code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import requests
from bsa import BeautifulSoup
def __UpperCAmelCase ( a_: Optional[Any] = "https://www.worldometers.info/coronavirus" ):
_UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(UpperCAmelCase__ ).text, "html.parser" )
_UpperCAmelCase : int = soup.findAll("h1" )
_UpperCAmelCase : Optional[Any] = soup.findAll("div", {"class": "maincounter-number"} )
keys += soup.findAll("span", {"class": "panel-title"} )
values += soup.findAll("div", {"class": "number-table-main"} )
return {key.text.strip(): value.text.strip() for key, value in zip(UpperCAmelCase__, UpperCAmelCase__ )}
if __name__ == "__main__":
print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n')
for key, value in world_covidaa_stats().items():
print(f'{key}\n{value}\n') | 362 | '''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( a_: list[int] ):
if not nums:
return 0
_UpperCAmelCase : int = nums[0]
_UpperCAmelCase : Dict = 0
for num in nums[1:]:
_UpperCAmelCase , _UpperCAmelCase : Any = (
max_excluding + num,
max(a_, a_ ),
)
return max(a_, a_ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 0 |
'''simple docstring'''
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers | 363 | '''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a = logging.get_logger(__name__)
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if key.startswith("module.encoder" ):
_UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" )
if key.startswith("module.decoder" ):
_UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )]
_UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" )
if "norm" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )]
_UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" )
if "layer_norm1" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" )
if "layer_norm2" in key:
_UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
_UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )]
_UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" )
if "attn.q" in key:
_UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" )
if "attn.proj" in key:
_UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" )
if "attn" in key:
_UpperCAmelCase : Dict = key.replace("attn", "attention.self" )
if "fc1" in key:
_UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" )
if "fc2" in key:
_UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" )
if "linear_pred" in key:
_UpperCAmelCase : Any = key.replace("linear_pred", "classifier" )
if "linear_fuse" in key:
_UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" )
_UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )]
_UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" )
if "bot_conv" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" )
if "skip_conv1" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" )
if "skip_conv2" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" )
if "fusion1" in key:
_UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" )
if "fusion2" in key:
_UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" )
if "fusion3" in key:
_UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" )
if "fusion" in key and "conv" in key:
_UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" )
if key.startswith("module.last_layer_depth" ):
_UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" )
_UpperCAmelCase : int = value
return new_state_dict
def __UpperCAmelCase ( a_: str, a_: List[Any] ):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" )
_UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
_UpperCAmelCase : Optional[int] = kv_weight[
: config.hidden_sizes[i], :
]
_UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]]
_UpperCAmelCase : Optional[int] = kv_weight[
config.hidden_sizes[i] :, :
]
_UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :]
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw )
return image
@torch.no_grad()
def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ):
_UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
_UpperCAmelCase : Dict = GLPNImageProcessor()
# prepare image
_UpperCAmelCase : List[Any] = prepare_img()
_UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values
logger.info("Converting model..." )
# load original state dict
_UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) )
# rename keys
_UpperCAmelCase : List[str] = rename_keys(a_ )
# key and value matrices need special treatment
read_in_k_v(a_, a_ )
# create HuggingFace model and load state dict
_UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ )
model.load_state_dict(a_ )
model.eval()
# forward pass
_UpperCAmelCase : Dict = model(a_ )
_UpperCAmelCase : List[str] = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
_UpperCAmelCase : Optional[Any] = torch.tensor(
[[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] )
elif "kitti" in model_name:
_UpperCAmelCase : Tuple = torch.tensor(
[[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] )
else:
raise ValueError(f"""Unknown model name: {model_name}""" )
_UpperCAmelCase : Dict = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 )
print("Looks ok!" )
# finally, push to hub if required
if push_to_hub:
logger.info("Pushing model and image processor to the hub..." )
model.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, )
image_processor.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path',
default=None,
type=str,
help='Path to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.'
)
parser.add_argument(
'--model_name',
default='glpn-kitti',
type=str,
help='Name of the model in case you\'re pushing to the hub.',
)
__a = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name) | 17 | 0 |
'''simple docstring'''
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def __UpperCAmelCase ( ):
_UpperCAmelCase : Any = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
_UpperCAmelCase : List[str] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" )
return image
def __UpperCAmelCase ( a_: int ):
_UpperCAmelCase : Optional[int] = []
# fmt: off
# vision encoder
rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") )
rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") )
rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") )
rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") )
rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") )
rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") )
rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") )
rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") )
rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") )
rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") )
rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) )
rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") )
rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") )
rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") )
rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") )
rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") )
# QFormer
rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") )
rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") )
# fmt: on
return rename_keys
def __UpperCAmelCase ( a_: Optional[Any], a_: Dict, a_: Optional[int] ):
_UpperCAmelCase : Dict = dct.pop(snake_case__ )
_UpperCAmelCase : str = val
def __UpperCAmelCase ( a_: str, a_: Union[str, Any] ):
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
_UpperCAmelCase : Optional[Any] = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" )
_UpperCAmelCase : int = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" )
# next, set bias in the state dict
_UpperCAmelCase : int = torch.cat((q_bias, torch.zeros_like(snake_case__, requires_grad=snake_case__ ), v_bias) )
_UpperCAmelCase : Tuple = qkv_bias
def __UpperCAmelCase ( a_: Tuple, a_: Optional[Any] ):
_UpperCAmelCase : str = 364 if 'coco' in model_name else 224
_UpperCAmelCase : Union[str, Any] = BlipaVisionConfig(image_size=snake_case__ ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
_UpperCAmelCase : List[Any] = OPTConfig.from_pretrained("facebook/opt-2.7b", eos_token_id=snake_case__ ).to_dict()
elif "opt-6.7b" in model_name:
_UpperCAmelCase : int = OPTConfig.from_pretrained("facebook/opt-6.7b", eos_token_id=snake_case__ ).to_dict()
elif "t5-xl" in model_name:
_UpperCAmelCase : List[str] = TaConfig.from_pretrained("google/flan-t5-xl", dense_act_fn="gelu", bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
_UpperCAmelCase : int = TaConfig.from_pretrained("google/flan-t5-xxl", dense_act_fn="gelu", bos_token_id=1 ).to_dict()
_UpperCAmelCase : Any = BlipaConfig(vision_config=snake_case__, text_config=snake_case__ )
return config, image_size
@torch.no_grad()
def __UpperCAmelCase ( a_: int, a_: Dict=None, a_: int=False ):
_UpperCAmelCase : str = (
AutoTokenizer.from_pretrained("facebook/opt-2.7b" )
if 'opt' in model_name
else AutoTokenizer.from_pretrained("google/flan-t5-xl" )
)
_UpperCAmelCase : int = tokenizer("\n", add_special_tokens=snake_case__ ).input_ids[0]
_UpperCAmelCase : Union[str, Any] = get_blipa_config(snake_case__, eos_token_id=snake_case__ )
_UpperCAmelCase : Dict = BlipaForConditionalGeneration(snake_case__ ).eval()
_UpperCAmelCase : Optional[Any] = {
'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'),
'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'),
'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'),
'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'),
'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'),
'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'),
'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'),
}
_UpperCAmelCase : Optional[Any] = model_name_to_original[model_name]
# load original model
print("Loading original model..." )
_UpperCAmelCase : List[str] = 'cuda' if torch.cuda.is_available() else 'cpu'
_UpperCAmelCase : Tuple = load_model_and_preprocess(
name=snake_case__, model_type=snake_case__, is_eval=snake_case__, device=snake_case__ )
original_model.eval()
print("Done!" )
# update state dict keys
_UpperCAmelCase : List[Any] = original_model.state_dict()
_UpperCAmelCase : Tuple = create_rename_keys(snake_case__ )
for src, dest in rename_keys:
rename_key(snake_case__, snake_case__, snake_case__ )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
_UpperCAmelCase : Optional[Any] = state_dict.pop(snake_case__ )
if key.startswith("Qformer.bert" ):
_UpperCAmelCase : List[str] = key.replace("Qformer.bert", "qformer" )
if "attention.self" in key:
_UpperCAmelCase : Tuple = key.replace("self", "attention" )
if "opt_proj" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("opt_proj", "language_projection" )
if "t5_proj" in key:
_UpperCAmelCase : Optional[Any] = key.replace("t5_proj", "language_projection" )
if key.startswith("opt" ):
_UpperCAmelCase : Dict = key.replace("opt", "language" )
if key.startswith("t5" ):
_UpperCAmelCase : Dict = key.replace("t5", "language" )
_UpperCAmelCase : Optional[int] = val
# read in qv biases
read_in_q_v_bias(snake_case__, snake_case__ )
_UpperCAmelCase : Any = hf_model.load_state_dict(snake_case__, strict=snake_case__ )
assert len(snake_case__ ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
_UpperCAmelCase : List[str] = load_demo_image()
_UpperCAmelCase : str = vis_processors['eval'](snake_case__ ).unsqueeze(0 ).to(snake_case__ )
_UpperCAmelCase : Any = tokenizer(["\n"], return_tensors="pt" ).input_ids.to(snake_case__ )
# create processor
_UpperCAmelCase : Optional[Any] = BlipImageProcessor(
size={"height": image_size, "width": image_size}, image_mean=snake_case__, image_std=snake_case__ )
_UpperCAmelCase : Any = BlipaProcessor(image_processor=snake_case__, tokenizer=snake_case__ )
_UpperCAmelCase : Optional[int] = processor(images=snake_case__, return_tensors="pt" ).pixel_values.to(snake_case__ )
# make sure processor creates exact same pixel values
assert torch.allclose(snake_case__, snake_case__ )
original_model.to(snake_case__ )
hf_model.to(snake_case__ )
with torch.no_grad():
if "opt" in model_name:
_UpperCAmelCase : Tuple = original_model({"image": original_pixel_values, "text_input": [""]} ).logits
_UpperCAmelCase : str = hf_model(snake_case__, snake_case__ ).logits
else:
_UpperCAmelCase : Tuple = original_model(
{"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits
_UpperCAmelCase : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id, -100 )
_UpperCAmelCase : Optional[int] = hf_model(snake_case__, snake_case__, labels=snake_case__ ).logits
assert original_logits.shape == logits.shape
print("First values of original logits:", original_logits[0, :3, :3] )
print("First values of HF logits:", logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
_UpperCAmelCase : List[str] = torch.tensor(
[[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]], device=snake_case__ )
assert torch.allclose(logits[0, :3, :3], snake_case__, atol=1e-4 )
elif model_name == "blip2-flan-t5-xl-coco":
_UpperCAmelCase : Union[str, Any] = torch.tensor(
[[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]], device=snake_case__ )
else:
# cast to same type
_UpperCAmelCase : Optional[int] = logits.dtype
assert torch.allclose(original_logits.to(snake_case__ ), snake_case__, atol=1e-2 )
print("Looks ok!" )
print("Generating a caption..." )
_UpperCAmelCase : Optional[int] = ''
_UpperCAmelCase : Union[str, Any] = tokenizer(snake_case__, return_tensors="pt" ).input_ids.to(snake_case__ )
_UpperCAmelCase : str = original_model.generate({"image": original_pixel_values} )
_UpperCAmelCase : str = hf_model.generate(
snake_case__, snake_case__, do_sample=snake_case__, num_beams=5, max_length=30, min_length=1, top_p=0.9, repetition_penalty=1.0, length_penalty=1.0, temperature=1, )
print("Original generation:", snake_case__ )
_UpperCAmelCase : Optional[int] = input_ids.shape[1]
_UpperCAmelCase : Union[str, Any] = processor.batch_decode(outputs[:, prompt_length:], skip_special_tokens=snake_case__ )
_UpperCAmelCase : Dict = [text.strip() for text in output_text]
print("HF generation:", snake_case__ )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(snake_case__ )
hf_model.save_pretrained(snake_case__ )
if push_to_hub:
processor.push_to_hub(f"""nielsr/{model_name}""" )
hf_model.push_to_hub(f"""nielsr/{model_name}""" )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
__a = [
'blip2-opt-2.7b',
'blip2-opt-6.7b',
'blip2-opt-2.7b-coco',
'blip2-opt-6.7b-coco',
'blip2-flan-t5-xl',
'blip2-flan-t5-xl-coco',
'blip2-flan-t5-xxl',
]
parser.add_argument(
'--model_name',
default='blip2-opt-2.7b',
choices=choices,
type=str,
help='Path to hf config.json of model to convert',
)
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model and processor to the hub after converting',
)
__a = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) | 364 | '''simple docstring'''
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[Any] = 10
_UpperCAmelCase : int = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string" ) ),
"labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ),
"answers": datasets.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
"id": datasets.Value("int64" ),
} )
_UpperCAmelCase : List[str] = datasets.Dataset.from_dict(
{
"tokens": [["foo"] * 5] * n,
"labels": [[1] * 5] * n,
"answers": [{"answer_start": [97], "text": ["1976"]}] * 10,
"id": list(range(a_ ) ),
}, features=a_, )
return dataset
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" )
dataset.map(cache_file_name=a_ )
return filename
# FILE_CONTENT + files
__a = '\\n Text data.\n Second line of data.'
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt"
_UpperCAmelCase : Tuple = FILE_CONTENT
with open(a_, "w" ) as f:
f.write(a_ )
return filename
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2"
_UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" )
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import gzip
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" )
_UpperCAmelCase : Any = bytes(a_, "utf-8" )
with gzip.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
if datasets.config.LZ4_AVAILABLE:
import lza.frame
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4"
_UpperCAmelCase : str = bytes(a_, "utf-8" )
with lza.frame.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Any ):
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z"
with pyazr.SevenZipFile(a_, "w" ) as archive:
archive.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: List[str] ):
import tarfile
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
import lzma
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz"
_UpperCAmelCase : List[str] = bytes(a_, "utf-8" )
with lzma.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: Tuple ):
import zipfile
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst"
_UpperCAmelCase : int = bytes(a_, "utf-8" )
with zstd.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
_UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml"
_UpperCAmelCase : Tuple = textwrap.dedent(
"\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" )
with open(a_, "w" ) as f:
f.write(a_ )
return filename
__a = [
{'col_1': '0', 'col_2': 0, 'col_3': 0.0},
{'col_1': '1', 'col_2': 1, 'col_3': 1.0},
{'col_1': '2', 'col_2': 2, 'col_3': 2.0},
{'col_1': '3', 'col_2': 3, 'col_3': 3.0},
]
__a = [
{'col_1': '4', 'col_2': 4, 'col_3': 4.0},
{'col_1': '5', 'col_2': 5, 'col_3': 5.0},
]
__a = {
'col_1': ['0', '1', '2', '3'],
'col_2': [0, 1, 2, 3],
'col_3': [0.0, 1.0, 2.0, 3.0],
}
__a = [
{'col_3': 0.0, 'col_1': '0', 'col_2': 0},
{'col_3': 1.0, 'col_1': '1', 'col_2': 1},
]
__a = [
{'col_1': 's0', 'col_2': 0, 'col_3': 0.0},
{'col_1': 's1', 'col_2': 1, 'col_3': 1.0},
{'col_1': 's2', 'col_2': 2, 'col_3': 2.0},
{'col_1': 's3', 'col_2': 3, 'col_3': 3.0},
]
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : str = datasets.Dataset.from_dict(a_ )
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" )
dataset.map(cache_file_name=a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" )
with contextlib.closing(sqlitea.connect(a_ ) ) as con:
_UpperCAmelCase : List[Any] = con.cursor()
cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" )
for item in DATA:
cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str, a_: str ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2"
with open(a_, "rb" ) as f:
_UpperCAmelCase : Any = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ):
_UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) )
f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ):
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" )
_UpperCAmelCase : Dict = pa.schema(
{
"col_1": pa.string(),
"col_2": pa.intaa(),
"col_3": pa.floataa(),
} )
with open(a_, "wb" ) as f:
_UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ )
_UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ )
writer.write_table(a_ )
writer.close()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : str = {"data": DATA}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_312:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_STR:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ):
import gzip
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ):
import gzip
_UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ):
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : List[str] = ["0", "1", "2", "3"]
_UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Dict = ["0", "1", "2", "3"]
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = ["0", "1", "2", "3"]
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc"
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename("unsupported.ext" ) )
f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] )
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" )
with open(a_, "w", encoding="utf-8" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_image_rgb.jpg" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_audio_44100.wav" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Optional[Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" )
(data_dir / "subdir").mkdir()
with open(data_dir / "subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / "subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden file
with open(data_dir / "subdir" / ".test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / ".subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / ".subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
return data_dir | 17 | 0 |
'''simple docstring'''
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class A__ ( _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase_ : Dict = (PNDMScheduler,)
UpperCamelCase_ : Optional[Any] = (('''num_inference_steps''', 50),)
def _lowerCAmelCase ( self : str , **lowerCAmelCase__ : str ) -> int:
"""simple docstring"""
_UpperCAmelCase : List[str] = {
"num_train_timesteps": 1_0_0_0,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**lowerCAmelCase__ )
return config
def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[str]=0 , **lowerCAmelCase__ : int ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = dict(self.forward_default_kwargs )
_UpperCAmelCase : int = kwargs.pop("num_inference_steps" , lowerCAmelCase__ )
_UpperCAmelCase : List[str] = self.dummy_sample
_UpperCAmelCase : Union[str, Any] = 0.1 * sample
_UpperCAmelCase : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
_UpperCAmelCase : List[str] = self.get_scheduler_config(**lowerCAmelCase__ )
_UpperCAmelCase : Tuple = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(lowerCAmelCase__ )
# copy over dummy past residuals
_UpperCAmelCase : List[Any] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(lowerCAmelCase__ )
new_scheduler.set_timesteps(lowerCAmelCase__ )
# copy over dummy past residuals
_UpperCAmelCase : List[str] = dummy_past_residuals[:]
_UpperCAmelCase : Union[str, Any] = scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample
_UpperCAmelCase : str = new_scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
_UpperCAmelCase : Dict = scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample
_UpperCAmelCase : List[str] = new_scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def _lowerCAmelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
pass
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Optional[int]=0 , **lowerCAmelCase__ : List[Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : str = dict(self.forward_default_kwargs )
_UpperCAmelCase : str = kwargs.pop("num_inference_steps" , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = self.dummy_sample
_UpperCAmelCase : Union[str, Any] = 0.1 * sample
_UpperCAmelCase : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
_UpperCAmelCase : Optional[int] = self.get_scheduler_config()
_UpperCAmelCase : Optional[Any] = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(lowerCAmelCase__ )
# copy over dummy past residuals (must be after setting timesteps)
_UpperCAmelCase : int = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(lowerCAmelCase__ )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowerCAmelCase__ )
# copy over dummy past residual (must be after setting timesteps)
_UpperCAmelCase : Tuple = dummy_past_residuals[:]
_UpperCAmelCase : List[Any] = scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample
_UpperCAmelCase : Dict = new_scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
_UpperCAmelCase : List[Any] = scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample
_UpperCAmelCase : int = new_scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Dict ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.scheduler_classes[0]
_UpperCAmelCase : Any = self.get_scheduler_config(**lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ )
_UpperCAmelCase : Dict = 1_0
_UpperCAmelCase : Any = self.dummy_model()
_UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter
scheduler.set_timesteps(lowerCAmelCase__ )
for i, t in enumerate(scheduler.prk_timesteps ):
_UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Dict = scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
_UpperCAmelCase : List[Any] = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : str = scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample
return sample
def _lowerCAmelCase ( self : Optional[int] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = dict(self.forward_default_kwargs )
_UpperCAmelCase : List[str] = kwargs.pop("num_inference_steps" , lowerCAmelCase__ )
for scheduler_class in self.scheduler_classes:
_UpperCAmelCase : Tuple = self.get_scheduler_config()
_UpperCAmelCase : Tuple = scheduler_class(**lowerCAmelCase__ )
_UpperCAmelCase : str = self.dummy_sample
_UpperCAmelCase : Any = 0.1 * sample
if num_inference_steps is not None and hasattr(lowerCAmelCase__ , "set_timesteps" ):
scheduler.set_timesteps(lowerCAmelCase__ )
elif num_inference_steps is not None and not hasattr(lowerCAmelCase__ , "set_timesteps" ):
_UpperCAmelCase : Any = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
_UpperCAmelCase : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
_UpperCAmelCase : Optional[int] = dummy_past_residuals[:]
_UpperCAmelCase : Optional[Any] = scheduler.step_prk(lowerCAmelCase__ , 0 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample
_UpperCAmelCase : Optional[int] = scheduler.step_prk(lowerCAmelCase__ , 1 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
_UpperCAmelCase : List[Any] = scheduler.step_plms(lowerCAmelCase__ , 0 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample
_UpperCAmelCase : Optional[Any] = scheduler.step_plms(lowerCAmelCase__ , 1 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
for timesteps in [1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0]
_UpperCAmelCase : Dict = self.get_scheduler_config(steps_offset=1 )
_UpperCAmelCase : Dict = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(1_0 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , )
def _lowerCAmelCase ( self : List[Any] ) -> Tuple:
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ):
self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase__ )
def _lowerCAmelCase ( self : int ) -> Tuple:
"""simple docstring"""
for t in [1, 5, 1_0]:
self.check_over_forward(time_step=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ):
self.check_over_forward(num_inference_steps=lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : str = 2_7
for scheduler_class in self.scheduler_classes:
_UpperCAmelCase : Tuple = self.dummy_sample
_UpperCAmelCase : str = 0.1 * sample
_UpperCAmelCase : Tuple = self.get_scheduler_config()
_UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(lowerCAmelCase__ )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
_UpperCAmelCase : int = scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample
def _lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
with self.assertRaises(lowerCAmelCase__ ):
_UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0]
_UpperCAmelCase : Optional[Any] = self.get_scheduler_config()
_UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def _lowerCAmelCase ( self : Any ) -> int:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.full_loop()
_UpperCAmelCase : str = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Union[str, Any] = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1e-2
assert abs(result_mean.item() - 0.2580 ) < 1e-3
def _lowerCAmelCase ( self : str ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Any = self.full_loop(prediction_type="v_prediction" )
_UpperCAmelCase : Dict = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Dict = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1e-2
assert abs(result_mean.item() - 0.0878 ) < 1e-3
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Any = self.full_loop(set_alpha_to_one=lowerCAmelCase__ , beta_start=0.01 )
_UpperCAmelCase : str = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1e-2
assert abs(result_mean.item() - 0.2995 ) < 1e-3
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Tuple = self.full_loop(set_alpha_to_one=lowerCAmelCase__ , beta_start=0.01 )
_UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Union[str, Any] = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1e-2
assert abs(result_mean.item() - 0.2434 ) < 1e-3 | 365 | '''simple docstring'''
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = BarthezTokenizer
UpperCamelCase_ : List[Any] = BarthezTokenizerFast
UpperCamelCase_ : Optional[int] = True
UpperCamelCase_ : Optional[int] = True
def _lowerCAmelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
super().setUp()
_UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer
def _lowerCAmelCase ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = "<pad>"
_UpperCAmelCase : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 )
@require_torch
def _lowerCAmelCase ( self : Any ) -> int:
"""simple docstring"""
_UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."]
_UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2]
_UpperCAmelCase : int = self.tokenizer(
lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
_UpperCAmelCase : str = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
_UpperCAmelCase : Optional[int] = self.get_tokenizer()
_UpperCAmelCase : Optional[int] = self.get_rust_tokenizer()
_UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé."
_UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer()
_UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
_UpperCAmelCase : Tuple = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , ) | 17 | 0 |
'''simple docstring'''
import unittest
from datasets import load_dataset
from transformers import BloomTokenizerFast
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A__ ( UpperCAmelCase_ , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = None
UpperCamelCase_ : Dict = BloomTokenizerFast
UpperCamelCase_ : List[str] = BloomTokenizerFast
UpperCamelCase_ : Optional[Any] = True
UpperCamelCase_ : Dict = False
UpperCamelCase_ : int = """tokenizer_file"""
UpperCamelCase_ : Optional[Any] = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""}
def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
_UpperCAmelCase : Optional[Any] = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" )
tokenizer.save_pretrained(self.tmpdirname )
def _lowerCAmelCase ( self : Optional[int] , **lowerCAmelCase__ : Tuple ) -> str:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase )
def _lowerCAmelCase ( self : int ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Any = self.get_rust_tokenizer()
_UpperCAmelCase : List[Any] = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>''']
_UpperCAmelCase : Dict = [[2_1_7_5, 2_3_7_1_4, 7_3_1_7_3, 1_4_4_2_5_2, 2], [7_7, 1_3_2_6_1_9, 3_4_7_8, 3_6_8, 1_0_9_5_8_6, 3_5_4_3_3, 2]]
_UpperCAmelCase : Optional[int] = tokenizer.batch_encode_plus(__lowercase )['''input_ids''']
self.assertListEqual(__lowercase , __lowercase )
_UpperCAmelCase : Any = tokenizer.batch_decode(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Dict=6 ) -> Optional[Any]:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase )
# tokenizer_r.pad_token = None # Hotfixing padding = None
# Simple input
_UpperCAmelCase : Optional[int] = '''This is a simple input'''
_UpperCAmelCase : Optional[int] = ['''This is a simple input 1''', '''This is a simple input 2''']
_UpperCAmelCase : str = ('''This is a simple input''', '''This is a pair''')
_UpperCAmelCase : List[str] = [
('''This is a simple input 1''', '''This is a simple input 2'''),
('''This is a simple pair 1''', '''This is a simple pair 2'''),
]
# Simple input tests
try:
tokenizer_r.encode(__lowercase , max_length=__lowercase )
tokenizer_r.encode_plus(__lowercase , max_length=__lowercase )
tokenizer_r.batch_encode_plus(__lowercase , max_length=__lowercase )
tokenizer_r.encode(__lowercase , max_length=__lowercase )
tokenizer_r.batch_encode_plus(__lowercase , max_length=__lowercase )
except ValueError:
self.fail("Bloom Tokenizer should be able to deal with padding" )
_UpperCAmelCase : Optional[Any] = None # Hotfixing padding = None
self.assertRaises(__lowercase , tokenizer_r.encode , __lowercase , max_length=__lowercase , padding="max_length" )
# Simple input
self.assertRaises(__lowercase , tokenizer_r.encode_plus , __lowercase , max_length=__lowercase , padding="max_length" )
# Simple input
self.assertRaises(
__lowercase , tokenizer_r.batch_encode_plus , __lowercase , max_length=__lowercase , padding="max_length" , )
# Pair input
self.assertRaises(__lowercase , tokenizer_r.encode , __lowercase , max_length=__lowercase , padding="max_length" )
# Pair input
self.assertRaises(__lowercase , tokenizer_r.encode_plus , __lowercase , max_length=__lowercase , padding="max_length" )
# Pair input
self.assertRaises(
__lowercase , tokenizer_r.batch_encode_plus , __lowercase , max_length=__lowercase , padding="max_length" , )
def _lowerCAmelCase ( self : List[str] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : int = self.get_rust_tokenizer()
_UpperCAmelCase : str = load_dataset("xnli" , "all_languages" , split="test" , streaming=__lowercase )
_UpperCAmelCase : str = next(iter(__lowercase ) )['''premise'''] # pick up one data
_UpperCAmelCase : Tuple = list(sample_data.values() )
_UpperCAmelCase : List[str] = list(map(tokenizer.encode , __lowercase ) )
_UpperCAmelCase : List[str] = [tokenizer.decode(__lowercase , clean_up_tokenization_spaces=__lowercase ) for x in output_tokens]
self.assertListEqual(__lowercase , __lowercase )
def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 )
self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 ) | 366 | '''simple docstring'''
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
__a = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class A__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0}
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : Tuple = batch_size
_UpperCAmelCase : str = num_channels
_UpperCAmelCase : Optional[Any] = image_size
_UpperCAmelCase : Dict = min_resolution
_UpperCAmelCase : str = max_resolution
_UpperCAmelCase : List[Any] = size
_UpperCAmelCase : Union[str, Any] = do_normalize
_UpperCAmelCase : Optional[Any] = do_convert_rgb
_UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6]
_UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6}
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def _lowerCAmelCase ( self : Any ) -> str:
"""simple docstring"""
_UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
_UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self )
@property
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image()
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
_UpperCAmelCase : str = 2_0_4_8
_UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) )
def _lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : Union[str, Any] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
_UpperCAmelCase : str = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(lowerCAmelCase__ ):
_UpperCAmelCase : str = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
_UpperCAmelCase : Any = "Hello"
_UpperCAmelCase : Optional[int] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : List[Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
_UpperCAmelCase : Any = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : int = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Union[str, Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : int ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 )
_UpperCAmelCase : List[Any] = 3
@property
def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : str = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Any = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Tuple = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) | 17 | 0 |
'''simple docstring'''
import webbrowser
from sys import argv
from urllib.parse import parse_qs, quote
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
__a = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: ')))
print('Googling.....')
__a = f'https://www.google.com/search?q={query}&num=100'
__a = requests.get(
url,
headers={'User-Agent': str(UserAgent().random)},
)
try:
__a = (
BeautifulSoup(res.text, 'html.parser')
.find('div', attrs={'class': 'yuRUbf'})
.find('a')
.get('href')
)
except AttributeError:
__a = parse_qs(
BeautifulSoup(res.text, 'html.parser')
.find('div', attrs={'class': 'kCrYT'})
.find('a')
.get('href')
)['url'][0]
webbrowser.open(link) | 367 | '''simple docstring'''
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Tuple = '''time_series_transformer'''
UpperCamelCase_ : Optional[Any] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = prediction_length
_UpperCAmelCase : Optional[Any] = context_length or prediction_length
_UpperCAmelCase : Optional[Any] = distribution_output
_UpperCAmelCase : Union[str, Any] = loss
_UpperCAmelCase : Dict = input_size
_UpperCAmelCase : int = num_time_features
_UpperCAmelCase : Any = lags_sequence
_UpperCAmelCase : Dict = scaling
_UpperCAmelCase : Tuple = num_dynamic_real_features
_UpperCAmelCase : Dict = num_static_real_features
_UpperCAmelCase : Union[str, Any] = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : Optional[int] = cardinality
else:
_UpperCAmelCase : Optional[Any] = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : List[Any] = embedding_dimension
else:
_UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
_UpperCAmelCase : str = num_parallel_samples
# Transformer architecture configuration
_UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features
_UpperCAmelCase : str = d_model
_UpperCAmelCase : Optional[Any] = encoder_attention_heads
_UpperCAmelCase : Dict = decoder_attention_heads
_UpperCAmelCase : List[Any] = encoder_ffn_dim
_UpperCAmelCase : str = decoder_ffn_dim
_UpperCAmelCase : Dict = encoder_layers
_UpperCAmelCase : str = decoder_layers
_UpperCAmelCase : Any = dropout
_UpperCAmelCase : str = attention_dropout
_UpperCAmelCase : List[Any] = activation_dropout
_UpperCAmelCase : Dict = encoder_layerdrop
_UpperCAmelCase : Any = decoder_layerdrop
_UpperCAmelCase : Optional[Any] = activation_function
_UpperCAmelCase : Tuple = init_std
_UpperCAmelCase : List[str] = use_cache
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def _lowerCAmelCase ( self : str ) -> int:
"""simple docstring"""
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
) | 17 | 0 |
'''simple docstring'''
from __future__ import annotations
import collections
import pprint
from pathlib import Path
def __UpperCAmelCase ( a_: Union[str, Any] ):
return "".join(sorted(lowerCAmelCase_ ) )
def __UpperCAmelCase ( a_: Tuple ):
return word_by_signature[signature(lowerCAmelCase_ )]
__a = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8')
__a = sorted({word.strip().lower() for word in data.splitlines()})
__a = collections.defaultdict(list)
for word in word_list:
word_by_signature[signature(word)].append(word)
if __name__ == "__main__":
__a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1}
with open('anagrams.txt', 'w') as file:
file.write('all_anagrams = \n ')
file.write(pprint.pformat(all_anagrams)) | 368 | '''simple docstring'''
import baseaa
def __UpperCAmelCase ( a_: str ):
return baseaa.baaencode(string.encode("utf-8" ) )
def __UpperCAmelCase ( a_: bytes ):
return baseaa.baadecode(a_ ).decode("utf-8" )
if __name__ == "__main__":
__a = 'Hello World!'
__a = baseaa_encode(test)
print(encoded)
__a = baseaa_decode(encoded)
print(decoded) | 17 | 0 |
'''simple docstring'''
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def __UpperCAmelCase ( a_: Optional[Any], a_: Optional[int], a_: int, a_: int, a_: str ):
# Load configuration defined in the metadata file
with open(__SCREAMING_SNAKE_CASE ) as metadata_file:
_UpperCAmelCase : List[Any] = json.load(__SCREAMING_SNAKE_CASE )
_UpperCAmelCase : Dict = LukeConfig(use_entity_aware_attention=__SCREAMING_SNAKE_CASE, **metadata["model_config"] )
# Load in the weights from the checkpoint_path
_UpperCAmelCase : Optional[Any] = torch.load(__SCREAMING_SNAKE_CASE, map_location="cpu" )["module"]
# Load the entity vocab file
_UpperCAmelCase : List[Any] = load_original_entity_vocab(__SCREAMING_SNAKE_CASE )
# add an entry for [MASK2]
_UpperCAmelCase : Any = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
_UpperCAmelCase : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] )
# Add special tokens to the token vocabulary for downstream tasks
_UpperCAmelCase : str = AddedToken("<ent>", lstrip=__SCREAMING_SNAKE_CASE, rstrip=__SCREAMING_SNAKE_CASE )
_UpperCAmelCase : Optional[int] = AddedToken("<ent2>", lstrip=__SCREAMING_SNAKE_CASE, rstrip=__SCREAMING_SNAKE_CASE )
tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" )
tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE )
with open(os.path.join(__SCREAMING_SNAKE_CASE, "tokenizer_config.json" ), "r" ) as f:
_UpperCAmelCase : Optional[int] = json.load(__SCREAMING_SNAKE_CASE )
_UpperCAmelCase : Any = "MLukeTokenizer"
with open(os.path.join(__SCREAMING_SNAKE_CASE, "tokenizer_config.json" ), "w" ) as f:
json.dump(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE )
with open(os.path.join(__SCREAMING_SNAKE_CASE, MLukeTokenizer.vocab_files_names["entity_vocab_file"] ), "w" ) as f:
json.dump(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE )
_UpperCAmelCase : Tuple = MLukeTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE )
# Initialize the embeddings of the special tokens
_UpperCAmelCase : Union[str, Any] = tokenizer.convert_tokens_to_ids(["@"] )[0]
_UpperCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(["#"] )[0]
_UpperCAmelCase : Dict = state_dict["embeddings.word_embeddings.weight"]
_UpperCAmelCase : Optional[int] = word_emb[ent_init_index].unsqueeze(0 )
_UpperCAmelCase : int = word_emb[enta_init_index].unsqueeze(0 )
_UpperCAmelCase : str = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
_UpperCAmelCase : Dict = state_dict[bias_name]
_UpperCAmelCase : Union[str, Any] = decoder_bias[ent_init_index].unsqueeze(0 )
_UpperCAmelCase : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 )
_UpperCAmelCase : Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
_UpperCAmelCase : Optional[int] = f"""encoder.layer.{layer_index}.attention.self."""
_UpperCAmelCase : Tuple = state_dict[prefix + matrix_name]
_UpperCAmelCase : Dict = state_dict[prefix + matrix_name]
_UpperCAmelCase : Optional[Any] = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
_UpperCAmelCase : int = state_dict["entity_embeddings.entity_embeddings.weight"]
_UpperCAmelCase : Dict = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 )
_UpperCAmelCase : str = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
_UpperCAmelCase : List[str] = state_dict["entity_predictions.bias"]
_UpperCAmelCase : Dict = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 )
_UpperCAmelCase : str = torch.cat([entity_prediction_bias, entity_mask_bias] )
_UpperCAmelCase : Optional[int] = LukeForMaskedLM(config=__SCREAMING_SNAKE_CASE ).eval()
state_dict.pop("entity_predictions.decoder.weight" )
state_dict.pop("lm_head.decoder.weight" )
state_dict.pop("lm_head.decoder.bias" )
_UpperCAmelCase : Tuple = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )):
_UpperCAmelCase : Any = state_dict[key]
else:
_UpperCAmelCase : Tuple = state_dict[key]
_UpperCAmelCase : Tuple = model.load_state_dict(__SCREAMING_SNAKE_CASE, strict=__SCREAMING_SNAKE_CASE )
if set(__SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}:
raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" )
if set(__SCREAMING_SNAKE_CASE ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
_UpperCAmelCase : Tuple = MLukeTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE, task="entity_classification" )
_UpperCAmelCase : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
_UpperCAmelCase : Optional[Any] = (0, 9)
_UpperCAmelCase : Optional[int] = tokenizer(__SCREAMING_SNAKE_CASE, entity_spans=[span], return_tensors="pt" )
_UpperCAmelCase : int = model(**__SCREAMING_SNAKE_CASE )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
_UpperCAmelCase : Dict = torch.Size((1, 33, 768) )
_UpperCAmelCase : Optional[int] = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3], __SCREAMING_SNAKE_CASE, atol=1e-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
_UpperCAmelCase : Union[str, Any] = torch.Size((1, 1, 768) )
_UpperCAmelCase : Any = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"""
f""" {expected_shape}""" )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], __SCREAMING_SNAKE_CASE, atol=1e-4 ):
raise ValueError
# Verify masked word/entity prediction
_UpperCAmelCase : Tuple = MLukeTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE )
_UpperCAmelCase : List[Any] = "Tokyo is the capital of <mask>."
_UpperCAmelCase : List[str] = (24, 30)
_UpperCAmelCase : int = tokenizer(__SCREAMING_SNAKE_CASE, entity_spans=[span], return_tensors="pt" )
_UpperCAmelCase : Union[str, Any] = model(**__SCREAMING_SNAKE_CASE )
_UpperCAmelCase : Optional[int] = encoding["input_ids"][0].tolist()
_UpperCAmelCase : int = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) )
_UpperCAmelCase : Optional[Any] = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(__SCREAMING_SNAKE_CASE )
_UpperCAmelCase : Any = outputs.entity_logits[0][0].argmax().item()
_UpperCAmelCase : Union[str, Any] = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print("Saving PyTorch model to {}".format(__SCREAMING_SNAKE_CASE ) )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : Tuple = ["[MASK]", "[PAD]", "[UNK]"]
_UpperCAmelCase : Optional[Any] = [json.loads(__SCREAMING_SNAKE_CASE ) for line in open(__SCREAMING_SNAKE_CASE )]
_UpperCAmelCase : str = {}
for entry in data:
_UpperCAmelCase : Tuple = entry["id"]
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
_UpperCAmelCase : Optional[int] = entity_id
break
_UpperCAmelCase : Optional[Any] = f"""{language}:{entity_name}"""
_UpperCAmelCase : Optional[int] = entity_id
return new_mapping
if __name__ == "__main__":
__a = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.')
parser.add_argument(
'--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.'
)
parser.add_argument(
'--entity_vocab_path',
default=None,
type=str,
help='Path to an entity_vocab.tsv file, containing the entity vocabulary.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.'
)
parser.add_argument(
'--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.'
)
__a = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
) | 369 | '''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class A__ :
"""simple docstring"""
UpperCamelCase_ : Any = XGLMConfig
UpperCamelCase_ : Union[str, Any] = {}
UpperCamelCase_ : Dict = '''gelu'''
def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : str = batch_size
_UpperCAmelCase : str = seq_length
_UpperCAmelCase : int = is_training
_UpperCAmelCase : List[Any] = use_input_mask
_UpperCAmelCase : Optional[int] = use_labels
_UpperCAmelCase : str = vocab_size
_UpperCAmelCase : int = d_model
_UpperCAmelCase : Tuple = num_hidden_layers
_UpperCAmelCase : Tuple = num_attention_heads
_UpperCAmelCase : Tuple = ffn_dim
_UpperCAmelCase : Any = activation_function
_UpperCAmelCase : Union[str, Any] = activation_dropout
_UpperCAmelCase : Union[str, Any] = attention_dropout
_UpperCAmelCase : Any = max_position_embeddings
_UpperCAmelCase : int = initializer_range
_UpperCAmelCase : Any = None
_UpperCAmelCase : int = 0
_UpperCAmelCase : Union[str, Any] = 2
_UpperCAmelCase : Tuple = 1
def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : int = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_UpperCAmelCase : Any = None
if self.use_input_mask:
_UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : Optional[Any] = self.get_config()
_UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , )
def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
_UpperCAmelCase : Optional[int] = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else ()
UpperCamelCase_ : Tuple = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
UpperCamelCase_ : Dict = False
UpperCamelCase_ : List[Any] = False
UpperCamelCase_ : Tuple = False
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Dict = TFXGLMModelTester(self )
_UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 )
def _lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowerCAmelCase ( self : Union[str, Any] ) -> int:
"""simple docstring"""
super().test_resize_token_embeddings()
@require_tf
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1]
# fmt: on
_UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
_UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" )
_UpperCAmelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
_UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] )
_UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[int] = "left"
# use different length sentences to test batching
_UpperCAmelCase : Tuple = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
_UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = inputs["input_ids"]
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 )
_UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids
_UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] ) | 17 | 0 |
'''simple docstring'''
def __UpperCAmelCase ( a_: Optional[int] ):
_UpperCAmelCase : Tuple = [0] * len(__lowerCAmelCase )
_UpperCAmelCase : List[str] = []
_UpperCAmelCase : Optional[Any] = [1] * len(__lowerCAmelCase )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(__lowerCAmelCase ) ):
if indegree[i] == 0:
queue.append(__lowerCAmelCase )
while queue:
_UpperCAmelCase : Union[str, Any] = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
_UpperCAmelCase : Optional[int] = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(__lowerCAmelCase )
print(max(__lowerCAmelCase ) )
# Adjacency list of Graph
__a = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 370 | '''simple docstring'''
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"files", [
["full:README.md", "dataset_infos.json"],
["empty:README.md", "dataset_infos.json"],
["dataset_infos.json"],
["full:README.md"],
], )
def __UpperCAmelCase ( a_: Tuple, a_: Any ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" )
if "full:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("---\ndataset_info:\n dataset_size: 42\n---" )
if "empty:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f:
f.write("{\"default\": {\"dataset_size\": 42}}" )
_UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
"dataset_info", [
DatasetInfo(),
DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ),
], )
def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ):
_UpperCAmelCase : Tuple = str(a_ )
dataset_info.write_to_directory(a_ )
_UpperCAmelCase : Any = DatasetInfo.from_directory(a_ )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(a_, "dataset_info.json" ) )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = DatasetInfo(
description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, )
_UpperCAmelCase : Tuple = dataset_info._to_yaml_dict()
assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) )
_UpperCAmelCase : List[Any] = yaml.safe_dump(a_ )
_UpperCAmelCase : Optional[int] = yaml.safe_load(a_ )
assert dataset_info_yaml_dict == reloaded
def __UpperCAmelCase ( ):
_UpperCAmelCase : str = DatasetInfo()
_UpperCAmelCase : List[str] = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"dataset_infos_dict", [
DatasetInfosDict(),
DatasetInfosDict({"default": DatasetInfo()} ),
DatasetInfosDict({"my_config_name": DatasetInfo()} ),
DatasetInfosDict(
{
"default": DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, )
} ),
DatasetInfosDict(
{
"v1": DatasetInfo(dataset_size=42 ),
"v2": DatasetInfo(dataset_size=1_337 ),
} ),
], )
def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ):
_UpperCAmelCase : Union[str, Any] = str(a_ )
dataset_infos_dict.write_to_directory(a_ )
_UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
_UpperCAmelCase : Optional[int] = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
_UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(a_, "README.md" ) ) | 17 | 0 |
'''simple docstring'''
def __UpperCAmelCase ( a_: List[str] ):
if not grid or not grid[0]:
raise TypeError("The grid does not contain the appropriate information" )
for cell_n in range(1, len(grid[0] ) ):
grid[0][cell_n] += grid[0][cell_n - 1]
_UpperCAmelCase : int = grid[0]
for row_n in range(1, len(a_ ) ):
_UpperCAmelCase : Tuple = grid[row_n]
_UpperCAmelCase : int = fill_row(a_, a_ )
_UpperCAmelCase : List[Any] = grid[row_n]
return grid[-1][-1]
def __UpperCAmelCase ( a_: str, a_: Dict ):
current_row[0] += row_above[0]
for cell_n in range(1, len(a_ ) ):
current_row[cell_n] += min(current_row[cell_n - 1], row_above[cell_n] )
return current_row
if __name__ == "__main__":
import doctest
doctest.testmod() | 371 | '''simple docstring'''
from math import factorial
def __UpperCAmelCase ( a_: int = 100 ):
return sum(map(a_, str(factorial(a_ ) ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip()))) | 17 | 0 |
'''simple docstring'''
import unittest
from knapsack import knapsack as k
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[Any] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Dict = 0
_UpperCAmelCase : List[str] = [0]
_UpperCAmelCase : Optional[Any] = [0]
_UpperCAmelCase : List[str] = len(lowerCAmelCase__ )
self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 0 )
_UpperCAmelCase : List[Any] = [6_0]
_UpperCAmelCase : Optional[Any] = [1_0]
_UpperCAmelCase : int = len(lowerCAmelCase__ )
self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 0 )
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : int = 3
_UpperCAmelCase : Optional[Any] = [1, 2, 3]
_UpperCAmelCase : List[Any] = [3, 2, 1]
_UpperCAmelCase : Optional[Any] = len(lowerCAmelCase__ )
self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 5 )
def _lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = 5_0
_UpperCAmelCase : Union[str, Any] = [6_0, 1_0_0, 1_2_0]
_UpperCAmelCase : Union[str, Any] = [1_0, 2_0, 3_0]
_UpperCAmelCase : List[str] = len(lowerCAmelCase__ )
self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 2_2_0 )
if __name__ == "__main__":
unittest.main() | 350 | '''simple docstring'''
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
__a = (3, 9, -11, 0, 7, 5, 1, -1)
__a = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : int
UpperCamelCase_ : Node | None
class A__ :
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None:
"""simple docstring"""
_UpperCAmelCase : Node | None = None
for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ):
_UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head )
def __iter__( self : int ) -> Iterator[int]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.head
while node:
yield node.data
_UpperCAmelCase : List[str] = node.next_node
def __len__( self : Any ) -> int:
"""simple docstring"""
return sum(1 for _ in self )
def __str__( self : Union[str, Any] ) -> str:
"""simple docstring"""
return " -> ".join([str(lowerCAmelCase__ ) for node in self] )
def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ):
return SortedLinkedList(list(a_ ) + list(a_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
__a = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even))) | 17 | 0 |
'''simple docstring'''
from __future__ import annotations
import math
__a = '2020.9.26'
__a = 'xcodz-dot, cclaus, dhruvmanila'
def __UpperCAmelCase ( a_: float, a_: float, a_: float, a_: float, a_: float ):
if not all(isinstance(a_, (float, int) ) for val in locals().values() ):
_UpperCAmelCase : str = f"""Input values must either be float or int: {list(locals().values() )}"""
raise TypeError(a_ )
_UpperCAmelCase : Optional[int] = ((x * distance) / (z + distance)) * scale
_UpperCAmelCase : Optional[Any] = ((y * distance) / (z + distance)) * scale
return projected_x, projected_y
def __UpperCAmelCase ( a_: float, a_: float, a_: float, a_: str, a_: float ):
if not isinstance(a_, a_ ):
raise TypeError("Axis must be a str" )
_UpperCAmelCase : Optional[int] = locals()
del input_variables["axis"]
if not all(isinstance(a_, (float, int) ) for val in input_variables.values() ):
_UpperCAmelCase : str = (
"Input values except axis must either be float or int: "
f"""{list(input_variables.values() )}"""
)
raise TypeError(a_ )
_UpperCAmelCase : Optional[Any] = (angle % 360) / 450 * 180 / math.pi
if axis == "z":
_UpperCAmelCase : Optional[int] = x * math.cos(a_ ) - y * math.sin(a_ )
_UpperCAmelCase : int = y * math.cos(a_ ) + x * math.sin(a_ )
_UpperCAmelCase : List[str] = z
elif axis == "x":
_UpperCAmelCase : str = y * math.cos(a_ ) - z * math.sin(a_ )
_UpperCAmelCase : Union[str, Any] = z * math.cos(a_ ) + y * math.sin(a_ )
_UpperCAmelCase : Union[str, Any] = x
elif axis == "y":
_UpperCAmelCase : Tuple = x * math.cos(a_ ) - z * math.sin(a_ )
_UpperCAmelCase : Optional[int] = z * math.cos(a_ ) + x * math.sin(a_ )
_UpperCAmelCase : List[str] = y
else:
raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'" )
return new_x, new_y, new_z
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f'{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }')
print(f'{rotate(1.0, 2.0, 3.0, "y", 90.0) = }') | 351 | '''simple docstring'''
def __UpperCAmelCase ( a_: str ):
if not all(char in "01" for char in bin_string ):
raise ValueError("Non-binary value was passed to the function" )
if not bin_string:
raise ValueError("Empty string was passed to the function" )
_UpperCAmelCase : Optional[Any] = ""
while len(a_ ) % 3 != 0:
_UpperCAmelCase : List[Any] = "0" + bin_string
_UpperCAmelCase : Dict = [
bin_string[index : index + 3]
for index in range(len(a_ ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
_UpperCAmelCase : Optional[Any] = 0
for index, val in enumerate(a_ ):
oct_val += int(2 ** (2 - index) * int(a_ ) )
oct_string += str(a_ )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod() | 17 | 0 |
'''simple docstring'''
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__a = logging.get_logger(__name__)
__a = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
__a = {
'tokenizer_file': {
'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json',
},
}
__a = {
'gpt-neox-20b': 2_048,
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[int] = VOCAB_FILES_NAMES
UpperCamelCase_ : str = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ : List[str] = ['''input_ids''', '''attention_mask''']
def __init__( self : List[Any] , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Tuple="<|endoftext|>" , lowerCAmelCase__ : str="<|endoftext|>" , lowerCAmelCase__ : Dict="<|endoftext|>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Union[str, Any] , ) -> Any:
"""simple docstring"""
super().__init__(
lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , )
_UpperCAmelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , lowerCAmelCase__ ) != add_prefix_space:
_UpperCAmelCase : Tuple = getattr(lowerCAmelCase__ , pre_tok_state.pop("type" ) )
_UpperCAmelCase : List[str] = add_prefix_space
_UpperCAmelCase : Optional[Any] = pre_tok_class(**lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = add_prefix_space
def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ )
return tuple(lowerCAmelCase__ )
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : "Conversation" ) -> List[int]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) + [self.eos_token_id] )
if len(lowerCAmelCase__ ) > self.model_max_length:
_UpperCAmelCase : Any = input_ids[-self.model_max_length :]
return input_ids | 352 | '''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def __UpperCAmelCase ( a_: str ):
for param in module.parameters():
_UpperCAmelCase : Any = False
def __UpperCAmelCase ( ):
_UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_UpperCAmelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : int = plt.imshow(a_ )
fig.axes.get_xaxis().set_visible(a_ )
fig.axes.get_yaxis().set_visible(a_ )
plt.show()
def __UpperCAmelCase ( ):
_UpperCAmelCase : Dict = datetime.now()
_UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" )
return timestamp | 17 | 0 |
'''simple docstring'''
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : int = ['''image_processor''', '''tokenizer''']
UpperCamelCase_ : int = '''AutoImageProcessor'''
UpperCamelCase_ : str = '''AutoTokenizer'''
def __init__( self : str , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Tuple=None , **lowerCAmelCase__ : Tuple ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , lowerCAmelCase__ , )
_UpperCAmelCase : Tuple = kwargs.pop("feature_extractor" )
_UpperCAmelCase : List[Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = self.image_processor
_UpperCAmelCase : Any = False
def __call__( self : Union[str, Any] , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : List[Any] ) -> int:
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor(*lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = kwargs.pop("images" , lowerCAmelCase__ )
_UpperCAmelCase : Tuple = kwargs.pop("text" , lowerCAmelCase__ )
if len(lowerCAmelCase__ ) > 0:
_UpperCAmelCase : Dict = args[0]
_UpperCAmelCase : str = args[1:]
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process." )
if images is not None:
_UpperCAmelCase : Optional[Any] = self.image_processor(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ )
if text is not None:
_UpperCAmelCase : List[str] = self.tokenizer(lowerCAmelCase__ , **lowerCAmelCase__ )
if text is None:
return inputs
elif images is None:
return encodings
else:
_UpperCAmelCase : Optional[Any] = encodings["input_ids"]
return inputs
def _lowerCAmelCase ( self : str , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : int ) -> Optional[int]:
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ )
def _lowerCAmelCase ( self : Union[str, Any] , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Optional[Any] ) -> Any:
"""simple docstring"""
return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ )
@contextmanager
def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
warnings.warn(
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
