output_aa_attentions A_ = initializer_range
18
1
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , ) -> Any: A_ = parent A_ = 13 A_ = 7 A_ = True A_ = True A_ = True A_ = True A_ = 99 A_ = 384 A_ = 2 A_ = 4 A_ = 37 A_ = '''gelu''' A_ = 0.1 A_ = 0.1 A_ = 512 A_ = 16 A_ = 2 A_ = 0.02 A_ = 3 A_ = 4 A_ = 128 A_ = 2 A_ = 9 A_ = 1 A_ = None def __A ( self ) -> str: A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_SCREAMING_SNAKE_CASE , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: A_ = TFConvBertModel(config=_SCREAMING_SNAKE_CASE ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = [input_ids, input_mask] A_ = model(_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: A_ = TFConvBertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) A_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = self.num_labels A_ = TFConvBertForSequenceClassification(config=_SCREAMING_SNAKE_CASE ) A_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: A_ = self.num_choices A_ = TFConvBertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) A_ = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) A_ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: A_ = self.num_labels A_ = TFConvBertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) A_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: A_ = TFConvBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) A_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self ) -> Tuple: A_ = self.prepare_config_and_inputs() ( ( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) , ) = config_and_inputs A_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Any = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __lowercase : str = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __lowercase : List[Any] = False __lowercase : Union[str, Any] = False __lowercase : List[str] = False def __A ( self ) -> str: A_ = TFConvBertModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> List[Any]: self.config_tester.run_common_tests() def __A ( self ) -> List[str]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> List[str]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) @slow def __A ( self ) -> List[str]: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = True if hasattr(_SCREAMING_SNAKE_CASE , '''use_cache''' ): A_ = True A_ = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) A_ = getattr(self.model_tester , '''key_length''' , _SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = len(model(_SCREAMING_SNAKE_CASE ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE , saved_model=_SCREAMING_SNAKE_CASE ) A_ = os.path.join(_SCREAMING_SNAKE_CASE , '''saved_model''' , '''1''' ) A_ = tf.keras.models.load_model(_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: A_ = outputs['''encoder_hidden_states'''] A_ = outputs['''encoder_attentions'''] else: A_ = outputs['''hidden_states'''] A_ = outputs['''attentions'''] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) A_ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __A ( self ) -> List[Any]: A_ = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) A_ = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) A_ = getattr(self.model_tester , '''key_length''' , _SCREAMING_SNAKE_CASE ) A_ = getattr(self.model_tester , '''key_length''' , _SCREAMING_SNAKE_CASE ) def check_decoder_attentions_output(_SCREAMING_SNAKE_CASE ): A_ = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(out_len % 2 , 0 ) A_ = outputs.decoder_attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ): A_ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A_ = True A_ = False A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_decoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A_ = True A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine A_ = True A_ = True A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_SCREAMING_SNAKE_CASE ) ) self.assertEqual(model.config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) @require_tf class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __A ( self ) -> Optional[Any]: A_ = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) A_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ = model(_SCREAMING_SNAKE_CASE )[0] A_ = [1, 6, 768] self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) A_ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
18
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __UpperCAmelCase : '''simple docstring''' pass
18
1
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') __snake_case : Dict = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) __snake_case : Optional[Any] = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) __snake_case : int = BeautifulSoup(res.text, 'html.parser') __snake_case : Dict = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
18
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _UpperCAmelCase ( ) -> Dict: A_ = ArgumentParser('''Accelerate CLI tool''', usage='''accelerate <command> [<args>]''', allow_abbrev=_UpperCamelCase ) A_ = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=_UpperCamelCase ) env_command_parser(subparsers=_UpperCamelCase ) launch_command_parser(subparsers=_UpperCamelCase ) tpu_command_parser(subparsers=_UpperCamelCase ) test_command_parser(subparsers=_UpperCamelCase ) # Let's go A_ = parser.parse_args() if not hasattr(_UpperCamelCase, '''func''' ): parser.print_help() exit(1 ) # Run args.func(_UpperCamelCase ) if __name__ == "__main__": main()
18
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def __A ( self ) -> str: torch.manual_seed(0 ) A_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def __A ( self ) -> str: A_ = self.dummy_uncond_unet A_ = PNDMScheduler() A_ = PNDMPipeline(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) pndm.to(_SCREAMING_SNAKE_CASE ) pndm.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ = torch.manual_seed(0 ) A_ = pndm(generator=_SCREAMING_SNAKE_CASE , num_inference_steps=20 , output_type='''numpy''' ).images A_ = torch.manual_seed(0 ) A_ = pndm(generator=_SCREAMING_SNAKE_CASE , num_inference_steps=20 , output_type='''numpy''' , return_dict=_SCREAMING_SNAKE_CASE )[0] A_ = image[0, -3:, -3:, -1] A_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A_ = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Dict: A_ = '''google/ddpm-cifar10-32''' A_ = UNetaDModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = PNDMScheduler() A_ = PNDMPipeline(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) pndm.to(_SCREAMING_SNAKE_CASE ) pndm.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ = torch.manual_seed(0 ) A_ = pndm(generator=_SCREAMING_SNAKE_CASE , output_type='''numpy''' ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A_ = np.array([0.1_564, 0.14_645, 0.1_406, 0.14_715, 0.12_425, 0.14_045, 0.13_115, 0.12_175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
18
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __snake_case : Any = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' __snake_case : Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' __snake_case : Optional[int] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __A ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: if rouge_types is None: A_ = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] A_ = rouge_scorer.RougeScorer(rouge_types=_SCREAMING_SNAKE_CASE , use_stemmer=_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = scoring.BootstrapAggregator() else: A_ = [] for ref, pred in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = scorer.score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if use_aggregator: aggregator.add_scores(_SCREAMING_SNAKE_CASE ) else: scores.append(_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = aggregator.aggregate() else: A_ = {} for key in scores[0]: A_ = [score[key] for score in scores] return result
18
1
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : int = 1_00 ) -> int: A_ = 0 A_ = 0 for i in range(1, n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
18
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: super().__init__() A_ = module A_ = nn.Sequential( nn.Linear(module.in_features , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) , nn.Linear(_SCREAMING_SNAKE_CASE , module.out_features , bias=_SCREAMING_SNAKE_CASE ) , ) A_ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_SCREAMING_SNAKE_CASE ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __A ( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: return self.module(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) + self.adapter(_SCREAMING_SNAKE_CASE ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowercase : Dict = 'bigscience/bloom-1b7' # Constant values __lowercase : str = 2.109659552692574 __lowercase : int = 'Hello my name is' __lowercase : Optional[Any] = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __lowercase : Optional[Any] = 10 def __A ( self ) -> List[str]: # Models and tokenizer A_ = AutoTokenizer.from_pretrained(self.model_name ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[Any]: super().setUp() # Models and tokenizer A_ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> List[str]: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: A_ = self.model_abit.config self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''quantization_config''' ) ) A_ = config.to_dict() A_ = config.to_diff_dict() A_ = config.to_json_string() def __A ( self ) -> Union[str, Any]: from bitsandbytes.nn import Paramsabit A_ = self.model_fpaa.get_memory_footprint() A_ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A_ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __A ( self ) -> Union[str, Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __A ( self ) -> Optional[int]: A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Optional[int]: A_ = BitsAndBytesConfig() A_ = True A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Tuple: with self.assertRaises(_SCREAMING_SNAKE_CASE ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Tuple: A_ = BitsAndBytesConfig() with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def __A ( self ) -> Dict: with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_fpaa.to(torch.floataa ) A_ = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A_ = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error A_ = self.model_fpaa.half() # Check this does not throw an error A_ = self.model_fpaa.float() def __A ( self ) -> Optional[int]: A_ = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Optional[Any]: A_ = '''t5-small''' A_ = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense A_ = AutoTokenizer.from_pretrained(cls.model_name ) A_ = '''Translate in German: Hello, my dog is cute''' def __A ( self ) -> Any: gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: from transformers import TaForConditionalGeneration A_ = TaForConditionalGeneration._keep_in_fpaa_modules A_ = None # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) A_ = modules def __A ( self ) -> Dict: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> int: super().setUp() # model_name A_ = '''bigscience/bloom-560m''' A_ = '''t5-small''' # Different types of model A_ = AutoModel.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Sequence classification model A_ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # CausalLM model A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Seq2seq model A_ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> Union[str, Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __A ( self ) -> List[str]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> Tuple: super().setUp() def __A ( self ) -> List[Any]: del self.pipe gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[Any]: A_ = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A_ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[str]: super().setUp() def __A ( self ) -> Optional[int]: A_ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch A_ = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> str: A_ = '''facebook/opt-350m''' super().setUp() def __A ( self ) -> Optional[int]: if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A_ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A_ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_SCREAMING_SNAKE_CASE ) ): A_ = LoRALayer(module.q_proj , rank=16 ) A_ = LoRALayer(module.k_proj , rank=16 ) A_ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A_ = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A_ = model.forward(**_SCREAMING_SNAKE_CASE ) out.logits.norm().backward() for module in model.modules(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_SCREAMING_SNAKE_CASE , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : int = 'gpt2-xl' __lowercase : List[Any] = 3.3191854854152187
18
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __snake_case : int = logging.get_logger(__name__) __snake_case : str = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Dict = 'perceiver' def __init__( self , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=1280 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=26 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="kv" , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=262 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=56 , _SCREAMING_SNAKE_CASE=[368, 496] , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=1920 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 16, 224, 224] , **_SCREAMING_SNAKE_CASE , ) -> Dict: super().__init__(**_SCREAMING_SNAKE_CASE ) A_ = num_latents A_ = d_latents A_ = d_model A_ = num_blocks A_ = num_self_attends_per_block A_ = num_self_attention_heads A_ = num_cross_attention_heads A_ = qk_channels A_ = v_channels A_ = cross_attention_shape_for_attention A_ = self_attention_widening_factor A_ = cross_attention_widening_factor A_ = hidden_act A_ = attention_probs_dropout_prob A_ = initializer_range A_ = layer_norm_eps A_ = use_query_residual # masked language modeling attributes A_ = vocab_size A_ = max_position_embeddings # image classification attributes A_ = image_size # flow attributes A_ = train_size # multimodal autoencoding attributes A_ = num_frames A_ = audio_samples_per_frame A_ = samples_per_patch A_ = output_shape class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def __A ( self ) -> float: return 1E-4 def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 3 , _SCREAMING_SNAKE_CASE = 40 , _SCREAMING_SNAKE_CASE = 40 , ) -> Mapping[str, Any]: # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A_ = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A_ = preprocessor.num_special_tokens_to_add(_SCREAMING_SNAKE_CASE ) A_ = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence A_ = [''' '''.join(['''a'''] ) * seq_length] * batch_size A_ = dict(preprocessor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) ) A_ = inputs.pop('''input_ids''' ) return inputs elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A_ = compute_effective_axis_dimension(_SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch ) A_ = self._generate_dummy_images(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = dict(preprocessor(images=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) ) A_ = inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
18
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _UpperCAmelCase ( _UpperCamelCase : Features ) -> Optional[int]: A_ = np.inf def set_batch_size(_UpperCamelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ) and feature.dtype == "binary": A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_UpperCamelCase, _UpperCamelCase ) return None if batch_size is np.inf else batch_size class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ = path_or_paths if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} A_ = _PACKAGED_DATASETS_MODULES['''parquet'''][1] A_ = Parquet( cache_dir=_SCREAMING_SNAKE_CASE , data_files=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , hash=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self ) -> str: # Build iterable dataset if self.streaming: A_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) A_ = self.builder.as_dataset( split=self.split , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Dict: A_ = dataset A_ = path_or_buf A_ = batch_size or get_writer_batch_size(dataset.features ) A_ = parquet_writer_kwargs def __A ( self ) -> int: A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: A_ = self._write(file_obj=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) else: A_ = self._write(file_obj=self.path_or_buf , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) return written def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: A_ = 0 A_ = parquet_writer_kwargs.pop('''path_or_buf''' , _SCREAMING_SNAKE_CASE ) A_ = self.dataset.features.arrow_schema A_ = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _SCREAMING_SNAKE_CASE ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): A_ = query_table( table=self.dataset._data , key=slice(_SCREAMING_SNAKE_CASE , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_SCREAMING_SNAKE_CASE ) written += batch.nbytes writer.close() return written
18
1
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: super().__init__() A_ = module A_ = nn.Sequential( nn.Linear(module.in_features , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) , nn.Linear(_SCREAMING_SNAKE_CASE , module.out_features , bias=_SCREAMING_SNAKE_CASE ) , ) A_ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_SCREAMING_SNAKE_CASE ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __A ( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: return self.module(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) + self.adapter(_SCREAMING_SNAKE_CASE ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowercase : Dict = 'bigscience/bloom-1b7' # Constant values __lowercase : str = 2.109659552692574 __lowercase : int = 'Hello my name is' __lowercase : Optional[Any] = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __lowercase : Optional[Any] = 10 def __A ( self ) -> List[str]: # Models and tokenizer A_ = AutoTokenizer.from_pretrained(self.model_name ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[Any]: super().setUp() # Models and tokenizer A_ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> List[str]: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: A_ = self.model_abit.config self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''quantization_config''' ) ) A_ = config.to_dict() A_ = config.to_diff_dict() A_ = config.to_json_string() def __A ( self ) -> Union[str, Any]: from bitsandbytes.nn import Paramsabit A_ = self.model_fpaa.get_memory_footprint() A_ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A_ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __A ( self ) -> Union[str, Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __A ( self ) -> Optional[int]: A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Optional[int]: A_ = BitsAndBytesConfig() A_ = True A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Tuple: with self.assertRaises(_SCREAMING_SNAKE_CASE ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Tuple: A_ = BitsAndBytesConfig() with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def __A ( self ) -> Dict: with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_fpaa.to(torch.floataa ) A_ = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A_ = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error A_ = self.model_fpaa.half() # Check this does not throw an error A_ = self.model_fpaa.float() def __A ( self ) -> Optional[int]: A_ = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Optional[Any]: A_ = '''t5-small''' A_ = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense A_ = AutoTokenizer.from_pretrained(cls.model_name ) A_ = '''Translate in German: Hello, my dog is cute''' def __A ( self ) -> Any: gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: from transformers import TaForConditionalGeneration A_ = TaForConditionalGeneration._keep_in_fpaa_modules A_ = None # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) A_ = modules def __A ( self ) -> Dict: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> int: super().setUp() # model_name A_ = '''bigscience/bloom-560m''' A_ = '''t5-small''' # Different types of model A_ = AutoModel.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Sequence classification model A_ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # CausalLM model A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Seq2seq model A_ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> Union[str, Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __A ( self ) -> List[str]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> Tuple: super().setUp() def __A ( self ) -> List[Any]: del self.pipe gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[Any]: A_ = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A_ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[str]: super().setUp() def __A ( self ) -> Optional[int]: A_ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch A_ = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> str: A_ = '''facebook/opt-350m''' super().setUp() def __A ( self ) -> Optional[int]: if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A_ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A_ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_SCREAMING_SNAKE_CASE ) ): A_ = LoRALayer(module.q_proj , rank=16 ) A_ = LoRALayer(module.k_proj , rank=16 ) A_ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A_ = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A_ = model.forward(**_SCREAMING_SNAKE_CASE ) out.logits.norm().backward() for module in model.modules(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_SCREAMING_SNAKE_CASE , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : int = 'gpt2-xl' __lowercase : List[Any] = 3.3191854854152187
18
'''simple docstring''' from statistics import mean, stdev def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = min(_UpperCamelCase ) A_ = max(_UpperCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min), _UpperCamelCase ) for x in data] def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = mean(_UpperCamelCase ) A_ = stdev(_UpperCamelCase ) # standardize data return [round((x - mu) / (sigma), _UpperCamelCase ) for x in data]
18
1
'''simple docstring''' import math import unittest def _UpperCAmelCase ( _UpperCamelCase : int ) -> bool: assert isinstance(_UpperCamelCase, _UpperCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(_UpperCamelCase ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Dict: self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __A ( self ) -> Optional[int]: with self.assertRaises(_SCREAMING_SNAKE_CASE ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , '''Zero doesn\'t have any positive factors, primes must have exactly two.''' , ) self.assertFalse( is_prime(1 ) , '''One only has 1 positive factor, primes must have exactly two.''' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
18
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') __snake_case : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __snake_case : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: with open(_UpperCamelCase, '''rb''' ) as f: A_ = Image.open(_UpperCamelCase ) return im.convert('''RGB''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the training data.'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the validation data.'} ) __lowercase : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __A ( self ) -> int: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_UpperCamelCase )} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) __lowercase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowercase : str = field(default=_UpperCamelCase , metadata={'help': 'Name or path of preprocessor config.'} ) __lowercase : bool = field( default=_UpperCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __lowercase : bool = field( default=_UpperCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> Dict: A_ = torch.stack([example['''pixel_values'''] for example in examples] ) A_ = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _UpperCAmelCase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A_ ,A_ ,A_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A_ ,A_ ,A_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''', _UpperCamelCase, _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A_ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. A_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: A_ = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, task='''image-classification''', use_auth_token=True if model_args.use_auth_token else None, ) else: A_ = {} if data_args.train_dir is not None: A_ = os.path.join(data_args.train_dir, '''**''' ) if data_args.validation_dir is not None: A_ = os.path.join(data_args.validation_dir, '''**''' ) A_ = load_dataset( '''imagefolder''', data_files=_UpperCamelCase, cache_dir=model_args.cache_dir, task='''image-classification''', ) # If we don't have a validation split, split off a percentage of train as validation. A_ = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, _UpperCamelCase ) and data_args.train_val_split > 0.0: A_ = dataset['''train'''].train_test_split(data_args.train_val_split ) A_ = split['''train'''] A_ = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A_ = dataset['''train'''].features['''labels'''].names A_ ,A_ = {}, {} for i, label in enumerate(_UpperCamelCase ): A_ = str(_UpperCamelCase ) A_ = label # Load the accuracy metric from the datasets package A_ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Optional[Any] ): return metric.compute(predictions=np.argmax(p.predictions, axis=1 ), references=p.label_ids ) A_ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(_UpperCamelCase ), labelaid=_UpperCamelCase, idalabel=_UpperCamelCase, finetuning_task='''image-classification''', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) A_ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=_UpperCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) A_ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: A_ = image_processor.size['''shortest_edge'''] else: A_ = (image_processor.size['''height'''], image_processor.size['''width''']) A_ = Normalize(mean=image_processor.image_mean, std=image_processor.image_std ) A_ = Compose( [ RandomResizedCrop(_UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) A_ = Compose( [ Resize(_UpperCamelCase ), CenterCrop(_UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(_UpperCamelCase : Dict ): A_ = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(_UpperCamelCase : Any ): A_ = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: A_ = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: A_ = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_UpperCamelCase ) # Initalize our trainer A_ = Trainer( model=_UpperCamelCase, args=_UpperCamelCase, train_dataset=dataset['''train'''] if training_args.do_train else None, eval_dataset=dataset['''validation'''] if training_args.do_eval else None, compute_metrics=_UpperCamelCase, tokenizer=_UpperCamelCase, data_collator=_UpperCamelCase, ) # Training if training_args.do_train: A_ = None if training_args.resume_from_checkpoint is not None: A_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A_ = last_checkpoint A_ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics ) trainer.save_metrics('''train''', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A_ = trainer.evaluate() trainer.log_metrics('''eval''', _UpperCamelCase ) trainer.save_metrics('''eval''', _UpperCamelCase ) # Write model card and (optionally) push to hub A_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
18
1
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : Tuple ) -> Dict: assert isinstance(_UpperCamelCase, _UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''', [False, True] ) def _UpperCAmelCase ( _UpperCamelCase : Any, _UpperCamelCase : int, _UpperCamelCase : List[str] ) -> Dict: A_ = tmp_path / '''cache''' A_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ = JsonDatasetReader(_UpperCamelCase, cache_dir=_UpperCamelCase, keep_in_memory=_UpperCamelCase ).read() _check_json_dataset(_UpperCamelCase, _UpperCamelCase ) @pytest.mark.parametrize( '''features''', [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ], ) def _UpperCAmelCase ( _UpperCamelCase : Dict, _UpperCamelCase : Optional[int], _UpperCamelCase : int ) -> Dict: A_ = tmp_path / '''cache''' A_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A_ = features.copy() if features else default_expected_features A_ = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ = JsonDatasetReader(_UpperCamelCase, features=_UpperCamelCase, cache_dir=_UpperCamelCase ).read() _check_json_dataset(_UpperCamelCase, _UpperCamelCase ) @pytest.mark.parametrize( '''features''', [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ], ) def _UpperCAmelCase ( _UpperCamelCase : Dict, _UpperCamelCase : Dict, _UpperCamelCase : Optional[int] ) -> List[str]: A_ = tmp_path / '''cache''' A_ = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} A_ = features.copy() if features else default_expected_features A_ = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ = JsonDatasetReader(_UpperCamelCase, features=_UpperCamelCase, cache_dir=_UpperCamelCase ).read() assert isinstance(_UpperCamelCase, _UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _UpperCAmelCase ( _UpperCamelCase : List[Any], _UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} A_ = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} A_ = features.copy() A_ = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ = tmp_path / '''cache''' A_ = JsonDatasetReader(_UpperCamelCase, features=_UpperCamelCase, cache_dir=_UpperCamelCase ).read() assert isinstance(_UpperCamelCase, _UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''', [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Union[str, Any], _UpperCamelCase : Optional[Any] ) -> str: A_ = tmp_path / '''cache''' A_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A_ = JsonDatasetReader(_UpperCamelCase, cache_dir=_UpperCamelCase, split=_UpperCamelCase ).read() _check_json_dataset(_UpperCamelCase, _UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''', [str, list] ) def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : Union[str, Any], _UpperCamelCase : str ) -> Union[str, Any]: if issubclass(_UpperCamelCase, _UpperCamelCase ): A_ = jsonl_path elif issubclass(_UpperCamelCase, _UpperCamelCase ): A_ = [jsonl_path] A_ = tmp_path / '''cache''' A_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A_ = JsonDatasetReader(_UpperCamelCase, cache_dir=_UpperCamelCase ).read() _check_json_dataset(_UpperCamelCase, _UpperCamelCase ) def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Union[str, Any], _UpperCamelCase : str=("train",) ) -> int: assert isinstance(_UpperCamelCase, _UpperCamelCase ) for split in splits: A_ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''', [False, True] ) def _UpperCAmelCase ( _UpperCamelCase : List[str], _UpperCamelCase : Union[str, Any], _UpperCamelCase : int ) -> Union[str, Any]: A_ = tmp_path / '''cache''' A_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ = JsonDatasetReader({'''train''': jsonl_path}, cache_dir=_UpperCamelCase, keep_in_memory=_UpperCamelCase ).read() _check_json_datasetdict(_UpperCamelCase, _UpperCamelCase ) @pytest.mark.parametrize( '''features''', [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ], ) def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : int, _UpperCamelCase : Optional[Any] ) -> str: A_ = tmp_path / '''cache''' A_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A_ = features.copy() if features else default_expected_features A_ = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ = JsonDatasetReader({'''train''': jsonl_path}, features=_UpperCamelCase, cache_dir=_UpperCamelCase ).read() _check_json_datasetdict(_UpperCamelCase, _UpperCamelCase ) @pytest.mark.parametrize('''split''', [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : List[str], _UpperCamelCase : Optional[int] ) -> Tuple: if split: A_ = {split: jsonl_path} else: A_ = '''train''' A_ = {'''train''': jsonl_path, '''test''': jsonl_path} A_ = tmp_path / '''cache''' A_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A_ = JsonDatasetReader(_UpperCamelCase, cache_dir=_UpperCamelCase ).read() _check_json_datasetdict(_UpperCamelCase, _UpperCamelCase, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _UpperCAmelCase ( _UpperCamelCase : List[str] ) -> Optional[Any]: return json.load(_UpperCamelCase ) def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> Tuple: return [json.loads(_UpperCamelCase ) for line in buffer] class __UpperCAmelCase : '''simple docstring''' @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lines=_SCREAMING_SNAKE_CASE ).write() buffer.seek(0 ) A_ = load_json_function(_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert isinstance(exported_content[0] , _SCREAMING_SNAKE_CASE ) assert len(_SCREAMING_SNAKE_CASE ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lines=_SCREAMING_SNAKE_CASE , orient=_SCREAMING_SNAKE_CASE ).write() buffer.seek(0 ) A_ = load_json(_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_SCREAMING_SNAKE_CASE , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_SCREAMING_SNAKE_CASE ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lines=_SCREAMING_SNAKE_CASE , num_proc=2 ).write() buffer.seek(0 ) A_ = load_json_function(_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert isinstance(exported_content[0] , _SCREAMING_SNAKE_CASE ) assert len(_SCREAMING_SNAKE_CASE ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lines=_SCREAMING_SNAKE_CASE , orient=_SCREAMING_SNAKE_CASE , num_proc=2 ).write() buffer.seek(0 ) A_ = load_json(_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_SCREAMING_SNAKE_CASE , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_SCREAMING_SNAKE_CASE ) == 10 def __A ( self , _SCREAMING_SNAKE_CASE ) -> str: with pytest.raises(_SCREAMING_SNAKE_CASE ): with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: A_ = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}''' A_ = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compression=_SCREAMING_SNAKE_CASE ).write() with fsspec.open(_SCREAMING_SNAKE_CASE , '''rb''' , compression='''infer''' ) as f: A_ = f.read() with fsspec.open(_SCREAMING_SNAKE_CASE , '''rb''' , compression='''infer''' ) as f: A_ = f.read() assert exported_content == original_content
18
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __snake_case : str = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Dict: A_ = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def __A ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __A ( self ) -> str: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id='''test-model-flax''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def __A ( self ) -> List[str]: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Tuple ) -> Dict: A_ = True A_ = flatten_dict(modela.params ) A_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: A_ = False return models_are_equal @require_flax class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> List[str]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> List[Any]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , max_shard_size='''10KB''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> Dict: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
18
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
18
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Dict: A_ = 1 A_ = 2 while i * i <= n: A_ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _UpperCAmelCase ( ) -> Optional[int]: A_ = 1 A_ = 1 while True: i += 1 t_num += i if count_divisors(_UpperCamelCase ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
18
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[Any] = (DPMSolverSinglestepScheduler,) __lowercase : int = (('num_inference_steps', 25),) def __A ( self , **_SCREAMING_SNAKE_CASE ) -> Any: A_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf''' ), '''variance_type''': None, } config.update(**_SCREAMING_SNAKE_CASE ) return config def __A ( self , _SCREAMING_SNAKE_CASE=0 , **_SCREAMING_SNAKE_CASE ) -> int: A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop('''num_inference_steps''' , _SCREAMING_SNAKE_CASE ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) A_ = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals A_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_SCREAMING_SNAKE_CASE ) A_ = scheduler_class.from_pretrained(_SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals A_ = dummy_past_residuals[: new_scheduler.config.solver_order] A_ ,A_ = sample, sample for t in range(_SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ): A_ = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample A_ = new_scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __A ( self ) -> Dict: pass def __A ( self , _SCREAMING_SNAKE_CASE=0 , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop('''num_inference_steps''' , _SCREAMING_SNAKE_CASE ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_SCREAMING_SNAKE_CASE ) A_ = scheduler_class.from_pretrained(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[: new_scheduler.config.solver_order] A_ = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample A_ = new_scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __A ( self , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> int: if scheduler is None: A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) A_ = scheduler_class(**_SCREAMING_SNAKE_CASE ) A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) A_ = scheduler_class(**_SCREAMING_SNAKE_CASE ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): A_ = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample return sample def __A ( self ) -> int: A_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) A_ = 50 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): A_ = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample A_ = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_574 ) < 1E-3 def __A ( self ) -> int: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: # make sure that iterating over schedulers with same config names gives same results # for defaults A_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) A_ = self.full_loop(scheduler=_SCREAMING_SNAKE_CASE ) A_ = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 A_ = DEISMultistepScheduler.from_config(scheduler.config ) A_ = DPMSolverMultistepScheduler.from_config(scheduler.config ) A_ = UniPCMultistepScheduler.from_config(scheduler.config ) A_ = DPMSolverSinglestepScheduler.from_config(scheduler.config ) A_ = self.full_loop(scheduler=_SCREAMING_SNAKE_CASE ) A_ = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def __A ( self ) -> Dict: self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , sample_max_value=_SCREAMING_SNAKE_CASE , algorithm_type='''dpmsolver++''' , solver_order=_SCREAMING_SNAKE_CASE , solver_type=_SCREAMING_SNAKE_CASE , ) def __A ( self ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_SCREAMING_SNAKE_CASE , solver_type=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , algorithm_type=_SCREAMING_SNAKE_CASE , ) A_ = self.full_loop( solver_order=_SCREAMING_SNAKE_CASE , solver_type=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , algorithm_type=_SCREAMING_SNAKE_CASE , ) assert not torch.isnan(_SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers" def __A ( self ) -> List[str]: self.check_over_configs(lower_order_final=_SCREAMING_SNAKE_CASE ) self.check_over_configs(lower_order_final=_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: self.check_over_configs(lambda_min_clipped=-float('''inf''' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def __A ( self ) -> Any: self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE ) self.check_over_configs(variance_type='''learned_range''' ) def __A ( self ) -> Tuple: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_SCREAMING_SNAKE_CASE , time_step=0 ) def __A ( self ) -> Dict: A_ = self.full_loop() A_ = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def __A ( self ) -> Dict: A_ = self.full_loop(use_karras_sigmas=_SCREAMING_SNAKE_CASE ) A_ = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2_248 ) < 1E-3 def __A ( self ) -> Optional[Any]: A_ = self.full_loop(prediction_type='''v_prediction''' ) A_ = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.1_453 ) < 1E-3 def __A ( self ) -> List[Any]: A_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_SCREAMING_SNAKE_CASE ) A_ = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.0_649 ) < 1E-3 def __A ( self ) -> Union[str, Any]: A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(thresholding=_SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 ) A_ = scheduler_class(**_SCREAMING_SNAKE_CASE ) A_ = 10 A_ = self.dummy_model() A_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): A_ = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample assert sample.dtype == torch.floataa
18
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=[1, 384, 24, 24] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = backbone_out_indices A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = num_labels A_ = backbone_featmap_shape A_ = scope A_ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = num_patches + 1 def __A ( self ) -> Optional[Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Optional[Any]: A_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = DPTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: A_ = self.num_labels A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: A_ = self.num_labels A_ = DPTForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __A ( self ) -> Optional[int]: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __lowercase : Optional[int] = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : Any = False __lowercase : Tuple = False __lowercase : List[Any] = False def __A ( self ) -> Tuple: A_ = DPTModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def __A ( self ) -> Union[str, Any]: pass def __A ( self ) -> Dict: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> Optional[int]: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ): continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = False A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Tuple: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: A_ = model_class(config=_SCREAMING_SNAKE_CASE ) # Skip the check for the backbone A_ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": A_ = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> int: pass @slow def __A ( self ) -> Dict: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: A_ = DPTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = '''add''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Optional[int]: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Any: A_ = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) A_ = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(_SCREAMING_SNAKE_CASE ) A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE ) A_ = outputs.predicted_depth # verify the predicted depth A_ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
18
1
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( '''files''', [ ['''full:README.md''', '''dataset_infos.json'''], ['''empty:README.md''', '''dataset_infos.json'''], ['''dataset_infos.json'''], ['''full:README.md'''], ], ) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : str ) -> int: A_ = tmp_path_factory.mktemp('''dset_infos_dir''' ) if "full:README.md" in files: with open(dataset_infos_dir / '''README.md''', '''w''' ) as f: f.write('''---\ndataset_info:\n dataset_size: 42\n---''' ) if "empty:README.md" in files: with open(dataset_infos_dir / '''README.md''', '''w''' ) as f: f.write('''''' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / '''dataset_infos.json''', '''w''' ) as f: f.write('''{"default": {"dataset_size": 42}}''' ) A_ = DatasetInfosDict.from_directory(_UpperCamelCase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( '''dataset_info''', [ DatasetInfo(), DatasetInfo( description='''foo''', features=Features({'''a''': Value('''int32''' )} ), builder_name='''builder''', config_name='''config''', version='''1.0.0''', splits=[{'''name''': '''train'''}], download_size=42, ), ], ) def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : DatasetInfo ) -> int: A_ = str(_UpperCamelCase ) dataset_info.write_to_directory(_UpperCamelCase ) A_ = DatasetInfo.from_directory(_UpperCamelCase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(_UpperCamelCase, '''dataset_info.json''' ) ) def _UpperCAmelCase ( ) -> Dict: A_ = DatasetInfo( description='''foo''', citation='''bar''', homepage='''https://foo.bar''', license='''CC0''', features=Features({'''a''': Value('''int32''' )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name='''builder''', config_name='''config''', version='''1.0.0''', splits=[{'''name''': '''train''', '''num_examples''': 42}], download_checksums={}, download_size=13_37, post_processing_size=4_42, dataset_size=12_34, size_in_bytes=13_37 + 4_42 + 12_34, ) A_ = dataset_info._to_yaml_dict() assert sorted(_UpperCamelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) A_ = yaml.safe_dump(_UpperCamelCase ) A_ = yaml.safe_load(_UpperCamelCase ) assert dataset_info_yaml_dict == reloaded def _UpperCAmelCase ( ) -> List[Any]: A_ = DatasetInfo() A_ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( '''dataset_infos_dict''', [ DatasetInfosDict(), DatasetInfosDict({'''default''': DatasetInfo()} ), DatasetInfosDict({'''my_config_name''': DatasetInfo()} ), DatasetInfosDict( { '''default''': DatasetInfo( description='''foo''', features=Features({'''a''': Value('''int32''' )} ), builder_name='''builder''', config_name='''config''', version='''1.0.0''', splits=[{'''name''': '''train'''}], download_size=42, ) } ), DatasetInfosDict( { '''v1''': DatasetInfo(dataset_size=42 ), '''v2''': DatasetInfo(dataset_size=13_37 ), } ), ], ) def _UpperCAmelCase ( _UpperCamelCase : List[Any], _UpperCamelCase : DatasetInfosDict ) -> Any: A_ = str(_UpperCamelCase ) dataset_infos_dict.write_to_directory(_UpperCamelCase ) A_ = DatasetInfosDict.from_directory(_UpperCamelCase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): A_ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml A_ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(_UpperCamelCase, '''README.md''' ) )
18
'''simple docstring''' import math def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : float ) -> float: if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
18
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : str = ['image_processor', 'tokenizer'] __lowercase : str = 'ChineseCLIPImageProcessor' __lowercase : List[Any] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> Any: A_ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _SCREAMING_SNAKE_CASE , ) A_ = kwargs.pop('''feature_extractor''' ) A_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = self.image_processor def __call__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: A_ = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if images is not None: A_ = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None and images is not None: A_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_SCREAMING_SNAKE_CASE ) , tensor_type=_SCREAMING_SNAKE_CASE ) def __A ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __A ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Any: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def __A ( self ) -> Optional[int]: A_ = self.tokenizer.model_input_names A_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __A ( self ) -> Optional[int]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _SCREAMING_SNAKE_CASE , ) return self.image_processor_class
18
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
18
1
'''simple docstring''' from __future__ import annotations import math __snake_case : int = '2020.9.26' __snake_case : Optional[Any] = 'xcodz-dot, cclaus, dhruvmanila' def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : float, _UpperCamelCase : float, _UpperCamelCase : float, _UpperCamelCase : float ) -> tuple[float, float]: if not all(isinstance(_UpperCamelCase, (float, int) ) for val in locals().values() ): A_ = F'''Input values must either be float or int: {list(locals().values() )}''' raise TypeError(_UpperCamelCase ) A_ = ((x * distance) / (z + distance)) * scale A_ = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : float, _UpperCamelCase : float, _UpperCamelCase : str, _UpperCamelCase : float ) -> tuple[float, float, float]: if not isinstance(_UpperCamelCase, _UpperCamelCase ): raise TypeError('''Axis must be a str''' ) A_ = locals() del input_variables["axis"] if not all(isinstance(_UpperCamelCase, (float, int) ) for val in input_variables.values() ): A_ = ( '''Input values except axis must either be float or int: ''' F'''{list(input_variables.values() )}''' ) raise TypeError(_UpperCamelCase ) A_ = (angle % 3_60) / 4_50 * 1_80 / math.pi if axis == "z": A_ = x * math.cos(_UpperCamelCase ) - y * math.sin(_UpperCamelCase ) A_ = y * math.cos(_UpperCamelCase ) + x * math.sin(_UpperCamelCase ) A_ = z elif axis == "x": A_ = y * math.cos(_UpperCamelCase ) - z * math.sin(_UpperCamelCase ) A_ = z * math.cos(_UpperCamelCase ) + y * math.sin(_UpperCamelCase ) A_ = x elif axis == "y": A_ = x * math.cos(_UpperCamelCase ) - z * math.sin(_UpperCamelCase ) A_ = z * math.cos(_UpperCamelCase ) + x * math.sin(_UpperCamelCase ) A_ = y else: raise ValueError('''not a valid axis, choose one of \'x\', \'y\', \'z\'''' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }""")
18
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : Any = logging.get_logger(__name__) def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> List[str]: A_ = torch.load(_UpperCamelCase, map_location='''cpu''' ) if "model" in sd.keys(): A_ = torch.load(_UpperCamelCase, map_location='''cpu''' )['''model'''] # pop unnecessary weights A_ = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(_UpperCamelCase ) A_ = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: A_ = sd.pop(_UpperCamelCase ) A_ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: A_ = sd[key] # We split QKV in separate Q,K,V A_ = key.replace('''.qkv_proj.''', '''.q_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.k_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.v_proj.''' ) A_ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 A_ ,A_ ,A_ = torch.split(_UpperCamelCase, depth // 3, dim=0 ) A_ = q A_ = k A_ = v del sd[key] return sd @torch.no_grad() def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : Optional[Any], _UpperCamelCase : List[str]=None ) -> Dict: A_ = load_checkpoint(_UpperCamelCase ) if config is not None: A_ = OPTConfig.from_pretrained(_UpperCamelCase ) else: A_ = OPTConfig() A_ = OPTModel(_UpperCamelCase ).half().eval() model.load_state_dict(_UpperCamelCase ) # Check results Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') __snake_case : Optional[Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
18
1
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> int: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def __A ( self ) -> Union[str, Any]: A_ = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Tuple: A_ = self._create_example_records() A_ = Dataset.from_list(_SCREAMING_SNAKE_CASE ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(_SCREAMING_SNAKE_CASE ): self.assertDictEqual(_SCREAMING_SNAKE_CASE , example_records[i] ) def __A ( self ) -> Optional[int]: A_ = self._create_example_records() A_ = Dataset.from_list(_SCREAMING_SNAKE_CASE ) A_ = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def __A ( self ) -> str: # checks what happens with missing columns A_ = [{'''col_1''': 1}, {'''col_2''': '''x'''}] A_ = Dataset.from_list(_SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def __A ( self ) -> Union[str, Any]: # checks if the type can be inferred from the second record A_ = [{'''col_1''': []}, {'''col_1''': [1, 2]}] A_ = Dataset.from_list(_SCREAMING_SNAKE_CASE ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def __A ( self ) -> Union[str, Any]: A_ = Dataset.from_list([] ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 0 ) self.assertListEqual(dset.column_names , [] )
18
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __snake_case : Optional[Any] = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } __snake_case : Tuple = {'allegro/herbert-base-cased': 514} __snake_case : List[str] = {} class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Any = VOCAB_FILES_NAMES __lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Dict = PRETRAINED_INIT_CONFIGURATION __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = HerbertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE="</s>" , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.cls_token_id] A_ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: A_ = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
18
1
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Union[str, Any]: A_ = len(_UpperCamelCase ) while cur > 1: # Find the maximum number in arr A_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi A_ = arr[mi::-1] + arr[mi + 1 : len(_UpperCamelCase )] # Reverse whole list A_ = arr[cur - 1 :: -1] + arr[cur : len(_UpperCamelCase )] cur -= 1 return arr if __name__ == "__main__": __snake_case : Dict = input('Enter numbers separated by a comma:\n').strip() __snake_case : Dict = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
18
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any]=None ) -> List[Any]: if subparsers is not None: A_ = subparsers.add_parser('''env''' ) else: A_ = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''', default=_UpperCamelCase, help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=_UpperCamelCase ) return parser def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> Dict: A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = is_xpu_available() A_ = is_npu_available() A_ = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(_UpperCamelCase ): A_ = load_config_from_file(args.config_file ).to_dict() A_ = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(_UpperCamelCase ), '''PyTorch NPU available''': str(_UpperCamelCase ), '''System RAM''': F'''{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB''', } if pt_cuda_available: A_ = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) A_ = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_UpperCamelCase, _UpperCamelCase ) else F'''\t{accelerate_config}''' ) print(_UpperCamelCase ) A_ = accelerate_config return info def _UpperCAmelCase ( ) -> int: A_ = env_command_parser() A_ = parser.parse_args() env_command(_UpperCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
18
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Union[str, Any] = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Any = 'gpt_neo' __lowercase : List[str] = ['past_key_values'] __lowercase : str = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=24 , _SCREAMING_SNAKE_CASE=[[["global", "local"], 12]] , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE="gelu_new" , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=5_0256 , _SCREAMING_SNAKE_CASE=5_0256 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: A_ = vocab_size A_ = max_position_embeddings A_ = hidden_size A_ = num_layers A_ = num_heads A_ = intermediate_size A_ = window_size A_ = activation_function A_ = resid_dropout A_ = embed_dropout A_ = attention_dropout A_ = classifier_dropout A_ = layer_norm_epsilon A_ = initializer_range A_ = use_cache A_ = bos_token_id A_ = eos_token_id A_ = attention_types A_ = self.expand_attention_types_params(_SCREAMING_SNAKE_CASE ) if len(self.attention_layers ) != self.num_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.attention_layers)` == `config.num_layers` ''' F'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' '''`config.attention_layers` is prepared using `config.attention_types`. ''' '''Please verify the value of `config.attention_types` argument.''' ) super().__init__(bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @staticmethod def __A ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: A_ = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : int, _UpperCamelCase : Any, _UpperCamelCase : Dict ) -> str: import torch A_ = input.size() A_ = len(_UpperCamelCase ) A_ = shape[dimension] A_ = torch.arange(0, _UpperCamelCase, _UpperCamelCase ) A_ = torch.div(sizedim - size, _UpperCamelCase, rounding_mode='''floor''' ) + 1 A_ = torch.arange(_UpperCamelCase ) + low_indices[:min_length][:, None] A_ = [slice(_UpperCamelCase )] * rank A_ = indices A_ = input[s] A_ = list(range(0, rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(_UpperCamelCase ) def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : List[str] ) -> str: import torch A_ = torch.arange(1, _UpperCamelCase ) A_ = torch.remainder(_UpperCamelCase, _UpperCamelCase ) A_ = remainders == 0 A_ = candidates[divisor_indices] A_ = torch.max(_UpperCamelCase ) return largest_divisor, torch.div(_UpperCamelCase, _UpperCamelCase, rounding_mode='''floor''' ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: A_ = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction='''inputs''' ) A_ = {0: '''batch''', 1: '''past_sequence + sequence'''} else: A_ = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __A ( self ) -> int: return self._config.num_heads def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: A_ = super(_SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() A_ = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch A_ ,A_ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values A_ = seqlen + 2 A_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A_ = [ (torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] A_ = common_inputs['''attention_mask'''] if self.use_past: A_ = ordered_inputs['''attention_mask'''].dtype A_ = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def __A ( self ) -> int: return 13
18
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=0.6 , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = type_sequence_label_size A_ = initializer_range A_ = mask_ratio A_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __A ( self ) -> Union[str, Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: A_ = ViTMAEModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) A_ = (self.image_size // self.patch_size) ** 2 A_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images A_ = 1 A_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ = model(_SCREAMING_SNAKE_CASE ) A_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __A ( self ) -> int: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : int = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __lowercase : List[Any] = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} __lowercase : Union[str, Any] = False __lowercase : List[Any] = False __lowercase : List[str] = False __lowercase : List[str] = False def __A ( self ) -> Any: A_ = ViTMAEModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __A ( self ) -> int: pass def __A ( self ) -> int: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> int: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Union[str, Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: # make masks reproducible np.random.seed(2 ) A_ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) A_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument A_ = pt_noise super().check_pt_tf_models(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ = outputs[0].cpu().numpy() A_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ = model_class.from_pretrained(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Make sure we don't have nans A_ = after_outputs[0].cpu().numpy() A_ = 0 A_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> List[str]: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> Dict: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> Tuple: pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __A ( self ) -> str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> Union[str, Any]: pass @slow def __A ( self ) -> Dict: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = ViTMAEModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Dict: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __A ( self ) -> List[str]: return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __A ( self ) -> List[str]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) A_ = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(_SCREAMING_SNAKE_CASE ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) A_ = ViTMAEConfig() A_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) A_ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE , noise=torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ) ) # verify the logits A_ = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_SCREAMING_SNAKE_CASE ) , atol=1E-4 ) )
18
1
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( _UpperCamelCase : list[list[int]] ) -> int: # preprocessing the first row for i in range(1, len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1, len(_UpperCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1, len(_UpperCamelCase ) ): for j in range(1, len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j], matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
18
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : int = logging.get_logger(__name__) __snake_case : str = { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[Any] = 'xlm-prophetnet' __lowercase : Optional[int] = ['past_key_values'] __lowercase : int = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = "gelu" , _SCREAMING_SNAKE_CASE = 3_0522 , _SCREAMING_SNAKE_CASE = 1024 , _SCREAMING_SNAKE_CASE = 4096 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 4096 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 0.02 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = 128 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 2 , **_SCREAMING_SNAKE_CASE , ) -> int: A_ = vocab_size A_ = hidden_size A_ = encoder_ffn_dim A_ = num_encoder_layers A_ = num_encoder_attention_heads A_ = decoder_ffn_dim A_ = num_decoder_layers A_ = num_decoder_attention_heads A_ = max_position_embeddings A_ = init_std # Normal(0, this parameter) A_ = activation_function # parameters for xlmprophetnet A_ = ngram A_ = num_buckets A_ = relative_max_distance A_ = disable_ngram_loss A_ = eps # 3 Types of Dropout A_ = attention_dropout A_ = activation_dropout A_ = dropout A_ = use_cache super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , add_cross_attention=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @property def __A ( self ) -> int: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def __A ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
18
1
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __snake_case : Union[str, Any] = { '/attention/': '/0/SelfAttention/', '/self_attention/': '/0/SelfAttention/', '/encoder_decoder_attention/': '/1/EncDecAttention/', 'value': 'v', 'query': 'q', 'key': 'k', 'out': 'o', 'pre_self_attention_layer_norm': '0/layer_norm', 'pre_cross_attention_layer_norm': '1/layer_norm', 'pre_attention_layer_norm': '0/layer_norm', # previously 1, but seems wrong 'token_embedder': 'shared', 'encoder_norm': 'final_layer_norm', 'decoder_norm': 'final_layer_norm', 'relpos_bias/rel_embedding': 'block/0/layer/0/SelfAttention/relative_attention_bias/weight', 'router/router_weights/w/': 'router/classifier/', 'roer/roer_weights/w/': 'router/classifier/', 'logits_dense': 'lm_head', } def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> List[Any]: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = R'''.*/layers_(\d+)''' A_ = key if re.match(_UpperCamelCase, _UpperCamelCase ): A_ = re.sub(R'''layers_(\d+)''', R'''block/\1/layer''', _UpperCamelCase ) A_ = R'''(encoder|decoder)\/''' if re.match(_UpperCamelCase, _UpperCamelCase ): A_ = re.match(_UpperCamelCase, _UpperCamelCase ).groups() if groups[0] == "encoder": A_ = re.sub(R'''/mlp/''', R'''/1/mlp/''', _UpperCamelCase ) A_ = re.sub(R'''/pre_mlp_layer_norm/''', R'''/1/layer_norm/''', _UpperCamelCase ) elif groups[0] == "decoder": A_ = re.sub(R'''/mlp/''', R'''/2/mlp/''', _UpperCamelCase ) A_ = re.sub(R'''/pre_mlp_layer_norm/''', R'''/2/layer_norm/''', _UpperCamelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(_UpperCamelCase, _UpperCamelCase ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(_UpperCamelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(_UpperCamelCase ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace('expert/', 'nested fstring' )}''' ) s_dict.pop(_UpperCamelCase ) return s_dict __snake_case : Optional[int] = { 'NUM_ENCODER_LAYERS': 'num_layers', 'NUM_DECODER_LAYERS': 'num_decoder_layers', 'NUM_HEADS': 'num_heads', 'HEAD_DIM': 'd_kv', 'EMBED_DIM': 'd_model', 'MLP_DIM': 'd_ff', 'NUM_SELECTED_EXPERTS': 'num_selected_experts', 'NUM_ENCODER_SPARSE_LAYERS': 'num_sparse_encoder_layers', 'NUM_DECODER_SPARSE_LAYERS': 'num_sparse_decoder_layers', 'dense.MlpBlock.activations': 'feed_forward_proj', } def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : str ) -> int: # Convert a google style config to the hugging face fromat import regex as re with open(_UpperCamelCase, '''r''' ) as f: A_ = f.read() A_ = re.findall(R'''(.*) = ([0-9.]*)''', _UpperCamelCase ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(_UpperCamelCase ) if '''.''' in value else int(_UpperCamelCase ) A_ = re.findall(R'''(.*activations) = \(\'(.*)\',\)''', _UpperCamelCase )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**_UpperCamelCase ) return config def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Optional[Any], _UpperCamelCase : List[str]=None, _UpperCamelCase : Any="./", _UpperCamelCase : Any=8 ) -> Any: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(_UpperCamelCase ) if gin_file is not None: A_ = convert_gin_to_config(_UpperCamelCase, _UpperCamelCase ) else: A_ = SwitchTransformersConfig.from_pretrained(_UpperCamelCase ) A_ = SwitchTransformersForConditionalGeneration(_UpperCamelCase ) A_ = flax_params['''target'''] A_ = flatten_dict(_UpperCamelCase, sep='''/''' ) A_ = rename_keys(_UpperCamelCase ) A_ = unflatten_dict(_UpperCamelCase, sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(_UpperCamelCase, _UpperCamelCase ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the' ' model architecture. If not provided, a `gin_file` has to be provided.' ), ) parser.add_argument( '--gin_file', default=None, type=str, required=False, help='Path to the gin config file. If not provided, a `config_file` has to be passed ', ) parser.add_argument( '--config_name', default=None, type=str, required=False, help='Config name of SwitchTransformers model.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output pytorch model.' ) parser.add_argument('--num_experts', default=8, type=int, required=False, help='Number of experts') __snake_case : int = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
18
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : list[float] ) -> float: if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) A_ = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_UpperCamelCase ) ) return round(_UpperCamelCase, ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
18
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : int = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[int] = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[int] = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[int] = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __snake_case : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
18