"labels by using the argument `text` of the regular `__call__` method (either in the same call as "
"your images inputs, or in a separate call." )
_UpperCAmelCase : Optional[Any] = True
_UpperCAmelCase : List[Any] = self.tokenizer
yield
_UpperCAmelCase : Union[str, Any] = self.image_processor
_UpperCAmelCase : int = False
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : List[Any]=None ) -> str:
"""simple docstring"""
if added_vocab is None:
_UpperCAmelCase : str = self.tokenizer.get_added_vocab()
_UpperCAmelCase : int = {}
while tokens:
_UpperCAmelCase : Union[str, Any] = re.search(R"<s_(.*?)>" , lowerCAmelCase__ , re.IGNORECASE )
if start_token is None:
break
_UpperCAmelCase : Union[str, Any] = start_token.group(1 )
_UpperCAmelCase : Union[str, Any] = re.search(RF"""</s_{key}>""" , lowerCAmelCase__ , re.IGNORECASE )
_UpperCAmelCase : Tuple = start_token.group()
if end_token is None:
_UpperCAmelCase : Any = tokens.replace(lowerCAmelCase__ , "" )
else:
_UpperCAmelCase : Any = end_token.group()
_UpperCAmelCase : Tuple = re.escape(lowerCAmelCase__ )
_UpperCAmelCase : Any = re.escape(lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , lowerCAmelCase__ , re.IGNORECASE )
if content is not None:
_UpperCAmelCase : Union[str, Any] = content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
_UpperCAmelCase : Optional[Any] = self.tokenajson(lowerCAmelCase__ , is_inner_value=lowerCAmelCase__ , added_vocab=lowerCAmelCase__ )
if value:
if len(lowerCAmelCase__ ) == 1:
_UpperCAmelCase : str = value[0]
_UpperCAmelCase : Tuple = value
else: # leaf nodes
_UpperCAmelCase : List[Any] = []
for leaf in content.split(R"<sep/>" ):
_UpperCAmelCase : Union[str, Any] = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
_UpperCAmelCase : Tuple = leaf[1:-2] # for categorical special tokens
output[key].append(lowerCAmelCase__ )
if len(output[key] ) == 1:
_UpperCAmelCase : Tuple = output[key][0]
_UpperCAmelCase : Tuple = tokens[tokens.find(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:] , is_inner_value=lowerCAmelCase__ , added_vocab=lowerCAmelCase__ )
if len(lowerCAmelCase__ ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCAmelCase__ , )
return self.image_processor_class
@property
def _lowerCAmelCase ( self : Dict ) -> Dict:
"""simple docstring"""
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCAmelCase__ , )
return self.image_processor | 353 | '''simple docstring'''
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[int] = (EulerDiscreteScheduler,)
UpperCamelCase_ : Tuple = 10
def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = {
"num_train_timesteps": 1_1_0_0,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**lowerCAmelCase__ )
return config
def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Any ) -> List[str]:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] ) -> List[str]:
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.scheduler_classes[0]
_UpperCAmelCase : int = self.get_scheduler_config()
_UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
_UpperCAmelCase : int = torch.manual_seed(0 )
_UpperCAmelCase : Any = self.dummy_model()
_UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma
_UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
_UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = output.prev_sample
_UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Any = self.scheduler_classes[0]
_UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" )
_UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
_UpperCAmelCase : str = torch.manual_seed(0 )
_UpperCAmelCase : Optional[Any] = self.dummy_model()
_UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
_UpperCAmelCase : Tuple = sample.to(lowerCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
_UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = output.prev_sample
_UpperCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 0.0002 ) < 1e-2
assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3
def _lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.scheduler_classes[0]
_UpperCAmelCase : List[Any] = self.get_scheduler_config()
_UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
_UpperCAmelCase : str = self.dummy_model()
_UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_UpperCAmelCase : str = sample.to(lowerCAmelCase__ )
for t in scheduler.timesteps:
_UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : int = output.prev_sample
_UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.scheduler_classes[0]
_UpperCAmelCase : int = self.get_scheduler_config()
_UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
_UpperCAmelCase : List[str] = self.dummy_model()
_UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_UpperCAmelCase : Optional[int] = sample.to(lowerCAmelCase__ )
for t in scheduler.timesteps:
_UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = output.prev_sample
_UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2
assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3 | 17 | 0 |
'''simple docstring'''
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class A__ ( unittest.TestCase , UpperCamelCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = load_tool("text-classification" )
self.tool.setup()
_UpperCAmelCase : Any = load_tool("text-classification" , remote=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.tool("That's quite cool" , ["positive", "negative"] )
self.assertEqual(lowerCAmelCase__ , "positive" )
def _lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.remote_tool("That's quite cool" , ["positive", "negative"] )
self.assertEqual(lowerCAmelCase__ , "positive" )
def _lowerCAmelCase ( self : str ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.tool(text="That's quite cool" , labels=["positive", "negative"] )
self.assertEqual(lowerCAmelCase__ , "positive" )
def _lowerCAmelCase ( self : List[Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] )
self.assertEqual(lowerCAmelCase__ , "positive" ) | 354 | '''simple docstring'''
def __UpperCAmelCase ( a_: int, a_: int ):
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
_UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) )
return "0b" + "".join(
str(int(char_a == "1" and char_b == "1" ) )
for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class A__ :
"""simple docstring"""
UpperCamelCase_ : Tuple = PegasusConfig
UpperCamelCase_ : str = {}
UpperCamelCase_ : str = '''gelu'''
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=1_3 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : List[Any]=9_9 , lowerCAmelCase__ : int=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : Optional[int]=3_7 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Dict=4_0 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : int=1 , lowerCAmelCase__ : List[str]=0 , ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = parent
_UpperCAmelCase : Tuple = batch_size
_UpperCAmelCase : Any = seq_length
_UpperCAmelCase : Optional[int] = is_training
_UpperCAmelCase : str = use_labels
_UpperCAmelCase : int = vocab_size
_UpperCAmelCase : List[str] = hidden_size
_UpperCAmelCase : int = num_hidden_layers
_UpperCAmelCase : Optional[int] = num_attention_heads
_UpperCAmelCase : Any = intermediate_size
_UpperCAmelCase : List[Any] = hidden_dropout_prob
_UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
_UpperCAmelCase : Any = max_position_embeddings
_UpperCAmelCase : List[Any] = eos_token_id
_UpperCAmelCase : str = pad_token_id
_UpperCAmelCase : Optional[int] = bos_token_id
def _lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_UpperCAmelCase : Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 )
_UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase : Any = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_UpperCAmelCase : List[str] = prepare_pegasus_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
return config, inputs_dict
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : str ) -> int:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = TFPegasusModel(config=lowerCAmelCase__ ).get_decoder()
_UpperCAmelCase : Optional[int] = inputs_dict["input_ids"]
_UpperCAmelCase : List[Any] = input_ids[:1, :]
_UpperCAmelCase : Union[str, Any] = inputs_dict["attention_mask"][:1, :]
_UpperCAmelCase : Union[str, Any] = inputs_dict["head_mask"]
_UpperCAmelCase : int = 1
# first forward pass
_UpperCAmelCase : int = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
_UpperCAmelCase : Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 )
_UpperCAmelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_UpperCAmelCase : Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0]
_UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_UpperCAmelCase : Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_UpperCAmelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx]
_UpperCAmelCase : int = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1e-3 )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Tuple, a_: List[Any], a_: Optional[Any]=None, a_: Any=None, a_: Tuple=None, a_: Optional[int]=None, a_: Tuple=None, ):
if attention_mask is None:
_UpperCAmelCase : str = tf.cast(tf.math.not_equal(a_, config.pad_token_id ), tf.inta )
if decoder_attention_mask is None:
_UpperCAmelCase : str = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ),
], axis=-1, )
if head_mask is None:
_UpperCAmelCase : Optional[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_UpperCAmelCase : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_UpperCAmelCase : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Tuple = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
UpperCamelCase_ : List[str] = (TFPegasusForConditionalGeneration,) if is_tf_available() else ()
UpperCamelCase_ : int = (
{
'''conversational''': TFPegasusForConditionalGeneration,
'''feature-extraction''': TFPegasusModel,
'''summarization''': TFPegasusForConditionalGeneration,
'''text2text-generation''': TFPegasusForConditionalGeneration,
'''translation''': TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
UpperCamelCase_ : Optional[int] = True
UpperCamelCase_ : int = False
UpperCamelCase_ : Dict = False
def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = TFPegasusModelTester(self )
_UpperCAmelCase : List[str] = ConfigTester(self , config_class=lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__ )
@require_sentencepiece
@require_tokenizers
@require_tf
class A__ ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = [
''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''',
''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''',
]
UpperCamelCase_ : List[str] = [
'''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to'''
''' reduce the risk of wildfires.''',
'''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''',
] # differs slightly from pytorch, likely due to numerical differences in linear layers
UpperCamelCase_ : str = '''google/pegasus-xsum'''
@cached_property
def _lowerCAmelCase ( self : str ) -> Optional[int]:
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _lowerCAmelCase ( self : int , **lowerCAmelCase__ : Tuple ) -> int:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.translate_src_text(**lowerCAmelCase__ )
assert self.expected_text == generated_words
def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : int = self.tokenizer(self.src_text , **lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="tf" )
_UpperCAmelCase : List[str] = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowerCAmelCase__ , )
_UpperCAmelCase : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase__ )
return generated_words
@slow
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
self._assert_generated_batch_equal_expected()
| 355 | '''simple docstring'''
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def __UpperCAmelCase ( a_: int ):
# A local function to see if a dot lands in the circle.
def is_in_circle(a_: float, a_: float ) -> bool:
_UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
_UpperCAmelCase : str = mean(
int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) )
for _ in range(a_ ) )
# The ratio of the area for circle to square is pi/4.
_UpperCAmelCase : Optional[int] = proportion * 4
print(f"""The estimated value of pi is {pi_estimate}""" )
print(f"""The numpy value of pi is {pi}""" )
print(f"""The total error is {abs(pi - pi_estimate )}""" )
def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ):
return mean(
function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value)
def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ):
def identity_function(a_: float ) -> float:
return x
_UpperCAmelCase : Union[str, Any] = area_under_curve_estimator(
a_, a_, a_, a_ )
_UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2
print("******************" )
print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {expected_value}""" )
print(f"""Total error is {abs(estimated_value - expected_value )}""" )
print("******************" )
def __UpperCAmelCase ( a_: int ):
def function_to_integrate(a_: float ) -> float:
return sqrt(4.0 - x * x )
_UpperCAmelCase : List[str] = area_under_curve_estimator(
a_, a_, 0.0, 2.0 )
print("******************" )
print("Estimating pi using area_under_curve_estimator" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {pi}""" )
print(f"""Total error is {abs(estimated_value - pi )}""" )
print("******************" )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 0 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class A__ ( metaclass=UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[int] = ['''keras_nlp''']
def __init__( self : Tuple , *lowerCAmelCase__ : str , **lowerCAmelCase__ : int ) -> List[str]:
"""simple docstring"""
requires_backends(self , ["keras_nlp"] ) | 356 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__a = {
'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'],
'processing_layoutlmv2': ['LayoutLMv2Processor'],
'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['LayoutLMv2TokenizerFast']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['LayoutLMv2FeatureExtractor']
__a = ['LayoutLMv2ImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv2ForQuestionAnswering',
'LayoutLMv2ForSequenceClassification',
'LayoutLMv2ForTokenClassification',
'LayoutLMv2Layer',
'LayoutLMv2Model',
'LayoutLMv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 17 | 0 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class A__ :
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=1_3 , lowerCAmelCase__ : int=7 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Any=9_9 , lowerCAmelCase__ : Optional[int]=3_2 , lowerCAmelCase__ : List[Any]=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Union[str, Any]=3_7 , lowerCAmelCase__ : Optional[int]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=5_1_2 , lowerCAmelCase__ : Optional[int]=1_6 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : Any=3 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Dict=None , ) -> Any:
"""simple docstring"""
_UpperCAmelCase : int = parent
_UpperCAmelCase : Union[str, Any] = batch_size
_UpperCAmelCase : Optional[int] = seq_length
_UpperCAmelCase : Union[str, Any] = is_training
_UpperCAmelCase : Any = use_input_mask
_UpperCAmelCase : List[str] = use_token_type_ids
_UpperCAmelCase : Optional[Any] = use_labels
_UpperCAmelCase : Tuple = vocab_size
_UpperCAmelCase : List[str] = hidden_size
_UpperCAmelCase : Union[str, Any] = num_hidden_layers
_UpperCAmelCase : int = num_attention_heads
_UpperCAmelCase : Dict = intermediate_size
_UpperCAmelCase : Optional[int] = hidden_act
_UpperCAmelCase : Tuple = hidden_dropout_prob
_UpperCAmelCase : str = attention_probs_dropout_prob
_UpperCAmelCase : List[Any] = max_position_embeddings
_UpperCAmelCase : str = type_vocab_size
_UpperCAmelCase : int = type_sequence_label_size
_UpperCAmelCase : List[Any] = initializer_range
_UpperCAmelCase : List[str] = num_labels
_UpperCAmelCase : int = num_choices
_UpperCAmelCase : str = scope
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase : str = None
if self.use_input_mask:
_UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : Optional[int] = None
if self.use_token_type_ids:
_UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCAmelCase : List[Any] = None
_UpperCAmelCase : Optional[Any] = None
_UpperCAmelCase : Optional[int] = None
if self.use_labels:
_UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices )
_UpperCAmelCase : Tuple = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCAmelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , )
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : int = LlamaModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Optional[int] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str , ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : int = True
_UpperCAmelCase : Union[str, Any] = LlamaModel(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : List[Any] = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , )
_UpperCAmelCase : Dict = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , )
_UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : str = LlamaForCausalLM(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = True
_UpperCAmelCase : Dict = True
_UpperCAmelCase : Union[str, Any] = LlamaForCausalLM(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
# first forward pass
_UpperCAmelCase : List[Any] = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ , )
_UpperCAmelCase : Tuple = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
_UpperCAmelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size )
_UpperCAmelCase : str = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
_UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 )
_UpperCAmelCase : List[str] = torch.cat([input_mask, next_mask] , dim=-1 )
_UpperCAmelCase : List[Any] = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0]
_UpperCAmelCase : Dict = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0]
# select random slice
_UpperCAmelCase : int = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_UpperCAmelCase : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
_UpperCAmelCase : List[Any] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) )
def _lowerCAmelCase ( self : int ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs()
(
_UpperCAmelCase
) : int = config_and_inputs
_UpperCAmelCase : int = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Tuple = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
UpperCamelCase_ : Any = (LlamaForCausalLM,) if is_torch_available() else ()
UpperCamelCase_ : Dict = (
{
'''feature-extraction''': LlamaModel,
'''text-classification''': LlamaForSequenceClassification,
'''text-generation''': LlamaForCausalLM,
'''zero-shot''': LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCamelCase_ : Any = False
UpperCamelCase_ : Optional[int] = False
def _lowerCAmelCase ( self : Optional[int] ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Any = LlamaModelTester(self )
_UpperCAmelCase : Tuple = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 )
def _lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_UpperCAmelCase : Tuple = type
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase : Tuple = 3
_UpperCAmelCase : Union[str, Any] = input_dict["input_ids"]
_UpperCAmelCase : Dict = input_ids.ne(1 ).to(lowerCAmelCase__ )
_UpperCAmelCase : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
_UpperCAmelCase : Tuple = LlamaForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowerCAmelCase ( self : Any ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase : List[Any] = 3
_UpperCAmelCase : str = "single_label_classification"
_UpperCAmelCase : Optional[Any] = input_dict["input_ids"]
_UpperCAmelCase : Optional[int] = input_ids.ne(1 ).to(lowerCAmelCase__ )
_UpperCAmelCase : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
_UpperCAmelCase : Tuple = LlamaForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowerCAmelCase ( self : str ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase : List[str] = 3
_UpperCAmelCase : Union[str, Any] = "multi_label_classification"
_UpperCAmelCase : str = input_dict["input_ids"]
_UpperCAmelCase : List[str] = input_ids.ne(1 ).to(lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
_UpperCAmelCase : Union[str, Any] = LlamaForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : List[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("LLaMA buffers include complex numbers, which breaks this test" )
def _lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
pass
@parameterized.expand([("linear",), ("dynamic",)] )
def _lowerCAmelCase ( self : str , lowerCAmelCase__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase : Optional[int] = ids_tensor([1, 1_0] , config.vocab_size )
_UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
_UpperCAmelCase : List[Any] = LlamaModel(lowerCAmelCase__ )
original_model.to(lowerCAmelCase__ )
original_model.eval()
_UpperCAmelCase : Any = original_model(lowerCAmelCase__ ).last_hidden_state
_UpperCAmelCase : Tuple = original_model(lowerCAmelCase__ ).last_hidden_state
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
_UpperCAmelCase : Union[str, Any] = {"type": scaling_type, "factor": 10.0}
_UpperCAmelCase : Any = LlamaModel(lowerCAmelCase__ )
scaled_model.to(lowerCAmelCase__ )
scaled_model.eval()
_UpperCAmelCase : Any = scaled_model(lowerCAmelCase__ ).last_hidden_state
_UpperCAmelCase : List[Any] = scaled_model(lowerCAmelCase__ ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-5 ) )
@require_torch
class A__ ( unittest.TestCase ):
"""simple docstring"""
@unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" )
@slow
def _lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8]
_UpperCAmelCase : Dict = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" )
_UpperCAmelCase : int = model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
_UpperCAmelCase : Any = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] )
torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase__ , atol=1e-2 , rtol=1e-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
_UpperCAmelCase : List[str] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :3_0] , lowerCAmelCase__ , atol=1e-5 , rtol=1e-5 )
@unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" )
@slow
def _lowerCAmelCase ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
_UpperCAmelCase : List[Any] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8]
_UpperCAmelCase : Tuple = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" )
_UpperCAmelCase : Dict = model(torch.tensor(lowerCAmelCase__ ) )
# Expected mean on dim = -1
_UpperCAmelCase : int = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] )
torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase__ , atol=1e-2 , rtol=1e-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
_UpperCAmelCase : Dict = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] )
# fmt: on
torch.testing.assert_close(out[0, 0, :3_0] , lowerCAmelCase__ , atol=1e-5 , rtol=1e-5 )
@unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" )
@slow
def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8]
_UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" )
_UpperCAmelCase : Optional[int] = model(torch.tensor(lowerCAmelCase__ ) )
# Expected mean on dim = -1
_UpperCAmelCase : Union[str, Any] = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] )
torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase__ , atol=1e-2 , rtol=1e-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
_UpperCAmelCase : List[str] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase__ , atol=1e-2 , rtol=1e-2 )
@unittest.skip(
"Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" )
@slow
def _lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : List[str] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8]
_UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" )
_UpperCAmelCase : int = model(torch.tensor(lowerCAmelCase__ ) )
_UpperCAmelCase : List[Any] = torch.tensor(
[[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase__ , atol=1e-2 , rtol=1e-2 )
# fmt: off
_UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] )
# fmt: on
torch.testing.assert_close(out[0, 0, :3_0] , lowerCAmelCase__ , atol=1e-5 , rtol=1e-5 )
@unittest.skip("Model is curently gated" )
@slow
def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : str = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi"
_UpperCAmelCase : str = "Simply put, the theory of relativity states that "
_UpperCAmelCase : Union[str, Any] = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" )
_UpperCAmelCase : List[str] = tokenizer.encode(lowerCAmelCase__ , return_tensors="pt" )
_UpperCAmelCase : Optional[Any] = LlamaForCausalLM.from_pretrained(
"meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=lowerCAmelCase__ )
# greedy generation outputs
_UpperCAmelCase : Optional[int] = model.generate(lowerCAmelCase__ , max_new_tokens=6_4 , top_p=lowerCAmelCase__ , temperature=1 , do_sample=lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) | 357 | '''simple docstring'''
def __UpperCAmelCase ( a_: int, a_: int ):
if not isinstance(a_, a_ ):
raise ValueError("iterations must be defined as integers" )
if not isinstance(a_, a_ ) or not number >= 1:
raise ValueError(
"starting number must be\n and integer and be more than 0" )
if not iterations >= 1:
raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" )
_UpperCAmelCase : List[str] = ""
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(a_ )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 0 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class A__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int=1_0_0 , lowerCAmelCase__ : Any=1_3 , lowerCAmelCase__ : Union[str, Any]=3_0 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : int=3_2 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Tuple=3_7 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Optional[int]=1_0 , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : List[Any]=3 , ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : str = parent
_UpperCAmelCase : List[Any] = vocab_size
_UpperCAmelCase : Optional[int] = batch_size
_UpperCAmelCase : List[Any] = image_size
_UpperCAmelCase : int = patch_size
_UpperCAmelCase : str = num_channels
_UpperCAmelCase : str = is_training
_UpperCAmelCase : Union[str, Any] = use_labels
_UpperCAmelCase : Optional[Any] = hidden_size
_UpperCAmelCase : List[Any] = num_hidden_layers
_UpperCAmelCase : List[Any] = num_attention_heads
_UpperCAmelCase : List[str] = intermediate_size
_UpperCAmelCase : Tuple = hidden_act
_UpperCAmelCase : Union[str, Any] = hidden_dropout_prob
_UpperCAmelCase : str = attention_probs_dropout_prob
_UpperCAmelCase : Any = type_sequence_label_size
_UpperCAmelCase : str = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_UpperCAmelCase : int = (image_size // patch_size) ** 2
_UpperCAmelCase : Dict = num_patches + 1
def _lowerCAmelCase ( self : int ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase : List[str] = None
if self.use_labels:
_UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase : str = BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , )
return config, pixel_values, labels
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = FlaxBeitModel(config=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = FlaxBeitForMaskedImageModeling(config=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.type_sequence_label_size
_UpperCAmelCase : Union[str, Any] = FlaxBeitForImageClassification(config=lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_UpperCAmelCase : str = 1
_UpperCAmelCase : str = FlaxBeitForImageClassification(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ )
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
(
_UpperCAmelCase
) : Union[str, Any] = config_and_inputs
_UpperCAmelCase : str = {"pixel_values": pixel_values}
return config, inputs_dict
@require_flax
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Any = (
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def _lowerCAmelCase ( self : Any ) -> None:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = FlaxBeitModelTester(self )
_UpperCAmelCase : str = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=3_7 )
def _lowerCAmelCase ( self : Tuple ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : List[Any] ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase : List[str] = model_class(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase : Optional[int] = [*signature.parameters.keys()]
_UpperCAmelCase : List[str] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_UpperCAmelCase : Optional[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = model_class(lowerCAmelCase__ )
@jax.jit
def model_jitted(lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Optional[int] ):
return model(pixel_values=lowerCAmelCase__ , **lowerCAmelCase__ )
with self.subTest("JIT Enabled" ):
_UpperCAmelCase : Any = model_jitted(**lowerCAmelCase__ ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
_UpperCAmelCase : int = model_jitted(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) )
for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
self.assertEqual(jitted_output.shape , output.shape )
def _lowerCAmelCase ( self : Optional[int] ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : str ) -> Any:
"""simple docstring"""
for model_class_name in self.all_model_classes:
_UpperCAmelCase : Any = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" )
_UpperCAmelCase : List[Any] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) )
self.assertIsNotNone(lowerCAmelCase__ )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_vision
@require_flax
class A__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None
@slow
def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : str = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" )
_UpperCAmelCase : Dict = self.default_image_processor
_UpperCAmelCase : str = prepare_img()
_UpperCAmelCase : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="np" ).pixel_values
# prepare bool_masked_pos
_UpperCAmelCase : Optional[int] = np.ones((1, 1_9_6) , dtype=lowerCAmelCase__ )
# forward pass
_UpperCAmelCase : Optional[int] = model(pixel_values=lowerCAmelCase__ , bool_masked_pos=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = outputs.logits
# verify the logits
_UpperCAmelCase : Dict = (1, 1_9_6, 8_1_9_2)
self.assertEqual(logits.shape , lowerCAmelCase__ )
_UpperCAmelCase : Dict = np.array(
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] )
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , lowerCAmelCase__ , atol=1e-2 ) )
@slow
def _lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_UpperCAmelCase : int = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" )
_UpperCAmelCase : str = self.default_image_processor
_UpperCAmelCase : str = prepare_img()
_UpperCAmelCase : List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="np" )
# forward pass
_UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase__ )
_UpperCAmelCase : Tuple = outputs.logits
# verify the logits
_UpperCAmelCase : str = (1, 1_0_0_0)
self.assertEqual(logits.shape , lowerCAmelCase__ )
_UpperCAmelCase : Dict = np.array([-1.2385, -1.0987, -1.0108] )
self.assertTrue(np.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
_UpperCAmelCase : List[Any] = 2_8_1
self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Dict = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" )
_UpperCAmelCase : List[str] = self.default_image_processor
_UpperCAmelCase : Optional[int] = prepare_img()
_UpperCAmelCase : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="np" )
# forward pass
_UpperCAmelCase : Optional[int] = model(**lowerCAmelCase__ )
_UpperCAmelCase : List[str] = outputs.logits
# verify the logits
_UpperCAmelCase : str = (1, 2_1_8_4_1)
self.assertEqual(logits.shape , lowerCAmelCase__ )
_UpperCAmelCase : int = np.array([1.6881, -0.2787, 0.5901] )
self.assertTrue(np.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
_UpperCAmelCase : int = 2_3_9_6
self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase__ ) | 358 | '''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
__a = logging.getLogger(__name__)
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : str = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , )
UpperCamelCase_ : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. If passed, sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={
'''help''': (
'''Whether to pad all samples to the maximum sentence length. '''
'''If False, will pad the samples dynamically when batching to the maximum length in the batch. More '''
'''efficient on GPU but very bad for TPU.'''