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( _UpperCamelCase : int | str ) -> bool: A_ = str(_UpperCamelCase ) return n == n[::-1] def _UpperCAmelCase ( _UpperCamelCase : int = 1_00_00_00 ) -> Any: A_ = 0 for i in range(1, _UpperCamelCase ): if is_palindrome(_UpperCamelCase ) and is_palindrome(bin(_UpperCamelCase ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
18
1
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = KandinskyVaaPriorPipeline __lowercase : List[Any] = ['prompt'] __lowercase : Union[str, Any] = ['prompt', 'negative_prompt'] __lowercase : Tuple = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowercase : Optional[int] = False @property def __A ( self ) -> Optional[Any]: return 32 @property def __A ( self ) -> List[str]: return 32 @property def __A ( self ) -> List[str]: return self.time_input_dim @property def __A ( self ) -> Optional[Any]: return self.time_input_dim * 4 @property def __A ( self ) -> Any: return 100 @property def __A ( self ) -> Optional[int]: A_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __A ( self ) -> int: torch.manual_seed(0 ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_SCREAMING_SNAKE_CASE ) @property def __A ( self ) -> Union[str, Any]: torch.manual_seed(0 ) A_ = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } A_ = PriorTransformer(**_SCREAMING_SNAKE_CASE ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A_ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def __A ( self ) -> Optional[Any]: torch.manual_seed(0 ) A_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A_ = CLIPVisionModelWithProjection(_SCREAMING_SNAKE_CASE ) return model @property def __A ( self ) -> Any: A_ = CLIPImageProcessor( crop_size=224 , do_center_crop=_SCREAMING_SNAKE_CASE , do_normalize=_SCREAMING_SNAKE_CASE , do_resize=_SCREAMING_SNAKE_CASE , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor def __A ( self ) -> Dict: A_ = self.dummy_prior A_ = self.dummy_image_encoder A_ = self.dummy_text_encoder A_ = self.dummy_tokenizer A_ = self.dummy_image_processor A_ = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_SCREAMING_SNAKE_CASE , clip_sample_range=10.0 , ) A_ = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ) -> Union[str, Any]: if str(_SCREAMING_SNAKE_CASE ).startswith('''mps''' ): A_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: A_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) A_ = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def __A ( self ) -> Dict: A_ = '''cpu''' A_ = self.get_dummy_components() A_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) A_ = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) A_ = output.image_embeds A_ = pipe( **self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) , return_dict=_SCREAMING_SNAKE_CASE , )[0] A_ = image[0, -10:] A_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A_ = np.array( [-0.0_532, 1.7_120, 0.3_656, -1.0_852, -0.8_946, -1.1_756, 0.4_348, 0.2_482, 0.5_146, -0.1_156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __A ( self ) -> Optional[int]: A_ = torch_device == '''cpu''' A_ = True A_ = False self._test_inference_batch_single_identical( test_max_difference=_SCREAMING_SNAKE_CASE , relax_max_difference=_SCREAMING_SNAKE_CASE , test_mean_pixel_difference=_SCREAMING_SNAKE_CASE , ) @skip_mps def __A ( self ) -> Union[str, Any]: A_ = torch_device == '''cpu''' A_ = False self._test_attention_slicing_forward_pass( test_max_difference=_SCREAMING_SNAKE_CASE , test_mean_pixel_difference=_SCREAMING_SNAKE_CASE , )
18
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Tuple, _UpperCamelCase : List[str] ) -> int: A_ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] A_ = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } A_ = F'''{src_lang}-{tgt_lang}''' A_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(_UpperCamelCase, exist_ok=_UpperCamelCase ) A_ = os.path.join(_UpperCamelCase, '''README.md''' ) print(F'''Generating {path}''' ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(_UpperCamelCase ) # make sure we are under the root of the project __snake_case : Any = Path(__file__).resolve().parent.parent.parent __snake_case : Tuple = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __snake_case , __snake_case , __snake_case : Any = model_name.split('-') __snake_case : int = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
18
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') __snake_case : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __snake_case : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: with open(_UpperCamelCase, '''rb''' ) as f: A_ = Image.open(_UpperCamelCase ) return im.convert('''RGB''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the training data.'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the validation data.'} ) __lowercase : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __A ( self ) -> int: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_UpperCamelCase )} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) __lowercase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowercase : str = field(default=_UpperCamelCase , metadata={'help': 'Name or path of preprocessor config.'} ) __lowercase : bool = field( default=_UpperCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __lowercase : bool = field( default=_UpperCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> Dict: A_ = torch.stack([example['''pixel_values'''] for example in examples] ) A_ = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _UpperCAmelCase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A_ ,A_ ,A_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A_ ,A_ ,A_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''', _UpperCamelCase, _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A_ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. A_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: A_ = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, task='''image-classification''', use_auth_token=True if model_args.use_auth_token else None, ) else: A_ = {} if data_args.train_dir is not None: A_ = os.path.join(data_args.train_dir, '''**''' ) if data_args.validation_dir is not None: A_ = os.path.join(data_args.validation_dir, '''**''' ) A_ = load_dataset( '''imagefolder''', data_files=_UpperCamelCase, cache_dir=model_args.cache_dir, task='''image-classification''', ) # If we don't have a validation split, split off a percentage of train as validation. A_ = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, _UpperCamelCase ) and data_args.train_val_split > 0.0: A_ = dataset['''train'''].train_test_split(data_args.train_val_split ) A_ = split['''train'''] A_ = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A_ = dataset['''train'''].features['''labels'''].names A_ ,A_ = {}, {} for i, label in enumerate(_UpperCamelCase ): A_ = str(_UpperCamelCase ) A_ = label # Load the accuracy metric from the datasets package A_ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Optional[Any] ): return metric.compute(predictions=np.argmax(p.predictions, axis=1 ), references=p.label_ids ) A_ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(_UpperCamelCase ), labelaid=_UpperCamelCase, idalabel=_UpperCamelCase, finetuning_task='''image-classification''', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) A_ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=_UpperCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) A_ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: A_ = image_processor.size['''shortest_edge'''] else: A_ = (image_processor.size['''height'''], image_processor.size['''width''']) A_ = Normalize(mean=image_processor.image_mean, std=image_processor.image_std ) A_ = Compose( [ RandomResizedCrop(_UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) A_ = Compose( [ Resize(_UpperCamelCase ), CenterCrop(_UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(_UpperCamelCase : Dict ): A_ = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(_UpperCamelCase : Any ): A_ = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: A_ = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: A_ = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_UpperCamelCase ) # Initalize our trainer A_ = Trainer( model=_UpperCamelCase, args=_UpperCamelCase, train_dataset=dataset['''train'''] if training_args.do_train else None, eval_dataset=dataset['''validation'''] if training_args.do_eval else None, compute_metrics=_UpperCamelCase, tokenizer=_UpperCamelCase, data_collator=_UpperCamelCase, ) # Training if training_args.do_train: A_ = None if training_args.resume_from_checkpoint is not None: A_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A_ = last_checkpoint A_ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics ) trainer.save_metrics('''train''', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A_ = trainer.evaluate() trainer.log_metrics('''eval''', _UpperCamelCase ) trainer.save_metrics('''eval''', _UpperCamelCase ) # Write model card and (optionally) push to hub A_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
18
'''simple docstring''' from collections import defaultdict def _UpperCAmelCase ( _UpperCamelCase : int ) -> int: A_ = 1 A_ = True for v in tree[start]: if v not in visited: ret += dfs(_UpperCamelCase ) if ret % 2 == 0: cuts.append(_UpperCamelCase ) return ret def _UpperCAmelCase ( ) -> Optional[Any]: dfs(1 ) if __name__ == "__main__": __snake_case , __snake_case : Union[str, Any] = 10, 9 __snake_case : int = defaultdict(list) __snake_case : dict[int, bool] = {} __snake_case : list[int] = [] __snake_case : Union[str, Any] = 0 __snake_case : int = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __snake_case : Tuple = logging.get_logger(__name__) __snake_case : Dict = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off __snake_case : Tuple = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] __snake_case : Optional[int] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Union[str, Any] = 'whisper' __lowercase : Any = ['past_key_values'] __lowercase : Optional[int] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , _SCREAMING_SNAKE_CASE=5_1865 , _SCREAMING_SNAKE_CASE=80 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=1536 , _SCREAMING_SNAKE_CASE=1536 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1500 , _SCREAMING_SNAKE_CASE=448 , _SCREAMING_SNAKE_CASE=5_0256 , _SCREAMING_SNAKE_CASE=5_0256 , _SCREAMING_SNAKE_CASE=5_0256 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=[220, 5_0256] , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.05 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=7 , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: A_ = vocab_size A_ = num_mel_bins A_ = d_model A_ = encoder_layers A_ = encoder_attention_heads A_ = decoder_layers A_ = decoder_attention_heads A_ = decoder_ffn_dim A_ = encoder_ffn_dim A_ = dropout A_ = attention_dropout A_ = activation_dropout A_ = activation_function A_ = init_std A_ = encoder_layerdrop A_ = decoder_layerdrop A_ = use_cache A_ = encoder_layers A_ = scale_embedding # scale factor will be sqrt(d_model) if True A_ = max_source_positions A_ = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. A_ = classifier_proj_size A_ = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A_ = apply_spec_augment A_ = mask_time_prob A_ = mask_time_length A_ = mask_time_min_masks A_ = mask_feature_prob A_ = mask_feature_length A_ = mask_feature_min_masks A_ = median_filter_width super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , suppress_tokens=_SCREAMING_SNAKE_CASE , begin_suppress_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: A_ = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: A_ = {0: '''batch'''} else: A_ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction='''inputs''' ) return common_inputs def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 2_2050 , _SCREAMING_SNAKE_CASE = 5.0 , _SCREAMING_SNAKE_CASE = 220 , ) -> Mapping[str, Any]: A_ = OrderedDict() A_ = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , time_duration=_SCREAMING_SNAKE_CASE , frequency=_SCREAMING_SNAKE_CASE , ) A_ = encoder_inputs['''input_features'''].shape[2] A_ = encoder_sequence_length // 2 if self.use_past else seq_length A_ = super().generate_dummy_inputs( preprocessor.tokenizer , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = encoder_inputs.pop('''input_features''' ) A_ = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: A_ = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def __A ( self ) -> float: return 1E-3
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[int] = 'mgp-str' def __init__( self , _SCREAMING_SNAKE_CASE=[32, 128] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=27 , _SCREAMING_SNAKE_CASE=38 , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=3_0522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: super().__init__(**_SCREAMING_SNAKE_CASE ) A_ = image_size A_ = patch_size A_ = num_channels A_ = max_token_length A_ = num_character_labels A_ = num_bpe_labels A_ = num_wordpiece_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = mlp_ratio A_ = distilled A_ = layer_norm_eps A_ = drop_rate A_ = qkv_bias A_ = attn_drop_rate A_ = drop_path_rate A_ = output_aa_attentions A_ = initializer_range
18
1
'''simple docstring''' import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __snake_case : List[Any] = NewType('DataClass', Any) __snake_case : str = NewType('DataClassType', Any) def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Any: if isinstance(_UpperCamelCase, _UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def _UpperCAmelCase ( _UpperCamelCase : list ) -> Callable[[str], Any]: A_ = {str(_UpperCamelCase ): choice for choice in choices} return lambda _UpperCamelCase : str_to_choice.get(_UpperCamelCase, _UpperCamelCase ) def _UpperCAmelCase ( *, _UpperCamelCase : Union[str, List[str]] = None, _UpperCamelCase : str = None, _UpperCamelCase : Any = dataclasses.MISSING, _UpperCamelCase : Callable[[], Any] = dataclasses.MISSING, _UpperCamelCase : dict = None, **_UpperCamelCase : str, ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls A_ = {} if aliases is not None: A_ = aliases if help is not None: A_ = help return dataclasses.field(metadata=_UpperCamelCase, default=_UpperCamelCase, default_factory=_UpperCamelCase, **_UpperCamelCase ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Iterable[DataClassType] def __init__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[Any]: # To make the default appear when using --help if "formatter_class" not in kwargs: A_ = ArgumentDefaultsHelpFormatter super().__init__(**_SCREAMING_SNAKE_CASE ) if dataclasses.is_dataclass(_SCREAMING_SNAKE_CASE ): A_ = [dataclass_types] A_ = list(_SCREAMING_SNAKE_CASE ) for dtype in self.dataclass_types: self._add_dataclass_arguments(_SCREAMING_SNAKE_CASE ) @staticmethod def __A ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: A_ = F'''--{field.name}''' A_ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , _SCREAMING_SNAKE_CASE ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) A_ = kwargs.pop('''aliases''' , [] ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = [aliases] A_ = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(_SCREAMING_SNAKE_CASE , '''UnionType''' ) and isinstance(_SCREAMING_SNAKE_CASE , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(_SCREAMING_SNAKE_CASE ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F''' Problem encountered in field \'{field.name}\'.''' ) if type(_SCREAMING_SNAKE_CASE ) not in field.type.__args__: # filter `str` in Union A_ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] A_ = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) A_ = ( field.type.__args__[0] if isinstance(_SCREAMING_SNAKE_CASE , field.type.__args__[1] ) else field.type.__args__[1] ) A_ = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) A_ = {} if origin_type is Literal or (isinstance(field.type , _SCREAMING_SNAKE_CASE ) and issubclass(field.type , _SCREAMING_SNAKE_CASE )): if origin_type is Literal: A_ = field.type.__args__ else: A_ = [x.value for x in field.type] A_ = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: A_ = field.default else: A_ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument A_ = copy(_SCREAMING_SNAKE_CASE ) # Hack because type=bool in argparse does not behave as we want. A_ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. A_ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way A_ = default # This tells argparse we accept 0 or 1 value after --field_name A_ = '''?''' # This is the value that will get picked if we do --field_name (without value) A_ = True elif isclass(_SCREAMING_SNAKE_CASE ) and issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = field.type.__args__[0] A_ = '''+''' if field.default_factory is not dataclasses.MISSING: A_ = field.default_factory() elif field.default is dataclasses.MISSING: A_ = True else: A_ = field.type if field.default is not dataclasses.MISSING: A_ = field.default elif field.default_factory is not dataclasses.MISSING: A_ = field.default_factory() else: A_ = True parser.add_argument(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): A_ = False parser.add_argument(F'''--no_{field.name}''' , action='''store_false''' , dest=field.name , **_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: if hasattr(_SCREAMING_SNAKE_CASE , '''_argument_group_name''' ): A_ = self.add_argument_group(dtype._argument_group_name ) else: A_ = self try: A_ = get_type_hints(_SCREAMING_SNAKE_CASE ) except NameError: raise RuntimeError( F'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_SCREAMING_SNAKE_CASE ): A_ = '''.'''.join(map(_SCREAMING_SNAKE_CASE , sys.version_info[:3] ) ) raise RuntimeError( F'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(_SCREAMING_SNAKE_CASE ): if not field.init: continue A_ = type_hints[field.name] self._parse_dataclass_field(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): A_ = [] if args_filename: args_files.append(Path(_SCREAMING_SNAKE_CASE ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values A_ = ArgumentParser() args_file_parser.add_argument(_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) A_ ,A_ = args_file_parser.parse_known_args(args=_SCREAMING_SNAKE_CASE ) A_ = vars(_SCREAMING_SNAKE_CASE ).get(args_file_flag.lstrip('''-''' ) , _SCREAMING_SNAKE_CASE ) if cmd_args_file_paths: args_files.extend([Path(_SCREAMING_SNAKE_CASE ) for p in cmd_args_file_paths] ) A_ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last A_ = file_args + args if args is not None else file_args + sys.argv[1:] A_ ,A_ = self.parse_known_args(args=_SCREAMING_SNAKE_CASE ) A_ = [] for dtype in self.dataclass_types: A_ = {f.name for f in dataclasses.fields(_SCREAMING_SNAKE_CASE ) if f.init} A_ = {k: v for k, v in vars(_SCREAMING_SNAKE_CASE ).items() if k in keys} for k in keys: delattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = dtype(**_SCREAMING_SNAKE_CASE ) outputs.append(_SCREAMING_SNAKE_CASE ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(_SCREAMING_SNAKE_CASE ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) -> Tuple[DataClass, ...]: A_ = set(args.keys() ) A_ = [] for dtype in self.dataclass_types: A_ = {f.name for f in dataclasses.fields(_SCREAMING_SNAKE_CASE ) if f.init} A_ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) A_ = dtype(**_SCREAMING_SNAKE_CASE ) outputs.append(_SCREAMING_SNAKE_CASE ) if not allow_extra_keys and unused_keys: raise ValueError(F'''Some keys are not used by the HfArgumentParser: {sorted(_SCREAMING_SNAKE_CASE )}''' ) return tuple(_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) -> Tuple[DataClass, ...]: with open(Path(_SCREAMING_SNAKE_CASE ) , encoding='''utf-8''' ) as open_json_file: A_ = json.loads(open_json_file.read() ) A_ = self.parse_dict(_SCREAMING_SNAKE_CASE , allow_extra_keys=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) -> Tuple[DataClass, ...]: A_ = self.parse_dict(yaml.safe_load(Path(_SCREAMING_SNAKE_CASE ).read_text() ) , allow_extra_keys=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
18
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __UpperCAmelCase : '''simple docstring''' pass
18
1
'''simple docstring''' from collections import defaultdict def _UpperCAmelCase ( _UpperCamelCase : int ) -> int: A_ = 1 A_ = True for v in tree[start]: if v not in visited: ret += dfs(_UpperCamelCase ) if ret % 2 == 0: cuts.append(_UpperCamelCase ) return ret def _UpperCAmelCase ( ) -> Optional[Any]: dfs(1 ) if __name__ == "__main__": __snake_case , __snake_case : Union[str, Any] = 10, 9 __snake_case : int = defaultdict(list) __snake_case : dict[int, bool] = {} __snake_case : list[int] = [] __snake_case : Union[str, Any] = 0 __snake_case : int = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _UpperCAmelCase ( ) -> Dict: A_ = ArgumentParser('''Accelerate CLI tool''', usage='''accelerate <command> [<args>]''', allow_abbrev=_UpperCamelCase ) A_ = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=_UpperCamelCase ) env_command_parser(subparsers=_UpperCamelCase ) launch_command_parser(subparsers=_UpperCamelCase ) tpu_command_parser(subparsers=_UpperCamelCase ) test_command_parser(subparsers=_UpperCamelCase ) # Let's go A_ = parser.parse_args() if not hasattr(_UpperCamelCase, '''func''' ): parser.print_help() exit(1 ) # Run args.func(_UpperCamelCase ) if __name__ == "__main__": main()
18
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __snake_case : Tuple = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
18
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __snake_case : Any = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' __snake_case : Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' __snake_case : Optional[int] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __A ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: if rouge_types is None: A_ = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] A_ = rouge_scorer.RougeScorer(rouge_types=_SCREAMING_SNAKE_CASE , use_stemmer=_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = scoring.BootstrapAggregator() else: A_ = [] for ref, pred in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = scorer.score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if use_aggregator: aggregator.add_scores(_SCREAMING_SNAKE_CASE ) else: scores.append(_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = aggregator.aggregate() else: A_ = {} for key in scores[0]: A_ = [score[key] for score in scores] return result
18
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = KandinskyVaaControlnetImgaImgPipeline __lowercase : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __lowercase : Any = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] __lowercase : Union[str, Any] = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __lowercase : Optional[int] = False @property def __A ( self ) -> str: return 32 @property def __A ( self ) -> Union[str, Any]: return 32 @property def __A ( self ) -> List[Any]: return self.time_input_dim @property def __A ( self ) -> Tuple: return self.time_input_dim * 4 @property def __A ( self ) -> Tuple: return 100 @property def __A ( self ) -> Any: torch.manual_seed(0 ) A_ = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } A_ = UNetaDConditionModel(**_SCREAMING_SNAKE_CASE ) return model @property def __A ( self ) -> Optional[Any]: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __A ( self ) -> Optional[Any]: torch.manual_seed(0 ) A_ = VQModel(**self.dummy_movq_kwargs ) return model def __A ( self ) -> int: A_ = self.dummy_unet A_ = self.dummy_movq A_ = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.00_085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } A_ = DDIMScheduler(**_SCREAMING_SNAKE_CASE ) A_ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ) -> Tuple: A_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) A_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _SCREAMING_SNAKE_CASE ) # create init_image A_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) A_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ = Image.fromarray(np.uinta(_SCREAMING_SNAKE_CASE ) ).convert('''RGB''' ).resize((256, 256) ) # create hint A_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) if str(_SCREAMING_SNAKE_CASE ).startswith('''mps''' ): A_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: A_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) A_ = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __A ( self ) -> Union[str, Any]: A_ = '''cpu''' A_ = self.get_dummy_components() A_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) A_ = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) A_ = output.images A_ = pipe( **self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) , return_dict=_SCREAMING_SNAKE_CASE , )[0] A_ = image[0, -3:, -3:, -1] A_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> List[Any]: A_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) A_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) A_ = init_image.resize((512, 512) ) A_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) A_ = torch.from_numpy(np.array(_SCREAMING_SNAKE_CASE ) ).float() / 255.0 A_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) A_ = '''A robot, 4k photo''' A_ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_SCREAMING_SNAKE_CASE ) A_ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) A_ = pipeline.to(_SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ = torch.Generator(device='''cpu''' ).manual_seed(0 ) A_ ,A_ = pipe_prior( _SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , strength=0.85 , generator=_SCREAMING_SNAKE_CASE , negative_prompt='''''' , ).to_tuple() A_ = pipeline( image=_SCREAMING_SNAKE_CASE , image_embeds=_SCREAMING_SNAKE_CASE , negative_image_embeds=_SCREAMING_SNAKE_CASE , hint=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) A_ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
18
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: super().__init__() A_ = module A_ = nn.Sequential( nn.Linear(module.in_features , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) , nn.Linear(_SCREAMING_SNAKE_CASE , module.out_features , bias=_SCREAMING_SNAKE_CASE ) , ) A_ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_SCREAMING_SNAKE_CASE ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __A ( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: return self.module(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) + self.adapter(_SCREAMING_SNAKE_CASE ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowercase : Dict = 'bigscience/bloom-1b7' # Constant values __lowercase : str = 2.109659552692574 __lowercase : int = 'Hello my name is' __lowercase : Optional[Any] = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __lowercase : Optional[Any] = 10 def __A ( self ) -> List[str]: # Models and tokenizer A_ = AutoTokenizer.from_pretrained(self.model_name ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[Any]: super().setUp() # Models and tokenizer A_ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> List[str]: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: A_ = self.model_abit.config self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''quantization_config''' ) ) A_ = config.to_dict() A_ = config.to_diff_dict() A_ = config.to_json_string() def __A ( self ) -> Union[str, Any]: from bitsandbytes.nn import Paramsabit A_ = self.model_fpaa.get_memory_footprint() A_ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A_ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __A ( self ) -> Union[str, Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __A ( self ) -> Optional[int]: A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Optional[int]: A_ = BitsAndBytesConfig() A_ = True A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Tuple: with self.assertRaises(_SCREAMING_SNAKE_CASE ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Tuple: A_ = BitsAndBytesConfig() with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def __A ( self ) -> Dict: with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_fpaa.to(torch.floataa ) A_ = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A_ = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error A_ = self.model_fpaa.half() # Check this does not throw an error A_ = self.model_fpaa.float() def __A ( self ) -> Optional[int]: A_ = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Optional[Any]: A_ = '''t5-small''' A_ = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense A_ = AutoTokenizer.from_pretrained(cls.model_name ) A_ = '''Translate in German: Hello, my dog is cute''' def __A ( self ) -> Any: gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: from transformers import TaForConditionalGeneration A_ = TaForConditionalGeneration._keep_in_fpaa_modules A_ = None # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) A_ = modules def __A ( self ) -> Dict: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> int: super().setUp() # model_name A_ = '''bigscience/bloom-560m''' A_ = '''t5-small''' # Different types of model A_ = AutoModel.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Sequence classification model A_ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # CausalLM model A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Seq2seq model A_ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> Union[str, Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __A ( self ) -> List[str]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> Tuple: super().setUp() def __A ( self ) -> List[Any]: del self.pipe gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[Any]: A_ = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A_ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[str]: super().setUp() def __A ( self ) -> Optional[int]: A_ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch A_ = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> str: A_ = '''facebook/opt-350m''' super().setUp() def __A ( self ) -> Optional[int]: if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A_ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A_ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_SCREAMING_SNAKE_CASE ) ): A_ = LoRALayer(module.q_proj , rank=16 ) A_ = LoRALayer(module.k_proj , rank=16 ) A_ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A_ = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A_ = model.forward(**_SCREAMING_SNAKE_CASE ) out.logits.norm().backward() for module in model.modules(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_SCREAMING_SNAKE_CASE , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : int = 'gpt2-xl' __lowercase : List[Any] = 3.3191854854152187
18
1
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : str = " " ) -> list: A_ = [] A_ = 0 for index, char in enumerate(_UpperCamelCase ): if char == separator: split_words.append(string[last_index:index] ) A_ = index + 1 elif index + 1 == len(_UpperCamelCase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
18
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _UpperCAmelCase ( _UpperCamelCase : Features ) -> Optional[int]: A_ = np.inf def set_batch_size(_UpperCamelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ) and feature.dtype == "binary": A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_UpperCamelCase, _UpperCamelCase ) return None if batch_size is np.inf else batch_size class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ = path_or_paths if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} A_ = _PACKAGED_DATASETS_MODULES['''parquet'''][1] A_ = Parquet( cache_dir=_SCREAMING_SNAKE_CASE , data_files=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , hash=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self ) -> str: # Build iterable dataset if self.streaming: A_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) A_ = self.builder.as_dataset( split=self.split , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Dict: A_ = dataset A_ = path_or_buf A_ = batch_size or get_writer_batch_size(dataset.features ) A_ = parquet_writer_kwargs def __A ( self ) -> int: A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: A_ = self._write(file_obj=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) else: A_ = self._write(file_obj=self.path_or_buf , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) return written def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: A_ = 0 A_ = parquet_writer_kwargs.pop('''path_or_buf''' , _SCREAMING_SNAKE_CASE ) A_ = self.dataset.features.arrow_schema A_ = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _SCREAMING_SNAKE_CASE ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): A_ = query_table( table=self.dataset._data , key=slice(_SCREAMING_SNAKE_CASE , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_SCREAMING_SNAKE_CASE ) written += batch.nbytes writer.close() return written
18
1
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : list ) -> list: def merge(_UpperCamelCase : list, _UpperCamelCase : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_UpperCamelCase ) <= 1: return collection A_ = len(_UpperCamelCase ) // 2 return merge(merge_sort(collection[:mid] ), merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() __snake_case : int = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
18
'''simple docstring''' from statistics import mean, stdev def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = min(_UpperCamelCase ) A_ = max(_UpperCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min), _UpperCamelCase ) for x in data] def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = mean(_UpperCamelCase ) A_ = stdev(_UpperCamelCase ) # standardize data return [round((x - mu) / (sigma), _UpperCamelCase ) for x in data]
18
1
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 * 4 , _SCREAMING_SNAKE_CASE=32 * 6 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=32 , ) -> List[Any]: A_ = parent A_ = batch_size A_ = is_training A_ = use_auxiliary_loss A_ = num_queries A_ = num_channels A_ = min_size A_ = max_size A_ = num_labels A_ = mask_feature_size def __A ( self ) -> Tuple: A_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _SCREAMING_SNAKE_CASE ) A_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_SCREAMING_SNAKE_CASE ) A_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_SCREAMING_SNAKE_CASE ) > 0.5 ).float() A_ = (torch.rand((self.batch_size, self.num_labels) , device=_SCREAMING_SNAKE_CASE ) > 0.5).long() A_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __A ( self ) -> Dict: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def __A ( self ) -> str: A_ ,A_ ,A_ ,A_ ,A_ = self.prepare_config_and_inputs() A_ = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = output.encoder_hidden_states A_ = output.pixel_decoder_hidden_states A_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , config.decoder_config.decoder_layers ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> List[Any]: with torch.no_grad(): A_ = MaskFormerModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: A_ = MaskFormerForInstanceSegmentation(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() def comm_check_on_output(_SCREAMING_SNAKE_CASE ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): A_ = model(pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE ) comm_check_on_output(_SCREAMING_SNAKE_CASE ) A_ = model( pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ) comm_check_on_output(_SCREAMING_SNAKE_CASE ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () __lowercase : Union[str, Any] = ( {'feature-extraction': MaskFormerModel, 'image-segmentation': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) __lowercase : List[Any] = False __lowercase : int = False __lowercase : Any = False __lowercase : Optional[int] = False def __A ( self ) -> Optional[Any]: A_ = MaskFormerModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: self.config_tester.run_common_tests() def __A ( self ) -> Dict: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Union[str, Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def __A ( self ) -> Union[str, Any]: pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def __A ( self ) -> Optional[int]: pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def __A ( self ) -> Dict: pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def __A ( self ) -> Dict: pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __A ( self ) -> Union[str, Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> List[Any]: pass def __A ( self ) -> Union[str, Any]: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @slow def __A ( self ) -> Optional[Any]: for model_name in ["facebook/maskformer-swin-small-coco"]: A_ = MaskFormerModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> int: A_ = (self.model_tester.min_size,) * 2 A_ = { '''pixel_values''': torch.randn((2, 3, *size) , device=_SCREAMING_SNAKE_CASE ), '''mask_labels''': torch.randn((2, 10, *size) , device=_SCREAMING_SNAKE_CASE ), '''class_labels''': torch.zeros(2 , 10 , device=_SCREAMING_SNAKE_CASE ).long(), } A_ = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None ) def __A ( self ) -> Optional[Any]: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.attentions is not None ) def __A ( self ) -> Union[str, Any]: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss A_ = self.all_model_classes[1] A_ ,A_ ,A_ ,A_ ,A_ = self.model_tester.prepare_config_and_inputs() A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() A_ = model(_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> int: # only MaskFormerForInstanceSegmentation has the loss A_ = self.all_model_classes[1] A_ ,A_ ,A_ ,A_ ,A_ = self.model_tester.prepare_config_and_inputs() A_ = True A_ = True A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() A_ = model(_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ) A_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() A_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't A_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() A_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __snake_case : Tuple = 1E-4 def _UpperCAmelCase ( ) -> List[Any]: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __A ( self ) -> Any: return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def __A ( self ) -> Optional[Any]: A_ = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(_SCREAMING_SNAKE_CASE ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) A_ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_SCREAMING_SNAKE_CASE , (1, 3, 800, 1088) ) with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) A_ = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) A_ = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> int: A_ = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_SCREAMING_SNAKE_CASE ) .eval() ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) A_ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_SCREAMING_SNAKE_CASE , (1, 3, 800, 1088) ) with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE ) # masks_queries_logits A_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) A_ = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] A_ = torch.tensor(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) # class_queries_logits A_ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) A_ = torch.tensor( [ [1.6_512E00, -5.2_572E00, -3.3_519E00], [3.6_169E-02, -5.9_025E00, -2.9_313E00], [1.0_766E-04, -7.7_630E00, -5.1_263E00], ] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> Optional[Any]: A_ = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(_SCREAMING_SNAKE_CASE ) .eval() ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) A_ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_SCREAMING_SNAKE_CASE , (1, 3, 800, 1088) ) with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE ) # masks_queries_logits A_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) A_ = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] A_ = torch.tensor(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) # class_queries_logits A_ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) A_ = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> List[str]: A_ = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(_SCREAMING_SNAKE_CASE ) .eval() ) A_ = self.default_image_processor A_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) A_ = inputs['''pixel_values'''].to(_SCREAMING_SNAKE_CASE ) A_ = [el.to(_SCREAMING_SNAKE_CASE ) for el in inputs['''mask_labels''']] A_ = [el.to(_SCREAMING_SNAKE_CASE ) for el in inputs['''class_labels''']] with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None )
18
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') __snake_case : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __snake_case : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: with open(_UpperCamelCase, '''rb''' ) as f: A_ = Image.open(_UpperCamelCase ) return im.convert('''RGB''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the training data.'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the validation data.'} ) __lowercase : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __A ( self ) -> int: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_UpperCamelCase )} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) __lowercase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowercase : str = field(default=_UpperCamelCase , metadata={'help': 'Name or path of preprocessor config.'} ) __lowercase : bool = field( default=_UpperCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __lowercase : bool = field( default=_UpperCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> Dict: A_ = torch.stack([example['''pixel_values'''] for example in examples] ) A_ = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _UpperCAmelCase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A_ ,A_ ,A_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A_ ,A_ ,A_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''', _UpperCamelCase, _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A_ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. A_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: A_ = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, task='''image-classification''', use_auth_token=True if model_args.use_auth_token else None, ) else: A_ = {} if data_args.train_dir is not None: A_ = os.path.join(data_args.train_dir, '''**''' ) if data_args.validation_dir is not None: A_ = os.path.join(data_args.validation_dir, '''**''' ) A_ = load_dataset( '''imagefolder''', data_files=_UpperCamelCase, cache_dir=model_args.cache_dir, task='''image-classification''', ) # If we don't have a validation split, split off a percentage of train as validation. A_ = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, _UpperCamelCase ) and data_args.train_val_split > 0.0: A_ = dataset['''train'''].train_test_split(data_args.train_val_split ) A_ = split['''train'''] A_ = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A_ = dataset['''train'''].features['''labels'''].names A_ ,A_ = {}, {} for i, label in enumerate(_UpperCamelCase ): A_ = str(_UpperCamelCase ) A_ = label # Load the accuracy metric from the datasets package A_ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Optional[Any] ): return metric.compute(predictions=np.argmax(p.predictions, axis=1 ), references=p.label_ids ) A_ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(_UpperCamelCase ), labelaid=_UpperCamelCase, idalabel=_UpperCamelCase, finetuning_task='''image-classification''', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) A_ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=_UpperCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) A_ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: A_ = image_processor.size['''shortest_edge'''] else: A_ = (image_processor.size['''height'''], image_processor.size['''width''']) A_ = Normalize(mean=image_processor.image_mean, std=image_processor.image_std ) A_ = Compose( [ RandomResizedCrop(_UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) A_ = Compose( [ Resize(_UpperCamelCase ), CenterCrop(_UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(_UpperCamelCase : Dict ): A_ = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(_UpperCamelCase : Any ): A_ = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: A_ = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: A_ = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_UpperCamelCase ) # Initalize our trainer A_ = Trainer( model=_UpperCamelCase, args=_UpperCamelCase, train_dataset=dataset['''train'''] if training_args.do_train else None, eval_dataset=dataset['''validation'''] if training_args.do_eval else None, compute_metrics=_UpperCamelCase, tokenizer=_UpperCamelCase, data_collator=_UpperCamelCase, ) # Training if training_args.do_train: A_ = None if training_args.resume_from_checkpoint is not None: A_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A_ = last_checkpoint A_ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics ) trainer.save_metrics('''train''', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A_ = trainer.evaluate() trainer.log_metrics('''eval''', _UpperCamelCase ) trainer.save_metrics('''eval''', _UpperCamelCase ) # Write model card and (optionally) push to hub A_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
18
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=[1, 1, 2] , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu_new" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , ) -> List[str]: A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = block_sizes A_ = num_decoder_layers A_ = d_model A_ = n_head A_ = d_head A_ = d_inner A_ = hidden_act A_ = hidden_dropout A_ = attention_dropout A_ = activation_dropout A_ = max_position_embeddings A_ = type_vocab_size A_ = 2 A_ = num_labels A_ = num_choices A_ = scope A_ = initializer_std # Used in the tests to check the size of the first attention layer A_ = n_head # Used in the tests to check the size of the first hidden state A_ = self.d_model # Used in the tests to check the number of output hidden states/attentions A_ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: A_ = self.num_hidden_layers + 2 def __A ( self ) -> int: A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Optional[Any]: A_ = TFFunnelModel(config=_SCREAMING_SNAKE_CASE ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(_SCREAMING_SNAKE_CASE ) A_ = [input_ids, input_mask] A_ = model(_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) A_ = False A_ = TFFunnelModel(config=_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) A_ = False A_ = TFFunnelModel(config=_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[Any]: A_ = TFFunnelBaseModel(config=_SCREAMING_SNAKE_CASE ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(_SCREAMING_SNAKE_CASE ) A_ = [input_ids, input_mask] A_ = model(_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) A_ = False A_ = TFFunnelBaseModel(config=_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) A_ = False A_ = TFFunnelBaseModel(config=_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Optional[int]: A_ = TFFunnelForPreTraining(config=_SCREAMING_SNAKE_CASE ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[Any]: A_ = TFFunnelForMaskedLM(config=_SCREAMING_SNAKE_CASE ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Dict: A_ = self.num_labels A_ = TFFunnelForSequenceClassification(config=_SCREAMING_SNAKE_CASE ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[Any]: A_ = self.num_choices A_ = TFFunnelForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) A_ = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) A_ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Optional[Any]: A_ = self.num_labels A_ = TFFunnelForTokenClassification(config=_SCREAMING_SNAKE_CASE ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> Dict: A_ = TFFunnelForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self ) -> Any: A_ = self.prepare_config_and_inputs() ( ( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) , ) = config_and_inputs A_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : List[Any] = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) __lowercase : Optional[Any] = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) __lowercase : Any = False __lowercase : str = False def __A ( self ) -> Union[str, Any]: A_ = TFFunnelModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: self.config_tester.run_common_tests() def __A ( self ) -> Union[str, Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> List[str]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) @require_tf class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : str = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) __lowercase : str = False __lowercase : Any = False def __A ( self ) -> List[Any]: A_ = TFFunnelModelTester(self , base=_SCREAMING_SNAKE_CASE ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE ) def __A ( self ) -> List[Any]: self.config_tester.run_common_tests() def __A ( self ) -> Dict: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> List[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_SCREAMING_SNAKE_CASE )
18
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __snake_case : str = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Dict: A_ = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def __A ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __A ( self ) -> str: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id='''test-model-flax''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def __A ( self ) -> List[str]: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Tuple ) -> Dict: A_ = True A_ = flatten_dict(modela.params ) A_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: A_ = False return models_are_equal @require_flax class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> List[str]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> List[Any]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , max_shard_size='''10KB''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> Dict: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
18
1
'''simple docstring''' import random class __UpperCAmelCase : '''simple docstring''' @staticmethod def __A ( _SCREAMING_SNAKE_CASE ) -> tuple[list[int], list[int]]: A_ = [ord(_SCREAMING_SNAKE_CASE ) for i in text] A_ = [] A_ = [] for i in plain: A_ = random.randint(1 , 300 ) A_ = (i + k) * k cipher.append(_SCREAMING_SNAKE_CASE ) key.append(_SCREAMING_SNAKE_CASE ) return cipher, key @staticmethod def __A ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: A_ = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): A_ = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(_SCREAMING_SNAKE_CASE ) ) return "".join(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __snake_case , __snake_case : Optional[Any] = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
18
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Dict: A_ = 1 A_ = 2 while i * i <= n: A_ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _UpperCAmelCase ( ) -> Optional[int]: A_ = 1 A_ = 1 while True: i += 1 t_num += i if count_divisors(_UpperCamelCase ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
18
1
'''simple docstring''' from functools import lru_cache @lru_cache def _UpperCAmelCase ( _UpperCamelCase : int ) -> int: if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
18
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=[1, 384, 24, 24] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = backbone_out_indices A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = num_labels A_ = backbone_featmap_shape A_ = scope A_ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = num_patches + 1 def __A ( self ) -> Optional[Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Optional[Any]: A_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = DPTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: A_ = self.num_labels A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: A_ = self.num_labels A_ = DPTForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __A ( self ) -> Optional[int]: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __lowercase : Optional[int] = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : Any = False __lowercase : Tuple = False __lowercase : List[Any] = False def __A ( self ) -> Tuple: A_ = DPTModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def __A ( self ) -> Union[str, Any]: pass def __A ( self ) -> Dict: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> Optional[int]: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ): continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = False A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Tuple: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: A_ = model_class(config=_SCREAMING_SNAKE_CASE ) # Skip the check for the backbone A_ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": A_ = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> int: pass @slow def __A ( self ) -> Dict: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: A_ = DPTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = '''add''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Optional[int]: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Any: A_ = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) A_ = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(_SCREAMING_SNAKE_CASE ) A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE ) A_ = outputs.predicted_depth # verify the predicted depth A_ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
18
1
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Any = LEDTokenizer __lowercase : int = LEDTokenizerFast __lowercase : Dict = True def __A ( self ) -> Any: super().setUp() A_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] A_ = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) A_ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] A_ = {'''unk_token''': '''<unk>'''} A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_SCREAMING_SNAKE_CASE ) ) def __A ( self , **_SCREAMING_SNAKE_CASE ) -> str: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __A ( self , **_SCREAMING_SNAKE_CASE ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: return "lower newer", "lower newer" @cached_property def __A ( self ) -> Optional[Any]: return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def __A ( self ) -> Optional[int]: return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def __A ( self ) -> int: A_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] A_ = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ = tokenizer(_SCREAMING_SNAKE_CASE , max_length=len(_SCREAMING_SNAKE_CASE ) , padding=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) A_ = batch.input_ids.tolist()[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @require_torch def __A ( self ) -> List[str]: A_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertIn('''input_ids''' , _SCREAMING_SNAKE_CASE ) self.assertIn('''attention_mask''' , _SCREAMING_SNAKE_CASE ) self.assertNotIn('''labels''' , _SCREAMING_SNAKE_CASE ) self.assertNotIn('''decoder_attention_mask''' , _SCREAMING_SNAKE_CASE ) @require_torch def __A ( self ) -> Any: A_ = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ = tokenizer(text_target=_SCREAMING_SNAKE_CASE , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def __A ( self ) -> str: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ = tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def __A ( self ) -> Optional[Any]: A_ = ['''A long paragraph for summarization.'''] A_ = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) A_ = tokenizer(text_target=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) A_ = inputs['''input_ids'''] A_ = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __A ( self ) -> str: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A_ = ['''Summary of the text.''', '''Another summary.'''] A_ = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] A_ = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE ) A_ = [[0] * len(_SCREAMING_SNAKE_CASE ) for x in encoded_output['''input_ids''']] A_ = tokenizer.pad(_SCREAMING_SNAKE_CASE ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Tuple: pass def __A ( self ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) A_ = self.tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) A_ = '''A, <mask> AllenNLP sentence.''' A_ = tokenizer_r.encode_plus(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE ) A_ = tokenizer_p.encode_plus(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) A_ = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) A_ = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( _SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( _SCREAMING_SNAKE_CASE , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
18
'''simple docstring''' import math def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : float ) -> float: if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
18
1
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case : List[str] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Union[str, Any] = PegasusTokenizer __lowercase : List[Any] = PegasusTokenizerFast __lowercase : Union[str, Any] = True __lowercase : int = True def __A ( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing A_ = PegasusTokenizer(_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __A ( self ) -> str: return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def __A ( self , **_SCREAMING_SNAKE_CASE ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> str: return ("This is a test", "This is a test") def __A ( self ) -> List[str]: A_ = '''</s>''' A_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> List[str]: A_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1103 ) def __A ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def __A ( self ) -> Optional[int]: A_ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) A_ = self.tokenizer_class.from_pretrained(self.tmpdirname ) A_ = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) A_ = rust_tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids[0] A_ = py_tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Tuple: A_ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word A_ = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' A_ = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] A_ = tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE ).input_ids[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Tuple: A_ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 A_ = '''To ensure a smooth flow of bank resolutions.''' A_ = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] A_ = tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE ).input_ids[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def __A ( self ) -> List[str]: A_ = ['''This is going to be way too long.''' * 150, '''short example'''] A_ = ['''not super long but more than 5 tokens''', '''tiny'''] A_ = self._large_tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) A_ = self._large_tokenizer( text_target=_SCREAMING_SNAKE_CASE , max_length=5 , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_SCREAMING_SNAKE_CASE ) == 2 # input_ids, attention_mask. @slow def __A ( self ) -> List[Any]: # fmt: off A_ = {'''input_ids''': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : int = PegasusTokenizer __lowercase : List[str] = PegasusTokenizerFast __lowercase : Dict = True __lowercase : Tuple = True def __A ( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing A_ = PegasusTokenizer(_SCREAMING_SNAKE_CASE , offset=0 , mask_token_sent=_SCREAMING_SNAKE_CASE , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __A ( self ) -> List[Any]: return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def __A ( self , **_SCREAMING_SNAKE_CASE ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> int: return ("This is a test", "This is a test") def __A ( self ) -> List[str]: A_ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) A_ = self.tokenizer_class.from_pretrained(self.tmpdirname ) A_ = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) A_ = rust_tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids[0] A_ = py_tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @require_torch def __A ( self ) -> str: A_ = ['''This is going to be way too long.''' * 1000, '''short example'''] A_ = ['''not super long but more than 5 tokens''', '''tiny'''] A_ = self._large_tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) A_ = self._large_tokenizer( text_target=_SCREAMING_SNAKE_CASE , max_length=5 , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_SCREAMING_SNAKE_CASE ) == 2 # input_ids, attention_mask. def __A ( self ) -> List[Any]: A_ = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) A_ = self._large_tokenizer(_SCREAMING_SNAKE_CASE ).input_ids self.assertListEqual( _SCREAMING_SNAKE_CASE , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
18
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
18
1
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": __snake_case : List[str] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') __snake_case : Union[str, Any] = parser.parse_args() if args.model_type == "bert": __snake_case : Any = BertForMaskedLM.from_pretrained(args.model_name) __snake_case : Dict = 'bert' else: raise ValueError('args.model_type should be "bert".') __snake_case : Tuple = model.state_dict() __snake_case : List[Any] = {} for w in ["word_embeddings", "position_embeddings"]: __snake_case : Tuple = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: __snake_case : Any = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] __snake_case : Optional[Any] = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: __snake_case : Any = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] __snake_case : Optional[Any] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] __snake_case : List[Any] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] __snake_case : List[Any] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] __snake_case : List[Any] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] __snake_case : str = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] __snake_case : List[str] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] __snake_case : Union[str, Any] = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 __snake_case : Any = state_dict['cls.predictions.decoder.weight'] __snake_case : Dict = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: __snake_case : Dict = state_dict[F"""cls.predictions.transform.dense.{w}"""] __snake_case : Optional[int] = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
18
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : Any = logging.get_logger(__name__) def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> List[str]: A_ = torch.load(_UpperCamelCase, map_location='''cpu''' ) if "model" in sd.keys(): A_ = torch.load(_UpperCamelCase, map_location='''cpu''' )['''model'''] # pop unnecessary weights A_ = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(_UpperCamelCase ) A_ = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: A_ = sd.pop(_UpperCamelCase ) A_ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: A_ = sd[key] # We split QKV in separate Q,K,V A_ = key.replace('''.qkv_proj.''', '''.q_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.k_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.v_proj.''' ) A_ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 A_ ,A_ ,A_ = torch.split(_UpperCamelCase, depth // 3, dim=0 ) A_ = q A_ = k A_ = v del sd[key] return sd @torch.no_grad() def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : Optional[Any], _UpperCamelCase : List[str]=None ) -> Dict: A_ = load_checkpoint(_UpperCamelCase ) if config is not None: A_ = OPTConfig.from_pretrained(_UpperCamelCase ) else: A_ = OPTConfig() A_ = OPTModel(_UpperCamelCase ).half().eval() model.load_state_dict(_UpperCamelCase ) # Check results Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') __snake_case : Optional[Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
18
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __snake_case : Optional[Any] = { 'configuration_ernie': ['ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ErnieConfig', 'ErnieOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ 'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ErnieForCausalLM', 'ErnieForMaskedLM', 'ErnieForMultipleChoice', 'ErnieForNextSentencePrediction', 'ErnieForPreTraining', 'ErnieForQuestionAnswering', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieModel', 'ErniePreTrainedModel', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __snake_case : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
18
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __snake_case : Optional[Any] = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } __snake_case : Tuple = {'allegro/herbert-base-cased': 514} __snake_case : List[str] = {} class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Any = VOCAB_FILES_NAMES __lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Dict = PRETRAINED_INIT_CONFIGURATION __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = HerbertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE="</s>" , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.cls_token_id] A_ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: A_ = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
18
1
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __snake_case : Optional[Any] = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } __snake_case : Tuple = {'allegro/herbert-base-cased': 514} __snake_case : List[str] = {} class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Any = VOCAB_FILES_NAMES __lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Dict = PRETRAINED_INIT_CONFIGURATION __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = HerbertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE="</s>" , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.cls_token_id] A_ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: A_ = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
18
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any]=None ) -> List[Any]: if subparsers is not None: A_ = subparsers.add_parser('''env''' ) else: A_ = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''', default=_UpperCamelCase, help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=_UpperCamelCase ) return parser def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> Dict: A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = is_xpu_available() A_ = is_npu_available() A_ = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(_UpperCamelCase ): A_ = load_config_from_file(args.config_file ).to_dict() A_ = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(_UpperCamelCase ), '''PyTorch NPU available''': str(_UpperCamelCase ), '''System RAM''': F'''{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB''', } if pt_cuda_available: A_ = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) A_ = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_UpperCamelCase, _UpperCamelCase ) else F'''\t{accelerate_config}''' ) print(_UpperCamelCase ) A_ = accelerate_config return info def _UpperCAmelCase ( ) -> int: A_ = env_command_parser() A_ = parser.parse_args() env_command(_UpperCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
18
1
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : list ) -> list: A_ = len(_UpperCamelCase ) for i in range(1, _UpperCamelCase ): A_ = collection[i] A_ = 0 A_ = i - 1 while low <= high: A_ = (low + high) // 2 if val < collection[mid]: A_ = mid - 1 else: A_ = mid + 1 for j in range(_UpperCamelCase, _UpperCamelCase, -1 ): A_ = collection[j - 1] A_ = val return collection if __name__ == "__main__": __snake_case : List[str] = input('Enter numbers separated by a comma:\n').strip() __snake_case : List[Any] = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