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def _lowerCAmelCase ( self : Any ) -> Any:
"""simple docstring"""
if self.train_file is not None:
_UpperCAmelCase : List[Any] = self.train_file.split("." )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
_UpperCAmelCase : List[str] = self.validation_file.split("." )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : PreTrainedTokenizerBase
UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True
UpperCamelCase_ : Optional[int] = None
UpperCamelCase_ : Optional[int] = None
def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels"
_UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features]
_UpperCAmelCase : str = len(lowerCAmelCase__ )
_UpperCAmelCase : int = len(features[0]["input_ids"] )
_UpperCAmelCase : str = [
[{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features
]
_UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) )
_UpperCAmelCase : Any = self.tokenizer.pad(
lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , )
# Un-flatten
_UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()}
# Add back labels
_UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa )
return batch
def __UpperCAmelCase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_swag", a_, a_ )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_UpperCAmelCase : Optional[int] = training_args.get_process_log_level()
logger.setLevel(a_ )
datasets.utils.logging.set_verbosity(a_ )
transformers.utils.logging.set_verbosity(a_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
_UpperCAmelCase : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
_UpperCAmelCase : Union[str, Any] = {}
if data_args.train_file is not None:
_UpperCAmelCase : str = data_args.train_file
if data_args.validation_file is not None:
_UpperCAmelCase : Optional[Any] = data_args.validation_file
_UpperCAmelCase : Dict = data_args.train_file.split("." )[-1]
_UpperCAmelCase : Optional[int] = load_dataset(
a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
else:
# Downloading and loading the swag dataset from the hub.
_UpperCAmelCase : Dict = load_dataset(
"swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCAmelCase : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
_UpperCAmelCase : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
_UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
_UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )]
_UpperCAmelCase : List[Any] = "sent1"
_UpperCAmelCase : Optional[int] = "sent2"
if data_args.max_seq_length is None:
_UpperCAmelCase : List[str] = tokenizer.model_max_length
if max_seq_length > 1_024:
logger.warning(
"The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
" override this default with `--block_size xxx`." )
_UpperCAmelCase : Dict = 1_024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
_UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(a_: Union[str, Any] ):
_UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]]
_UpperCAmelCase : Tuple = examples[question_header_name]
_UpperCAmelCase : Optional[Any] = [
[f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ )
]
# Flatten out
_UpperCAmelCase : List[str] = list(chain(*a_ ) )
_UpperCAmelCase : Dict = list(chain(*a_ ) )
# Tokenize
_UpperCAmelCase : List[Any] = tokenizer(
a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset" )
_UpperCAmelCase : int = raw_datasets["train"]
if data_args.max_train_samples is not None:
_UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples )
_UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) )
with training_args.main_process_first(desc="train dataset map pre-processing" ):
_UpperCAmelCase : Union[str, Any] = train_dataset.map(
a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset" )
_UpperCAmelCase : Dict = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
_UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples )
_UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) )
with training_args.main_process_first(desc="validation dataset map pre-processing" ):
_UpperCAmelCase : Optional[int] = eval_dataset.map(
a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, )
# Data collator
_UpperCAmelCase : Tuple = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(a_: Tuple ):
_UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions
_UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
_UpperCAmelCase : Any = Trainer(
model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, )
# Training
if training_args.do_train:
_UpperCAmelCase : Optional[Any] = None
if training_args.resume_from_checkpoint is not None:
_UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_UpperCAmelCase : List[str] = last_checkpoint
_UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ )
trainer.save_model() # Saves the tokenizer too for easy upload
_UpperCAmelCase : str = train_result.metrics
_UpperCAmelCase : List[str] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ )
)
_UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) )
trainer.log_metrics("train", a_ )
trainer.save_metrics("train", a_ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
_UpperCAmelCase : List[Any] = trainer.evaluate()
_UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ )
_UpperCAmelCase : Tuple = min(a_, len(a_ ) )
trainer.log_metrics("eval", a_ )
trainer.save_metrics("eval", a_ )
_UpperCAmelCase : int = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "multiple-choice",
"dataset_tags": "swag",
"dataset_args": "regular",
"dataset": "SWAG",
"language": "en",
}
if training_args.push_to_hub:
trainer.push_to_hub(**a_ )
else:
trainer.create_model_card(**a_ )
def __UpperCAmelCase ( a_: int ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main() | 17 | 0 |
'''simple docstring'''
from math import pi, sqrt
def __UpperCAmelCase ( a_: float ):
if num <= 0:
raise ValueError("math domain error" )
if num > 171.5:
raise OverflowError("math range error" )
elif num - int(a_ ) not in (0, 0.5):
raise NotImplementedError("num must be an integer or a half-integer" )
elif num == 0.5:
return sqrt(a_ )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def __UpperCAmelCase ( ):
assert gamma(0.5 ) == sqrt(a_ )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
__a = 1.0
while num:
__a = float(input('Gamma of: '))
print(f'gamma({num}) = {gamma(num)}')
print('\nEnter 0 to exit...') | 359 | '''simple docstring'''
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class A__ ( pl.LightningModule ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str:
"""simple docstring"""
super().__init__()
_UpperCAmelCase : List[str] = model
_UpperCAmelCase : Dict = 2
_UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels )
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
pass
def __UpperCAmelCase ( a_: str, a_: str, a_: str ):
# load longformer model from model identifier
_UpperCAmelCase : int = LongformerModel.from_pretrained(a_ )
_UpperCAmelCase : Any = LightningModel(a_ )
_UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) )
lightning_model.load_state_dict(ckpt["state_dict"] )
# init longformer question answering model
_UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ )
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() )
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() )
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(a_ )
print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--longformer_model',
default=None,
type=str,
required=True,
help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.',
)
parser.add_argument(
'--longformer_question_answering_ckpt_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch Lightning Checkpoint.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__a = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
) | 17 | 0 |
'''simple docstring'''
def __UpperCAmelCase ( a_: int, a_: int ):
return int(input_a == input_a == 0 )
def __UpperCAmelCase ( ):
print("Truth Table of NOR Gate:" )
print("| Input 1 | Input 2 | Output |" )
print(f"""| 0 | 0 | {nor_gate(0, 0 )} |""" )
print(f"""| 0 | 1 | {nor_gate(0, 1 )} |""" )
print(f"""| 1 | 0 | {nor_gate(1, 0 )} |""" )
print(f"""| 1 | 1 | {nor_gate(1, 1 )} |""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main() | 360 | '''simple docstring'''
from importlib import import_module
from .logging import get_logger
__a = get_logger(__name__)
class A__ :
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Any = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith("__" ):
setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
_UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module
class A__ :
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = []
def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = obj
_UpperCAmelCase : int = target
_UpperCAmelCase : Optional[int] = new
_UpperCAmelCase : Any = target.split("." )[0]
_UpperCAmelCase : Optional[int] = {}
_UpperCAmelCase : Dict = attrs or []
def __enter__( self : List[str] ) -> int:
"""simple docstring"""
*_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(lowerCAmelCase__ ) ):
try:
_UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
_UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule)
):
_UpperCAmelCase : Tuple = obj_attr
# patch at top level
setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) )
_UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) )
_UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
# finally set the target attribute
setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
_UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj , lowerCAmelCase__ ) is attr_value:
_UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ )
setattr(self.obj , lowerCAmelCase__ , self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
_UpperCAmelCase : Dict = globals()["__builtins__"][target_attr]
setattr(self.obj , lowerCAmelCase__ , self.new )
else:
raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" )
def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for attr in list(self.original ):
setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
self.__enter__()
self._active_patches.append(self )
def _lowerCAmelCase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__() | 17 | 0 |
'''simple docstring'''
import argparse
import os
import torch
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
def __UpperCAmelCase ( a_: str, a_: Dict, a_: Optional[int], a_: int ):
_UpperCAmelCase : str = s.rsplit(a_, a_ )
return new.join(a_ )
def __UpperCAmelCase ( a_: Union[str, Any] ):
# encoder.embeddings are double copied in original FLAVA
return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Optional[Any] = {}
_UpperCAmelCase : Dict = ["group_1", "group_2", "group_3", "group_4"]
for key, value in state_dict.items():
for group_key in group_keys:
if group_key in key:
_UpperCAmelCase : Optional[Any] = key.replace(f"""{group_key}.""", f"""{group_key}.group.""" )
if "res_path" in key:
_UpperCAmelCase : Optional[int] = key.replace("res_path.", "res_path.path." )
if key.endswith(".w" ):
_UpperCAmelCase : Optional[int] = rreplace(a_, ".w", ".weight", 1 )
if key.endswith(".b" ):
_UpperCAmelCase : Any = rreplace(a_, ".b", ".bias", 1 )
_UpperCAmelCase : Optional[Any] = value.float()
return upgrade
@torch.no_grad()
def __UpperCAmelCase ( a_: Tuple, a_: Dict, a_: Optional[int]=None, a_: Optional[int]=True ):
from dall_e import Encoder
_UpperCAmelCase : Dict = Encoder()
if os.path.exists(a_ ):
_UpperCAmelCase : Any = torch.load(a_ )
else:
_UpperCAmelCase : List[Any] = torch.hub.load_state_dict_from_url(a_ )
if isinstance(a_, a_ ):
_UpperCAmelCase : List[Any] = ckpt.state_dict()
encoder.load_state_dict(a_ )
if config_path is not None:
_UpperCAmelCase : Optional[int] = FlavaImageCodebookConfig.from_pretrained(a_ )
else:
_UpperCAmelCase : List[str] = FlavaImageCodebookConfig()
_UpperCAmelCase : int = FlavaImageCodebook(a_ ).eval()
_UpperCAmelCase : str = encoder.state_dict()
_UpperCAmelCase : Optional[int] = upgrade_state_dict(a_ )
hf_model.load_state_dict(a_ )
_UpperCAmelCase : List[str] = hf_model.state_dict()
_UpperCAmelCase : Optional[Any] = count_parameters(a_ )
_UpperCAmelCase : Optional[Any] = count_parameters(a_ )
assert torch.allclose(a_, a_, atol=1e-3 )
if save_checkpoint:
hf_model.save_pretrained(a_ )
else:
return hf_state_dict
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
__a = parser.parse_args()
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path) | 361 | '''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
__a = datasets.utils.logging.get_logger(__name__)
__a = ['names', 'prefix']
__a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
__a = ['encoding_errors', 'on_bad_lines']
__a = ['date_format']
@dataclass
class A__ ( datasets.BuilderConfig ):
"""simple docstring"""
UpperCamelCase_ : str = ","
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer"
UpperCamelCase_ : Optional[List[str]] = None
UpperCamelCase_ : Optional[List[str]] = None
UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None
UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None
UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None
UpperCamelCase_ : Optional[list] = None
UpperCamelCase_ : Optional[list] = None
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[Union[int, List[int]]] = None
UpperCamelCase_ : Optional[int] = None
UpperCamelCase_ : Optional[Union[str, List[str]]] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = False
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : str = "."
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : str = '"'
UpperCamelCase_ : int = 0
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = True
UpperCamelCase_ : int = 0
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : int = 1_00_00
UpperCamelCase_ : Optional[datasets.Features] = None
UpperCamelCase_ : Optional[str] = "strict"
UpperCamelCase_ : Literal["error", "warn", "skip"] = "error"
UpperCamelCase_ : Optional[str] = None
def _lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
if self.delimiter is not None:
_UpperCAmelCase : Any = self.delimiter
if self.column_names is not None:
_UpperCAmelCase : List[Any] = self.column_names
@property
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Dict = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class A__ ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
UpperCamelCase_ : int = CsvConfig
def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
_UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCAmelCase__ , (str, list, tuple) ):
_UpperCAmelCase : int = data_files
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : Any = [files]
_UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
_UpperCAmelCase : Optional[Any] = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : str = [files]
_UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) )
return splits
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
_UpperCAmelCase : Tuple = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
_UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
_UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ )
return pa_table
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
_UpperCAmelCase : Optional[Any] = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ):
_UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(lowerCAmelCase__ ):
_UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" )
raise | 17 | 0 |
'''simple docstring'''
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
__a = logging.get_logger(__name__)
__a = TypeVar('DatasetType', Dataset, IterableDataset)
def __UpperCAmelCase ( a_: List[DatasetType], a_: Optional[List[float]] = None, a_: Optional[int] = None, a_: Optional[DatasetInfo] = None, a_: Optional[NamedSplit] = None, a_: Literal["first_exhausted", "all_exhausted"] = "first_exhausted", ):
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError("Unable to interleave an empty list of datasets." )
for i, dataset in enumerate(a_ ):
if not isinstance(a_, (Dataset, IterableDataset) ):
if isinstance(a_, (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """
"is an empty dataset dictionary." )
raise ValueError(
f"""Dataset at position {i} has at least one split: {list(a_ )}\n"""
f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(a_ ) )}']""" )
raise ValueError(
f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(a_ ).__name__}.""" )
if i == 0:
_UpperCAmelCase : Union[str, Any] = (
(Dataset, IterableDataset) if isinstance(a_, a_ ) else (IterableDataset, Dataset)
)
elif not isinstance(a_, a_ ):
raise ValueError(
f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(f"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
a_, a_, a_, info=a_, split=a_, stopping_strategy=a_ )
else:
return _interleave_iterable_datasets(
a_, a_, a_, info=a_, split=a_, stopping_strategy=a_ )
def __UpperCAmelCase ( a_: List[DatasetType], a_: Optional[DatasetInfo] = None, a_: Optional[NamedSplit] = None, a_: int = 0, ):
if not dsets:
raise ValueError("Unable to concatenate an empty list of datasets." )
for i, dataset in enumerate(a_ ):
if not isinstance(a_, (Dataset, IterableDataset) ):
if isinstance(a_, (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """
"is an empty dataset dictionary." )
raise ValueError(
f"""Dataset at position {i} has at least one split: {list(a_ )}\n"""
f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(a_ ) )}']""" )
raise ValueError(
f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(a_ ).__name__}.""" )
if i == 0:
_UpperCAmelCase : Optional[int] = (
(Dataset, IterableDataset) if isinstance(a_, a_ ) else (IterableDataset, Dataset)
)
elif not isinstance(a_, a_ ):
raise ValueError(
f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(a_, info=a_, split=a_, axis=a_ )
else:
return _concatenate_iterable_datasets(a_, info=a_, split=a_, axis=a_ ) | 362 | '''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( a_: list[int] ):
if not nums:
return 0
_UpperCAmelCase : int = nums[0]
_UpperCAmelCase : Dict = 0
for num in nums[1:]:
_UpperCAmelCase , _UpperCAmelCase : Any = (
max_excluding + num,
max(a_, a_ ),
)
return max(a_, a_ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 0 |
'''simple docstring'''
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Tuple = '''time_series_transformer'''
UpperCamelCase_ : Optional[Any] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = prediction_length
_UpperCAmelCase : Optional[Any] = context_length or prediction_length
_UpperCAmelCase : Optional[Any] = distribution_output
_UpperCAmelCase : Union[str, Any] = loss
_UpperCAmelCase : Dict = input_size
_UpperCAmelCase : int = num_time_features
_UpperCAmelCase : Any = lags_sequence
_UpperCAmelCase : Dict = scaling
_UpperCAmelCase : Tuple = num_dynamic_real_features
_UpperCAmelCase : Dict = num_static_real_features
_UpperCAmelCase : Union[str, Any] = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : Optional[int] = cardinality
else:
_UpperCAmelCase : Optional[Any] = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : List[Any] = embedding_dimension
else:
_UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
_UpperCAmelCase : str = num_parallel_samples
# Transformer architecture configuration
_UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features
_UpperCAmelCase : str = d_model
_UpperCAmelCase : Optional[Any] = encoder_attention_heads
_UpperCAmelCase : Dict = decoder_attention_heads
_UpperCAmelCase : List[Any] = encoder_ffn_dim
_UpperCAmelCase : str = decoder_ffn_dim
_UpperCAmelCase : Dict = encoder_layers
_UpperCAmelCase : str = decoder_layers
_UpperCAmelCase : Any = dropout
_UpperCAmelCase : str = attention_dropout
_UpperCAmelCase : List[Any] = activation_dropout
_UpperCAmelCase : Dict = encoder_layerdrop
_UpperCAmelCase : Any = decoder_layerdrop
_UpperCAmelCase : Optional[Any] = activation_function
_UpperCAmelCase : Tuple = init_std
_UpperCAmelCase : List[str] = use_cache
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def _lowerCAmelCase ( self : str ) -> int:
"""simple docstring"""
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
) | 363 | '''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a = logging.get_logger(__name__)
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if key.startswith("module.encoder" ):
_UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" )
if key.startswith("module.decoder" ):
_UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )]
_UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" )
if "norm" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )]
_UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" )
if "layer_norm1" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" )
if "layer_norm2" in key:
_UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
_UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )]
_UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" )
if "attn.q" in key:
_UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" )
if "attn.proj" in key:
_UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" )
if "attn" in key:
_UpperCAmelCase : Dict = key.replace("attn", "attention.self" )
if "fc1" in key:
_UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" )
if "fc2" in key:
_UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" )
if "linear_pred" in key:
_UpperCAmelCase : Any = key.replace("linear_pred", "classifier" )
if "linear_fuse" in key:
_UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" )
_UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )]
_UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" )
if "bot_conv" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" )
if "skip_conv1" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" )
if "skip_conv2" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" )
if "fusion1" in key:
_UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" )
if "fusion2" in key:
_UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" )
if "fusion3" in key:
_UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" )
if "fusion" in key and "conv" in key:
_UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" )
if key.startswith("module.last_layer_depth" ):
_UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" )
_UpperCAmelCase : int = value
return new_state_dict
def __UpperCAmelCase ( a_: str, a_: List[Any] ):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" )
_UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
_UpperCAmelCase : Optional[int] = kv_weight[
: config.hidden_sizes[i], :
]
_UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]]
_UpperCAmelCase : Optional[int] = kv_weight[
config.hidden_sizes[i] :, :
]
_UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :]
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw )
return image
@torch.no_grad()
def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ):
_UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
_UpperCAmelCase : Dict = GLPNImageProcessor()
# prepare image
_UpperCAmelCase : List[Any] = prepare_img()
_UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values
logger.info("Converting model..." )
# load original state dict
_UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) )
# rename keys
_UpperCAmelCase : List[str] = rename_keys(a_ )
# key and value matrices need special treatment
read_in_k_v(a_, a_ )
# create HuggingFace model and load state dict
_UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ )
model.load_state_dict(a_ )
model.eval()
# forward pass
_UpperCAmelCase : Dict = model(a_ )
_UpperCAmelCase : List[str] = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
_UpperCAmelCase : Optional[Any] = torch.tensor(
[[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] )
elif "kitti" in model_name:
_UpperCAmelCase : Tuple = torch.tensor(
[[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] )
else:
raise ValueError(f"""Unknown model name: {model_name}""" )
_UpperCAmelCase : Dict = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 )
print("Looks ok!" )
# finally, push to hub if required
if push_to_hub:
logger.info("Pushing model and image processor to the hub..." )
model.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, )
image_processor.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path',
default=None,
type=str,
help='Path to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.'
)
parser.add_argument(
'--model_name',
default='glpn-kitti',
type=str,
help='Name of the model in case you\'re pushing to the hub.',
)
__a = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name) | 17 | 0 |
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a = logging.get_logger(__name__)
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if key.startswith("module.encoder" ):
_UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" )
if key.startswith("module.decoder" ):
_UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )]
_UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" )
if "norm" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )]
_UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" )
if "layer_norm1" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" )
if "layer_norm2" in key:
_UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
_UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )]
_UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" )
if "attn.q" in key:
_UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" )
if "attn.proj" in key:
_UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" )
if "attn" in key:
_UpperCAmelCase : Dict = key.replace("attn", "attention.self" )
if "fc1" in key:
_UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" )
if "fc2" in key:
_UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" )
if "linear_pred" in key:
_UpperCAmelCase : Any = key.replace("linear_pred", "classifier" )
if "linear_fuse" in key:
_UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" )
_UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )]
_UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" )
if "bot_conv" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" )
if "skip_conv1" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" )
if "skip_conv2" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" )
if "fusion1" in key:
_UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" )
if "fusion2" in key:
_UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" )
if "fusion3" in key:
_UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" )
if "fusion" in key and "conv" in key:
_UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" )
if key.startswith("module.last_layer_depth" ):
_UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" )
_UpperCAmelCase : int = value
return new_state_dict
def __UpperCAmelCase ( a_: str, a_: List[Any] ):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" )
_UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
_UpperCAmelCase : Optional[int] = kv_weight[
: config.hidden_sizes[i], :
]
_UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]]
_UpperCAmelCase : Optional[int] = kv_weight[
config.hidden_sizes[i] :, :
]
_UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :]
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw )
return image
@torch.no_grad()
def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ):
_UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
_UpperCAmelCase : Dict = GLPNImageProcessor()
# prepare image
_UpperCAmelCase : List[Any] = prepare_img()
_UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values
logger.info("Converting model..." )
# load original state dict
_UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) )
# rename keys
_UpperCAmelCase : List[str] = rename_keys(a_ )
# key and value matrices need special treatment
read_in_k_v(a_, a_ )
# create HuggingFace model and load state dict
_UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ )
model.load_state_dict(a_ )
model.eval()
# forward pass
_UpperCAmelCase : Dict = model(a_ )
_UpperCAmelCase : List[str] = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
_UpperCAmelCase : Optional[Any] = torch.tensor(
[[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] )
elif "kitti" in model_name:
_UpperCAmelCase : Tuple = torch.tensor(
[[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] )
else:
raise ValueError(f"""Unknown model name: {model_name}""" )
_UpperCAmelCase : Dict = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 )
print("Looks ok!" )
# finally, push to hub if required
if push_to_hub:
logger.info("Pushing model and image processor to the hub..." )
model.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, )
image_processor.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path',
default=None,
type=str,
help='Path to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.'
)
parser.add_argument(
'--model_name',
default='glpn-kitti',
type=str,
help='Name of the model in case you\'re pushing to the hub.',
)
__a = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name) | 364 | '''simple docstring'''
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[Any] = 10
_UpperCAmelCase : int = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string" ) ),
"labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ),
"answers": datasets.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
"id": datasets.Value("int64" ),
} )
_UpperCAmelCase : List[str] = datasets.Dataset.from_dict(
{
"tokens": [["foo"] * 5] * n,
"labels": [[1] * 5] * n,
"answers": [{"answer_start": [97], "text": ["1976"]}] * 10,
"id": list(range(a_ ) ),
}, features=a_, )
return dataset
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" )
dataset.map(cache_file_name=a_ )
return filename
# FILE_CONTENT + files
__a = '\\n Text data.\n Second line of data.'
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt"
_UpperCAmelCase : Tuple = FILE_CONTENT
with open(a_, "w" ) as f:
f.write(a_ )
return filename
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2"
_UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" )
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import gzip
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" )
_UpperCAmelCase : Any = bytes(a_, "utf-8" )
with gzip.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
if datasets.config.LZ4_AVAILABLE:
import lza.frame
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4"
_UpperCAmelCase : str = bytes(a_, "utf-8" )
with lza.frame.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Any ):
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z"
with pyazr.SevenZipFile(a_, "w" ) as archive:
archive.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: List[str] ):
import tarfile
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
import lzma
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz"
_UpperCAmelCase : List[str] = bytes(a_, "utf-8" )
with lzma.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: Tuple ):
import zipfile
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst"
_UpperCAmelCase : int = bytes(a_, "utf-8" )
with zstd.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
_UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml"
_UpperCAmelCase : Tuple = textwrap.dedent(
"\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" )
with open(a_, "w" ) as f:
f.write(a_ )
return filename
__a = [
{'col_1': '0', 'col_2': 0, 'col_3': 0.0},
{'col_1': '1', 'col_2': 1, 'col_3': 1.0},
{'col_1': '2', 'col_2': 2, 'col_3': 2.0},
{'col_1': '3', 'col_2': 3, 'col_3': 3.0},
]
__a = [
{'col_1': '4', 'col_2': 4, 'col_3': 4.0},
{'col_1': '5', 'col_2': 5, 'col_3': 5.0},
]
__a = {
'col_1': ['0', '1', '2', '3'],
'col_2': [0, 1, 2, 3],
'col_3': [0.0, 1.0, 2.0, 3.0],
}
__a = [
{'col_3': 0.0, 'col_1': '0', 'col_2': 0},
{'col_3': 1.0, 'col_1': '1', 'col_2': 1},
]
__a = [
{'col_1': 's0', 'col_2': 0, 'col_3': 0.0},
{'col_1': 's1', 'col_2': 1, 'col_3': 1.0},
{'col_1': 's2', 'col_2': 2, 'col_3': 2.0},
{'col_1': 's3', 'col_2': 3, 'col_3': 3.0},
]
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : str = datasets.Dataset.from_dict(a_ )
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" )
dataset.map(cache_file_name=a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" )
with contextlib.closing(sqlitea.connect(a_ ) ) as con:
_UpperCAmelCase : List[Any] = con.cursor()
cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" )
for item in DATA:
cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str, a_: str ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2"
with open(a_, "rb" ) as f:
_UpperCAmelCase : Any = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ):
_UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) )
f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ):
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" )
_UpperCAmelCase : Dict = pa.schema(
{
"col_1": pa.string(),
"col_2": pa.intaa(),
"col_3": pa.floataa(),
} )
with open(a_, "wb" ) as f:
_UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ )
_UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ )
writer.write_table(a_ )
writer.close()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : str = {"data": DATA}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_312:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_STR:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ):
import gzip
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ):
import gzip
_UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ):
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : List[str] = ["0", "1", "2", "3"]
_UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Dict = ["0", "1", "2", "3"]
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = ["0", "1", "2", "3"]
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc"
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename("unsupported.ext" ) )
f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] )
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" )
with open(a_, "w", encoding="utf-8" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_image_rgb.jpg" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_audio_44100.wav" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Optional[Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" )
(data_dir / "subdir").mkdir()
with open(data_dir / "subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / "subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden file
with open(data_dir / "subdir" / ".test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / ".subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / ".subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
return data_dir | 17 | 0 |
'''simple docstring'''
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"files", [
["full:README.md", "dataset_infos.json"],
["empty:README.md", "dataset_infos.json"],
["dataset_infos.json"],
["full:README.md"],
], )
def __UpperCAmelCase ( a_: Tuple, a_: Any ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" )
if "full:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("---\ndataset_info:\n dataset_size: 42\n---" )
if "empty:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f:
f.write("{\"default\": {\"dataset_size\": 42}}" )
_UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
"dataset_info", [
DatasetInfo(),
DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ),
], )
def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ):
_UpperCAmelCase : Tuple = str(a_ )
dataset_info.write_to_directory(a_ )
_UpperCAmelCase : Any = DatasetInfo.from_directory(a_ )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(a_, "dataset_info.json" ) )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = DatasetInfo(
description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, )
_UpperCAmelCase : Tuple = dataset_info._to_yaml_dict()
assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) )
_UpperCAmelCase : List[Any] = yaml.safe_dump(a_ )
_UpperCAmelCase : Optional[int] = yaml.safe_load(a_ )
assert dataset_info_yaml_dict == reloaded
def __UpperCAmelCase ( ):
_UpperCAmelCase : str = DatasetInfo()
_UpperCAmelCase : List[str] = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"dataset_infos_dict", [
DatasetInfosDict(),
DatasetInfosDict({"default": DatasetInfo()} ),
DatasetInfosDict({"my_config_name": DatasetInfo()} ),
DatasetInfosDict(
{
"default": DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, )
} ),
DatasetInfosDict(
{
"v1": DatasetInfo(dataset_size=42 ),
"v2": DatasetInfo(dataset_size=1_337 ),
} ),
], )
def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ):
_UpperCAmelCase : Union[str, Any] = str(a_ )
dataset_infos_dict.write_to_directory(a_ )
_UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
_UpperCAmelCase : Optional[int] = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
_UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(a_, "README.md" ) ) | 365 | '''simple docstring'''
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = BarthezTokenizer
UpperCamelCase_ : List[Any] = BarthezTokenizerFast
UpperCamelCase_ : Optional[int] = True
UpperCamelCase_ : Optional[int] = True
def _lowerCAmelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
super().setUp()
_UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer
def _lowerCAmelCase ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = "<pad>"
_UpperCAmelCase : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 )
@require_torch
def _lowerCAmelCase ( self : Any ) -> int:
"""simple docstring"""
_UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."]
_UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2]
_UpperCAmelCase : int = self.tokenizer(
lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
_UpperCAmelCase : str = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
_UpperCAmelCase : Optional[int] = self.get_tokenizer()
_UpperCAmelCase : Optional[int] = self.get_rust_tokenizer()
_UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé."
_UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer()
_UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
_UpperCAmelCase : Tuple = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , ) | 17 | 0 |
'''simple docstring'''
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class A__ ( UpperCamelCase ):
"""simple docstring"""
def __init__( self : int , *lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Dict=None , **lowerCAmelCase__ : str ) -> int:
"""simple docstring"""
super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = eval_examples
_UpperCAmelCase : List[Any] = post_process_function
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Optional[Dataset] = None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[List[str]] = None , lowerCAmelCase__ : str = "eval" , **lowerCAmelCase__ : Any , ) -> Dict[str, float]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = gen_kwargs.copy()
_UpperCAmelCase : Union[str, Any] = (
gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length
)
_UpperCAmelCase : Optional[Any] = (
gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams
)
_UpperCAmelCase : Dict = gen_kwargs
_UpperCAmelCase : Any = self.eval_dataset if eval_dataset is None else eval_dataset
_UpperCAmelCase : Any = self.get_eval_dataloader(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
_UpperCAmelCase : Dict = self.compute_metrics
_UpperCAmelCase : Optional[int] = None
_UpperCAmelCase : Tuple = time.time()
_UpperCAmelCase : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
_UpperCAmelCase : Optional[Any] = eval_loop(
lowerCAmelCase__ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , metric_key_prefix=lowerCAmelCase__ , )
finally:
_UpperCAmelCase : Any = compute_metrics
_UpperCAmelCase : List[Any] = self.args.eval_batch_size * self.args.world_size
if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics:
start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""]
output.metrics.update(
speed_metrics(
lowerCAmelCase__ , lowerCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
_UpperCAmelCase : Optional[Any] = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = self.compute_metrics(lowerCAmelCase__ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"""{metric_key_prefix}_""" ):
_UpperCAmelCase : List[str] = metrics.pop(lowerCAmelCase__ )
metrics.update(output.metrics )
else:
_UpperCAmelCase : List[Any] = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(lowerCAmelCase__ )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
_UpperCAmelCase : Union[str, Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCAmelCase__ )
return metrics
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str = "test" , **lowerCAmelCase__ : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Dict = gen_kwargs.copy()
_UpperCAmelCase : Any = self.get_test_dataloader(lowerCAmelCase__ )
# Temporarily disable metric computation, we will do it in the loop here.
_UpperCAmelCase : List[Any] = self.compute_metrics
_UpperCAmelCase : Tuple = None
_UpperCAmelCase : str = time.time()
_UpperCAmelCase : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
_UpperCAmelCase : Optional[int] = eval_loop(
lowerCAmelCase__ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , metric_key_prefix=lowerCAmelCase__ , )
finally:
_UpperCAmelCase : Optional[Any] = compute_metrics
_UpperCAmelCase : Optional[Any] = self.args.eval_batch_size * self.args.world_size
if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics:
start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""]
output.metrics.update(
speed_metrics(
lowerCAmelCase__ , lowerCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
_UpperCAmelCase : Dict = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , "predict" )
_UpperCAmelCase : Union[str, Any] = self.compute_metrics(lowerCAmelCase__ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"""{metric_key_prefix}_""" ):
_UpperCAmelCase : Tuple = metrics.pop(lowerCAmelCase__ )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCAmelCase__ ) | 366 | '''simple docstring'''
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
__a = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class A__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0}
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : Tuple = batch_size
_UpperCAmelCase : str = num_channels
_UpperCAmelCase : Optional[Any] = image_size
_UpperCAmelCase : Dict = min_resolution
_UpperCAmelCase : str = max_resolution
_UpperCAmelCase : List[Any] = size
_UpperCAmelCase : Union[str, Any] = do_normalize
_UpperCAmelCase : Optional[Any] = do_convert_rgb
_UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6]
_UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6}
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def _lowerCAmelCase ( self : Any ) -> str:
"""simple docstring"""
_UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
_UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self )
@property
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image()
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
_UpperCAmelCase : str = 2_0_4_8
_UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) )
def _lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : Union[str, Any] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
_UpperCAmelCase : str = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(lowerCAmelCase__ ):
_UpperCAmelCase : str = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
_UpperCAmelCase : Any = "Hello"
_UpperCAmelCase : Optional[int] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : List[Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
_UpperCAmelCase : Any = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : int = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Union[str, Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : int ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 )
_UpperCAmelCase : List[Any] = 3
@property
def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : str = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Any = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Tuple = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) | 17 | 0 |
'''simple docstring'''
import baseaa
def __UpperCAmelCase ( a_: str ):
return baseaa.baaencode(string.encode("utf-8" ) )
def __UpperCAmelCase ( a_: bytes ):
return baseaa.baadecode(a_ ).decode("utf-8" )
if __name__ == "__main__":
__a = 'Hello World!'
__a = baseaa_encode(test)
print(encoded)
__a = baseaa_decode(encoded)
print(decoded) | 367 | '''simple docstring'''
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Tuple = '''time_series_transformer'''
UpperCamelCase_ : Optional[Any] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = prediction_length
_UpperCAmelCase : Optional[Any] = context_length or prediction_length
_UpperCAmelCase : Optional[Any] = distribution_output
_UpperCAmelCase : Union[str, Any] = loss
_UpperCAmelCase : Dict = input_size
_UpperCAmelCase : int = num_time_features
_UpperCAmelCase : Any = lags_sequence
_UpperCAmelCase : Dict = scaling
_UpperCAmelCase : Tuple = num_dynamic_real_features
_UpperCAmelCase : Dict = num_static_real_features
_UpperCAmelCase : Union[str, Any] = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : Optional[int] = cardinality
else:
_UpperCAmelCase : Optional[Any] = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : List[Any] = embedding_dimension
else:
_UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
_UpperCAmelCase : str = num_parallel_samples
# Transformer architecture configuration
_UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features
_UpperCAmelCase : str = d_model
_UpperCAmelCase : Optional[Any] = encoder_attention_heads
_UpperCAmelCase : Dict = decoder_attention_heads
_UpperCAmelCase : List[Any] = encoder_ffn_dim
_UpperCAmelCase : str = decoder_ffn_dim
_UpperCAmelCase : Dict = encoder_layers
_UpperCAmelCase : str = decoder_layers
_UpperCAmelCase : Any = dropout
_UpperCAmelCase : str = attention_dropout
_UpperCAmelCase : List[Any] = activation_dropout
_UpperCAmelCase : Dict = encoder_layerdrop
_UpperCAmelCase : Any = decoder_layerdrop
_UpperCAmelCase : Optional[Any] = activation_function
_UpperCAmelCase : Tuple = init_std
_UpperCAmelCase : List[str] = use_cache
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def _lowerCAmelCase ( self : str ) -> int:
"""simple docstring"""
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
) | 17 | 0 |
'''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( a_: list[int] ):
if not nums:
return 0
_UpperCAmelCase : int = nums[0]
_UpperCAmelCase : Dict = 0
for num in nums[1:]:
_UpperCAmelCase : Any = (
max_excluding + num,
max(a_, a_ ),
)
return max(a_, a_ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 368 | '''simple docstring'''
import baseaa
def __UpperCAmelCase ( a_: str ):
return baseaa.baaencode(string.encode("utf-8" ) )
def __UpperCAmelCase ( a_: bytes ):
return baseaa.baadecode(a_ ).decode("utf-8" )
if __name__ == "__main__":
__a = 'Hello World!'
__a = baseaa_encode(test)
print(encoded)
__a = baseaa_decode(encoded)
print(decoded) | 17 | 0 |
'''simple docstring'''
def __UpperCAmelCase ( a_: float, a_: float ):
if density <= 0:
raise ValueError("Impossible fluid density" )
if bulk_modulus <= 0:
raise ValueError("Impossible bulk modulus" )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod() | 369 | '''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class A__ :
"""simple docstring"""
UpperCamelCase_ : Any = XGLMConfig
UpperCamelCase_ : Union[str, Any] = {}
UpperCamelCase_ : Dict = '''gelu'''
def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : str = batch_size
_UpperCAmelCase : str = seq_length
_UpperCAmelCase : int = is_training
_UpperCAmelCase : List[Any] = use_input_mask
_UpperCAmelCase : Optional[int] = use_labels
_UpperCAmelCase : str = vocab_size
_UpperCAmelCase : int = d_model
_UpperCAmelCase : Tuple = num_hidden_layers
_UpperCAmelCase : Tuple = num_attention_heads
_UpperCAmelCase : Tuple = ffn_dim
_UpperCAmelCase : Any = activation_function
_UpperCAmelCase : Union[str, Any] = activation_dropout
_UpperCAmelCase : Union[str, Any] = attention_dropout
_UpperCAmelCase : Any = max_position_embeddings
_UpperCAmelCase : int = initializer_range
_UpperCAmelCase : Any = None
_UpperCAmelCase : int = 0
_UpperCAmelCase : Union[str, Any] = 2
_UpperCAmelCase : Tuple = 1
def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : int = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_UpperCAmelCase : Any = None
if self.use_input_mask:
_UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : Optional[Any] = self.get_config()
_UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , )
def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
_UpperCAmelCase : Optional[int] = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else ()
UpperCamelCase_ : Tuple = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
UpperCamelCase_ : Dict = False
UpperCamelCase_ : List[Any] = False
UpperCamelCase_ : Tuple = False
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Dict = TFXGLMModelTester(self )
_UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 )
def _lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowerCAmelCase ( self : Union[str, Any] ) -> int:
"""simple docstring"""
super().test_resize_token_embeddings()
@require_tf
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1]
# fmt: on
_UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
_UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" )
_UpperCAmelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
_UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] )
_UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[int] = "left"
# use different length sentences to test batching
_UpperCAmelCase : Tuple = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
_UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = inputs["input_ids"]
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 )
_UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids
_UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] ) | 17 | 0 |
'''simple docstring'''
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
__a = 16
__a = 32
def __UpperCAmelCase ( a_: Accelerator, a_: int = 16, a_: str = "bert-base-cased" ):
_UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(a_ )
_UpperCAmelCase : Union[str, Any] = load_dataset("glue", "mrpc" )
def tokenize_function(a_: Any ):
# max_length=None => use the model max length (it's actually the default)
_UpperCAmelCase : Union[str, Any] = tokenizer(examples["sentence1"], examples["sentence2"], truncation=a_, max_length=a_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
_UpperCAmelCase : List[Any] = datasets.map(
a_, batched=a_, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=a_ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_UpperCAmelCase : Union[str, Any] = tokenized_datasets.rename_column("label", "labels" )
def collate_fn(a_: Union[str, Any] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(a_, padding="max_length", max_length=128, return_tensors="pt" )
return tokenizer.pad(a_, padding="longest", return_tensors="pt" )
# Instantiate dataloaders.
_UpperCAmelCase : List[str] = DataLoader(
tokenized_datasets["train"], shuffle=a_, collate_fn=a_, batch_size=a_ )
_UpperCAmelCase : Any = DataLoader(
tokenized_datasets["validation"], shuffle=a_, collate_fn=a_, batch_size=a_ )
return train_dataloader, eval_dataloader
def __UpperCAmelCase ( a_: Optional[int], a_: str ):
# Initialize accelerator
_UpperCAmelCase : List[Any] = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_UpperCAmelCase : Tuple = config["lr"]
_UpperCAmelCase : List[Any] = int(config["num_epochs"] )
_UpperCAmelCase : Optional[int] = int(config["seed"] )
_UpperCAmelCase : Optional[Any] = int(config["batch_size"] )
_UpperCAmelCase : List[Any] = args.model_name_or_path
set_seed(a_ )
_UpperCAmelCase : Optional[Any] = get_dataloaders(a_, a_, a_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained(a_, return_dict=a_ )
# Instantiate optimizer
_UpperCAmelCase : str = (
AdamW
if accelerator.state.deepspeed_plugin is None
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
_UpperCAmelCase : Union[str, Any] = optimizer_cls(params=model.parameters(), lr=a_ )
if accelerator.state.deepspeed_plugin is not None:
_UpperCAmelCase : int = accelerator.state.deepspeed_plugin.deepspeed_config[
"gradient_accumulation_steps"
]
else:
_UpperCAmelCase : int = 1
_UpperCAmelCase : List[Any] = (len(a_ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
_UpperCAmelCase : Optional[int] = get_linear_schedule_with_warmup(
optimizer=a_, num_warmup_steps=0, num_training_steps=a_, )
else:
_UpperCAmelCase : str = DummyScheduler(a_, total_num_steps=a_, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_UpperCAmelCase : List[str] = accelerator.prepare(
a_, a_, a_, a_, a_ )
# We need to keep track of how many total steps we have iterated over
_UpperCAmelCase : Any = 0
# We also need to keep track of the stating epoch so files are named properly
_UpperCAmelCase : List[Any] = 0
# Now we train the model
_UpperCAmelCase : str = evaluate.load("glue", "mrpc" )
_UpperCAmelCase : Tuple = 0
_UpperCAmelCase : int = {}
for epoch in range(a_, a_ ):
model.train()
for step, batch in enumerate(a_ ):
_UpperCAmelCase : Tuple = model(**a_ )
_UpperCAmelCase : Tuple = outputs.loss
_UpperCAmelCase : Tuple = loss / gradient_accumulation_steps
accelerator.backward(a_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
_UpperCAmelCase : Tuple = 0
for step, batch in enumerate(a_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_UpperCAmelCase : Optional[Any] = model(**a_ )
_UpperCAmelCase : Union[str, Any] = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
_UpperCAmelCase : Dict = accelerator.gather(
(predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(a_ ) - 1:
_UpperCAmelCase : int = predictions[: len(eval_dataloader.dataset ) - samples_seen]
_UpperCAmelCase : Union[str, Any] = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=a_, references=a_, )
_UpperCAmelCase : Optional[Any] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""", a_ )
_UpperCAmelCase : List[str] = eval_metric["accuracy"]
if best_performance < eval_metric["accuracy"]:
_UpperCAmelCase : Optional[Any] = eval_metric["accuracy"]
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}"""
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, "all_results.json" ), "w" ) as f:
json.dump(a_, a_ )
def __UpperCAmelCase ( ):
_UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." )
parser.add_argument(
"--model_name_or_path", type=a_, default="bert-base-cased", help="Path to pretrained model or model identifier from huggingface.co/models.", required=a_, )
parser.add_argument(
"--output_dir", type=a_, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", )
parser.add_argument(
"--performance_lower_bound", type=a_, default=a_, help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.", )
parser.add_argument(
"--num_epochs", type=a_, default=3, help="Number of train epochs.", )
_UpperCAmelCase : List[Any] = parser.parse_args()
_UpperCAmelCase : int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16}
training_function(a_, a_ )
if __name__ == "__main__":
main()
| 370 | '''simple docstring'''
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"files", [
["full:README.md", "dataset_infos.json"],
["empty:README.md", "dataset_infos.json"],
["dataset_infos.json"],
["full:README.md"],
], )
def __UpperCAmelCase ( a_: Tuple, a_: Any ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" )
if "full:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("---\ndataset_info:\n dataset_size: 42\n---" )
if "empty:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f:
f.write("{\"default\": {\"dataset_size\": 42}}" )
_UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
"dataset_info", [
DatasetInfo(),
DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ),
], )
def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ):
_UpperCAmelCase : Tuple = str(a_ )
dataset_info.write_to_directory(a_ )
_UpperCAmelCase : Any = DatasetInfo.from_directory(a_ )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(a_, "dataset_info.json" ) )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = DatasetInfo(
description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, )
_UpperCAmelCase : Tuple = dataset_info._to_yaml_dict()
assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) )
_UpperCAmelCase : List[Any] = yaml.safe_dump(a_ )
_UpperCAmelCase : Optional[int] = yaml.safe_load(a_ )
assert dataset_info_yaml_dict == reloaded
def __UpperCAmelCase ( ):
_UpperCAmelCase : str = DatasetInfo()
_UpperCAmelCase : List[str] = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"dataset_infos_dict", [
DatasetInfosDict(),
DatasetInfosDict({"default": DatasetInfo()} ),
DatasetInfosDict({"my_config_name": DatasetInfo()} ),
DatasetInfosDict(
{
"default": DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, )
} ),
DatasetInfosDict(
{
"v1": DatasetInfo(dataset_size=42 ),
"v2": DatasetInfo(dataset_size=1_337 ),
} ),
], )
def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ):
_UpperCAmelCase : Union[str, Any] = str(a_ )
dataset_infos_dict.write_to_directory(a_ )
_UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
_UpperCAmelCase : Optional[int] = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
_UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(a_, "README.md" ) ) | 17 | 0 |
'''simple docstring'''
__a = 65_521
def __UpperCAmelCase ( a_: str ):
_UpperCAmelCase : List[str] = 1
_UpperCAmelCase : str = 0
for plain_chr in plain_text:
_UpperCAmelCase : Union[str, Any] = (a + ord(a_ )) % MOD_ADLER
_UpperCAmelCase : List[str] = (b + a) % MOD_ADLER
return (b << 16) | a | 371 | '''simple docstring'''
from math import factorial
def __UpperCAmelCase ( a_: int = 100 ):
return sum(map(a_, str(factorial(a_ ) ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip()))) | 17 | 0 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
__a = logging.get_logger(__name__)
__a = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'}
# See all LED models at https://huggingface.co/models?filter=LED
__a = {
'vocab_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json',
},
'merges_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt',
},
'tokenizer_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json',
},
}
__a = {
'allenai/led-base-16384': 16_384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[Any] = (
list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) )
)
_UpperCAmelCase : List[str] = bs[:]
_UpperCAmelCase : Optional[Any] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(a_ )
cs.append(2**8 + n )
n += 1
_UpperCAmelCase : Dict = [chr(a_ ) for n in cs]
return dict(zip(a_, a_ ) )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = set()
_UpperCAmelCase : List[str] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_UpperCAmelCase : Optional[int] = char
return pairs
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES
UpperCamelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ : Optional[int] = ['''input_ids''', '''attention_mask''']