18
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=0.6 , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = type_sequence_label_size A_ = initializer_range A_ = mask_ratio A_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __A ( self ) -> Union[str, Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: A_ = ViTMAEModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) A_ = (self.image_size // self.patch_size) ** 2 A_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images A_ = 1 A_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ = model(_SCREAMING_SNAKE_CASE ) A_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __A ( self ) -> int: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : int = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __lowercase : List[Any] = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} __lowercase : Union[str, Any] = False __lowercase : List[Any] = False __lowercase : List[str] = False __lowercase : List[str] = False def __A ( self ) -> Any: A_ = ViTMAEModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __A ( self ) -> int: pass def __A ( self ) -> int: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> int: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Union[str, Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: # make masks reproducible np.random.seed(2 ) A_ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) A_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument A_ = pt_noise super().check_pt_tf_models(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ = outputs[0].cpu().numpy() A_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ = model_class.from_pretrained(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Make sure we don't have nans A_ = after_outputs[0].cpu().numpy() A_ = 0 A_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> List[str]: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> Dict: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> Tuple: pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __A ( self ) -> str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> Union[str, Any]: pass @slow def __A ( self ) -> Dict: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = ViTMAEModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Dict: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __A ( self ) -> List[str]: return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __A ( self ) -> List[str]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) A_ = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(_SCREAMING_SNAKE_CASE ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) A_ = ViTMAEConfig() A_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) A_ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE , noise=torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ) ) # verify the logits A_ = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_SCREAMING_SNAKE_CASE ) , atol=1E-4 ) )
18
1
'''simple docstring''' __snake_case : Union[str, Any] = {str(digit): digit**5 for digit in range(10)} def _UpperCAmelCase ( _UpperCamelCase : int ) -> int: return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_UpperCamelCase ) ) def _UpperCAmelCase ( ) -> int: return sum( number for number in range(10_00, 1_00_00_00 ) if number == digits_fifth_powers_sum(_UpperCamelCase ) ) if __name__ == "__main__": print(solution())
18
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : int = logging.get_logger(__name__) __snake_case : str = { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[Any] = 'xlm-prophetnet' __lowercase : Optional[int] = ['past_key_values'] __lowercase : int = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = "gelu" , _SCREAMING_SNAKE_CASE = 3_0522 , _SCREAMING_SNAKE_CASE = 1024 , _SCREAMING_SNAKE_CASE = 4096 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 4096 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 0.02 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = 128 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 2 , **_SCREAMING_SNAKE_CASE , ) -> int: A_ = vocab_size A_ = hidden_size A_ = encoder_ffn_dim A_ = num_encoder_layers A_ = num_encoder_attention_heads A_ = decoder_ffn_dim A_ = num_decoder_layers A_ = num_decoder_attention_heads A_ = max_position_embeddings A_ = init_std # Normal(0, this parameter) A_ = activation_function # parameters for xlmprophetnet A_ = ngram A_ = num_buckets A_ = relative_max_distance A_ = disable_ngram_loss A_ = eps # 3 Types of Dropout A_ = attention_dropout A_ = activation_dropout A_ = dropout A_ = use_cache super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , add_cross_attention=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @property def __A ( self ) -> int: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def __A ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
18
1
'''simple docstring''' from __future__ import annotations __snake_case : Union[str, Any] = '#' class __UpperCAmelCase : '''simple docstring''' def __init__( self ) -> None: A_ = {} def __A ( self , _SCREAMING_SNAKE_CASE ) -> None: A_ = self._trie for char in text: if char not in trie: A_ = {} A_ = trie[char] A_ = True def __A ( self , _SCREAMING_SNAKE_CASE ) -> tuple | list: A_ = self._trie for char in prefix: if char in trie: A_ = trie[char] else: return [] return self._elements(_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> tuple: A_ = [] for c, v in d.items(): A_ = [''' '''] if c == END else [(c + s) for s in self._elements(_SCREAMING_SNAKE_CASE )] result.extend(_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE ) __snake_case : Dict = Trie() __snake_case : Optional[Any] = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def _UpperCAmelCase ( _UpperCamelCase : str ) -> tuple: A_ = trie.find_word(_UpperCamelCase ) return tuple(string + word for word in suffixes ) def _UpperCAmelCase ( ) -> None: print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
18
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : list[float] ) -> float: if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) A_ = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_UpperCamelCase ) ) return round(_UpperCamelCase, ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
18
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __A ( self ) -> List[Any]: A_ = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) A_ = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" A_ = model(_SCREAMING_SNAKE_CASE )['''last_hidden_state'''] A_ = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. A_ = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
18
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( _UpperCamelCase : int | str ) -> bool: A_ = str(_UpperCamelCase ) return n == n[::-1] def _UpperCAmelCase ( _UpperCamelCase : int = 1_00_00_00 ) -> Any: A_ = 0 for i in range(1, _UpperCamelCase ): if is_palindrome(_UpperCamelCase ) and is_palindrome(bin(_UpperCamelCase ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
18
1
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup __snake_case : Optional[int] = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def _UpperCAmelCase ( _UpperCamelCase : Any ) -> int: # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": __snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') __snake_case : int = parser.parse_args() if args.check_lib: __snake_case : List[Any] = importlib.import_module('transformers') __snake_case : Tuple = Path(transformers_module.__file__).parent else: __snake_case : str = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
18
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Tuple, _UpperCamelCase : List[str] ) -> int: A_ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] A_ = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } A_ = F'''{src_lang}-{tgt_lang}''' A_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(_UpperCamelCase, exist_ok=_UpperCamelCase ) A_ = os.path.join(_UpperCamelCase, '''README.md''' ) print(F'''Generating {path}''' ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(_UpperCamelCase ) # make sure we are under the root of the project __snake_case : Any = Path(__file__).resolve().parent.parent.parent __snake_case : Tuple = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __snake_case , __snake_case , __snake_case : Any = model_name.split('-') __snake_case : int = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
18
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __snake_case : Optional[int] = logging.get_logger(__name__) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> None: warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''' , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
18
'''simple docstring''' from collections import defaultdict def _UpperCAmelCase ( _UpperCamelCase : int ) -> int: A_ = 1 A_ = True for v in tree[start]: if v not in visited: ret += dfs(_UpperCamelCase ) if ret % 2 == 0: cuts.append(_UpperCamelCase ) return ret def _UpperCAmelCase ( ) -> Optional[Any]: dfs(1 ) if __name__ == "__main__": __snake_case , __snake_case : Union[str, Any] = 10, 9 __snake_case : int = defaultdict(list) __snake_case : dict[int, bool] = {} __snake_case : list[int] = [] __snake_case : Union[str, Any] = 0 __snake_case : int = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
1
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : List[str] ) -> Tuple: assert isinstance(_UpperCamelCase, _UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''', [False, True] ) def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : List[Any], _UpperCamelCase : List[Any] ) -> Dict: A_ = tmp_path / '''cache''' A_ = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ = TextDatasetReader(_UpperCamelCase, cache_dir=_UpperCamelCase, keep_in_memory=_UpperCamelCase ).read() _check_text_dataset(_UpperCamelCase, _UpperCamelCase ) @pytest.mark.parametrize( '''features''', [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ], ) def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : Optional[Any], _UpperCamelCase : int ) -> str: A_ = tmp_path / '''cache''' A_ = {'''text''': '''string'''} A_ = features.copy() if features else default_expected_features A_ = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ = TextDatasetReader(_UpperCamelCase, features=_UpperCamelCase, cache_dir=_UpperCamelCase ).read() _check_text_dataset(_UpperCamelCase, _UpperCamelCase ) @pytest.mark.parametrize('''split''', [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _UpperCAmelCase ( _UpperCamelCase : List[str], _UpperCamelCase : Dict, _UpperCamelCase : List[str] ) -> List[str]: A_ = tmp_path / '''cache''' A_ = {'''text''': '''string'''} A_ = TextDatasetReader(_UpperCamelCase, cache_dir=_UpperCamelCase, split=_UpperCamelCase ).read() _check_text_dataset(_UpperCamelCase, _UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''', [str, list] ) def _UpperCAmelCase ( _UpperCamelCase : Dict, _UpperCamelCase : Any, _UpperCamelCase : List[str] ) -> List[str]: if issubclass(_UpperCamelCase, _UpperCamelCase ): A_ = text_path elif issubclass(_UpperCamelCase, _UpperCamelCase ): A_ = [text_path] A_ = tmp_path / '''cache''' A_ = {'''text''': '''string'''} A_ = TextDatasetReader(_UpperCamelCase, cache_dir=_UpperCamelCase ).read() _check_text_dataset(_UpperCamelCase, _UpperCamelCase ) def _UpperCAmelCase ( _UpperCamelCase : Any, _UpperCamelCase : Dict, _UpperCamelCase : List[str]=("train",) ) -> List[Any]: assert isinstance(_UpperCamelCase, _UpperCamelCase ) for split in splits: A_ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''', [False, True] ) def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : List[str], _UpperCamelCase : Tuple ) -> Any: A_ = tmp_path / '''cache''' A_ = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ = TextDatasetReader({'''train''': text_path}, cache_dir=_UpperCamelCase, keep_in_memory=_UpperCamelCase ).read() _check_text_datasetdict(_UpperCamelCase, _UpperCamelCase ) @pytest.mark.parametrize( '''features''', [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ], ) def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : List[str], _UpperCamelCase : Union[str, Any] ) -> Tuple: A_ = tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" A_ = {'''text''': '''string'''} A_ = features.copy() if features else default_expected_features A_ = ( Features({feature: Value(_UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ = TextDatasetReader({'''train''': text_path}, features=_UpperCamelCase, cache_dir=_UpperCamelCase ).read() _check_text_datasetdict(_UpperCamelCase, _UpperCamelCase ) @pytest.mark.parametrize('''split''', [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : Optional[int], _UpperCamelCase : Optional[int] ) -> Any: if split: A_ = {split: text_path} else: A_ = '''train''' A_ = {'''train''': text_path, '''test''': text_path} A_ = tmp_path / '''cache''' A_ = {'''text''': '''string'''} A_ = TextDatasetReader(_UpperCamelCase, cache_dir=_UpperCamelCase ).read() _check_text_datasetdict(_UpperCamelCase, _UpperCamelCase, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[int] = 'mgp-str' def __init__( self , _SCREAMING_SNAKE_CASE=[32, 128] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=27 , _SCREAMING_SNAKE_CASE=38 , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=3_0522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: super().__init__(**_SCREAMING_SNAKE_CASE ) A_ = image_size A_ = patch_size A_ = num_channels A_ = max_token_length A_ = num_character_labels A_ = num_bpe_labels A_ = num_wordpiece_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = mlp_ratio A_ = distilled A_ = layer_norm_eps A_ = drop_rate A_ = qkv_bias A_ = attn_drop_rate A_ = drop_path_rate A_ = output_aa_attentions A_ = initializer_range
18
1
'''simple docstring''' import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def _UpperCAmelCase ( _UpperCamelCase : List[str], _UpperCamelCase : str, _UpperCamelCase : Union[str, Any], _UpperCamelCase : int ) -> Dict: A_ = s.rsplit(_UpperCamelCase, _UpperCamelCase ) return new.join(_UpperCamelCase ) def _UpperCAmelCase ( _UpperCamelCase : int ) -> List[str]: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def _UpperCAmelCase ( _UpperCamelCase : int ) -> List[str]: A_ = {} A_ = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: A_ = key.replace(F'''{group_key}.''', F'''{group_key}.group.''' ) if "res_path" in key: A_ = key.replace('''res_path.''', '''res_path.path.''' ) if key.endswith('''.w''' ): A_ = rreplace(_UpperCamelCase, '''.w''', '''.weight''', 1 ) if key.endswith('''.b''' ): A_ = rreplace(_UpperCamelCase, '''.b''', '''.bias''', 1 ) A_ = value.float() return upgrade @torch.no_grad() def _UpperCAmelCase ( _UpperCamelCase : Optional[Any], _UpperCamelCase : Union[str, Any], _UpperCamelCase : Dict=None, _UpperCamelCase : Optional[Any]=True ) -> Any: from dall_e import Encoder A_ = Encoder() if os.path.exists(_UpperCamelCase ): A_ = torch.load(_UpperCamelCase ) else: A_ = torch.hub.load_state_dict_from_url(_UpperCamelCase ) if isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = ckpt.state_dict() encoder.load_state_dict(_UpperCamelCase ) if config_path is not None: A_ = FlavaImageCodebookConfig.from_pretrained(_UpperCamelCase ) else: A_ = FlavaImageCodebookConfig() A_ = FlavaImageCodebook(_UpperCamelCase ).eval() A_ = encoder.state_dict() A_ = upgrade_state_dict(_UpperCamelCase ) hf_model.load_state_dict(_UpperCamelCase ) A_ = hf_model.state_dict() A_ = count_parameters(_UpperCamelCase ) A_ = count_parameters(_UpperCamelCase ) assert torch.allclose(_UpperCamelCase, _UpperCamelCase, atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(_UpperCamelCase ) else: return hf_state_dict if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __snake_case : Any = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
18
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __UpperCAmelCase : '''simple docstring''' pass
18
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE=None , ) -> Dict: A_ = size if size is not None else {'''shortest_edge''': 18} A_ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} A_ = parent A_ = batch_size A_ = num_channels A_ = num_frames A_ = image_size A_ = min_resolution A_ = max_resolution A_ = do_resize A_ = size A_ = do_normalize A_ = image_mean A_ = image_std A_ = crop_size def __A ( self ) -> Optional[int]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Any = VivitImageProcessor if is_vision_available() else None def __A ( self ) -> Union[str, Any]: A_ = VivitImageProcessingTester(self ) @property def __A ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> List[str]: A_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''image_mean''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''image_std''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''do_center_crop''' ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''size''' ) ) def __A ( self ) -> Optional[Any]: A_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __A ( self ) -> Dict: # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos A_ = prepare_video_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for video in video_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input A_ = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __A ( self ) -> Optional[Any]: # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ = prepare_video_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for video in video_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input A_ = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __A ( self ) -> str: # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ = prepare_video_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for video in video_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input A_ = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched A_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
18
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _UpperCAmelCase ( ) -> Dict: A_ = ArgumentParser('''Accelerate CLI tool''', usage='''accelerate <command> [<args>]''', allow_abbrev=_UpperCamelCase ) A_ = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=_UpperCamelCase ) env_command_parser(subparsers=_UpperCamelCase ) launch_command_parser(subparsers=_UpperCamelCase ) tpu_command_parser(subparsers=_UpperCamelCase ) test_command_parser(subparsers=_UpperCamelCase ) # Let's go A_ = parser.parse_args() if not hasattr(_UpperCamelCase, '''func''' ): parser.print_help() exit(1 ) # Run args.func(_UpperCamelCase ) if __name__ == "__main__": main()
18
1
'''simple docstring''' import math __snake_case : Any = 10 __snake_case : List[str] = 7 __snake_case : List[Any] = BALLS_PER_COLOUR * NUM_COLOURS def _UpperCAmelCase ( _UpperCamelCase : int = 20 ) -> str: A_ = math.comb(_UpperCamelCase, _UpperCamelCase ) A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR, _UpperCamelCase ) A_ = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
18
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __snake_case : Any = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' __snake_case : Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' __snake_case : Optional[int] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __A ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: if rouge_types is None: A_ = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] A_ = rouge_scorer.RougeScorer(rouge_types=_SCREAMING_SNAKE_CASE , use_stemmer=_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = scoring.BootstrapAggregator() else: A_ = [] for ref, pred in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = scorer.score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if use_aggregator: aggregator.add_scores(_SCREAMING_SNAKE_CASE ) else: scores.append(_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = aggregator.aggregate() else: A_ = {} for key in scores[0]: A_ = [score[key] for score in scores] return result
18
1
'''simple docstring''' from math import factorial class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: A_ = real if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = [1] * rank else: A_ = rank def __repr__( self ) -> Optional[Any]: return ( F'''{self.real}+''' F'''{'+'.join(str(_SCREAMING_SNAKE_CASE )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def __A ( self ) -> Any: A_ = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , _SCREAMING_SNAKE_CASE ) def __add__( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return Dual(self.real + other , self.duals ) A_ = self.duals.copy() A_ = other.duals.copy() if len(_SCREAMING_SNAKE_CASE ) > len(_SCREAMING_SNAKE_CASE ): o_dual.extend([1] * (len(_SCREAMING_SNAKE_CASE ) - len(_SCREAMING_SNAKE_CASE )) ) elif len(_SCREAMING_SNAKE_CASE ) < len(_SCREAMING_SNAKE_CASE ): s_dual.extend([1] * (len(_SCREAMING_SNAKE_CASE ) - len(_SCREAMING_SNAKE_CASE )) ) A_ = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , _SCREAMING_SNAKE_CASE ) __lowercase : int = __add__ def __sub__( self , _SCREAMING_SNAKE_CASE ) -> Any: return self + other * -1 def __mul__( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , _SCREAMING_SNAKE_CASE ) A_ = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , _SCREAMING_SNAKE_CASE ) __lowercase : Optional[Any] = __mul__ def __truediv__( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , _SCREAMING_SNAKE_CASE ) raise ValueError def __floordiv__( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , _SCREAMING_SNAKE_CASE ) raise ValueError def __pow__( self , _SCREAMING_SNAKE_CASE ) -> str: if n < 0 or isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('''power must be a positive integer''' ) if n == 0: return 1 if n == 1: return self A_ = self for _ in range(n - 1 ): x *= self return x def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : Tuple, _UpperCamelCase : int ) -> Dict: if not callable(_UpperCamelCase ): raise ValueError('''differentiate() requires a function as input for func''' ) if not isinstance(_UpperCamelCase, (float, int) ): raise ValueError('''differentiate() requires a float as input for position''' ) if not isinstance(_UpperCamelCase, _UpperCamelCase ): raise ValueError('''differentiate() requires an int as input for order''' ) A_ = Dual(_UpperCamelCase, 1 ) A_ = func(_UpperCamelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> Optional[int]: return y**2 * y**4 print(differentiate(f, 9, 2))
18
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: super().__init__() A_ = module A_ = nn.Sequential( nn.Linear(module.in_features , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) , nn.Linear(_SCREAMING_SNAKE_CASE , module.out_features , bias=_SCREAMING_SNAKE_CASE ) , ) A_ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_SCREAMING_SNAKE_CASE ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __A ( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: return self.module(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) + self.adapter(_SCREAMING_SNAKE_CASE ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowercase : Dict = 'bigscience/bloom-1b7' # Constant values __lowercase : str = 2.109659552692574 __lowercase : int = 'Hello my name is' __lowercase : Optional[Any] = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __lowercase : Optional[Any] = 10 def __A ( self ) -> List[str]: # Models and tokenizer A_ = AutoTokenizer.from_pretrained(self.model_name ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[Any]: super().setUp() # Models and tokenizer A_ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> List[str]: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: A_ = self.model_abit.config self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''quantization_config''' ) ) A_ = config.to_dict() A_ = config.to_diff_dict() A_ = config.to_json_string() def __A ( self ) -> Union[str, Any]: from bitsandbytes.nn import Paramsabit A_ = self.model_fpaa.get_memory_footprint() A_ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A_ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __A ( self ) -> Union[str, Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __A ( self ) -> Optional[int]: A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Optional[int]: A_ = BitsAndBytesConfig() A_ = True A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Tuple: with self.assertRaises(_SCREAMING_SNAKE_CASE ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Tuple: A_ = BitsAndBytesConfig() with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def __A ( self ) -> Dict: with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_fpaa.to(torch.floataa ) A_ = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A_ = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error A_ = self.model_fpaa.half() # Check this does not throw an error A_ = self.model_fpaa.float() def __A ( self ) -> Optional[int]: A_ = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Optional[Any]: A_ = '''t5-small''' A_ = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense A_ = AutoTokenizer.from_pretrained(cls.model_name ) A_ = '''Translate in German: Hello, my dog is cute''' def __A ( self ) -> Any: gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: from transformers import TaForConditionalGeneration A_ = TaForConditionalGeneration._keep_in_fpaa_modules A_ = None # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) A_ = modules def __A ( self ) -> Dict: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> int: super().setUp() # model_name A_ = '''bigscience/bloom-560m''' A_ = '''t5-small''' # Different types of model A_ = AutoModel.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Sequence classification model A_ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # CausalLM model A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Seq2seq model A_ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> Union[str, Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __A ( self ) -> List[str]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> Tuple: super().setUp() def __A ( self ) -> List[Any]: del self.pipe gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[Any]: A_ = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A_ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[str]: super().setUp() def __A ( self ) -> Optional[int]: A_ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch A_ = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> str: A_ = '''facebook/opt-350m''' super().setUp() def __A ( self ) -> Optional[int]: if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A_ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A_ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_SCREAMING_SNAKE_CASE ) ): A_ = LoRALayer(module.q_proj , rank=16 ) A_ = LoRALayer(module.k_proj , rank=16 ) A_ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A_ = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A_ = model.forward(**_SCREAMING_SNAKE_CASE ) out.logits.norm().backward() for module in model.modules(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_SCREAMING_SNAKE_CASE , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : int = 'gpt2-xl' __lowercase : List[Any] = 3.3191854854152187
18
1
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __snake_case : int = logging.getLogger(__name__) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[Any] = 'summarization' __lowercase : int = ['loss'] __lowercase : int = ROUGE_KEYS __lowercase : Tuple = 'rouge2' def __init__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if hparams.sortish_sampler and hparams.gpus > 1: A_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''' ) if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''' ) super().__init__(_SCREAMING_SNAKE_CASE , num_labels=_SCREAMING_SNAKE_CASE , mode=self.mode , **_SCREAMING_SNAKE_CASE ) use_task_specific_params(self.model , '''summarization''' ) save_git_info(self.hparams.output_dir ) A_ = Path(self.output_dir ) / '''metrics.json''' A_ = Path(self.output_dir ) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path ) A_ = 0 A_ = defaultdict(_SCREAMING_SNAKE_CASE ) A_ = self.config.model_type A_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size A_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } A_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } A_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} A_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) A_ = get_git_info()['''repo_sha'''] A_ = hparams.num_workers A_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ): A_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] A_ = self.decoder_start_token_id A_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''' ) else LegacySeqaSeqDataset ) A_ = False A_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: A_ = self.hparams.eval_max_gen_length else: A_ = self.model.config.max_length A_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def __A ( self , _SCREAMING_SNAKE_CASE ) -> Dict[str, List[str]]: A_ = { k: self.tokenizer.batch_decode(v.tolist() ) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_SCREAMING_SNAKE_CASE , Path(self.output_dir ) / '''text_batch.json''' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / '''tok_batch.json''' ) A_ = True return readable_batch def __A ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: return self.model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: A_ = self.tokenizer.batch_decode( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) return lmap(str.strip , _SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> Tuple: A_ = self.tokenizer.pad_token_id A_ ,A_ = batch['''input_ids'''], batch['''attention_mask'''] A_ = batch['''labels'''] if isinstance(self.model , _SCREAMING_SNAKE_CASE ): A_ = self.model._shift_right(_SCREAMING_SNAKE_CASE ) else: A_ = shift_tokens_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero A_ = decoder_input_ids self.save_readable_batch(_SCREAMING_SNAKE_CASE ) A_ = self(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) A_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id A_ = nn.CrossEntropyLoss(ignore_index=_SCREAMING_SNAKE_CASE ) assert lm_logits.shape[-1] == self.vocab_size A_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: A_ = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1 ) A_ ,A_ = label_smoothed_nll_loss( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.hparams.label_smoothing , ignore_index=_SCREAMING_SNAKE_CASE ) return (loss,) @property def __A ( self ) -> int: return self.tokenizer.pad_token_id def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: A_ = self._step(_SCREAMING_SNAKE_CASE ) A_ = dict(zip(self.loss_names , _SCREAMING_SNAKE_CASE ) ) # tokens per batch A_ = batch['''input_ids'''].ne(self.pad ).sum() + batch['''labels'''].ne(self.pad ).sum() A_ = batch['''input_ids'''].shape[0] A_ = batch['''input_ids'''].eq(self.pad ).sum() A_ = batch['''input_ids'''].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: return self._generative_step(_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="val" ) -> Dict: self.step_count += 1 A_ = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} A_ = losses['''loss'''] A_ = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } A_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) A_ = torch.tensor(_SCREAMING_SNAKE_CASE ).type_as(_SCREAMING_SNAKE_CASE ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_SCREAMING_SNAKE_CASE ) A_ = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} A_ = self.step_count self.metrics[prefix].append(_SCREAMING_SNAKE_CASE ) # callback writes this to self.metrics_save_path A_ = flatten_list([x['''preds'''] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: return calculate_rouge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> dict: A_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') A_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_SCREAMING_SNAKE_CASE , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) A_ = (time.time() - ta) / batch['''input_ids'''].shape[0] A_ = self.ids_to_clean_text(_SCREAMING_SNAKE_CASE ) A_ = self.ids_to_clean_text(batch['''labels'''] ) A_ = self._step(_SCREAMING_SNAKE_CASE ) A_ = dict(zip(self.loss_names , _SCREAMING_SNAKE_CASE ) ) A_ = self.calc_generative_metrics(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = np.mean(lmap(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) base_metrics.update(gen_time=_SCREAMING_SNAKE_CASE , gen_len=_SCREAMING_SNAKE_CASE , preds=_SCREAMING_SNAKE_CASE , target=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return base_metrics def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: return self._generative_step(_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: return self.validation_epoch_end(_SCREAMING_SNAKE_CASE , prefix='''test''' ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> SeqaSeqDataset: A_ = self.n_obs[type_path] A_ = self.target_lens[type_path] A_ = self.dataset_class( self.tokenizer , type_path=_SCREAMING_SNAKE_CASE , n_obs=_SCREAMING_SNAKE_CASE , max_target_length=_SCREAMING_SNAKE_CASE , **self.dataset_kwargs , ) return dataset def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) -> DataLoader: A_ = self.get_dataset(_SCREAMING_SNAKE_CASE ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": A_ = dataset.make_sortish_sampler(_SCREAMING_SNAKE_CASE , distributed=self.hparams.gpus > 1 ) return DataLoader( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=_SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=_SCREAMING_SNAKE_CASE , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": A_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( _SCREAMING_SNAKE_CASE , batch_sampler=_SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=_SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=_SCREAMING_SNAKE_CASE , ) def __A ( self ) -> DataLoader: A_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_SCREAMING_SNAKE_CASE ) return dataloader def __A ( self ) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size ) def __A ( self ) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size ) @staticmethod def __A ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: BaseTransformer.add_model_specific_args(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) add_generic_args(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) parser.add_argument( '''--max_source_length''' , default=1024 , type=_SCREAMING_SNAKE_CASE , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_SCREAMING_SNAKE_CASE , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_SCREAMING_SNAKE_CASE , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_SCREAMING_SNAKE_CASE , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''' ) parser.add_argument('''--freeze_embeds''' , action='''store_true''' ) parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--max_tokens_per_batch''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--logger_name''' , type=_SCREAMING_SNAKE_CASE , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''' ) parser.add_argument('''--n_train''' , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_val''' , type=_SCREAMING_SNAKE_CASE , default=500 , required=_SCREAMING_SNAKE_CASE , help='''# examples. -1 means use all.''' ) parser.add_argument('''--n_test''' , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help='''# examples. -1 means use all.''' ) parser.add_argument( '''--task''' , type=_SCREAMING_SNAKE_CASE , default='''summarization''' , required=_SCREAMING_SNAKE_CASE , help='''# examples. -1 means use all.''' ) parser.add_argument('''--label_smoothing''' , type=_SCREAMING_SNAKE_CASE , default=0.0 , required=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--src_lang''' , type=_SCREAMING_SNAKE_CASE , default='''''' , required=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--tgt_lang''' , type=_SCREAMING_SNAKE_CASE , default='''''' , required=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--eval_beams''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE ) parser.add_argument( '''--val_metric''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , choices=['''bleu''', '''rouge2''', '''loss''', None] ) parser.add_argument('''--eval_max_gen_length''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help='''never generate more than n tokens''' ) parser.add_argument('''--save_top_k''' , type=_SCREAMING_SNAKE_CASE , default=1 , required=_SCREAMING_SNAKE_CASE , help='''How many checkpoints to save''' ) parser.add_argument( '''--early_stopping_patience''' , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Union[str, Any] = 'translation' __lowercase : Dict = ['loss'] __lowercase : Union[str, Any] = ['bleu'] __lowercase : Any = 'bleu' def __init__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: super().__init__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) A_ = hparams.src_lang A_ = hparams.tgt_lang def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> dict: return calculate_bleu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : str=None ) -> SummarizationModule: Path(args.output_dir ).mkdir(exist_ok=_UpperCamelCase ) check_output_dir(_UpperCamelCase, expected_items=3 ) if model is None: if "summarization" in args.task: A_ = SummarizationModule(_UpperCamelCase ) else: A_ = TranslationModule(_UpperCamelCase ) A_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): A_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger A_ = os.environ.get('''WANDB_PROJECT''', _UpperCamelCase ) A_ = WandbLogger(name=model.output_dir.name, project=_UpperCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger A_ = WandbLogger(name=model.output_dir.name, project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: A_ = get_early_stopping_callback(model.val_metric, args.early_stopping_patience ) else: A_ = False A_ = args.val_metric == '''loss''' A_ = generic_train( _UpperCamelCase, _UpperCamelCase, logging_callback=SeqaSeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback( args.output_dir, model.val_metric, args.save_top_k, _UpperCamelCase ), early_stopping_callback=_UpperCamelCase, logger=_UpperCamelCase, ) pickle_save(model.hparams, model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model A_ = '''''' A_ = sorted(glob.glob(os.path.join(args.output_dir, '''*.ckpt''' ), recursive=_UpperCamelCase ) ) if checkpoints: A_ = checkpoints[-1] A_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __snake_case : Optional[int] = argparse.ArgumentParser() __snake_case : List[Any] = pl.Trainer.add_argparse_args(parser) __snake_case : Optional[int] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __snake_case : List[str] = parser.parse_args() main(args)