def __init__( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int="replace" , lowerCAmelCase__ : Optional[int]="<s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : List[str]="</s>" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : List[Any]="<unk>" , lowerCAmelCase__ : int="<pad>" , lowerCAmelCase__ : str="<mask>" , lowerCAmelCase__ : List[Any]=False , **lowerCAmelCase__ : Tuple , ) -> Any:
"""simple docstring"""
_UpperCAmelCase : int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
_UpperCAmelCase : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
_UpperCAmelCase : Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
_UpperCAmelCase : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
_UpperCAmelCase : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
_UpperCAmelCase : Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
_UpperCAmelCase : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , )
with open(lowerCAmelCase__ , encoding="utf-8" ) as vocab_handle:
_UpperCAmelCase : List[str] = json.load(lowerCAmelCase__ )
_UpperCAmelCase : int = {v: k for k, v in self.encoder.items()}
_UpperCAmelCase : Any = errors # how to handle errors in decoding
_UpperCAmelCase : Optional[int] = bytes_to_unicode()
_UpperCAmelCase : Optional[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCAmelCase__ , encoding="utf-8" ) as merges_handle:
_UpperCAmelCase : Optional[int] = merges_handle.read().split("\n" )[1:-1]
_UpperCAmelCase : int = [tuple(merge.split() ) for merge in bpe_merges]
_UpperCAmelCase : Union[str, Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
_UpperCAmelCase : str = {}
_UpperCAmelCase : Union[str, Any] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
_UpperCAmelCase : Any = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def _lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
return len(self.encoder )
def _lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : str ) -> Tuple:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
_UpperCAmelCase : Union[str, Any] = tuple(lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = get_pairs(lowerCAmelCase__ )
if not pairs:
return token
while True:
_UpperCAmelCase : int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
_UpperCAmelCase : Union[str, Any] = bigram
_UpperCAmelCase : int = []
_UpperCAmelCase : List[str] = 0
while i < len(lowerCAmelCase__ ):
try:
_UpperCAmelCase : Optional[int] = word.index(lowerCAmelCase__ , lowerCAmelCase__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_UpperCAmelCase : str = j
if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_UpperCAmelCase : int = tuple(lowerCAmelCase__ )
_UpperCAmelCase : Any = new_word
if len(lowerCAmelCase__ ) == 1:
break
else:
_UpperCAmelCase : List[Any] = get_pairs(lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = " ".join(lowerCAmelCase__ )
_UpperCAmelCase : str = word
return word
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : int ) -> int:
"""simple docstring"""
_UpperCAmelCase : List[str] = []
for token in re.findall(self.pat , lowerCAmelCase__ ):
_UpperCAmelCase : List[Any] = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) )
return bpe_tokens
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) )
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.decoder.get(lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : int = "".join(lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_UpperCAmelCase : Any = os.path.join(
lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
_UpperCAmelCase : Any = os.path.join(
lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + "\n" )
_UpperCAmelCase : Dict = 0
with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
" Please check that the tokenizer is not corrupted!" )
_UpperCAmelCase : List[str] = token_index
writer.write(" ".join(lowerCAmelCase__ ) + "\n" )
index += 1
return vocab_file, merge_file
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_UpperCAmelCase : Any = [self.cls_token_id]
_UpperCAmelCase : Dict = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1]
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = [self.sep_token_id]
_UpperCAmelCase : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Any ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Tuple = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()):
_UpperCAmelCase : Any = " " + text
return (text, kwargs)
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[bool] = None , ) -> dict:
"""simple docstring"""
_UpperCAmelCase : Dict = super()._pad(
encoded_inputs=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding_strategy=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , )
# Load from model defaults
if return_attention_mask is None:
_UpperCAmelCase : str = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
_UpperCAmelCase : Tuple = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
_UpperCAmelCase : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(lowerCAmelCase__ )
if needs_to_be_padded:
_UpperCAmelCase : List[Any] = len(lowerCAmelCase__ ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
_UpperCAmelCase : Any = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
_UpperCAmelCase : List[Any] = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs | 350 | '''simple docstring'''
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
__a = (3, 9, -11, 0, 7, 5, 1, -1)
__a = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : int
UpperCamelCase_ : Node | None
class A__ :
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None:
"""simple docstring"""
_UpperCAmelCase : Node | None = None
for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ):
_UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head )
def __iter__( self : int ) -> Iterator[int]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.head
while node:
yield node.data
_UpperCAmelCase : List[str] = node.next_node
def __len__( self : Any ) -> int:
"""simple docstring"""
return sum(1 for _ in self )
def __str__( self : Union[str, Any] ) -> str:
"""simple docstring"""
return " -> ".join([str(lowerCAmelCase__ ) for node in self] )
def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ):
return SortedLinkedList(list(a_ ) + list(a_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
__a = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even))) | 17 | 0 |
'''simple docstring'''
import json
import os
import pickle
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers import is_faiss_available
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.tokenization_bart import BartTokenizer
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch
if is_faiss_available():
import faiss
@require_faiss
class A__ ( UpperCamelCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Dict ) -> str:
"""simple docstring"""
_UpperCAmelCase : Tuple = tempfile.mkdtemp()
_UpperCAmelCase : Optional[Any] = 8
# DPR tok
_UpperCAmelCase : int = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
_UpperCAmelCase : str = os.path.join(self.tmpdirname , "dpr_tokenizer" )
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
_UpperCAmelCase : Dict = os.path.join(lowerCAmelCase__ , DPR_VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
# BART tok
_UpperCAmelCase : str = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
_UpperCAmelCase : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
_UpperCAmelCase : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
_UpperCAmelCase : Optional[int] = {"unk_token": "<unk>"}
_UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , "bart_tokenizer" )
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = os.path.join(lowerCAmelCase__ , BART_VOCAB_FILES_NAMES["vocab_file"] )
_UpperCAmelCase : Any = os.path.join(lowerCAmelCase__ , BART_VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(lowerCAmelCase__ ) )
def _lowerCAmelCase ( self : Tuple ) -> DPRQuestionEncoderTokenizer:
"""simple docstring"""
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) )
def _lowerCAmelCase ( self : Tuple ) -> DPRContextEncoderTokenizer:
"""simple docstring"""
return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) )
def _lowerCAmelCase ( self : str ) -> BartTokenizer:
"""simple docstring"""
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) )
def _lowerCAmelCase ( self : int ) -> Tuple:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def _lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = Dataset.from_dict(
{
"id": ["0", "1"],
"text": ["foo", "bar"],
"title": ["Foo", "Bar"],
"embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )],
} )
dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT )
return dataset
def _lowerCAmelCase ( self : List[Any] ) -> Any:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.get_dummy_dataset()
_UpperCAmelCase : List[Any] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , )
with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset:
_UpperCAmelCase : str = dataset
_UpperCAmelCase : Optional[int] = RagRetriever(
lowerCAmelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
return retriever
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : bool ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.get_dummy_dataset()
_UpperCAmelCase : int = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , )
if from_disk:
_UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , "dataset" )
_UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , "index.faiss" )
dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) )
dataset.drop_index("embeddings" )
dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) )
del dataset
_UpperCAmelCase : Optional[Any] = RagRetriever(
lowerCAmelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , )
else:
_UpperCAmelCase : Tuple = RagRetriever(
lowerCAmelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , lowerCAmelCase__ ) , )
return retriever
def _lowerCAmelCase ( self : str ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Any = Dataset.from_dict(
{
"id": ["0", "1"],
"text": ["foo", "bar"],
"title": ["Foo", "Bar"],
"embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )],
} )
dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT )
_UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" )
dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" )
pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) )
_UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" )
_UpperCAmelCase : Optional[Any] = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset}
pickle.dump(lowerCAmelCase__ , open(lowerCAmelCase__ , "wb" ) )
_UpperCAmelCase : Optional[int] = RagConfig(
retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , )
_UpperCAmelCase : List[str] = RagRetriever(
lowerCAmelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() )
return retriever
def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = 1
_UpperCAmelCase : List[Any] = self.get_dummy_canonical_hf_index_retriever()
_UpperCAmelCase : int = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
_UpperCAmelCase : List[str] = retriever.retrieve(lowerCAmelCase__ , n_docs=lowerCAmelCase__ )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(lowerCAmelCase__ ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] )
self.assertEqual(len(doc_dicts[0]["id"] ) , lowerCAmelCase__ )
self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def _lowerCAmelCase ( self : Optional[int] ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Tuple = self.get_dummy_canonical_hf_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset:
_UpperCAmelCase : List[Any] = self.get_dummy_dataset()
retriever.save_pretrained(lowerCAmelCase__ )
_UpperCAmelCase : str = RagRetriever.from_pretrained(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
_UpperCAmelCase : Optional[int] = retriever.retrieve(lowerCAmelCase__ , n_docs=1 )
self.assertTrue(out is not None )
def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = 1
_UpperCAmelCase : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ )
_UpperCAmelCase : Tuple = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
_UpperCAmelCase : List[str] = retriever.retrieve(lowerCAmelCase__ , n_docs=lowerCAmelCase__ )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(lowerCAmelCase__ ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] )
self.assertEqual(len(doc_dicts[0]["id"] ) , lowerCAmelCase__ )
self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(lowerCAmelCase__ )
_UpperCAmelCase : str = RagRetriever.from_pretrained(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
_UpperCAmelCase : Optional[int] = retriever.retrieve(lowerCAmelCase__ , n_docs=1 )
self.assertTrue(out is not None )
def _lowerCAmelCase ( self : Dict ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Dict = 1
_UpperCAmelCase : int = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ )
_UpperCAmelCase : str = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
_UpperCAmelCase : Optional[Any] = retriever.retrieve(lowerCAmelCase__ , n_docs=lowerCAmelCase__ )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(lowerCAmelCase__ ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] )
self.assertEqual(len(doc_dicts[0]["id"] ) , lowerCAmelCase__ )
self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def _lowerCAmelCase ( self : Tuple ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ )
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(lowerCAmelCase__ )
_UpperCAmelCase : Any = RagRetriever.from_pretrained(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
_UpperCAmelCase : Optional[int] = retriever.retrieve(lowerCAmelCase__ , n_docs=1 )
self.assertTrue(out is not None )
def _lowerCAmelCase ( self : Any ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Tuple = 1
_UpperCAmelCase : Dict = self.get_dummy_legacy_index_retriever()
_UpperCAmelCase : List[str] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
_UpperCAmelCase : str = retriever.retrieve(lowerCAmelCase__ , n_docs=lowerCAmelCase__ )
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertEqual(len(lowerCAmelCase__ ) , 2 )
self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] )
self.assertEqual(len(doc_dicts[0]["text"] ) , lowerCAmelCase__ )
self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist() , [[1], [0]] )
def _lowerCAmelCase ( self : List[str] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Tuple = self.get_dummy_legacy_index_retriever()
with tempfile.TemporaryDirectory() as tmp_dirname:
retriever.save_pretrained(lowerCAmelCase__ )
_UpperCAmelCase : Any = RagRetriever.from_pretrained(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Tuple = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
_UpperCAmelCase : Any = retriever.retrieve(lowerCAmelCase__ , n_docs=1 )
self.assertTrue(out is not None )
@require_torch
@require_tokenizers
@require_sentencepiece
def _lowerCAmelCase ( self : Any ) -> str:
"""simple docstring"""
import torch
_UpperCAmelCase : Any = 1
_UpperCAmelCase : Optional[int] = self.get_dummy_canonical_hf_index_retriever()
_UpperCAmelCase : Dict = [[5, 7], [1_0, 1_1]]
_UpperCAmelCase : Tuple = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
_UpperCAmelCase : Dict = retriever(lowerCAmelCase__ , lowerCAmelCase__ , prefix=retriever.config.generator.prefix , n_docs=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = (
out["context_input_ids"],
out["context_attention_mask"],
out["retrieved_doc_embeds"],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
_UpperCAmelCase : Tuple = retriever(
lowerCAmelCase__ , lowerCAmelCase__ , prefix=retriever.config.generator.prefix , n_docs=lowerCAmelCase__ , return_tensors="pt" , )
_UpperCAmelCase : List[Any] = ( # noqa: F841
out["context_input_ids"],
out["context_attention_mask"],
out["retrieved_doc_embeds"],
out["doc_ids"],
)
self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) )
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
@require_torch
@require_tokenizers
@require_sentencepiece
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : str = self.get_dpr_ctx_encoder_tokenizer()
_UpperCAmelCase : Dict = 1
_UpperCAmelCase : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ )
retriever.set_ctx_encoder_tokenizer(lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = [[5, 7], [1_0, 1_1]]
_UpperCAmelCase : Union[str, Any] = np.array(
[np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa )
_UpperCAmelCase : Tuple = retriever(lowerCAmelCase__ , lowerCAmelCase__ , prefix=retriever.config.generator.prefix , n_docs=lowerCAmelCase__ )
self.assertEqual(
len(lowerCAmelCase__ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs
self.assertEqual(
all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , lowerCAmelCase__ ) # check for doc token related keys in dictionary. | 351 | '''simple docstring'''
def __UpperCAmelCase ( a_: str ):
if not all(char in "01" for char in bin_string ):
raise ValueError("Non-binary value was passed to the function" )
if not bin_string:
raise ValueError("Empty string was passed to the function" )
_UpperCAmelCase : Optional[Any] = ""
while len(a_ ) % 3 != 0:
_UpperCAmelCase : List[Any] = "0" + bin_string
_UpperCAmelCase : Dict = [
bin_string[index : index + 3]
for index in range(len(a_ ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
_UpperCAmelCase : Optional[Any] = 0
for index, val in enumerate(a_ ):
oct_val += int(2 ** (2 - index) * int(a_ ) )
oct_string += str(a_ )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod() | 17 | 0 |
'''simple docstring'''
import importlib
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
import transformers.models.auto
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.bert.configuration_bert import BertConfig
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
__a = get_tests_dir('fixtures/dummy-config.json')
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : int ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : List[str] = 0
def _lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
self.assertIsNotNone(transformers.models.auto.__spec__ )
self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) )
def _lowerCAmelCase ( self : List[Any] ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Tuple = AutoConfig.from_pretrained(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Union[str, Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = AutoConfig.for_model("roberta" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
# This model name contains bert and roberta, but roberta ends up being picked.
_UpperCAmelCase : Optional[int] = os.path.join(lowerCAmelCase__ , "fake-roberta" )
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
with open(os.path.join(lowerCAmelCase__ , "config.json" ) , "w" ) as f:
f.write(json.dumps({} ) )
_UpperCAmelCase : Tuple = AutoConfig.from_pretrained(lowerCAmelCase__ )
self.assertEqual(type(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] ) -> Any:
"""simple docstring"""
try:
AutoConfig.register("custom" , lowerCAmelCase__ )
# Wrong model type will raise an error
with self.assertRaises(lowerCAmelCase__ ):
AutoConfig.register("model" , lowerCAmelCase__ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(lowerCAmelCase__ ):
AutoConfig.register("bert" , lowerCAmelCase__ )
# Now that the config is registered, it can be used as any other config with the auto-API
_UpperCAmelCase : Any = CustomConfig()
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowerCAmelCase__ )
_UpperCAmelCase : Any = AutoConfig.from_pretrained(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
def _lowerCAmelCase ( self : int ) -> str:
"""simple docstring"""
with self.assertRaisesRegex(
lowerCAmelCase__ , "bert-base is not a local folder and is not a valid model identifier" ):
_UpperCAmelCase : str = AutoConfig.from_pretrained("bert-base" )
def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
with self.assertRaisesRegex(
lowerCAmelCase__ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
_UpperCAmelCase : Tuple = AutoConfig.from_pretrained(lowerCAmelCase__ , revision="aaaaaa" )
def _lowerCAmelCase ( self : Any ) -> Tuple:
"""simple docstring"""
with self.assertRaisesRegex(
lowerCAmelCase__ , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ):
_UpperCAmelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" )
def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
with self.assertRaises(lowerCAmelCase__ ):
_UpperCAmelCase : str = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(lowerCAmelCase__ ):
_UpperCAmelCase : Tuple = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ )
self.assertEqual(config.__class__.__name__ , "NewModelConfig" )
# Test config can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowerCAmelCase__ )
_UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowerCAmelCase__ , trust_remote_code=lowerCAmelCase__ )
self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig" )
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = '''new-model'''
try:
AutoConfig.register("new-model" , lowerCAmelCase__ )
# If remote code is not set, the default is to use local
_UpperCAmelCase : str = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" )
self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" )
# If remote code is disabled, we load the local one.
_UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ )
self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" )
# If remote is enabled, we load from the Hub
_UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ )
self.assertEqual(config.__class__.__name__ , "NewModelConfig" )
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"] | 352 | '''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def __UpperCAmelCase ( a_: str ):
for param in module.parameters():
_UpperCAmelCase : Any = False
def __UpperCAmelCase ( ):
_UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_UpperCAmelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : int = plt.imshow(a_ )
fig.axes.get_xaxis().set_visible(a_ )
fig.axes.get_yaxis().set_visible(a_ )
plt.show()
def __UpperCAmelCase ( ):
_UpperCAmelCase : Dict = datetime.now()
_UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" )
return timestamp | 17 | 0 |
'''simple docstring'''
import io
import math
from typing import Dict, Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
get_image_size,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_vision_available, logging
from ...utils.import_utils import requires_backends
if is_vision_available():
import textwrap
from PIL import Image, ImageDraw, ImageFont
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
__a = False
__a = logging.get_logger(__name__)
__a = 'ybelkada/fonts'
def __UpperCAmelCase ( ):
if is_torch_available() and not is_torch_greater_or_equal_than_1_11:
raise ImportError(
f"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """
"Pix2StructImageProcessor. Please upgrade torch." )
def __UpperCAmelCase ( a_: Any, a_: Optional[Any], a_: Optional[Any] ):
requires_backends(a_, ["torch"] )
_check_torch_version()
_UpperCAmelCase : Tuple = image_tensor.unsqueeze(0 )
_UpperCAmelCase : str = torch.nn.functional.unfold(a_, (patch_height, patch_width), stride=(patch_height, patch_width) )
_UpperCAmelCase : Optional[Any] = patches.reshape(image_tensor.size(0 ), image_tensor.size(1 ), a_, a_, -1 )
_UpperCAmelCase : Optional[int] = patches.permute(0, 4, 2, 3, 1 ).reshape(
image_tensor.size(2 ) // patch_height, image_tensor.size(3 ) // patch_width, image_tensor.size(1 ) * patch_height * patch_width, )
return patches.unsqueeze(0 )
def __UpperCAmelCase ( a_: str, a_: int = 36, a_: str = "black", a_: str = "white", a_: int = 5, a_: int = 5, a_: int = 5, a_: int = 5, a_: Optional[bytes] = None, a_: Optional[str] = None, ):
requires_backends(a_, "vision" )
# Add new lines so that each line is no more than 80 characters.
_UpperCAmelCase : Union[str, Any] = textwrap.TextWrapper(width=80 )
_UpperCAmelCase : Optional[int] = wrapper.wrap(text=a_ )
_UpperCAmelCase : Optional[int] = "\n".join(a_ )
if font_bytes is not None and font_path is None:
_UpperCAmelCase : List[str] = io.BytesIO(a_ )
elif font_path is not None:
_UpperCAmelCase : str = font_path
else:
_UpperCAmelCase : Union[str, Any] = hf_hub_download(a_, "Arial.TTF" )
_UpperCAmelCase : Any = ImageFont.truetype(a_, encoding="UTF-8", size=a_ )
# Use a temporary canvas to determine the width and height in pixels when
# rendering the text.
_UpperCAmelCase : Dict = ImageDraw.Draw(Image.new("RGB", (1, 1), a_ ) )
_UpperCAmelCase : Union[str, Any] = temp_draw.textbbox((0, 0), a_, a_ )
# Create the actual image with a bit of padding around the text.
_UpperCAmelCase : Any = text_width + left_padding + right_padding
_UpperCAmelCase : Dict = text_height + top_padding + bottom_padding
_UpperCAmelCase : List[Any] = Image.new("RGB", (image_width, image_height), a_ )
_UpperCAmelCase : List[Any] = ImageDraw.Draw(a_ )
draw.text(xy=(left_padding, top_padding), text=a_, fill=a_, font=a_ )
return image
def __UpperCAmelCase ( a_: np.ndarray, a_: str, **a_: Tuple ):
requires_backends(a_, "vision" )
# Convert to PIL image if necessary
_UpperCAmelCase : Optional[Any] = to_pil_image(a_ )
_UpperCAmelCase : Optional[Any] = render_text(a_, **a_ )
_UpperCAmelCase : int = max(header_image.width, image.width )
_UpperCAmelCase : List[str] = int(image.height * (new_width / image.width) )
_UpperCAmelCase : Optional[int] = int(header_image.height * (new_width / header_image.width) )
_UpperCAmelCase : Any = Image.new("RGB", (new_width, new_height + new_header_height), "white" )
new_image.paste(header_image.resize((new_width, new_header_height) ), (0, 0) )
new_image.paste(image.resize((new_width, new_height) ), (0, new_header_height) )
# Convert back to the original framework if necessary
_UpperCAmelCase : Optional[Any] = to_numpy_array(a_ )
if infer_channel_dimension_format(a_ ) == ChannelDimension.LAST:
_UpperCAmelCase : Union[str, Any] = to_channel_dimension_format(a_, ChannelDimension.LAST )
return new_image
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[int] = ['''flattened_patches''']
def __init__( self : Optional[int] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : int = 2_0_4_8 , lowerCAmelCase__ : bool = False , **lowerCAmelCase__ : Union[str, Any] , ) -> None:
"""simple docstring"""
super().__init__(**lowerCAmelCase__ )
_UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6}
_UpperCAmelCase : List[str] = do_normalize
_UpperCAmelCase : List[str] = do_convert_rgb
_UpperCAmelCase : List[Any] = max_patches
_UpperCAmelCase : Any = is_vqa
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : int , lowerCAmelCase__ : dict , **lowerCAmelCase__ : Union[str, Any] ) -> np.ndarray:
"""simple docstring"""
requires_backends(self.extract_flattened_patches , "torch" )
_check_torch_version()
# convert to torch
_UpperCAmelCase : Dict = to_channel_dimension_format(lowerCAmelCase__ , ChannelDimension.FIRST )
_UpperCAmelCase : Any = torch.from_numpy(lowerCAmelCase__ )
_UpperCAmelCase : str = patch_size["height"], patch_size["width"]
_UpperCAmelCase : Optional[int] = get_image_size(lowerCAmelCase__ )
# maximize scale s.t.
_UpperCAmelCase : Any = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) )
_UpperCAmelCase : Dict = max(min(math.floor(scale * image_height / patch_height ) , lowerCAmelCase__ ) , 1 )
_UpperCAmelCase : Union[str, Any] = max(min(math.floor(scale * image_width / patch_width ) , lowerCAmelCase__ ) , 1 )
_UpperCAmelCase : Optional[Any] = max(num_feasible_rows * patch_height , 1 )
_UpperCAmelCase : Tuple = max(num_feasible_cols * patch_width , 1 )
_UpperCAmelCase : Tuple = torch.nn.functional.interpolate(
image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=lowerCAmelCase__ , antialias=lowerCAmelCase__ , ).squeeze(0 )
# [1, rows, columns, patch_height * patch_width * image_channels]
_UpperCAmelCase : Optional[Any] = torch_extract_patches(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = patches.shape
_UpperCAmelCase : Optional[Any] = patches_shape[1]
_UpperCAmelCase : List[Any] = patches_shape[2]
_UpperCAmelCase : Optional[int] = patches_shape[3]
# [rows * columns, patch_height * patch_width * image_channels]
_UpperCAmelCase : List[Any] = patches.reshape([rows * columns, depth] )
# [rows * columns, 1]
_UpperCAmelCase : List[str] = torch.arange(lowerCAmelCase__ ).reshape([rows, 1] ).repeat(1 , lowerCAmelCase__ ).reshape([rows * columns, 1] )
_UpperCAmelCase : List[str] = torch.arange(lowerCAmelCase__ ).reshape([1, columns] ).repeat(lowerCAmelCase__ , 1 ).reshape([rows * columns, 1] )
# Offset by 1 so the ids do not contain zeros, which represent padding.
row_ids += 1
col_ids += 1
# Prepare additional patch features.
# [rows * columns, 1]
_UpperCAmelCase : str = row_ids.to(torch.floataa )
_UpperCAmelCase : Tuple = col_ids.to(torch.floataa )
# [rows * columns, 2 + patch_height * patch_width * image_channels]
_UpperCAmelCase : Tuple = torch.cat([row_ids, col_ids, patches] , -1 )
# [max_patches, 2 + patch_height * patch_width * image_channels]
_UpperCAmelCase : Dict = torch.nn.functional.pad(lowerCAmelCase__ , [0, 0, 0, max_patches - (rows * columns)] ).float()
_UpperCAmelCase : Optional[int] = to_numpy_array(lowerCAmelCase__ )
return result
def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Dict ) -> np.ndarray:
"""simple docstring"""
if image.dtype == np.uinta:
_UpperCAmelCase : str = image.astype(np.floataa )
# take mean across the whole `image`
_UpperCAmelCase : Tuple = np.mean(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = np.std(lowerCAmelCase__ )
_UpperCAmelCase : int = max(lowerCAmelCase__ , 1.0 / math.sqrt(np.prod(image.shape ) ) )
return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , **lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase__ : Optional[Any] , ) -> ImageInput:
"""simple docstring"""
_UpperCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize
_UpperCAmelCase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_UpperCAmelCase : Optional[Any] = patch_size if patch_size is not None else self.patch_size
_UpperCAmelCase : Optional[Any] = max_patches if max_patches is not None else self.max_patches
_UpperCAmelCase : Tuple = self.is_vqa
if kwargs.get("data_format" , lowerCAmelCase__ ) is not None:
raise ValueError("data_format is not an accepted input as the outputs are " )
_UpperCAmelCase : Any = make_list_of_images(lowerCAmelCase__ )
if not valid_images(lowerCAmelCase__ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_UpperCAmelCase : Tuple = [convert_to_rgb(lowerCAmelCase__ ) for image in images]