18
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _UpperCAmelCase ( _UpperCamelCase : Features ) -> Optional[int]: A_ = np.inf def set_batch_size(_UpperCamelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ) and feature.dtype == "binary": A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_UpperCamelCase, _UpperCamelCase ) return None if batch_size is np.inf else batch_size class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ = path_or_paths if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} A_ = _PACKAGED_DATASETS_MODULES['''parquet'''][1] A_ = Parquet( cache_dir=_SCREAMING_SNAKE_CASE , data_files=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , hash=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self ) -> str: # Build iterable dataset if self.streaming: A_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) A_ = self.builder.as_dataset( split=self.split , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Dict: A_ = dataset A_ = path_or_buf A_ = batch_size or get_writer_batch_size(dataset.features ) A_ = parquet_writer_kwargs def __A ( self ) -> int: A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: A_ = self._write(file_obj=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) else: A_ = self._write(file_obj=self.path_or_buf , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) return written def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: A_ = 0 A_ = parquet_writer_kwargs.pop('''path_or_buf''' , _SCREAMING_SNAKE_CASE ) A_ = self.dataset.features.arrow_schema A_ = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _SCREAMING_SNAKE_CASE ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): A_ = query_table( table=self.dataset._data , key=slice(_SCREAMING_SNAKE_CASE , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_SCREAMING_SNAKE_CASE ) written += batch.nbytes writer.close() return written
18
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Dict = {'vocab_file': 'spm_char.model'} __snake_case : int = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } __snake_case : List[str] = { 'microsoft/speecht5_asr': 1_024, 'microsoft/speecht5_tts': 1_024, 'microsoft/speecht5_vc': 1_024, } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : str = VOCAB_FILES_NAMES __lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: A_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) A_ = vocab_file A_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def __A ( self ) -> List[str]: return self.sp_model.get_piece_size() def __A ( self ) -> Tuple: A_ = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> int: A_ = self.__dict__.copy() A_ = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ) -> str: A_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ = {} A_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: return self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: A_ = self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) return token def __A ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: A_ = [] A_ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token A_ = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) A_ = [1] if token_ids_a is None: return ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones return ([0] * len(_SCREAMING_SNAKE_CASE )) + ([0] * len(_SCREAMING_SNAKE_CASE )) + suffix_ones def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , '''wb''' ) as fi: A_ = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
18
'''simple docstring''' from statistics import mean, stdev def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = min(_UpperCamelCase ) A_ = max(_UpperCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min), _UpperCamelCase ) for x in data] def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = mean(_UpperCamelCase ) A_ = stdev(_UpperCamelCase ) # standardize data return [round((x - mu) / (sigma), _UpperCamelCase ) for x in data]
18
1
'''simple docstring''' from math import factorial, radians def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : int = 18, _UpperCamelCase : int = 10 ) -> float: A_ = angle_in_degrees - ((angle_in_degrees // 3_6_0.0) * 3_6_0.0) # Converting from degrees to radians A_ = radians(_UpperCamelCase ) A_ = angle_in_radians A_ = 3 A_ = -1 for _ in range(_UpperCamelCase ): result += (b * (angle_in_radians**a)) / factorial(_UpperCamelCase ) A_ = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_UpperCamelCase, _UpperCamelCase ) if __name__ == "__main__": __import__('doctest').testmod()
18
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') __snake_case : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __snake_case : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: with open(_UpperCamelCase, '''rb''' ) as f: A_ = Image.open(_UpperCamelCase ) return im.convert('''RGB''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the training data.'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the validation data.'} ) __lowercase : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __A ( self ) -> int: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_UpperCamelCase )} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) __lowercase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowercase : str = field(default=_UpperCamelCase , metadata={'help': 'Name or path of preprocessor config.'} ) __lowercase : bool = field( default=_UpperCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __lowercase : bool = field( default=_UpperCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> Dict: A_ = torch.stack([example['''pixel_values'''] for example in examples] ) A_ = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _UpperCAmelCase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A_ ,A_ ,A_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A_ ,A_ ,A_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''', _UpperCamelCase, _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A_ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. A_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: A_ = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, task='''image-classification''', use_auth_token=True if model_args.use_auth_token else None, ) else: A_ = {} if data_args.train_dir is not None: A_ = os.path.join(data_args.train_dir, '''**''' ) if data_args.validation_dir is not None: A_ = os.path.join(data_args.validation_dir, '''**''' ) A_ = load_dataset( '''imagefolder''', data_files=_UpperCamelCase, cache_dir=model_args.cache_dir, task='''image-classification''', ) # If we don't have a validation split, split off a percentage of train as validation. A_ = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, _UpperCamelCase ) and data_args.train_val_split > 0.0: A_ = dataset['''train'''].train_test_split(data_args.train_val_split ) A_ = split['''train'''] A_ = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A_ = dataset['''train'''].features['''labels'''].names A_ ,A_ = {}, {} for i, label in enumerate(_UpperCamelCase ): A_ = str(_UpperCamelCase ) A_ = label # Load the accuracy metric from the datasets package A_ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Optional[Any] ): return metric.compute(predictions=np.argmax(p.predictions, axis=1 ), references=p.label_ids ) A_ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(_UpperCamelCase ), labelaid=_UpperCamelCase, idalabel=_UpperCamelCase, finetuning_task='''image-classification''', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) A_ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=_UpperCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) A_ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: A_ = image_processor.size['''shortest_edge'''] else: A_ = (image_processor.size['''height'''], image_processor.size['''width''']) A_ = Normalize(mean=image_processor.image_mean, std=image_processor.image_std ) A_ = Compose( [ RandomResizedCrop(_UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) A_ = Compose( [ Resize(_UpperCamelCase ), CenterCrop(_UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(_UpperCamelCase : Dict ): A_ = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(_UpperCamelCase : Any ): A_ = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: A_ = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: A_ = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_UpperCamelCase ) # Initalize our trainer A_ = Trainer( model=_UpperCamelCase, args=_UpperCamelCase, train_dataset=dataset['''train'''] if training_args.do_train else None, eval_dataset=dataset['''validation'''] if training_args.do_eval else None, compute_metrics=_UpperCamelCase, tokenizer=_UpperCamelCase, data_collator=_UpperCamelCase, ) # Training if training_args.do_train: A_ = None if training_args.resume_from_checkpoint is not None: A_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A_ = last_checkpoint A_ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics ) trainer.save_metrics('''train''', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A_ = trainer.evaluate() trainer.log_metrics('''eval''', _UpperCamelCase ) trainer.save_metrics('''eval''', _UpperCamelCase ) # Write model card and (optionally) push to hub A_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
18
1
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _UpperCAmelCase ( ) -> Union[str, Any]: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join A_ = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching, '''os.path.join''', _UpperCamelCase ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _UpperCAmelCase ( ) -> int: assert _test_patching.open is open A_ = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, '''open''', _UpperCamelCase ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _UpperCAmelCase ( ) -> Dict: # pandas.read_csv is not present in _test_patching A_ = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching, '''pandas.read_csv''', _UpperCamelCase ): pass def _UpperCAmelCase ( ) -> List[Any]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point A_ = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, '''len''', _UpperCamelCase ) is None with patch_submodule(_test_patching, '''len''', _UpperCamelCase ): assert _test_patching.len is mock assert _test_patching.len is len def _UpperCAmelCase ( ) -> Optional[Any]: A_ = '''__test_patch_submodule_start_and_stop_mock__''' A_ = patch_submodule(_test_patching, '''open''', _UpperCamelCase ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _UpperCAmelCase ( ) -> Union[str, Any]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join A_ = '''__test_patch_submodule_successive_join__''' A_ = '''__test_patch_submodule_successive_dirname__''' A_ = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, '''os.path.join''', _UpperCamelCase ): with patch_submodule(_test_patching, '''os.rename''', _UpperCamelCase ): with patch_submodule(_test_patching, '''os.path.dirname''', _UpperCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, '''os.rename''', _UpperCamelCase ): with patch_submodule(_test_patching, '''os.path.join''', _UpperCamelCase ): with patch_submodule(_test_patching, '''os.path.dirname''', _UpperCamelCase ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _UpperCAmelCase ( ) -> int: A_ = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching, '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''', _UpperCamelCase ): pass with patch_submodule(_test_patching, '''os.__attribute_that_doesn_exist__''', _UpperCamelCase ): pass
18
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __snake_case : str = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Dict: A_ = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def __A ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __A ( self ) -> str: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id='''test-model-flax''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def __A ( self ) -> List[str]: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Tuple ) -> Dict: A_ = True A_ = flatten_dict(modela.params ) A_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: A_ = False return models_are_equal @require_flax class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> List[str]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> List[Any]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , max_shard_size='''10KB''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> Dict: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
18
1
'''simple docstring''' import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml __snake_case : Tuple = logging.get_logger(__name__) def _UpperCAmelCase ( _UpperCamelCase : bool, _UpperCamelCase : bool ) -> Union[str, Any]: def run_func(_UpperCamelCase : Optional[int] ): @wraps(_UpperCamelCase ) def run_in_eager_mode(*_UpperCamelCase : List[Any], **_UpperCamelCase : Optional[int] ): return func(*_UpperCamelCase, **_UpperCamelCase ) @wraps(_UpperCamelCase ) @tf.function(experimental_compile=_UpperCamelCase ) def run_in_graph_mode(*_UpperCamelCase : Optional[Any], **_UpperCamelCase : Optional[int] ): return func(*_UpperCamelCase, **_UpperCamelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : int, _UpperCamelCase : int ) -> ["tf.Tensor"]: A_ = random.Random() A_ = [rng.randint(0, vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(_UpperCamelCase, shape=(batch_size, sequence_length), dtype=tf.intaa ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : TensorFlowBenchmarkArguments __lowercase : PretrainedConfig __lowercase : str = "TensorFlow" @property def __A ( self ) -> str: return tf.__version__ def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: # initialize GPU on separate process A_ = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) A_ = self._prepare_inference_func(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return self._measure_speed(_inference ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: A_ = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) A_ = self._prepare_train_func(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return self._measure_speed(_train ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> [Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _SCREAMING_SNAKE_CASE ) A_ = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) A_ = self._prepare_inference_func(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return self._measure_memory(_inference ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> [Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _SCREAMING_SNAKE_CASE ) A_ = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) A_ = self._prepare_train_func(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return self._measure_memory(_train ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Callable[[], None]: A_ = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) A_ = ( hasattr(_SCREAMING_SNAKE_CASE , '''architectures''' ) and isinstance(config.architectures , _SCREAMING_SNAKE_CASE ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: A_ = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model A_ = __import__('''transformers''' , fromlist=[model_class] ) A_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = model_cls(_SCREAMING_SNAKE_CASE ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: A_ = TF_MODEL_MAPPING[config.__class__](_SCREAMING_SNAKE_CASE ) # encoder-decoder has vocab size saved differently A_ = config.vocab_size if hasattr(_SCREAMING_SNAKE_CASE , '''vocab_size''' ) else config.encoder.vocab_size A_ = random_input_ids(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) A_ = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Callable[[], None]: A_ = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) A_ = ( hasattr(_SCREAMING_SNAKE_CASE , '''architectures''' ) and isinstance(config.architectures , _SCREAMING_SNAKE_CASE ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: A_ = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model A_ = __import__('''transformers''' , fromlist=[model_class] ) A_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = model_cls(_SCREAMING_SNAKE_CASE ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: A_ = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_SCREAMING_SNAKE_CASE ) # encoder-decoder has vocab size saved differently A_ = config.vocab_size if hasattr(_SCREAMING_SNAKE_CASE , '''vocab_size''' ) else config.encoder.vocab_size A_ = random_input_ids(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): A_ = model(_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE )[0] A_ = tf.gradients(_SCREAMING_SNAKE_CASE , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): A_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE )[0] A_ = tf.gradients(_SCREAMING_SNAKE_CASE , model.trainable_variables ) return gradients A_ = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __A ( self , _SCREAMING_SNAKE_CASE ) -> float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(_SCREAMING_SNAKE_CASE , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average A_ = timeit.repeat( _SCREAMING_SNAKE_CASE , repeat=self.args.repeat , number=10 , ) return min(_SCREAMING_SNAKE_CASE ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> [Memory, MemorySummary]: logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) A_ = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) A_ = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() A_ = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) A_ = nvml.nvmlDeviceGetMemoryInfo(_SCREAMING_SNAKE_CASE ) A_ = meminfo.used A_ = Memory(_SCREAMING_SNAKE_CASE ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) A_ = None else: A_ = measure_peak_memory_cpu(_SCREAMING_SNAKE_CASE ) A_ = Memory(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else memory_bytes if self.args.trace_memory_line_by_line: A_ = stop_memory_tracing(_SCREAMING_SNAKE_CASE ) if memory is None: A_ = summary.total else: A_ = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
18
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Dict: A_ = 1 A_ = 2 while i * i <= n: A_ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _UpperCAmelCase ( ) -> Optional[int]: A_ = 1 A_ = 1 while True: i += 1 t_num += i if count_divisors(_UpperCamelCase ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
18
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __snake_case : List[Any] = None __snake_case : str = logging.get_logger(__name__) __snake_case : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __snake_case : Optional[int] = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } __snake_case : Tuple = { 'google/bigbird-roberta-base': 4_096, 'google/bigbird-roberta-large': 4_096, 'google/bigbird-base-trivia-itc': 4_096, } __snake_case : List[str] = '▁' class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Union[str, Any] = VOCAB_FILES_NAMES __lowercase : int = PRETRAINED_VOCAB_FILES_MAP __lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[Any] = BigBirdTokenizer __lowercase : str = ['input_ids', 'attention_mask'] __lowercase : List[int] = [] def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="[MASK]" , _SCREAMING_SNAKE_CASE="[CLS]" , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: A_ = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else bos_token A_ = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else eos_token A_ = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else unk_token A_ = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else pad_token A_ = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else cls_token A_ = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else sep_token # Mask token behave like a normal word, i.e. include the space before it A_ = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ = vocab_file A_ = False if not self.vocab_file else True def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
18
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=[1, 384, 24, 24] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = backbone_out_indices A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = num_labels A_ = backbone_featmap_shape A_ = scope A_ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = num_patches + 1 def __A ( self ) -> Optional[Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Optional[Any]: A_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = DPTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: A_ = self.num_labels A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: A_ = self.num_labels A_ = DPTForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __A ( self ) -> Optional[int]: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __lowercase : Optional[int] = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : Any = False __lowercase : Tuple = False __lowercase : List[Any] = False def __A ( self ) -> Tuple: A_ = DPTModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def __A ( self ) -> Union[str, Any]: pass def __A ( self ) -> Dict: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> Optional[int]: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ): continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = False A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Tuple: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: A_ = model_class(config=_SCREAMING_SNAKE_CASE ) # Skip the check for the backbone A_ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": A_ = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> int: pass @slow def __A ( self ) -> Dict: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: A_ = DPTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = '''add''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Optional[int]: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Any: A_ = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) A_ = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(_SCREAMING_SNAKE_CASE ) A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE ) A_ = outputs.predicted_depth # verify the predicted depth A_ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
18
1
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : int = 3, _UpperCamelCase : int = 7, _UpperCamelCase : int = 1_00_00_00 ) -> int: A_ = 0 A_ = 1 for current_denominator in range(1, limit + 1 ): A_ = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: A_ = current_numerator A_ = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_000_000))
18
'''simple docstring''' import math def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : float ) -> float: if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
18
1
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A_ = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ) A_ = [t[-1] for t in os.walk(os.path.join(_SCREAMING_SNAKE_CASE , os.listdir(_SCREAMING_SNAKE_CASE )[0] , '''snapshots''' ) )] A_ = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> List[Any]: A_ ,A_ = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=_SCREAMING_SNAKE_CASE ) A_ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) A_ = jax.random.PRNGKey(0 ) A_ = 4 A_ = jax.device_count() A_ = num_samples * [prompt] A_ = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng A_ = replicate(_SCREAMING_SNAKE_CASE ) A_ = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = shard(_SCREAMING_SNAKE_CASE ) A_ = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_514_745 ) < 1E-3 assert np.abs(np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 49_947.875 ) < 5E-1 A_ = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_SCREAMING_SNAKE_CASE ) == num_samples def __A ( self ) -> str: A_ ,A_ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=_SCREAMING_SNAKE_CASE ) A_ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) A_ = jax.random.PRNGKey(0 ) A_ = 50 A_ = jax.device_count() A_ = num_samples * [prompt] A_ = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng A_ = replicate(_SCREAMING_SNAKE_CASE ) A_ = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = shard(_SCREAMING_SNAKE_CASE ) A_ = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_652_401) ) < 1E-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2_383_808.2) ) < 5E-1 def __A ( self ) -> Optional[int]: A_ ,A_ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE ) A_ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) A_ = jax.random.PRNGKey(0 ) A_ = 50 A_ = jax.device_count() A_ = num_samples * [prompt] A_ = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng A_ = replicate(_SCREAMING_SNAKE_CASE ) A_ = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = shard(_SCREAMING_SNAKE_CASE ) A_ = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1 def __A ( self ) -> Dict: A_ ,A_ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) A_ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) A_ = jax.random.PRNGKey(0 ) A_ = 50 A_ = jax.device_count() A_ = num_samples * [prompt] A_ = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng A_ = replicate(_SCREAMING_SNAKE_CASE ) A_ = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = shard(_SCREAMING_SNAKE_CASE ) A_ = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1 def __A ( self ) -> List[Any]: A_ = FlaxDDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , ) A_ ,A_ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , ) A_ = scheduler.create_state() A_ = scheduler_state A_ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) A_ = jax.random.PRNGKey(0 ) A_ = 50 A_ = jax.device_count() A_ = num_samples * [prompt] A_ = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) # shard inputs and rng A_ = replicate(_SCREAMING_SNAKE_CASE ) A_ = jax.random.split(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = shard(_SCREAMING_SNAKE_CASE ) A_ = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045_043_945) ) < 1E-3 assert np.abs((np.abs(_SCREAMING_SNAKE_CASE , dtype=np.floataa ).sum() - 2_347_693.5) ) < 5E-1 def __A ( self ) -> List[str]: A_ = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) A_ = jax.device_count() A_ = num_samples * [prompt] A_ = jax.random.split(jax.random.PRNGKey(0 ) , _SCREAMING_SNAKE_CASE ) A_ ,A_ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , ) A_ = replicate(_SCREAMING_SNAKE_CASE ) A_ = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) A_ = shard(_SCREAMING_SNAKE_CASE ) A_ = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images.shape == (num_samples, 1, 512, 512, 3) A_ = images[2, 0, 256, 10:17, 1] # With memory efficient attention A_ ,A_ = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=_SCREAMING_SNAKE_CASE , use_memory_efficient_attention=_SCREAMING_SNAKE_CASE , ) A_ = replicate(_SCREAMING_SNAKE_CASE ) A_ = pipeline.prepare_inputs(_SCREAMING_SNAKE_CASE ) A_ = shard(_SCREAMING_SNAKE_CASE ) A_ = pipeline(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , jit=_SCREAMING_SNAKE_CASE ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A_ = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
18
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
18
1
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __snake_case : int = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Optional[Any]: A_ = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def __A ( cls ) -> List[str]: try: delete_repo(token=cls._token , repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''' ) except HTTPError: pass def __A ( self ) -> int: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''test-config''' , use_auth_token=self._token ) A_ = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id='''test-config''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> List[Any]: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token ) A_ = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='''valid_org/test-config-org''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> Optional[Any]: CustomConfig.register_for_auto_class() A_ = CustomConfig(attribute=42 ) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) A_ = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=_SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' ) self.assertEqual(new_config.attribute , 42 ) class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Dict: A_ = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated A_ = c.n_embd + 1 # int A_ = c.resid_pdrop + 1.0 # float A_ = not c.scale_attn_weights # bool A_ = c.summary_type + '''foo''' # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(_SCREAMING_SNAKE_CASE , c.n_embd , '''mismatch for key: n_embd''' ) self.assertEqual(_SCREAMING_SNAKE_CASE , c.resid_pdrop , '''mismatch for key: resid_pdrop''' ) self.assertEqual(_SCREAMING_SNAKE_CASE , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' ) self.assertEqual(_SCREAMING_SNAKE_CASE , c.summary_type , '''mismatch for key: summary_type''' ) def __A ( self ) -> Tuple: A_ = PretrainedConfig() A_ = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( _SCREAMING_SNAKE_CASE , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) A_ = [key for key, value in config_common_kwargs.items() if value == getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] if len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' F''' {', '.join(_SCREAMING_SNAKE_CASE )}.''' ) def __A ( self ) -> Any: with self.assertRaises(_SCREAMING_SNAKE_CASE ): # config is in subfolder, the following should not work without specifying the subfolder A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: # A mock response for an HTTP head request to emulate server down A_ = mock.Mock() A_ = 500 A_ = {} A_ = HTTPError A_ = {} # Download this model to make sure it's in the cache. A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_SCREAMING_SNAKE_CASE ) as mock_head: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def __A ( self ) -> Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 A_ = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def __A ( self ) -> Tuple: A_ = AutoConfig.from_pretrained('''bert-base-cased''' ) A_ = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ = 2 json.dump(configuration.to_dict() , open(os.path.join(_SCREAMING_SNAKE_CASE , '''config.4.0.0.json''' ) , '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 A_ = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 A_ = ['''config.42.0.0.json'''] A_ = 768 configuration.save_pretrained(_SCREAMING_SNAKE_CASE ) shutil.move(os.path.join(_SCREAMING_SNAKE_CASE , '''config.4.0.0.json''' ) , os.path.join(_SCREAMING_SNAKE_CASE , '''config.42.0.0.json''' ) ) A_ = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertEqual(new_configuration.hidden_size , 768 ) def __A ( self ) -> Optional[Any]: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. A_ = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers A_ = '''v4.0.0''' A_ ,A_ = new_transformers.models.auto.AutoConfig.from_pretrained( _SCREAMING_SNAKE_CASE , return_unused_kwargs=_SCREAMING_SNAKE_CASE ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(_SCREAMING_SNAKE_CASE , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers A_ = '''v3.0.0''' A_ = old_transformers.models.auto.AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertEqual(old_configuration.hidden_size , 768 )
18
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : Any = logging.get_logger(__name__) def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> List[str]: A_ = torch.load(_UpperCamelCase, map_location='''cpu''' ) if "model" in sd.keys(): A_ = torch.load(_UpperCamelCase, map_location='''cpu''' )['''model'''] # pop unnecessary weights A_ = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(_UpperCamelCase ) A_ = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: A_ = sd.pop(_UpperCamelCase ) A_ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: A_ = sd[key] # We split QKV in separate Q,K,V A_ = key.replace('''.qkv_proj.''', '''.q_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.k_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.v_proj.''' ) A_ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 A_ ,A_ ,A_ = torch.split(_UpperCamelCase, depth // 3, dim=0 ) A_ = q A_ = k A_ = v del sd[key] return sd @torch.no_grad() def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : Optional[Any], _UpperCamelCase : List[str]=None ) -> Dict: A_ = load_checkpoint(_UpperCamelCase ) if config is not None: A_ = OPTConfig.from_pretrained(_UpperCamelCase ) else: A_ = OPTConfig() A_ = OPTModel(_UpperCamelCase ).half().eval() model.load_state_dict(_UpperCamelCase ) # Check results Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') __snake_case : Optional[Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
18
1
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Dict: A_ = 1 A_ = 2 while i * i <= n: A_ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _UpperCAmelCase ( ) -> Optional[int]: A_ = 1 A_ = 1 while True: i += 1 t_num += i if count_divisors(_UpperCamelCase ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
18
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __snake_case : Optional[Any] = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } __snake_case : Tuple = {'allegro/herbert-base-cased': 514} __snake_case : List[str] = {} class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Any = VOCAB_FILES_NAMES __lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Dict = PRETRAINED_INIT_CONFIGURATION __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = HerbertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE="</s>" , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.cls_token_id] A_ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: A_ = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
18
1
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : str, **_UpperCamelCase : List[str] ) -> Union[str, Any]: A_ = AutoConfig.from_pretrained(_UpperCamelCase, **_UpperCamelCase ) A_ = AutoModelForSeqaSeqLM.from_config(_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) AutoTokenizer.from_pretrained(_UpperCamelCase ).save_pretrained(_UpperCamelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
18
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any]=None ) -> List[Any]: if subparsers is not None: A_ = subparsers.add_parser('''env''' ) else: A_ = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''', default=_UpperCamelCase, help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=_UpperCamelCase ) return parser def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> Dict: A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = is_xpu_available() A_ = is_npu_available() A_ = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(_UpperCamelCase ): A_ = load_config_from_file(args.config_file ).to_dict() A_ = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(_UpperCamelCase ), '''PyTorch NPU available''': str(_UpperCamelCase ), '''System RAM''': F'''{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB''', } if pt_cuda_available: A_ = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) A_ = ( '''\n'''.join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(_UpperCamelCase, _UpperCamelCase ) else F'''\t{accelerate_config}''' ) print(_UpperCamelCase ) A_ = accelerate_config return info def _UpperCAmelCase ( ) -> int: A_ = env_command_parser() A_ = parser.parse_args() env_command(_UpperCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
18
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __snake_case : Tuple = { 'vocab_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt', }, 'tokenizer_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json' ), 'google/realm-orqa-nq-openqa': ( 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-nq-reader': ( 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-openqa': ( 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-reader': ( 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json' ), }, } __snake_case : List[Any] = { 'google/realm-cc-news-pretrained-embedder': 512, 'google/realm-cc-news-pretrained-encoder': 512, 'google/realm-cc-news-pretrained-scorer': 512, 'google/realm-cc-news-pretrained-openqa': 512, 'google/realm-orqa-nq-openqa': 512, 'google/realm-orqa-nq-reader': 512, 'google/realm-orqa-wq-openqa': 512, 'google/realm-orqa-wq-reader': 512, } __snake_case : Any = { 'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-reader': {'do_lower_case': True}, 'google/realm-orqa-wq-openqa': {'do_lower_case': True}, 'google/realm-orqa-wq-reader': {'do_lower_case': True}, } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : List[Any] = VOCAB_FILES_NAMES __lowercase : int = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[Any] = PRETRAINED_INIT_CONFIGURATION __lowercase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : str = RealmTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="[UNK]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="[PAD]" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('''strip_accents''' , _SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): A_ = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop('''type''' ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**_SCREAMING_SNAKE_CASE ) A_ = do_lower_case def __A ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: A_ = PaddingStrategy.MAX_LENGTH A_ = text A_ = kwargs.pop('''text_pair''' , _SCREAMING_SNAKE_CASE ) A_ = kwargs.pop('''return_tensors''' , _SCREAMING_SNAKE_CASE ) A_ = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(_SCREAMING_SNAKE_CASE ): if batch_text_pair is not None: A_ = batch_text_pair[idx] else: A_ = None A_ = super().__call__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) A_ = encoded_candidates.get('''input_ids''' ) A_ = encoded_candidates.get('''attention_mask''' ) A_ = encoded_candidates.get('''token_type_ids''' ) if encoded_input_ids is not None: output_data["input_ids"].append(_SCREAMING_SNAKE_CASE ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_SCREAMING_SNAKE_CASE ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_SCREAMING_SNAKE_CASE ) A_ = {key: item for key, item in output_data.items() if len(_SCREAMING_SNAKE_CASE ) != 0} return BatchEncoding(_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]: A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: A_ = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
18
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=0.6 , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = type_sequence_label_size A_ = initializer_range A_ = mask_ratio A_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __A ( self ) -> Union[str, Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: A_ = ViTMAEModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) A_ = (self.image_size // self.patch_size) ** 2 A_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images A_ = 1 A_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ = model(_SCREAMING_SNAKE_CASE ) A_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __A ( self ) -> int: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : int = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __lowercase : List[Any] = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} __lowercase : Union[str, Any] = False __lowercase : List[Any] = False __lowercase : List[str] = False __lowercase : List[str] = False def __A ( self ) -> Any: A_ = ViTMAEModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __A ( self ) -> int: pass def __A ( self ) -> int: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> int: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Union[str, Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: # make masks reproducible np.random.seed(2 ) A_ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) A_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument A_ = pt_noise super().check_pt_tf_models(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ = outputs[0].cpu().numpy() A_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ = model_class.from_pretrained(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Make sure we don't have nans A_ = after_outputs[0].cpu().numpy() A_ = 0 A_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> List[str]: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> Dict: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> Tuple: pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __A ( self ) -> str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> Union[str, Any]: pass @slow def __A ( self ) -> Dict: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = ViTMAEModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Dict: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __A ( self ) -> List[str]: return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __A ( self ) -> List[str]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) A_ = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(_SCREAMING_SNAKE_CASE ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) A_ = ViTMAEConfig() A_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) A_ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE , noise=torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ) ) # verify the logits A_ = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_SCREAMING_SNAKE_CASE ) , atol=1E-4 ) )
18
1
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : float ) -> tuple: if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
18
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : int = logging.get_logger(__name__) __snake_case : str = { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[Any] = 'xlm-prophetnet' __lowercase : Optional[int] = ['past_key_values'] __lowercase : int = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = "gelu" , _SCREAMING_SNAKE_CASE = 3_0522 , _SCREAMING_SNAKE_CASE = 1024 , _SCREAMING_SNAKE_CASE = 4096 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 4096 , _SCREAMING_SNAKE_CASE = 12 , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 0.02 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = 128 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 2 , **_SCREAMING_SNAKE_CASE , ) -> int: A_ = vocab_size A_ = hidden_size A_ = encoder_ffn_dim A_ = num_encoder_layers A_ = num_encoder_attention_heads A_ = decoder_ffn_dim A_ = num_decoder_layers A_ = num_decoder_attention_heads A_ = max_position_embeddings A_ = init_std # Normal(0, this parameter) A_ = activation_function # parameters for xlmprophetnet A_ = ngram A_ = num_buckets A_ = relative_max_distance A_ = disable_ngram_loss A_ = eps # 3 Types of Dropout A_ = attention_dropout A_ = activation_dropout A_ = dropout A_ = use_cache super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , add_cross_attention=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @property def __A ( self ) -> int: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def __A ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and''' ''' `num_decoder_layers`.''' )
18
1
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _UpperCAmelCase ( _UpperCamelCase : Optional[Any] ) -> List[str]: return getitem, k def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : int ) -> int: return setitem, k, v def _UpperCAmelCase ( _UpperCamelCase : Any ) -> List[str]: return delitem, k def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : List[str], *_UpperCamelCase : List[str] ) -> List[Any]: try: return fun(_UpperCamelCase, *_UpperCamelCase ), None except Exception as e: return None, e __snake_case : List[str] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) __snake_case : Optional[int] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] __snake_case : Any = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] __snake_case : Optional[int] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] __snake_case : Tuple = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __snake_case : int = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( '''operations''', ( pytest.param(_add_items, id='''add items''' ), pytest.param(_overwrite_items, id='''overwrite items''' ), pytest.param(_delete_items, id='''delete items''' ), pytest.param(_access_absent_items, id='''access absent items''' ), pytest.param(_add_with_resize_up, id='''add with resize up''' ), pytest.param(_add_with_resize_down, id='''add with resize down''' ), ), ) def _UpperCAmelCase ( _UpperCamelCase : Tuple ) -> Optional[int]: A_ = HashMap(initial_block_size=4 ) A_ = {} for _, (fun, *args) in enumerate(_UpperCamelCase ): A_ ,A_ = _run_operation(_UpperCamelCase, _UpperCamelCase, *_UpperCamelCase ) A_ ,A_ = _run_operation(_UpperCamelCase, _UpperCamelCase, *_UpperCamelCase ) assert my_res == py_res assert str(_UpperCamelCase ) == str(_UpperCamelCase ) assert set(_UpperCamelCase ) == set(_UpperCamelCase ) assert len(_UpperCamelCase ) == len(_UpperCamelCase ) assert set(my.items() ) == set(py.items() ) def _UpperCAmelCase ( ) -> Optional[Any]: def is_public(_UpperCamelCase : str ) -> bool: return not name.startswith('''_''' ) A_ = {name for name in dir({} ) if is_public(_UpperCamelCase )} A_ = {name for name in dir(HashMap() ) if is_public(_UpperCamelCase )} assert dict_public_names > hash_public_names
18
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : list[float] ) -> float: if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) A_ = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_UpperCamelCase ) ) return round(_UpperCamelCase, ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
18
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[int] = 'mgp-str' def __init__( self , _SCREAMING_SNAKE_CASE=[32, 128] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=27 , _SCREAMING_SNAKE_CASE=38 , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=3_0522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: super().__init__(**_SCREAMING_SNAKE_CASE ) A_ = image_size A_ = patch_size A_ = num_channels A_ = max_token_length A_ = num_character_labels A_ = num_bpe_labels A_ = num_wordpiece_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = mlp_ratio A_ = distilled A_ = layer_norm_eps A_ = drop_rate A_ = qkv_bias A_ = attn_drop_rate A_ = drop_path_rate A_ = output_aa_attentions A_ = initializer_range
18
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( _UpperCamelCase : int | str ) -> bool: A_ = str(_UpperCamelCase ) return n == n[::-1] def _UpperCAmelCase ( _UpperCamelCase : int = 1_00_00_00 ) -> Any: A_ = 0 for i in range(1, _UpperCamelCase ): if is_palindrome(_UpperCamelCase ) and is_palindrome(bin(_UpperCamelCase ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
18
1
'''simple docstring''' class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE ) -> None: A_ = set_counts A_ = max(_SCREAMING_SNAKE_CASE ) A_ = len(_SCREAMING_SNAKE_CASE ) A_ = [1] * num_sets A_ = list(range(_SCREAMING_SNAKE_CASE ) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: A_ = self.get_parent(_SCREAMING_SNAKE_CASE ) A_ = self.get_parent(_SCREAMING_SNAKE_CASE ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] A_ = 0 A_ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 A_ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] A_ = 0 A_ = src_parent A_ = self.set_counts[src_parent] A_ = max(self.max_set , _SCREAMING_SNAKE_CASE ) return True def __A ( self , _SCREAMING_SNAKE_CASE ) -> int: if self.parents[disj_set] == disj_set: return disj_set A_ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
18
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _UpperCAmelCase ( _UpperCamelCase : Tuple, _UpperCamelCase : Tuple, _UpperCamelCase : List[str] ) -> int: A_ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] A_ = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } A_ = F'''{src_lang}-{tgt_lang}''' A_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(_UpperCamelCase, exist_ok=_UpperCamelCase ) A_ = os.path.join(_UpperCamelCase, '''README.md''' ) print(F'''Generating {path}''' ) with open(_UpperCamelCase, '''w''', encoding='''utf-8''' ) as f: f.write(_UpperCamelCase ) # make sure we are under the root of the project __snake_case : Any = Path(__file__).resolve().parent.parent.parent __snake_case : Tuple = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __snake_case , __snake_case , __snake_case : Any = model_name.split('-') __snake_case : int = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
18
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_UpperCamelCase ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : str = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} ) __lowercase : ClassVar[Features] = Features({'question': Value('string' ), 'context': Value('string' )} ) __lowercase : ClassVar[Features] = Features( { 'answers': Sequence( { 'text': Value('string' ), 'answer_start': Value('int32' ), } ) } ) __lowercase : str = "question" __lowercase : str = "context" __lowercase : str = "answers" @property def __A ( self ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
18
'''simple docstring''' from collections import defaultdict def _UpperCAmelCase ( _UpperCamelCase : int ) -> int: A_ = 1 A_ = True for v in tree[start]: if v not in visited: ret += dfs(_UpperCamelCase ) if ret % 2 == 0: cuts.append(_UpperCamelCase ) return ret def _UpperCAmelCase ( ) -> Optional[Any]: dfs(1 ) if __name__ == "__main__": __snake_case , __snake_case : Union[str, Any] = 10, 9 __snake_case : int = defaultdict(list) __snake_case : dict[int, bool] = {} __snake_case : list[int] = [] __snake_case : Union[str, Any] = 0 __snake_case : int = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
18
1
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __snake_case : Optional[int] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Any = AlbertTokenizer __lowercase : List[str] = AlbertTokenizerFast __lowercase : List[str] = True __lowercase : List[Any] = True __lowercase : Any = True def __A ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing A_ = AlbertTokenizer(_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> Dict: A_ = '''this is a test''' A_ = '''this is a test''' return input_text, output_text def __A ( self ) -> str: A_ = '''<pad>''' A_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: A_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''▁eloquent''' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 3_0000 ) def __A ( self ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def __A ( self ) -> Any: if not self.test_rust_tokenizer: return A_ = self.get_tokenizer() A_ = self.get_rust_tokenizer() A_ = '''I was born in 92000, and this is falsé.''' A_ = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) A_ = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) A_ = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = self.get_rust_tokenizer() A_ = tokenizer.encode(_SCREAMING_SNAKE_CASE ) A_ = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Union[str, Any]: A_ = AlbertTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) A_ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['''▁this''', '''▁is''', '''▁a''', '''▁test'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [48, 25, 21, 1289] ) A_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _SCREAMING_SNAKE_CASE , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.'''] ) A_ = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) A_ = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''] , ) def __A ( self ) -> Optional[Any]: A_ = AlbertTokenizer(_SCREAMING_SNAKE_CASE ) A_ = tokenizer.encode('''sequence builders''' ) A_ = tokenizer.encode('''multi-sequence build''' ) A_ = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE ) A_ = tokenizer.build_inputs_with_special_tokens(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def __A ( self ) -> Dict: # fmt: off A_ = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name='''albert-base-v2''' , revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''' , )
18
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[int] = 'mgp-str' def __init__( self , _SCREAMING_SNAKE_CASE=[32, 128] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=27 , _SCREAMING_SNAKE_CASE=38 , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=3_0522 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=4.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=0.02 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: super().__init__(**_SCREAMING_SNAKE_CASE ) A_ = image_size A_ = patch_size A_ = num_channels A_ = max_token_length A_ = num_character_labels A_ = num_bpe_labels A_ = num_wordpiece_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = mlp_ratio A_ = distilled A_ = layer_norm_eps A_ = drop_rate A_ = qkv_bias A_ = attn_drop_rate A_ = drop_path_rate A_ = output_aa_attentions A_ = initializer_range
18
1
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __snake_case : List[Any] = logging.get_logger(__name__) enable_full_determinism() class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : List[Any] = UNetaDModel __lowercase : Dict = 'sample' @property def __A ( self ) -> List[str]: A_ = 4 A_ = 3 A_ = (32, 32) A_ = floats_tensor((batch_size, num_channels) + sizes ).to(_SCREAMING_SNAKE_CASE ) A_ = torch.tensor([10] ).to(_SCREAMING_SNAKE_CASE ) return {"sample": noise, "timestep": time_step} @property def __A ( self ) -> List[Any]: return (3, 32, 32) @property def __A ( self ) -> Tuple: return (3, 32, 32) def __A ( self ) -> List[str]: A_ = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } A_ = self.dummy_input return init_dict, inputs_dict class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = UNetaDModel __lowercase : Any = 'sample' @property def __A ( self ) -> List[Any]: A_ = 4 A_ = 4 A_ = (32, 32) A_ = floats_tensor((batch_size, num_channels) + sizes ).to(_SCREAMING_SNAKE_CASE ) A_ = torch.tensor([10] ).to(_SCREAMING_SNAKE_CASE ) return {"sample": noise, "timestep": time_step} @property def __A ( self ) -> Tuple: return (4, 32, 32) @property def __A ( self ) -> int: return (4, 32, 32) def __A ( self ) -> List[Any]: A_ = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } A_ = self.dummy_input return init_dict, inputs_dict def __A ( self ) -> Tuple: A_ ,A_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_SCREAMING_SNAKE_CASE ) A_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def __A ( self ) -> int: A_ ,A_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) A_ = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def __A ( self ) -> Any: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` A_ ,A_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_SCREAMING_SNAKE_CASE ) model_accelerate.to(_SCREAMING_SNAKE_CASE ) model_accelerate.eval() A_ = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) A_ = noise.to(_SCREAMING_SNAKE_CASE ) A_ = torch.tensor([10] * noise.shape[0] ).to(_SCREAMING_SNAKE_CASE ) A_ = model_accelerate(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() A_ ,A_ = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_SCREAMING_SNAKE_CASE , low_cpu_mem_usage=_SCREAMING_SNAKE_CASE ) model_normal_load.to(_SCREAMING_SNAKE_CASE ) model_normal_load.eval() A_ = model_normal_load(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )['''sample'''] assert torch_all_close(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , rtol=1E-3 ) def __A ( self ) -> List[Any]: A_ = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_SCREAMING_SNAKE_CASE ) A_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) A_ = noise.to(_SCREAMING_SNAKE_CASE ) A_ = torch.tensor([10] * noise.shape[0] ).to(_SCREAMING_SNAKE_CASE ) with torch.no_grad(): A_ = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample A_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off A_ = torch.tensor([-13.3_258, -20.1_100, -15.9_873, -17.6_617, -23.0_596, -17.9_419, -13.3_675, -16.1_889, -12.3_800] ) # fmt: on self.assertTrue(torch_all_close(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , rtol=1E-3 ) ) class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Dict = UNetaDModel __lowercase : List[Any] = 'sample' @property def __A ( self , _SCREAMING_SNAKE_CASE=(32, 32) ) -> Dict: A_ = 4 A_ = 3 A_ = floats_tensor((batch_size, num_channels) + sizes ).to(_SCREAMING_SNAKE_CASE ) A_ = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_SCREAMING_SNAKE_CASE ) return {"sample": noise, "timestep": time_step} @property def __A ( self ) -> Dict: return (3, 32, 32) @property def __A ( self ) -> int: return (3, 32, 32) def __A ( self ) -> Optional[Any]: A_ = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } A_ = self.dummy_input return init_dict, inputs_dict @slow def __A ( self ) -> int: A_ ,A_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_SCREAMING_SNAKE_CASE ) A_ = self.dummy_input A_ = floats_tensor((4, 3) + (256, 256) ).to(_SCREAMING_SNAKE_CASE ) A_ = noise A_ = model(**_SCREAMING_SNAKE_CASE ) assert image is not None, "Make sure output is not None" @slow def __A ( self ) -> Tuple: A_ = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_SCREAMING_SNAKE_CASE ) A_ = 4 A_ = 3 A_ = (256, 256) A_ = torch.ones((batch_size, num_channels) + sizes ).to(_SCREAMING_SNAKE_CASE ) A_ = torch.tensor(batch_size * [1E-4] ).to(_SCREAMING_SNAKE_CASE ) with torch.no_grad(): A_ = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample A_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off A_ = torch.tensor([-4_842.8_691, -6_499.6_631, -3_800.1_953, -7_978.2_686, -10_980.7_129, -20_028.8_535, 8_148.2_822, 2_342.2_905, 567.7_608] ) # fmt: on self.assertTrue(torch_all_close(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , rtol=1E-2 ) ) def __A ( self ) -> int: A_ = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_SCREAMING_SNAKE_CASE ) A_ = 4 A_ = 3 A_ = (32, 32) A_ = torch.ones((batch_size, num_channels) + sizes ).to(_SCREAMING_SNAKE_CASE ) A_ = torch.tensor(batch_size * [1E-4] ).to(_SCREAMING_SNAKE_CASE ) with torch.no_grad(): A_ = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample A_ = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off A_ = torch.tensor([-0.0_325, -0.0_900, -0.0_869, -0.0_332, -0.0_725, -0.0_270, -0.0_101, 0.0_227, 0.0_256] ) # fmt: on self.assertTrue(torch_all_close(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , rtol=1E-2 ) ) def __A ( self ) -> List[str]: # not required for this model pass
18
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __UpperCAmelCase : '''simple docstring''' pass
18
1
'''simple docstring''' import math def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : float ) -> float: if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
18
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _UpperCAmelCase ( ) -> Dict: A_ = ArgumentParser('''Accelerate CLI tool''', usage='''accelerate <command> [<args>]''', allow_abbrev=_UpperCamelCase ) A_ = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=_UpperCamelCase ) env_command_parser(subparsers=_UpperCamelCase ) launch_command_parser(subparsers=_UpperCamelCase ) tpu_command_parser(subparsers=_UpperCamelCase ) test_command_parser(subparsers=_UpperCamelCase ) # Let's go A_ = parser.parse_args() if not hasattr(_UpperCamelCase, '''func''' ): parser.print_help() exit(1 ) # Run args.func(_UpperCamelCase ) if __name__ == "__main__": main()
18
1
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : Any = logging.get_logger(__name__) def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> List[str]: A_ = torch.load(_UpperCamelCase, map_location='''cpu''' ) if "model" in sd.keys(): A_ = torch.load(_UpperCamelCase, map_location='''cpu''' )['''model'''] # pop unnecessary weights A_ = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(_UpperCamelCase ) A_ = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: A_ = sd.pop(_UpperCamelCase ) A_ = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: A_ = sd[key] # We split QKV in separate Q,K,V A_ = key.replace('''.qkv_proj.''', '''.q_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.k_proj.''' ) A_ = key.replace('''.qkv_proj.''', '''.v_proj.''' ) A_ = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 A_ ,A_ ,A_ = torch.split(_UpperCamelCase, depth // 3, dim=0 ) A_ = q A_ = k A_ = v del sd[key] return sd @torch.no_grad() def _UpperCAmelCase ( _UpperCamelCase : Optional[int], _UpperCamelCase : Optional[Any], _UpperCamelCase : List[str]=None ) -> Dict: A_ = load_checkpoint(_UpperCamelCase ) if config is not None: A_ = OPTConfig.from_pretrained(_UpperCamelCase ) else: A_ = OPTConfig() A_ = OPTModel(_UpperCamelCase ).half().eval() model.load_state_dict(_UpperCamelCase ) # Check results Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') __snake_case : Optional[Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
18
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __snake_case : Any = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' __snake_case : Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' __snake_case : Optional[int] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __A ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: if rouge_types is None: A_ = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] A_ = rouge_scorer.RougeScorer(rouge_types=_SCREAMING_SNAKE_CASE , use_stemmer=_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = scoring.BootstrapAggregator() else: A_ = [] for ref, pred in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = scorer.score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if use_aggregator: aggregator.add_scores(_SCREAMING_SNAKE_CASE ) else: scores.append(_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = aggregator.aggregate() else: A_ = {} for key in scores[0]: A_ = [score[key] for score in scores] return result
18
1
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=0.6 , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = type_sequence_label_size A_ = initializer_range A_ = mask_ratio A_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __A ( self ) -> Union[str, Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Dict: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: A_ = ViTMAEModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) A_ = (self.image_size // self.patch_size) ** 2 A_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images A_ = 1 A_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ = model(_SCREAMING_SNAKE_CASE ) A_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __A ( self ) -> int: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : int = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __lowercase : List[Any] = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} __lowercase : Union[str, Any] = False __lowercase : List[Any] = False __lowercase : List[str] = False __lowercase : List[str] = False def __A ( self ) -> Any: A_ = ViTMAEModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __A ( self ) -> int: pass def __A ( self ) -> int: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> int: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Union[str, Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: # make masks reproducible np.random.seed(2 ) A_ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) A_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) A_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument A_ = pt_noise super().check_pt_tf_models(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ = outputs[0].cpu().numpy() A_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ = model_class.from_pretrained(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Make sure we don't have nans A_ = after_outputs[0].cpu().numpy() A_ = 0 A_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> List[str]: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> Dict: pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __A ( self ) -> Tuple: pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __A ( self ) -> str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> Union[str, Any]: pass @slow def __A ( self ) -> Dict: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = ViTMAEModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Dict: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __A ( self ) -> List[str]: return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __A ( self ) -> List[str]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) A_ = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(_SCREAMING_SNAKE_CASE ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) A_ = ViTMAEConfig() A_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) A_ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE , noise=torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ) ) # verify the logits A_ = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_SCREAMING_SNAKE_CASE ) , atol=1E-4 ) )