# All transformations expect numpy arrays.
_UpperCAmelCase : List[Any] = [to_numpy_array(lowerCAmelCase__ ) for image in images]
if is_vqa:
if header_text is None:
raise ValueError("A header text must be provided for VQA models." )
_UpperCAmelCase : List[Any] = kwargs.pop("font_bytes" , lowerCAmelCase__ )
_UpperCAmelCase : List[str] = kwargs.pop("font_path" , lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : Union[str, Any] = [header_text] * len(lowerCAmelCase__ )
_UpperCAmelCase : Any = [
render_header(lowerCAmelCase__ , header_text[i] , font_bytes=lowerCAmelCase__ , font_path=lowerCAmelCase__ )
for i, image in enumerate(lowerCAmelCase__ )
]
if do_normalize:
_UpperCAmelCase : Optional[Any] = [self.normalize(image=lowerCAmelCase__ ) for image in images]
# convert to torch tensor and permute
_UpperCAmelCase : Optional[int] = [
self.extract_flattened_patches(image=lowerCAmelCase__ , max_patches=lowerCAmelCase__ , patch_size=lowerCAmelCase__ )
for image in images
]
# create attention mask in numpy
_UpperCAmelCase : Optional[int] = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images]
_UpperCAmelCase : Optional[Any] = BatchFeature(
data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=lowerCAmelCase__ )
return encoded_outputs | 353 | '''simple docstring'''
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[int] = (EulerDiscreteScheduler,)
UpperCamelCase_ : Tuple = 10
def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = {
"num_train_timesteps": 1_1_0_0,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**lowerCAmelCase__ )
return config
def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Any ) -> List[str]:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] ) -> List[str]:
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.scheduler_classes[0]
_UpperCAmelCase : int = self.get_scheduler_config()
_UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
_UpperCAmelCase : int = torch.manual_seed(0 )
_UpperCAmelCase : Any = self.dummy_model()
_UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma
_UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
_UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = output.prev_sample
_UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Any = self.scheduler_classes[0]
_UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" )
_UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
_UpperCAmelCase : str = torch.manual_seed(0 )
_UpperCAmelCase : Optional[Any] = self.dummy_model()
_UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
_UpperCAmelCase : Tuple = sample.to(lowerCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
_UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = output.prev_sample
_UpperCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 0.0002 ) < 1e-2
assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3
def _lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.scheduler_classes[0]
_UpperCAmelCase : List[Any] = self.get_scheduler_config()
_UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
_UpperCAmelCase : str = self.dummy_model()
_UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_UpperCAmelCase : str = sample.to(lowerCAmelCase__ )
for t in scheduler.timesteps:
_UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : int = output.prev_sample
_UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.scheduler_classes[0]
_UpperCAmelCase : int = self.get_scheduler_config()
_UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
_UpperCAmelCase : List[str] = self.dummy_model()
_UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_UpperCAmelCase : Optional[int] = sample.to(lowerCAmelCase__ )
for t in scheduler.timesteps:
_UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = output.prev_sample
_UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2
assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3 | 17 | 0 |
'''simple docstring'''
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Tuple ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Dict = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" )
_UpperCAmelCase : Dict = AutoTokenizer.from_pretrained("google/mt5-small" )
_UpperCAmelCase : Dict = tokenizer("Hello there" , return_tensors="np" ).input_ids
_UpperCAmelCase : Any = tokenizer("Hi I am" , return_tensors="np" ).input_ids
_UpperCAmelCase : str = shift_tokens_right(lowerCAmelCase__ , model.config.pad_token_id , model.config.decoder_start_token_id )
_UpperCAmelCase : int = model(lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ).logits
_UpperCAmelCase : Dict = optax.softmax_cross_entropy(lowerCAmelCase__ , onehot(lowerCAmelCase__ , logits.shape[-1] ) ).mean()
_UpperCAmelCase : Any = -(labels.shape[-1] * loss.item())
_UpperCAmelCase : Optional[int] = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 ) | 354 | '''simple docstring'''
def __UpperCAmelCase ( a_: int, a_: int ):
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
_UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) )
return "0b" + "".join(
str(int(char_a == "1" and char_b == "1" ) )
for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 0 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class A__ :
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict=1_3 , lowerCAmelCase__ : Dict=7 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Dict=9_9 , lowerCAmelCase__ : Dict=3_2 , lowerCAmelCase__ : List[str]=5 , lowerCAmelCase__ : Union[str, Any]=4 , lowerCAmelCase__ : int=3_7 , lowerCAmelCase__ : Union[str, Any]="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : List[Any]=5_1_2 , lowerCAmelCase__ : Optional[int]=1_6 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : Tuple=4 , lowerCAmelCase__ : Tuple=None , ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : List[str] = batch_size
_UpperCAmelCase : Optional[int] = seq_length
_UpperCAmelCase : List[Any] = is_training
_UpperCAmelCase : List[Any] = use_input_mask
_UpperCAmelCase : str = use_token_type_ids
_UpperCAmelCase : int = use_labels
_UpperCAmelCase : Tuple = vocab_size
_UpperCAmelCase : Tuple = hidden_size
_UpperCAmelCase : str = num_hidden_layers
_UpperCAmelCase : Tuple = num_attention_heads
_UpperCAmelCase : Optional[Any] = intermediate_size
_UpperCAmelCase : Dict = hidden_act
_UpperCAmelCase : List[str] = hidden_dropout_prob
_UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
_UpperCAmelCase : int = max_position_embeddings
_UpperCAmelCase : List[Any] = type_vocab_size
_UpperCAmelCase : Dict = type_sequence_label_size
_UpperCAmelCase : List[Any] = initializer_range
_UpperCAmelCase : Dict = num_labels
_UpperCAmelCase : str = num_choices
_UpperCAmelCase : List[str] = scope
def _lowerCAmelCase ( self : int ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase : Tuple = None
if self.use_input_mask:
_UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : Tuple = None
if self.use_token_type_ids:
_UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCAmelCase : str = None
_UpperCAmelCase : List[Any] = None
_UpperCAmelCase : Optional[Any] = None
if self.use_labels:
_UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices )
_UpperCAmelCase : Dict = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCAmelCase ( self : int ) -> Optional[int]:
"""simple docstring"""
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , use_stable_embedding=lowerCAmelCase__ , )
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = OpenLlamaModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCAmelCase : int = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Any = True
_UpperCAmelCase : Optional[int] = OpenLlamaModel(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Any = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , )
_UpperCAmelCase : Tuple = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , )
_UpperCAmelCase : int = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = True
_UpperCAmelCase : int = True
_UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
# first forward pass
_UpperCAmelCase : Any = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ , )
_UpperCAmelCase : Tuple = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
_UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
_UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
_UpperCAmelCase : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
_UpperCAmelCase : Dict = torch.cat([input_mask, next_mask] , dim=-1 )
_UpperCAmelCase : List[Any] = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0]
_UpperCAmelCase : Tuple = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0]
# select random slice
_UpperCAmelCase : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_UpperCAmelCase : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
_UpperCAmelCase : Any = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) )
def _lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Dict = self.prepare_config_and_inputs()
(
_UpperCAmelCase
) : Tuple = config_and_inputs
_UpperCAmelCase : int = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[int] = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
UpperCamelCase_ : Dict = (OpenLlamaForCausalLM,) if is_torch_available() else ()
UpperCamelCase_ : str = (
{
'''feature-extraction''': OpenLlamaModel,
'''text-classification''': OpenLlamaForSequenceClassification,
'''text-generation''': OpenLlamaForCausalLM,
'''zero-shot''': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCamelCase_ : List[Any] = False
UpperCamelCase_ : Optional[Any] = False
def _lowerCAmelCase ( self : List[Any] ) -> int:
"""simple docstring"""
_UpperCAmelCase : int = OpenLlamaModelTester(self )
_UpperCAmelCase : str = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 )
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_UpperCAmelCase : Any = type
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase : Dict = 3
_UpperCAmelCase : Union[str, Any] = input_dict["input_ids"]
_UpperCAmelCase : Union[str, Any] = input_ids.ne(1 ).to(lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
_UpperCAmelCase : Union[str, Any] = OpenLlamaForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase : Tuple = 3
_UpperCAmelCase : Dict = "single_label_classification"
_UpperCAmelCase : str = input_dict["input_ids"]
_UpperCAmelCase : Union[str, Any] = input_ids.ne(1 ).to(lowerCAmelCase__ )
_UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
_UpperCAmelCase : str = OpenLlamaForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase : Dict = 3
_UpperCAmelCase : Union[str, Any] = "multi_label_classification"
_UpperCAmelCase : str = input_dict["input_ids"]
_UpperCAmelCase : str = input_ids.ne(1 ).to(lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
_UpperCAmelCase : int = OpenLlamaForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip("Open-Llama buffers include complex numbers, which breaks this test" )
def _lowerCAmelCase ( self : str ) -> Optional[int]:
"""simple docstring"""
pass
@parameterized.expand([("linear",), ("dynamic",)] )
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[str] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase : str = ids_tensor([1, 1_0] , config.vocab_size )
_UpperCAmelCase : Optional[int] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
_UpperCAmelCase : Optional[Any] = OpenLlamaModel(lowerCAmelCase__ )
original_model.to(lowerCAmelCase__ )
original_model.eval()
_UpperCAmelCase : Optional[Any] = original_model(lowerCAmelCase__ ).last_hidden_state
_UpperCAmelCase : Any = original_model(lowerCAmelCase__ ).last_hidden_state
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
_UpperCAmelCase : Dict = {"type": scaling_type, "factor": 10.0}
_UpperCAmelCase : Union[str, Any] = OpenLlamaModel(lowerCAmelCase__ )
scaled_model.to(lowerCAmelCase__ )
scaled_model.eval()
_UpperCAmelCase : str = scaled_model(lowerCAmelCase__ ).last_hidden_state
_UpperCAmelCase : List[str] = scaled_model(lowerCAmelCase__ ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-5 ) )
| 355 | '''simple docstring'''
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def __UpperCAmelCase ( a_: int ):
# A local function to see if a dot lands in the circle.
def is_in_circle(a_: float, a_: float ) -> bool:
_UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
_UpperCAmelCase : str = mean(
int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) )
for _ in range(a_ ) )
# The ratio of the area for circle to square is pi/4.
_UpperCAmelCase : Optional[int] = proportion * 4
print(f"""The estimated value of pi is {pi_estimate}""" )
print(f"""The numpy value of pi is {pi}""" )
print(f"""The total error is {abs(pi - pi_estimate )}""" )
def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ):
return mean(
function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value)
def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ):
def identity_function(a_: float ) -> float:
return x
_UpperCAmelCase : Union[str, Any] = area_under_curve_estimator(
a_, a_, a_, a_ )
_UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2
print("******************" )
print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {expected_value}""" )
print(f"""Total error is {abs(estimated_value - expected_value )}""" )
print("******************" )
def __UpperCAmelCase ( a_: int ):
def function_to_integrate(a_: float ) -> float:
return sqrt(4.0 - x * x )
_UpperCAmelCase : List[str] = area_under_curve_estimator(
a_, a_, 0.0, 2.0 )
print("******************" )
print("Estimating pi using area_under_curve_estimator" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {pi}""" )
print(f"""Total error is {abs(estimated_value - pi )}""" )
print("******************" )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class A__ :
"""simple docstring"""
UpperCamelCase_ : Any = XGLMConfig
UpperCamelCase_ : Union[str, Any] = {}
UpperCamelCase_ : Dict = '''gelu'''
def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : str = batch_size
_UpperCAmelCase : str = seq_length
_UpperCAmelCase : int = is_training
_UpperCAmelCase : List[Any] = use_input_mask
_UpperCAmelCase : Optional[int] = use_labels
_UpperCAmelCase : str = vocab_size
_UpperCAmelCase : int = d_model
_UpperCAmelCase : Tuple = num_hidden_layers
_UpperCAmelCase : Tuple = num_attention_heads
_UpperCAmelCase : Tuple = ffn_dim
_UpperCAmelCase : Any = activation_function
_UpperCAmelCase : Union[str, Any] = activation_dropout
_UpperCAmelCase : Union[str, Any] = attention_dropout
_UpperCAmelCase : Any = max_position_embeddings
_UpperCAmelCase : int = initializer_range
_UpperCAmelCase : Any = None
_UpperCAmelCase : int = 0
_UpperCAmelCase : Union[str, Any] = 2
_UpperCAmelCase : Tuple = 1
def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : int = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_UpperCAmelCase : Any = None
if self.use_input_mask:
_UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : Optional[Any] = self.get_config()
_UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , )
def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
(
_UpperCAmelCase
) : List[Any] = config_and_inputs
_UpperCAmelCase : Optional[int] = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else ()
UpperCamelCase_ : Tuple = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
UpperCamelCase_ : Dict = False
UpperCamelCase_ : List[Any] = False
UpperCamelCase_ : Tuple = False
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Dict = TFXGLMModelTester(self )
_UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 )
def _lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowerCAmelCase ( self : Union[str, Any] ) -> int:
"""simple docstring"""
super().test_resize_token_embeddings()
@require_tf
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1]
# fmt: on
_UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
_UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" )
_UpperCAmelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
_UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] )
_UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[int] = "left"
# use different length sentences to test batching
_UpperCAmelCase : Tuple = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
_UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = inputs["input_ids"]
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 )
_UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids
_UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] ) | 356 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__a = {
'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'],
'processing_layoutlmv2': ['LayoutLMv2Processor'],
'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['LayoutLMv2TokenizerFast']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['LayoutLMv2FeatureExtractor']
__a = ['LayoutLMv2ImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv2ForQuestionAnswering',
'LayoutLMv2ForSequenceClassification',
'LayoutLMv2ForTokenClassification',
'LayoutLMv2Layer',
'LayoutLMv2Model',
'LayoutLMv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 17 | 0 |
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class A__ :
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=8 , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=9_9 , lowerCAmelCase__ : Any=1_6 , lowerCAmelCase__ : Union[str, Any]=5 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : List[str]=3_6 , lowerCAmelCase__ : Tuple="gelu" , lowerCAmelCase__ : Any=0.0 , lowerCAmelCase__ : List[str]=0.0 , lowerCAmelCase__ : Union[str, Any]=5_1_2 , lowerCAmelCase__ : Optional[Any]=1_6 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : int=None , ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : str = parent
_UpperCAmelCase : Union[str, Any] = batch_size
_UpperCAmelCase : Optional[int] = seq_length
_UpperCAmelCase : List[str] = is_training
_UpperCAmelCase : List[str] = use_input_mask
_UpperCAmelCase : Any = use_token_type_ids
_UpperCAmelCase : List[Any] = use_labels
_UpperCAmelCase : Union[str, Any] = vocab_size
_UpperCAmelCase : int = hidden_size
_UpperCAmelCase : Union[str, Any] = num_hidden_layers
_UpperCAmelCase : Optional[Any] = num_attention_heads
_UpperCAmelCase : Any = intermediate_size
_UpperCAmelCase : Optional[int] = hidden_act
_UpperCAmelCase : List[str] = hidden_dropout_prob
_UpperCAmelCase : int = attention_probs_dropout_prob
_UpperCAmelCase : Any = max_position_embeddings
_UpperCAmelCase : Tuple = type_vocab_size
_UpperCAmelCase : List[str] = type_sequence_label_size
_UpperCAmelCase : Any = initializer_range
_UpperCAmelCase : Any = num_labels
_UpperCAmelCase : List[Any] = num_choices
_UpperCAmelCase : Tuple = scope
def _lowerCAmelCase ( self : str ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase : List[Any] = None
if self.use_input_mask:
_UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : Any = None
if self.use_token_type_ids:
_UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCAmelCase : List[str] = None
_UpperCAmelCase : int = None
_UpperCAmelCase : str = None
if self.use_labels:
_UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices )
_UpperCAmelCase : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , )
def _lowerCAmelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.get_config()
_UpperCAmelCase : Optional[int] = 3_0_0
return config
def _lowerCAmelCase ( self : List[str] ) -> str:
"""simple docstring"""
(
_UpperCAmelCase
) : List[str] = self.prepare_config_and_inputs()
_UpperCAmelCase : Union[str, Any] = True
_UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ) -> Any:
"""simple docstring"""
_UpperCAmelCase : int = MraModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : List[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = True
_UpperCAmelCase : Optional[Any] = MraModel(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Tuple = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , )
_UpperCAmelCase : Dict = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , )
_UpperCAmelCase : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : str = MraForMaskedLM(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Tuple = MraForQuestionAnswering(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Optional[Any] = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : int = self.num_labels
_UpperCAmelCase : Dict = MraForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str ) -> str:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.num_labels
_UpperCAmelCase : List[str] = MraForTokenClassification(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : str = self.num_choices
_UpperCAmelCase : Optional[Any] = MraForMultipleChoice(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCAmelCase : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCAmelCase : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCAmelCase : str = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _lowerCAmelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs()
(
_UpperCAmelCase
) : Union[str, Any] = config_and_inputs
_UpperCAmelCase : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[Any] = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
UpperCamelCase_ : Any = False
UpperCamelCase_ : Tuple = False
UpperCamelCase_ : str = False
UpperCamelCase_ : str = False
UpperCamelCase_ : Union[str, Any] = ()
def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : List[Any] = MraModelTester(self )
_UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 )
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_UpperCAmelCase : int = type
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Dict ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Any ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase : Union[str, Any] = MraModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@unittest.skip(reason="MRA does not output attentions" )
def _lowerCAmelCase ( self : Tuple ) -> List[Any]:
"""simple docstring"""
return
@require_torch
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : str = MraModel.from_pretrained("uw-madison/mra-base-512-4" )
_UpperCAmelCase : Optional[Any] = torch.arange(2_5_6 ).unsqueeze(0 )
with torch.no_grad():
_UpperCAmelCase : Tuple = model(lowerCAmelCase__ )[0]
_UpperCAmelCase : Union[str, Any] = torch.Size((1, 2_5_6, 7_6_8) )
self.assertEqual(output.shape , lowerCAmelCase__ )
_UpperCAmelCase : str = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) )
@slow
def _lowerCAmelCase ( self : Optional[Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" )
_UpperCAmelCase : Any = torch.arange(2_5_6 ).unsqueeze(0 )
with torch.no_grad():
_UpperCAmelCase : str = model(lowerCAmelCase__ )[0]
_UpperCAmelCase : Union[str, Any] = 5_0_2_6_5
_UpperCAmelCase : Any = torch.Size((1, 2_5_6, vocab_size) )
self.assertEqual(output.shape , lowerCAmelCase__ )
_UpperCAmelCase : Dict = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) )
@slow
def _lowerCAmelCase ( self : Any ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Tuple = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" )
_UpperCAmelCase : Dict = torch.arange(4_0_9_6 ).unsqueeze(0 )
with torch.no_grad():
_UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ )[0]
_UpperCAmelCase : Dict = 5_0_2_6_5
_UpperCAmelCase : List[str] = torch.Size((1, 4_0_9_6, vocab_size) )
self.assertEqual(output.shape , lowerCAmelCase__ )
_UpperCAmelCase : int = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) | 357 | '''simple docstring'''
def __UpperCAmelCase ( a_: int, a_: int ):
if not isinstance(a_, a_ ):
raise ValueError("iterations must be defined as integers" )
if not isinstance(a_, a_ ) or not number >= 1:
raise ValueError(
"starting number must be\n and integer and be more than 0" )
if not iterations >= 1:
raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" )
_UpperCAmelCase : List[str] = ""
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(a_ )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 0 |
'''simple docstring'''
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
__a = 500_000
__a , __a = os.path.split(__file__)
__a = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json'))
@get_duration
def __UpperCAmelCase ( a_: datasets.Dataset, **a_: Tuple ):
_UpperCAmelCase : Optional[Any] = dataset.map(**a_ )
@get_duration
def __UpperCAmelCase ( a_: datasets.Dataset, **a_: Any ):
_UpperCAmelCase : Dict = dataset.filter(**a_ )
def __UpperCAmelCase ( ):
_UpperCAmelCase : List[Any] = {"num examples": SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
_UpperCAmelCase : Optional[Any] = datasets.Features({"text": datasets.Value("string" ), "numbers": datasets.Value("float32" )} )
_UpperCAmelCase : Any = generate_example_dataset(
os.path.join(a_, "dataset.arrow" ), a_, num_examples=a_ )
_UpperCAmelCase : Tuple = transformers.AutoTokenizer.from_pretrained("bert-base-cased", use_fast=a_ )
def tokenize(a_: Optional[Any] ):
return tokenizer(examples["text"] )
_UpperCAmelCase : Optional[Any] = map(a_ )
_UpperCAmelCase : List[Any] = map(a_, batched=a_ )
_UpperCAmelCase : Optional[int] = map(a_, function=lambda a_ : None, batched=a_ )
with dataset.formatted_as(type="numpy" ):
_UpperCAmelCase : Dict = map(a_, function=lambda a_ : None, batched=a_ )
with dataset.formatted_as(type="pandas" ):
_UpperCAmelCase : Optional[Any] = map(a_, function=lambda a_ : None, batched=a_ )
with dataset.formatted_as(type="torch", columns="numbers" ):
_UpperCAmelCase : List[Any] = map(a_, function=lambda a_ : None, batched=a_ )
with dataset.formatted_as(type="tensorflow", columns="numbers" ):
_UpperCAmelCase : str = map(a_, function=lambda a_ : None, batched=a_ )
_UpperCAmelCase : str = map(a_, function=a_, batched=a_ )
_UpperCAmelCase : Union[str, Any] = filter(a_ )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(a_, "wb" ) as f:
f.write(json.dumps(a_ ).encode("utf-8" ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter() | 358 | '''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
__a = logging.getLogger(__name__)
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : str = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , )
UpperCamelCase_ : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. If passed, sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={
'''help''': (
'''Whether to pad all samples to the maximum sentence length. '''
'''If False, will pad the samples dynamically when batching to the maximum length in the batch. More '''
'''efficient on GPU but very bad for TPU.'''
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def _lowerCAmelCase ( self : Any ) -> Any:
"""simple docstring"""
if self.train_file is not None:
_UpperCAmelCase : List[Any] = self.train_file.split("." )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
_UpperCAmelCase : List[str] = self.validation_file.split("." )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : PreTrainedTokenizerBase
UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True
UpperCamelCase_ : Optional[int] = None
UpperCamelCase_ : Optional[int] = None
def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels"
_UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features]
_UpperCAmelCase : str = len(lowerCAmelCase__ )
_UpperCAmelCase : int = len(features[0]["input_ids"] )
_UpperCAmelCase : str = [
[{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features
]
_UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) )
_UpperCAmelCase : Any = self.tokenizer.pad(
lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , )
# Un-flatten
_UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()}
# Add back labels
_UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa )
return batch
def __UpperCAmelCase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_swag", a_, a_ )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_UpperCAmelCase : Optional[int] = training_args.get_process_log_level()
logger.setLevel(a_ )
datasets.utils.logging.set_verbosity(a_ )
transformers.utils.logging.set_verbosity(a_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
_UpperCAmelCase : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
_UpperCAmelCase : Union[str, Any] = {}
if data_args.train_file is not None:
_UpperCAmelCase : str = data_args.train_file
if data_args.validation_file is not None:
_UpperCAmelCase : Optional[Any] = data_args.validation_file
_UpperCAmelCase : Dict = data_args.train_file.split("." )[-1]
_UpperCAmelCase : Optional[int] = load_dataset(
a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
else:
# Downloading and loading the swag dataset from the hub.
_UpperCAmelCase : Dict = load_dataset(
"swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCAmelCase : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
_UpperCAmelCase : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
_UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
_UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )]
_UpperCAmelCase : List[Any] = "sent1"
_UpperCAmelCase : Optional[int] = "sent2"
if data_args.max_seq_length is None:
_UpperCAmelCase : List[str] = tokenizer.model_max_length
if max_seq_length > 1_024:
logger.warning(
"The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
" override this default with `--block_size xxx`." )
_UpperCAmelCase : Dict = 1_024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
_UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(a_: Union[str, Any] ):
_UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]]
_UpperCAmelCase : Tuple = examples[question_header_name]
_UpperCAmelCase : Optional[Any] = [
[f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ )
]
# Flatten out
_UpperCAmelCase : List[str] = list(chain(*a_ ) )
_UpperCAmelCase : Dict = list(chain(*a_ ) )
# Tokenize
_UpperCAmelCase : List[Any] = tokenizer(
a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset" )
_UpperCAmelCase : int = raw_datasets["train"]
if data_args.max_train_samples is not None:
_UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples )
_UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) )
with training_args.main_process_first(desc="train dataset map pre-processing" ):
_UpperCAmelCase : Union[str, Any] = train_dataset.map(
a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset" )
_UpperCAmelCase : Dict = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
_UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples )
_UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) )
with training_args.main_process_first(desc="validation dataset map pre-processing" ):
_UpperCAmelCase : Optional[int] = eval_dataset.map(
a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, )
# Data collator
_UpperCAmelCase : Tuple = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(a_: Tuple ):
_UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions
_UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
_UpperCAmelCase : Any = Trainer(
model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, )
# Training
if training_args.do_train:
_UpperCAmelCase : Optional[Any] = None
if training_args.resume_from_checkpoint is not None:
_UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_UpperCAmelCase : List[str] = last_checkpoint
_UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ )
trainer.save_model() # Saves the tokenizer too for easy upload
_UpperCAmelCase : str = train_result.metrics
_UpperCAmelCase : List[str] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ )
)
_UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) )
trainer.log_metrics("train", a_ )
trainer.save_metrics("train", a_ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
_UpperCAmelCase : List[Any] = trainer.evaluate()
_UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ )
_UpperCAmelCase : Tuple = min(a_, len(a_ ) )
trainer.log_metrics("eval", a_ )
trainer.save_metrics("eval", a_ )
_UpperCAmelCase : int = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "multiple-choice",
"dataset_tags": "swag",
"dataset_args": "regular",
"dataset": "SWAG",
"language": "en",
}
if training_args.push_to_hub:
trainer.push_to_hub(**a_ )
else:
trainer.create_model_card(**a_ )
def __UpperCAmelCase ( a_: int ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main() | 17 | 0 |
'''simple docstring'''
from math import pow, sqrt
def __UpperCAmelCase ( *a_: float ):
_UpperCAmelCase : List[Any] = len(a_ ) > 0 and all(value > 0.0 for value in values )
return result
def __UpperCAmelCase ( a_: float, a_: float ):
return (
round(sqrt(molar_mass_a / molar_mass_a ), 6 )
if validate(a_, a_ )
else ValueError("Input Error: Molar mass values must greater than 0." )
)
def __UpperCAmelCase ( a_: float, a_: float, a_: float ):
return (
round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ), 6 )
if validate(a_, a_, a_ )
else ValueError(
"Input Error: Molar mass and effusion rate values must greater than 0." )
)
def __UpperCAmelCase ( a_: float, a_: float, a_: float ):
return (
round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ), 6 )
if validate(a_, a_, a_ )
else ValueError(
"Input Error: Molar mass and effusion rate values must greater than 0." )
)
def __UpperCAmelCase ( a_: float, a_: float, a_: float ):
return (
round(molar_mass / pow(effusion_rate_a / effusion_rate_a, 2 ), 6 )
if validate(a_, a_, a_ )
else ValueError(
"Input Error: Molar mass and effusion rate values must greater than 0." )
)
def __UpperCAmelCase ( a_: float, a_: float, a_: float ):
return (
round(pow(effusion_rate_a / effusion_rate_a, 2 ) / molar_mass, 6 )
if validate(a_, a_, a_ )
else ValueError(
"Input Error: Molar mass and effusion rate values must greater than 0." )
) | 359 | '''simple docstring'''
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class A__ ( pl.LightningModule ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str:
"""simple docstring"""
super().__init__()
_UpperCAmelCase : List[str] = model
_UpperCAmelCase : Dict = 2
_UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels )
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
pass
def __UpperCAmelCase ( a_: str, a_: str, a_: str ):
# load longformer model from model identifier
_UpperCAmelCase : int = LongformerModel.from_pretrained(a_ )
_UpperCAmelCase : Any = LightningModel(a_ )
_UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) )
lightning_model.load_state_dict(ckpt["state_dict"] )
# init longformer question answering model
_UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ )
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() )
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() )
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(a_ )
print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--longformer_model',
default=None,
type=str,
required=True,
help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.',
)
parser.add_argument(
'--longformer_question_answering_ckpt_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch Lightning Checkpoint.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__a = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
) | 17 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[int] = StableDiffusionSAGPipeline
UpperCamelCase_ : List[str] = TEXT_TO_IMAGE_PARAMS
UpperCamelCase_ : List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCamelCase_ : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS
UpperCamelCase_ : Any = TEXT_TO_IMAGE_IMAGE_PARAMS
UpperCamelCase_ : Dict = False
def _lowerCAmelCase ( self : str ) -> List[str]:
"""simple docstring"""
torch.manual_seed(0 )
_UpperCAmelCase : List[Any] = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , )
_UpperCAmelCase : List[str] = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , )
torch.manual_seed(0 )
_UpperCAmelCase : Union[str, Any] = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
torch.manual_seed(0 )
_UpperCAmelCase : Optional[Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
_UpperCAmelCase : List[str] = CLIPTextModel(lowerCAmelCase__ )
_UpperCAmelCase : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
_UpperCAmelCase : str = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=0 ) -> Any:
"""simple docstring"""
if str(lowerCAmelCase__ ).startswith("mps" ):
_UpperCAmelCase : int = torch.manual_seed(lowerCAmelCase__ )
else:
_UpperCAmelCase : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = {
"prompt": ".",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 1.0,
"sag_scale": 1.0,
"output_type": "numpy",
}
return inputs
def _lowerCAmelCase ( self : Any ) -> str:
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Dict ) -> Optional[int]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : str = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" )
_UpperCAmelCase : Any = sag_pipe.to(lowerCAmelCase__ )
sag_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : int = "."