18
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: super().__init__() A_ = module A_ = nn.Sequential( nn.Linear(module.in_features , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) , nn.Linear(_SCREAMING_SNAKE_CASE , module.out_features , bias=_SCREAMING_SNAKE_CASE ) , ) A_ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_SCREAMING_SNAKE_CASE ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __A ( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: return self.module(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) + self.adapter(_SCREAMING_SNAKE_CASE ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowercase : Dict = 'bigscience/bloom-1b7' # Constant values __lowercase : str = 2.109659552692574 __lowercase : int = 'Hello my name is' __lowercase : Optional[Any] = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __lowercase : Optional[Any] = 10 def __A ( self ) -> List[str]: # Models and tokenizer A_ = AutoTokenizer.from_pretrained(self.model_name ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[Any]: super().setUp() # Models and tokenizer A_ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> List[str]: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: A_ = self.model_abit.config self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''quantization_config''' ) ) A_ = config.to_dict() A_ = config.to_diff_dict() A_ = config.to_json_string() def __A ( self ) -> Union[str, Any]: from bitsandbytes.nn import Paramsabit A_ = self.model_fpaa.get_memory_footprint() A_ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A_ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __A ( self ) -> Union[str, Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __A ( self ) -> Optional[int]: A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Optional[int]: A_ = BitsAndBytesConfig() A_ = True A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Tuple: with self.assertRaises(_SCREAMING_SNAKE_CASE ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Tuple: A_ = BitsAndBytesConfig() with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def __A ( self ) -> Dict: with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_fpaa.to(torch.floataa ) A_ = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A_ = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error A_ = self.model_fpaa.half() # Check this does not throw an error A_ = self.model_fpaa.float() def __A ( self ) -> Optional[int]: A_ = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Optional[Any]: A_ = '''t5-small''' A_ = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense A_ = AutoTokenizer.from_pretrained(cls.model_name ) A_ = '''Translate in German: Hello, my dog is cute''' def __A ( self ) -> Any: gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: from transformers import TaForConditionalGeneration A_ = TaForConditionalGeneration._keep_in_fpaa_modules A_ = None # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) A_ = modules def __A ( self ) -> Dict: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> int: super().setUp() # model_name A_ = '''bigscience/bloom-560m''' A_ = '''t5-small''' # Different types of model A_ = AutoModel.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Sequence classification model A_ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # CausalLM model A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Seq2seq model A_ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> Union[str, Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __A ( self ) -> List[str]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> Tuple: super().setUp() def __A ( self ) -> List[Any]: del self.pipe gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[Any]: A_ = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A_ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[str]: super().setUp() def __A ( self ) -> Optional[int]: A_ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch A_ = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> str: A_ = '''facebook/opt-350m''' super().setUp() def __A ( self ) -> Optional[int]: if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A_ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A_ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_SCREAMING_SNAKE_CASE ) ): A_ = LoRALayer(module.q_proj , rank=16 ) A_ = LoRALayer(module.k_proj , rank=16 ) A_ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A_ = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A_ = model.forward(**_SCREAMING_SNAKE_CASE ) out.logits.norm().backward() for module in model.modules(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_SCREAMING_SNAKE_CASE , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : int = 'gpt2-xl' __lowercase : List[Any] = 3.3191854854152187
18
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __snake_case : Dict = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } __snake_case : int = { 'roberta-base': 512, 'roberta-large': 512, 'roberta-large-mnli': 512, 'distilroberta-base': 512, 'roberta-base-openai-detector': 512, 'roberta-large-openai-detector': 512, } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : List[Any] = VOCAB_FILES_NAMES __lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Dict = ['input_ids', 'attention_mask'] __lowercase : Optional[int] = RobertaTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="replace" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> str: super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , errors=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _SCREAMING_SNAKE_CASE ) != add_prefix_space: A_ = getattr(_SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) A_ = add_prefix_space A_ = pre_tok_class(**_SCREAMING_SNAKE_CASE ) A_ = add_prefix_space A_ = '''post_processor''' A_ = getattr(self.backend_tokenizer , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: A_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A_ = tuple(state['''sep'''] ) if "cls" in state: A_ = tuple(state['''cls'''] ) A_ = False if state.get('''add_prefix_space''' , _SCREAMING_SNAKE_CASE ) != add_prefix_space: A_ = add_prefix_space A_ = True if state.get('''trim_offsets''' , _SCREAMING_SNAKE_CASE ) != trim_offsets: A_ = trim_offsets A_ = True if changes_to_apply: A_ = getattr(_SCREAMING_SNAKE_CASE , state.pop('''type''' ) ) A_ = component_class(**_SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @property def __A ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __A ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: A_ = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else value A_ = value def __A ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> BatchEncoding: A_ = kwargs.get('''is_split_into_words''' , _SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __A ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> BatchEncoding: A_ = kwargs.get('''is_split_into_words''' , _SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: A_ = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Tuple: A_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
18
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _UpperCAmelCase ( _UpperCamelCase : Features ) -> Optional[int]: A_ = np.inf def set_batch_size(_UpperCamelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(_UpperCamelCase, _UpperCamelCase ) and feature.dtype == "binary": A_ = min(_UpperCamelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(_UpperCamelCase, _UpperCamelCase ) return None if batch_size is np.inf else batch_size class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( _SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ = path_or_paths if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} A_ = _PACKAGED_DATASETS_MODULES['''parquet'''][1] A_ = Parquet( cache_dir=_SCREAMING_SNAKE_CASE , data_files=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , hash=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def __A ( self ) -> str: # Build iterable dataset if self.streaming: A_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) A_ = self.builder.as_dataset( split=self.split , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> Dict: A_ = dataset A_ = path_or_buf A_ = batch_size or get_writer_batch_size(dataset.features ) A_ = parquet_writer_kwargs def __A ( self ) -> int: A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: A_ = self._write(file_obj=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) else: A_ = self._write(file_obj=self.path_or_buf , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) return written def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: A_ = 0 A_ = parquet_writer_kwargs.pop('''path_or_buf''' , _SCREAMING_SNAKE_CASE ) A_ = self.dataset.features.arrow_schema A_ = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _SCREAMING_SNAKE_CASE ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): A_ = query_table( table=self.dataset._data , key=slice(_SCREAMING_SNAKE_CASE , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_SCREAMING_SNAKE_CASE ) written += batch.nbytes writer.close() return written
18
1
'''simple docstring''' import re def _UpperCAmelCase ( _UpperCamelCase : str ) -> bool: A_ = re.compile( R'''^(?:0|94|\+94|0{2}94)''' R'''7(0|1|2|4|5|6|7|8)''' R'''(-| |)''' R'''\d{7}$''' ) return bool(re.search(_UpperCamelCase, _UpperCamelCase ) ) if __name__ == "__main__": __snake_case : Union[str, Any] = '0094702343221' print(is_sri_lankan_phone_number(phone))
18
'''simple docstring''' from statistics import mean, stdev def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = min(_UpperCamelCase ) A_ = max(_UpperCamelCase ) # normalize data return [round((x - x_min) / (x_max - x_min), _UpperCamelCase ) for x in data] def _UpperCAmelCase ( _UpperCamelCase : list, _UpperCamelCase : int = 3 ) -> list: A_ = mean(_UpperCamelCase ) A_ = stdev(_UpperCamelCase ) # standardize data return [round((x - mu) / (sigma), _UpperCamelCase ) for x in data]
18
1
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , _SCREAMING_SNAKE_CASE=[1, 1, 2, 1] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=None , ) -> int: A_ = parent A_ = batch_size A_ = image_size A_ = num_channels A_ = embeddings_size A_ = hidden_sizes A_ = depths A_ = is_training A_ = use_labels A_ = hidden_act A_ = num_labels A_ = scope A_ = len(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Union[str, Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Any: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: A_ = TFResNetModel(config=_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: A_ = self.num_labels A_ = TFResNetForImageClassification(_SCREAMING_SNAKE_CASE ) A_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ) -> Optional[int]: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __lowercase : List[str] = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) __lowercase : str = False __lowercase : Union[str, Any] = False __lowercase : str = False __lowercase : Optional[int] = False __lowercase : Any = False def __A ( self ) -> List[Any]: A_ = TFResNetModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self ) -> List[str]: return @unittest.skip(reason='''ResNet does not use inputs_embeds''' ) def __A ( self ) -> Optional[Any]: pass @unittest.skip(reason='''ResNet does not support input and output embeddings''' ) def __A ( self ) -> List[Any]: pass def __A ( self ) -> Dict: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> List[str]: def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ = self.model_tester.num_stages self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: A_ = layer_type A_ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Dict: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def __A ( self ) -> Union[str, Any]: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = TFResNetModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Union[str, Any]: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __A ( self ) -> Optional[Any]: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __A ( self ) -> Optional[Any]: A_ = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) # forward pass A_ = model(**_SCREAMING_SNAKE_CASE ) # verify the logits A_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) A_ = tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
18
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-classification/requirements.txt') __snake_case : str = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __snake_case : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: with open(_UpperCamelCase, '''rb''' ) as f: A_ = Image.open(_UpperCamelCase ) return im.convert('''RGB''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the training data.'} ) __lowercase : Optional[str] = field(default=_UpperCamelCase , metadata={'help': 'A folder containing the validation data.'} ) __lowercase : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowercase : Optional[int] = field( default=_UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __A ( self ) -> int: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class __UpperCAmelCase : '''simple docstring''' __lowercase : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_UpperCamelCase )} , ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowercase : Optional[str] = field( default=_UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) __lowercase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowercase : str = field(default=_UpperCamelCase , metadata={'help': 'Name or path of preprocessor config.'} ) __lowercase : bool = field( default=_UpperCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) __lowercase : bool = field( default=_UpperCamelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> Dict: A_ = torch.stack([example['''pixel_values'''] for example in examples] ) A_ = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _UpperCAmelCase ( ) -> Tuple: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A_ ,A_ ,A_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A_ ,A_ ,A_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''', _UpperCamelCase, _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A_ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. A_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: A_ = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, task='''image-classification''', use_auth_token=True if model_args.use_auth_token else None, ) else: A_ = {} if data_args.train_dir is not None: A_ = os.path.join(data_args.train_dir, '''**''' ) if data_args.validation_dir is not None: A_ = os.path.join(data_args.validation_dir, '''**''' ) A_ = load_dataset( '''imagefolder''', data_files=_UpperCamelCase, cache_dir=model_args.cache_dir, task='''image-classification''', ) # If we don't have a validation split, split off a percentage of train as validation. A_ = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, _UpperCamelCase ) and data_args.train_val_split > 0.0: A_ = dataset['''train'''].train_test_split(data_args.train_val_split ) A_ = split['''train'''] A_ = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A_ = dataset['''train'''].features['''labels'''].names A_ ,A_ = {}, {} for i, label in enumerate(_UpperCamelCase ): A_ = str(_UpperCamelCase ) A_ = label # Load the accuracy metric from the datasets package A_ = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase : Optional[Any] ): return metric.compute(predictions=np.argmax(p.predictions, axis=1 ), references=p.label_ids ) A_ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(_UpperCamelCase ), labelaid=_UpperCamelCase, idalabel=_UpperCamelCase, finetuning_task='''image-classification''', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) A_ = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=_UpperCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) A_ = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: A_ = image_processor.size['''shortest_edge'''] else: A_ = (image_processor.size['''height'''], image_processor.size['''width''']) A_ = Normalize(mean=image_processor.image_mean, std=image_processor.image_std ) A_ = Compose( [ RandomResizedCrop(_UpperCamelCase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) A_ = Compose( [ Resize(_UpperCamelCase ), CenterCrop(_UpperCamelCase ), ToTensor(), normalize, ] ) def train_transforms(_UpperCamelCase : Dict ): A_ = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(_UpperCamelCase : Any ): A_ = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: A_ = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_UpperCamelCase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: A_ = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_UpperCamelCase ) # Initalize our trainer A_ = Trainer( model=_UpperCamelCase, args=_UpperCamelCase, train_dataset=dataset['''train'''] if training_args.do_train else None, eval_dataset=dataset['''validation'''] if training_args.do_eval else None, compute_metrics=_UpperCamelCase, tokenizer=_UpperCamelCase, data_collator=_UpperCamelCase, ) # Training if training_args.do_train: A_ = None if training_args.resume_from_checkpoint is not None: A_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A_ = last_checkpoint A_ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() trainer.log_metrics('''train''', train_result.metrics ) trainer.save_metrics('''train''', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A_ = trainer.evaluate() trainer.log_metrics('''eval''', _UpperCamelCase ) trainer.save_metrics('''eval''', _UpperCamelCase ) # Write model card and (optionally) push to hub A_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) if __name__ == "__main__": main()
18
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = StableUnCLIPImgaImgPipeline __lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS __lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase : Union[str, Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase : Union[str, Any] = frozenset([] ) def __A ( self ) -> Optional[Any]: A_ = 32 A_ = embedder_hidden_size # image encoding components A_ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) A_ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_SCREAMING_SNAKE_CASE , projection_dim=_SCREAMING_SNAKE_CASE , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) A_ = StableUnCLIPImageNormalizer(embedding_dim=_SCREAMING_SNAKE_CASE ) A_ = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) A_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) A_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_SCREAMING_SNAKE_CASE , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) A_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_SCREAMING_SNAKE_CASE , layers_per_block=1 , upcast_attention=_SCREAMING_SNAKE_CASE , use_linear_projection=_SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) A_ = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_SCREAMING_SNAKE_CASE , steps_offset=1 , ) torch.manual_seed(0 ) A_ = AutoencoderKL() A_ = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=True ) -> Dict: if str(_SCREAMING_SNAKE_CASE ).startswith('''mps''' ): A_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: A_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) A_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) if pil_image: A_ = input_image * 0.5 + 0.5 A_ = input_image.clamp(0 , 1 ) A_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() A_ = DiffusionPipeline.numpy_to_pil(_SCREAMING_SNAKE_CASE )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __A ( self ) -> Any: A_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator A_ = self.get_dummy_components() A_ = StableUnCLIPImgaImgPipeline(**_SCREAMING_SNAKE_CASE ) A_ = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) inputs.update({'''image_embeds''': None} ) A_ = sd_pipe(**_SCREAMING_SNAKE_CASE ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A_ = np.array([0.3_872, 0.7_224, 0.5_601, 0.4_741, 0.6_872, 0.5_814, 0.4_636, 0.3_867, 0.5_078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __A ( self ) -> Any: A_ = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: A_ = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_SCREAMING_SNAKE_CASE ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __A ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> List[str]: A_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) A_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) A_ = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A_ = torch.Generator(device='''cpu''' ).manual_seed(0 ) A_ = pipe(_SCREAMING_SNAKE_CASE , '''anime turle''' , generator=_SCREAMING_SNAKE_CASE , output_type='''np''' ) A_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: A_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) A_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) A_ = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A_ = torch.Generator(device='''cpu''' ).manual_seed(0 ) A_ = pipe(_SCREAMING_SNAKE_CASE , '''anime turle''' , generator=_SCREAMING_SNAKE_CASE , output_type='''np''' ) A_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Union[str, Any]: A_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A_ = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) A_ = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A_ = pipe( _SCREAMING_SNAKE_CASE , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) A_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
18
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __snake_case : str = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Dict: A_ = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def __A ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __A ( self ) -> str: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id='''test-model-flax''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def __A ( self ) -> List[str]: A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 , msg=F'''{key} not identical''' ) def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any], _UpperCamelCase : Tuple ) -> Dict: A_ = True A_ = flatten_dict(modela.params ) A_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: A_ = False return models_are_equal @require_flax class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> List[str]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> List[Any]: A_ = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) A_ = FlaxBertModel(_SCREAMING_SNAKE_CASE ) A_ = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , max_shard_size='''10KB''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertTrue(check_models_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def __A ( self ) -> Dict: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = '''bert''' A_ = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = FlaxBertModel.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
18
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _UpperCAmelCase ( _UpperCamelCase : Dict ) -> Optional[Any]: A_ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Dict = StableDiffusionLatentUpscalePipeline __lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowercase : List[Any] = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowercase : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowercase : Optional[Any] = frozenset([] ) __lowercase : str = True @property def __A ( self ) -> List[Any]: A_ = 1 A_ = 4 A_ = (16, 16) A_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_SCREAMING_SNAKE_CASE ) return image def __A ( self ) -> Tuple: torch.manual_seed(0 ) A_ = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_SCREAMING_SNAKE_CASE , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_SCREAMING_SNAKE_CASE , only_cross_attention=_SCREAMING_SNAKE_CASE , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) A_ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) A_ = EulerDiscreteScheduler(prediction_type='''sample''' ) A_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''quick_gelu''' , projection_dim=512 , ) A_ = CLIPTextModel(_SCREAMING_SNAKE_CASE ) A_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A_ = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ) -> Any: if str(_SCREAMING_SNAKE_CASE ).startswith('''mps''' ): A_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: A_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) A_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __A ( self ) -> str: A_ = '''cpu''' A_ = self.get_dummy_components() A_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) A_ = pipe(**_SCREAMING_SNAKE_CASE ).images A_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) A_ = np.array( [0.47_222_412, 0.41_921_633, 0.44_717_434, 0.46_874_192, 0.42_588_258, 0.46_150_726, 0.4_677_534, 0.45_583_832, 0.48_579_055] ) A_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1E-3 ) def __A ( self ) -> Union[str, Any]: super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def __A ( self ) -> Dict: super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def __A ( self ) -> Dict: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __A ( self ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def __A ( self ) -> Union[str, Any]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def __A ( self ) -> Optional[Any]: super().test_save_load_local(expected_max_difference=3E-3 ) def __A ( self ) -> int: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __A ( self ) -> Optional[Any]: A_ = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] A_ = self.get_dummy_components() A_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) A_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) A_ = 2 A_ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue A_ = getattr(_SCREAMING_SNAKE_CASE , scheduler_enum.name ) A_ = scheduler_cls.from_config(pipe.scheduler.config ) A_ = pipe(**_SCREAMING_SNAKE_CASE )[0] outputs.append(_SCREAMING_SNAKE_CASE ) assert check_same_shape(_SCREAMING_SNAKE_CASE ) @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Any: A_ = torch.manual_seed(33 ) A_ = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) A_ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) A_ = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' A_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , output_type='''latent''' ).images A_ = upscaler( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , num_inference_steps=20 , guidance_scale=0 , generator=_SCREAMING_SNAKE_CASE , output_type='''np''' , ).images[0] A_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def __A ( self ) -> Optional[Any]: A_ = torch.manual_seed(33 ) A_ = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) A_ = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' A_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) A_ = upscaler( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , num_inference_steps=20 , guidance_scale=0 , generator=_SCREAMING_SNAKE_CASE , output_type='''np''' , ).images[0] A_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5E-2
18
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Dict: A_ = 1 A_ = 2 while i * i <= n: A_ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _UpperCAmelCase ( ) -> Optional[int]: A_ = 1 A_ = 1 while True: i += 1 t_num += i if count_divisors(_UpperCamelCase ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
18
1
'''simple docstring''' import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging __snake_case : Dict = logging.get_logger(__name__) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : List[Any] = CLIPConfig __lowercase : List[Any] = ['CLIPEncoderLayer'] def __init__( self , _SCREAMING_SNAKE_CASE ) -> Tuple: super().__init__(_SCREAMING_SNAKE_CASE ) A_ = CLIPVisionModelWithProjection(config.vision_config ) A_ = nn.Linear(config.vision_config.projection_dim , 1 ) A_ = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.5 , _SCREAMING_SNAKE_CASE=0.5 ) -> Optional[int]: A_ = self.vision_model(_SCREAMING_SNAKE_CASE )[0] A_ = self.p_head(_SCREAMING_SNAKE_CASE ) A_ = nsfw_detected.flatten() A_ = nsfw_detected > p_threshold A_ = nsfw_detected.tolist() if any(_SCREAMING_SNAKE_CASE ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(_SCREAMING_SNAKE_CASE ): if nsfw_detected_: A_ = np.zeros(images[idx].shape ) A_ = self.w_head(_SCREAMING_SNAKE_CASE ) A_ = watermark_detected.flatten() A_ = watermark_detected > w_threshold A_ = watermark_detected.tolist() if any(_SCREAMING_SNAKE_CASE ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(_SCREAMING_SNAKE_CASE ): if watermark_detected_: A_ = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
18
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=[1, 384, 24, 24] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = backbone_out_indices A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = num_labels A_ = backbone_featmap_shape A_ = scope A_ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = num_patches + 1 def __A ( self ) -> Optional[Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Optional[Any]: A_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = DPTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: A_ = self.num_labels A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: A_ = self.num_labels A_ = DPTForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __A ( self ) -> Optional[int]: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __lowercase : Optional[int] = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : Any = False __lowercase : Tuple = False __lowercase : List[Any] = False def __A ( self ) -> Tuple: A_ = DPTModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def __A ( self ) -> Union[str, Any]: pass def __A ( self ) -> Dict: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> Optional[int]: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ): continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = False A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Tuple: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: A_ = model_class(config=_SCREAMING_SNAKE_CASE ) # Skip the check for the backbone A_ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": A_ = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> int: pass @slow def __A ( self ) -> Dict: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: A_ = DPTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = '''add''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Optional[int]: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Any: A_ = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) A_ = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(_SCREAMING_SNAKE_CASE ) A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE ) A_ = outputs.predicted_depth # verify the predicted depth A_ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
18
1
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : int ) -> None: A_ = generate_pascal_triangle(_UpperCamelCase ) for row_idx in range(_UpperCamelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx], end=''' ''' ) else: print(triangle[row_idx][col_idx], end='''''' ) print() def _UpperCAmelCase ( _UpperCamelCase : int ) -> list[list[int]]: if not isinstance(_UpperCamelCase, _UpperCamelCase ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) A_ = [] for current_row_idx in range(_UpperCamelCase ): A_ = populate_current_row(_UpperCamelCase, _UpperCamelCase ) triangle.append(_UpperCamelCase ) return triangle def _UpperCAmelCase ( _UpperCamelCase : list[list[int]], _UpperCamelCase : int ) -> list[int]: A_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 A_ ,A_ = 1, 1 for current_col_idx in range(1, _UpperCamelCase ): calculate_current_element( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) return current_row def _UpperCAmelCase ( _UpperCamelCase : list[list[int]], _UpperCamelCase : list[int], _UpperCamelCase : int, _UpperCamelCase : int, ) -> None: A_ = triangle[current_row_idx - 1][current_col_idx - 1] A_ = triangle[current_row_idx - 1][current_col_idx] A_ = above_to_left_elt + above_to_right_elt def _UpperCAmelCase ( _UpperCamelCase : int ) -> list[list[int]]: if not isinstance(_UpperCamelCase, _UpperCamelCase ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) A_ = [[1]] for row_index in range(1, _UpperCamelCase ): A_ = [0] + result[-1] + [0] A_ = row_index + 1 # Calculate the number of distinct elements in a row A_ = sum(divmod(_UpperCamelCase, 2 ) ) A_ = [ temp_row[i - 1] + temp_row[i] for i in range(1, distinct_elements + 1 ) ] A_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() A_ = row_first_half + row_second_half result.append(_UpperCamelCase ) return result def _UpperCAmelCase ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(_UpperCamelCase : Callable, _UpperCamelCase : int ) -> None: A_ = F'''{func.__name__}({value})''' A_ = timeit(F'''__main__.{call}''', setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_UpperCamelCase, _UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
18
'''simple docstring''' import math def _UpperCAmelCase ( _UpperCamelCase : float, _UpperCamelCase : float ) -> float: if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
18
1