_UpperCAmelCase : List[Any] = torch.manual_seed(0 )
_UpperCAmelCase : List[Any] = sag_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type="np" )
_UpperCAmelCase : Tuple = output.images
_UpperCAmelCase : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
_UpperCAmelCase : Optional[Any] = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def _lowerCAmelCase ( self : Any ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" )
_UpperCAmelCase : Dict = sag_pipe.to(lowerCAmelCase__ )
sag_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : Dict = "."
_UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
_UpperCAmelCase : Optional[int] = sag_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type="np" )
_UpperCAmelCase : Union[str, Any] = output.images
_UpperCAmelCase : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
_UpperCAmelCase : Optional[int] = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" )
_UpperCAmelCase : Any = sag_pipe.to(lowerCAmelCase__ )
sag_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = "."
_UpperCAmelCase : Tuple = torch.manual_seed(0 )
_UpperCAmelCase : str = sag_pipe(
[prompt] , width=7_6_8 , height=5_1_2 , generator=lowerCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type="np" , )
_UpperCAmelCase : Union[str, Any] = output.images
assert image.shape == (1, 5_1_2, 7_6_8, 3) | 360 | '''simple docstring'''
from importlib import import_module
from .logging import get_logger
__a = get_logger(__name__)
class A__ :
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Any = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith("__" ):
setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
_UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module
class A__ :
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = []
def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = obj
_UpperCAmelCase : int = target
_UpperCAmelCase : Optional[int] = new
_UpperCAmelCase : Any = target.split("." )[0]
_UpperCAmelCase : Optional[int] = {}
_UpperCAmelCase : Dict = attrs or []
def __enter__( self : List[str] ) -> int:
"""simple docstring"""
*_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(lowerCAmelCase__ ) ):
try:
_UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
_UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule)
):
_UpperCAmelCase : Tuple = obj_attr
# patch at top level
setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) )
_UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) )
_UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
# finally set the target attribute
setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
_UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj , lowerCAmelCase__ ) is attr_value:
_UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ )
setattr(self.obj , lowerCAmelCase__ , self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
_UpperCAmelCase : Dict = globals()["__builtins__"][target_attr]
setattr(self.obj , lowerCAmelCase__ , self.new )
else:
raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" )
def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for attr in list(self.original ):
setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
self.__enter__()
self._active_patches.append(self )
def _lowerCAmelCase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__() | 17 | 0 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Tuple ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase__ ).to(lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("google/mt5-small" )
_UpperCAmelCase : Union[str, Any] = tokenizer("Hello there" , return_tensors="pt" ).input_ids
_UpperCAmelCase : Dict = tokenizer("Hi I am" , return_tensors="pt" ).input_ids
_UpperCAmelCase : Dict = model(input_ids.to(lowerCAmelCase__ ) , labels=labels.to(lowerCAmelCase__ ) ).loss
_UpperCAmelCase : Any = -(labels.shape[-1] * loss.item())
_UpperCAmelCase : Optional[Any] = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 ) | 361 | '''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
__a = datasets.utils.logging.get_logger(__name__)
__a = ['names', 'prefix']
__a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
__a = ['encoding_errors', 'on_bad_lines']
__a = ['date_format']
@dataclass
class A__ ( datasets.BuilderConfig ):
"""simple docstring"""
UpperCamelCase_ : str = ","
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer"
UpperCamelCase_ : Optional[List[str]] = None
UpperCamelCase_ : Optional[List[str]] = None
UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None
UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None
UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None
UpperCamelCase_ : Optional[list] = None
UpperCamelCase_ : Optional[list] = None
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[Union[int, List[int]]] = None
UpperCamelCase_ : Optional[int] = None
UpperCamelCase_ : Optional[Union[str, List[str]]] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = False
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : str = "."
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : str = '"'
UpperCamelCase_ : int = 0
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = True
UpperCamelCase_ : int = 0
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : int = 1_00_00
UpperCamelCase_ : Optional[datasets.Features] = None
UpperCamelCase_ : Optional[str] = "strict"
UpperCamelCase_ : Literal["error", "warn", "skip"] = "error"
UpperCamelCase_ : Optional[str] = None
def _lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
if self.delimiter is not None:
_UpperCAmelCase : Any = self.delimiter
if self.column_names is not None:
_UpperCAmelCase : List[Any] = self.column_names
@property
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Dict = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class A__ ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
UpperCamelCase_ : int = CsvConfig
def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
_UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCAmelCase__ , (str, list, tuple) ):
_UpperCAmelCase : int = data_files
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : Any = [files]
_UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
_UpperCAmelCase : Optional[Any] = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : str = [files]
_UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) )
return splits
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
_UpperCAmelCase : Tuple = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
_UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
_UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ )
return pa_table
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
_UpperCAmelCase : Optional[Any] = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ):
_UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(lowerCAmelCase__ ):
_UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" )
raise | 17 | 0 |
'''simple docstring'''
from math import factorial
def __UpperCAmelCase ( a_: int = 100 ):
return sum(int(a_ ) for x in str(factorial(a_ ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip()))) | 362 | '''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( a_: list[int] ):
if not nums:
return 0
_UpperCAmelCase : int = nums[0]
_UpperCAmelCase : Dict = 0
for num in nums[1:]:
_UpperCAmelCase , _UpperCAmelCase : Any = (
max_excluding + num,
max(a_, a_ ),
)
return max(a_, a_ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 0 |
'''simple docstring'''
import gc
import unittest
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
PriorTransformer,
StableUnCLIPPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[str] = StableUnCLIPPipeline
UpperCamelCase_ : List[str] = TEXT_TO_IMAGE_PARAMS
UpperCamelCase_ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS
UpperCamelCase_ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
UpperCamelCase_ : str = TEXT_TO_IMAGE_IMAGE_PARAMS
# TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false
UpperCamelCase_ : Optional[Any] = False
def _lowerCAmelCase ( self : int ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : int = 3_2
_UpperCAmelCase : List[str] = embedder_hidden_size
# prior components
torch.manual_seed(0 )
_UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
_UpperCAmelCase : Optional[int] = CLIPTextModelWithProjection(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase__ , projection_dim=lowerCAmelCase__ , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) )
torch.manual_seed(0 )
_UpperCAmelCase : List[Any] = PriorTransformer(
num_attention_heads=2 , attention_head_dim=1_2 , embedding_dim=lowerCAmelCase__ , num_layers=1 , )
torch.manual_seed(0 )
_UpperCAmelCase : Tuple = DDPMScheduler(
variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_0_0_0 , clip_sample=lowerCAmelCase__ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , )
# regular denoising components
torch.manual_seed(0 )
_UpperCAmelCase : int = StableUnCLIPImageNormalizer(embedding_dim=lowerCAmelCase__ )
_UpperCAmelCase : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" )
torch.manual_seed(0 )
_UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
torch.manual_seed(0 )
_UpperCAmelCase : str = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase__ , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) )
torch.manual_seed(0 )
_UpperCAmelCase : List[str] = UNetaDConditionModel(
sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCAmelCase__ , layers_per_block=1 , upcast_attention=lowerCAmelCase__ , use_linear_projection=lowerCAmelCase__ , )
torch.manual_seed(0 )
_UpperCAmelCase : Optional[int] = DDIMScheduler(
beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , )
torch.manual_seed(0 )
_UpperCAmelCase : Any = AutoencoderKL()
_UpperCAmelCase : int = {
# prior components
"prior_tokenizer": prior_tokenizer,
"prior_text_encoder": prior_text_encoder,
"prior": prior,
"prior_scheduler": prior_scheduler,
# image noising components
"image_normalizer": image_normalizer,
"image_noising_scheduler": image_noising_scheduler,
# regular denoising components
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"unet": unet,
"scheduler": scheduler,
"vae": vae,
}
return components
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict=0 ) -> Tuple:
"""simple docstring"""
if str(lowerCAmelCase__ ).startswith("mps" ):
_UpperCAmelCase : Union[str, Any] = torch.manual_seed(lowerCAmelCase__ )
else:
_UpperCAmelCase : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
_UpperCAmelCase : List[str] = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"prior_num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def _lowerCAmelCase ( self : Any ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = torch_device == "cpu"
self._test_attention_slicing_forward_pass(test_max_difference=lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[str] = torch_device in ["cpu", "mps"]
self._test_inference_batch_single_identical(test_max_difference=lowerCAmelCase__ )
@slow
@require_torch_gpu
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Dict ) -> Optional[int]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Dict = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" )
_UpperCAmelCase : Tuple = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_UpperCAmelCase : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 )
_UpperCAmelCase : Tuple = pipe("anime turle" , generator=lowerCAmelCase__ , output_type="np" )
_UpperCAmelCase : str = output.images[0]
assert image.shape == (7_6_8, 7_6_8, 3)
assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> List[str]:
"""simple docstring"""
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_UpperCAmelCase : Tuple = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa )
_UpperCAmelCase : Dict = pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
_UpperCAmelCase : List[str] = pipe(
"anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , )
_UpperCAmelCase : Optional[Any] = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 1_0**9 | 363 | '''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a = logging.get_logger(__name__)
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if key.startswith("module.encoder" ):
_UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" )
if key.startswith("module.decoder" ):
_UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )]
_UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" )
if "norm" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )]
_UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" )
if "layer_norm1" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" )
if "layer_norm2" in key:
_UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
_UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )]
_UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" )
if "attn.q" in key:
_UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" )
if "attn.proj" in key:
_UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" )
if "attn" in key:
_UpperCAmelCase : Dict = key.replace("attn", "attention.self" )
if "fc1" in key:
_UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" )
if "fc2" in key:
_UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" )
if "linear_pred" in key:
_UpperCAmelCase : Any = key.replace("linear_pred", "classifier" )
if "linear_fuse" in key:
_UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" )
_UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )]
_UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" )
if "bot_conv" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" )
if "skip_conv1" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" )
if "skip_conv2" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" )
if "fusion1" in key:
_UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" )
if "fusion2" in key:
_UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" )
if "fusion3" in key:
_UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" )
if "fusion" in key and "conv" in key:
_UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" )
if key.startswith("module.last_layer_depth" ):
_UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" )
_UpperCAmelCase : int = value
return new_state_dict
def __UpperCAmelCase ( a_: str, a_: List[Any] ):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" )
_UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
_UpperCAmelCase : Optional[int] = kv_weight[
: config.hidden_sizes[i], :
]
_UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]]
_UpperCAmelCase : Optional[int] = kv_weight[
config.hidden_sizes[i] :, :
]
_UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :]
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw )
return image
@torch.no_grad()
def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ):
_UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
_UpperCAmelCase : Dict = GLPNImageProcessor()
# prepare image
_UpperCAmelCase : List[Any] = prepare_img()
_UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values
logger.info("Converting model..." )
# load original state dict
_UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) )
# rename keys
_UpperCAmelCase : List[str] = rename_keys(a_ )
# key and value matrices need special treatment
read_in_k_v(a_, a_ )
# create HuggingFace model and load state dict
_UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ )
model.load_state_dict(a_ )
model.eval()
# forward pass
_UpperCAmelCase : Dict = model(a_ )
_UpperCAmelCase : List[str] = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
_UpperCAmelCase : Optional[Any] = torch.tensor(
[[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] )
elif "kitti" in model_name:
_UpperCAmelCase : Tuple = torch.tensor(
[[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] )
else:
raise ValueError(f"""Unknown model name: {model_name}""" )
_UpperCAmelCase : Dict = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 )
print("Looks ok!" )
# finally, push to hub if required
if push_to_hub:
logger.info("Pushing model and image processor to the hub..." )
model.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, )
image_processor.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path',
default=None,
type=str,
help='Path to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.'
)
parser.add_argument(
'--model_name',
default='glpn-kitti',
type=str,
help='Name of the model in case you\'re pushing to the hub.',
)
__a = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name) | 17 | 0 |
'''simple docstring'''
from manim import *
class A__ ( UpperCamelCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Dict ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : List[Any] = Rectangle(height=0.5 , width=0.5 )
_UpperCAmelCase : Any = Rectangle(height=0.25 , width=0.25 )
_UpperCAmelCase : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_UpperCAmelCase : List[Any] = [mem.copy() for i in range(6 )]
_UpperCAmelCase : Tuple = [mem.copy() for i in range(6 )]
_UpperCAmelCase : Optional[Any] = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 )
_UpperCAmelCase : Any = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 )
_UpperCAmelCase : int = VGroup(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 )
_UpperCAmelCase : Optional[Any] = Text("CPU" , font_size=2_4 )
_UpperCAmelCase : Tuple = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(lowerCAmelCase__ )
_UpperCAmelCase : Dict = [mem.copy() for i in range(4 )]
_UpperCAmelCase : str = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 )
_UpperCAmelCase : List[Any] = Text("GPU" , font_size=2_4 )
_UpperCAmelCase : Tuple = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ )
gpu.move_to([-1, -1, 0] )
self.add(lowerCAmelCase__ )
_UpperCAmelCase : Dict = [mem.copy() for i in range(6 )]
_UpperCAmelCase : Union[str, Any] = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 )
_UpperCAmelCase : Tuple = Text("Model" , font_size=2_4 )
_UpperCAmelCase : Dict = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ )
model.move_to([3, -1.0, 0] )
self.add(lowerCAmelCase__ )
_UpperCAmelCase : str = []
_UpperCAmelCase : int = []
_UpperCAmelCase : Dict = []
for i, rect in enumerate(lowerCAmelCase__ ):
rect.set_stroke(lowerCAmelCase__ )
_UpperCAmelCase : Dict = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCAmelCase__ , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowerCAmelCase__ )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(model_cpu_arr[0] , direction=lowerCAmelCase__ , buff=0.0 )
else:
cpu_target.next_to(model_cpu_arr[i - 1] , direction=lowerCAmelCase__ , buff=0.0 )
self.add(lowerCAmelCase__ )
model_cpu_arr.append(lowerCAmelCase__ )
self.add(*lowerCAmelCase__ , *lowerCAmelCase__ , *lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = [mem.copy() for i in range(6 )]
_UpperCAmelCase : Any = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 )
_UpperCAmelCase : Optional[int] = Text("Loaded Checkpoint" , font_size=2_4 )
_UpperCAmelCase : List[str] = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ )
checkpoint.move_to([3, 0.5, 0] )
self.add(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = []
_UpperCAmelCase : Any = []
for i, rect in enumerate(lowerCAmelCase__ ):
_UpperCAmelCase : Any = fill.copy().set_fill(lowerCAmelCase__ , opacity=0.7 )
target.move_to(lowerCAmelCase__ )
ckpt_arr.append(lowerCAmelCase__ )
_UpperCAmelCase : Any = target.copy()
if i < 5:
cpu_target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.move_to(cpu_right_col_base[i - 5] )
ckpt_cpu_arr.append(lowerCAmelCase__ )
self.add(*lowerCAmelCase__ , *lowerCAmelCase__ )
_UpperCAmelCase : Any = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_UpperCAmelCase : Any = MarkupText(
F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=1_8 , )
key_text.move_to([-5, 2.4, 0] )
self.add(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Any = MarkupText(
F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=1_8 , )
blue_text.next_to(lowerCAmelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(lowerCAmelCase__ )
_UpperCAmelCase : List[str] = MarkupText(
F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=2_4 , )
step_a.move_to([2, 2, 0] )
_UpperCAmelCase : Dict = [meta_mem.copy() for i in range(6 )]
_UpperCAmelCase : int = [meta_mem.copy() for i in range(6 )]
_UpperCAmelCase : Dict = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 )
_UpperCAmelCase : str = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 )
_UpperCAmelCase : List[Any] = VGroup(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 )
_UpperCAmelCase : List[Any] = Text("Disk" , font_size=2_4 )
_UpperCAmelCase : Dict = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ )
disk.move_to([-4.0, -1.25, 0] )
self.play(Write(lowerCAmelCase__ , run_time=3 ) , Write(lowerCAmelCase__ , run_time=1 ) , Create(lowerCAmelCase__ , run_time=1 ) )
_UpperCAmelCase : List[str] = []
for i, rect in enumerate(lowerCAmelCase__ ):
_UpperCAmelCase : List[Any] = rect.copy()
target.generate_target()
target.target.move_to(disk_left_col_base[i] ).scale(0.5 )
animations.append(MoveToTarget(lowerCAmelCase__ , run_time=1.5 ) )
self.play(*lowerCAmelCase__ )
self.play(FadeOut(lowerCAmelCase__ ) )
_UpperCAmelCase : Union[str, Any] = MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=2_4 )
step_a.move_to([2, 2, 0] )
self.play(Write(lowerCAmelCase__ , run_time=3 ) )
self.play(
FadeOut(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ , *lowerCAmelCase__ ) , )
self.wait() | 364 | '''simple docstring'''
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[Any] = 10
_UpperCAmelCase : int = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string" ) ),
"labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ),
"answers": datasets.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
"id": datasets.Value("int64" ),
} )
_UpperCAmelCase : List[str] = datasets.Dataset.from_dict(
{
"tokens": [["foo"] * 5] * n,
"labels": [[1] * 5] * n,
"answers": [{"answer_start": [97], "text": ["1976"]}] * 10,
"id": list(range(a_ ) ),
}, features=a_, )
return dataset
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" )
dataset.map(cache_file_name=a_ )
return filename
# FILE_CONTENT + files
__a = '\\n Text data.\n Second line of data.'
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt"
_UpperCAmelCase : Tuple = FILE_CONTENT
with open(a_, "w" ) as f:
f.write(a_ )
return filename
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2"
_UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" )
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import gzip
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" )
_UpperCAmelCase : Any = bytes(a_, "utf-8" )
with gzip.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
if datasets.config.LZ4_AVAILABLE:
import lza.frame
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4"
_UpperCAmelCase : str = bytes(a_, "utf-8" )
with lza.frame.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Any ):
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z"
with pyazr.SevenZipFile(a_, "w" ) as archive:
archive.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: List[str] ):
import tarfile
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
import lzma
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz"
_UpperCAmelCase : List[str] = bytes(a_, "utf-8" )
with lzma.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: Tuple ):
import zipfile
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst"
_UpperCAmelCase : int = bytes(a_, "utf-8" )
with zstd.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
_UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml"
_UpperCAmelCase : Tuple = textwrap.dedent(
"\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" )
with open(a_, "w" ) as f:
f.write(a_ )
return filename
__a = [
{'col_1': '0', 'col_2': 0, 'col_3': 0.0},
{'col_1': '1', 'col_2': 1, 'col_3': 1.0},
{'col_1': '2', 'col_2': 2, 'col_3': 2.0},
{'col_1': '3', 'col_2': 3, 'col_3': 3.0},
]
__a = [
{'col_1': '4', 'col_2': 4, 'col_3': 4.0},
{'col_1': '5', 'col_2': 5, 'col_3': 5.0},
]
__a = {
'col_1': ['0', '1', '2', '3'],
'col_2': [0, 1, 2, 3],
'col_3': [0.0, 1.0, 2.0, 3.0],
}
__a = [
{'col_3': 0.0, 'col_1': '0', 'col_2': 0},
{'col_3': 1.0, 'col_1': '1', 'col_2': 1},
]
__a = [
{'col_1': 's0', 'col_2': 0, 'col_3': 0.0},
{'col_1': 's1', 'col_2': 1, 'col_3': 1.0},
{'col_1': 's2', 'col_2': 2, 'col_3': 2.0},
{'col_1': 's3', 'col_2': 3, 'col_3': 3.0},
]
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : str = datasets.Dataset.from_dict(a_ )
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" )
dataset.map(cache_file_name=a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" )
with contextlib.closing(sqlitea.connect(a_ ) ) as con:
_UpperCAmelCase : List[Any] = con.cursor()
cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" )
for item in DATA:
cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str, a_: str ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2"
with open(a_, "rb" ) as f:
_UpperCAmelCase : Any = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ):
_UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) )
f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ):
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" )
_UpperCAmelCase : Dict = pa.schema(
{
"col_1": pa.string(),
"col_2": pa.intaa(),
"col_3": pa.floataa(),
} )
with open(a_, "wb" ) as f:
_UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ )
_UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ )
writer.write_table(a_ )
writer.close()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : str = {"data": DATA}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_312:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_STR:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ):
import gzip
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ):
import gzip
_UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ):
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : List[str] = ["0", "1", "2", "3"]
_UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Dict = ["0", "1", "2", "3"]
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = ["0", "1", "2", "3"]
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc"
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename("unsupported.ext" ) )
f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] )
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" )
with open(a_, "w", encoding="utf-8" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_image_rgb.jpg" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_audio_44100.wav" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Optional[Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" )
(data_dir / "subdir").mkdir()
with open(data_dir / "subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / "subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden file
with open(data_dir / "subdir" / ".test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / ".subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / ".subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
return data_dir | 17 | 0 |
'''simple docstring'''
import math
__a = 10
__a = 7
__a = BALLS_PER_COLOUR * NUM_COLOURS
def __UpperCAmelCase ( a_: int = 20 ):
_UpperCAmelCase : int = math.comb(a_, a_ )
_UpperCAmelCase : Tuple = math.comb(NUM_BALLS - BALLS_PER_COLOUR, a_ )
_UpperCAmelCase : Union[str, Any] = NUM_COLOURS * (1 - missing_colour / total)
return f"""{result:.9f}"""
if __name__ == "__main__":
print(solution(20)) | 365 | '''simple docstring'''
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = BarthezTokenizer
UpperCamelCase_ : List[Any] = BarthezTokenizerFast
UpperCamelCase_ : Optional[int] = True
UpperCamelCase_ : Optional[int] = True
def _lowerCAmelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
super().setUp()
_UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer
def _lowerCAmelCase ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = "<pad>"
_UpperCAmelCase : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 )
@require_torch
def _lowerCAmelCase ( self : Any ) -> int:
"""simple docstring"""
_UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."]
_UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2]
_UpperCAmelCase : int = self.tokenizer(
lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
_UpperCAmelCase : str = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
_UpperCAmelCase : Optional[int] = self.get_tokenizer()
_UpperCAmelCase : Optional[int] = self.get_rust_tokenizer()
_UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé."
_UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer()
_UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
_UpperCAmelCase : Tuple = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , ) | 17 | 0 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def __UpperCAmelCase ( a_: Optional[int] ):
_UpperCAmelCase : Union[str, Any] = filter(lambda a_ : p.requires_grad, model.parameters() )
_UpperCAmelCase : Optional[Any] = sum([np.prod(p.size() ) for p in model_parameters] )
return params
__a = logging.getLogger(__name__)
def __UpperCAmelCase ( a_: Any, a_: Optional[Any] ):
if metric == "rouge2":
_UpperCAmelCase : Union[str, Any] = "{val_avg_rouge2:.4f}-{step_count}"
elif metric == "bleu":
_UpperCAmelCase : Dict = "{val_avg_bleu:.4f}-{step_count}"
elif metric == "em":
_UpperCAmelCase : Dict = "{val_avg_em:.4f}-{step_count}"
else:
raise NotImplementedError(
f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this"""
" function." )
_UpperCAmelCase : str = ModelCheckpoint(
dirpath=a_, filename=a_, monitor=f"""val_{metric}""", mode="max", save_top_k=3, every_n_epochs=1, )
return checkpoint_callback
def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int] ):
return EarlyStopping(
monitor=f"""val_{metric}""", mode="min" if "loss" in metric else "max", patience=a_, verbose=a_, )
class A__ ( pl.Callback ):
"""simple docstring"""
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Tuple = {F"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(lowerCAmelCase__ )
@rank_zero_only
def _lowerCAmelCase ( self : str , lowerCAmelCase__ : pl.Trainer , lowerCAmelCase__ : pl.LightningModule , lowerCAmelCase__ : str , lowerCAmelCase__ : str=True ) -> None:
"""simple docstring"""
logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" )
_UpperCAmelCase : Optional[Any] = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} )
# Log results
_UpperCAmelCase : Optional[int] = Path(pl_module.hparams.output_dir )
if type_path == "test":
_UpperCAmelCase : Any = od / "test_results.txt"
_UpperCAmelCase : Optional[int] = od / "test_generations.txt"
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_UpperCAmelCase : Tuple = od / F"""{type_path}_results/{trainer.global_step:05d}.txt"""
_UpperCAmelCase : Optional[Any] = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt"""
results_file.parent.mkdir(exist_ok=lowerCAmelCase__ )
generations_file.parent.mkdir(exist_ok=lowerCAmelCase__ )
with open(lowerCAmelCase__ , "a+" ) as writer:
for key in sorted(lowerCAmelCase__ ):
if key in ["log", "progress_bar", "preds"]:
continue
_UpperCAmelCase : Union[str, Any] = metrics[key]
if isinstance(lowerCAmelCase__ , torch.Tensor ):
_UpperCAmelCase : List[str] = val.item()
_UpperCAmelCase : Any = F"""{key}: {val:.6f}\n"""
writer.write(lowerCAmelCase__ )
if not save_generations:
return
if "preds" in metrics:
_UpperCAmelCase : List[Any] = "\n".join(metrics["preds"] )
generations_file.open("w+" ).write(lowerCAmelCase__ )
@rank_zero_only
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ) -> str:
"""simple docstring"""
try:
_UpperCAmelCase : Any = pl_module.model.model.num_parameters()
except AttributeError:
_UpperCAmelCase : Union[str, Any] = pl_module.model.num_parameters()
_UpperCAmelCase : List[str] = count_trainable_parameters(lowerCAmelCase__ )
# mp stands for million parameters
trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} )
@rank_zero_only
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : pl.Trainer , lowerCAmelCase__ : pl.LightningModule ) -> Dict:
"""simple docstring"""
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(lowerCAmelCase__ , lowerCAmelCase__ , "test" )
@rank_zero_only
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pl.Trainer , lowerCAmelCase__ : Any ) -> List[str]:
"""simple docstring"""
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid") | 366 | '''simple docstring'''
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
__a = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class A__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0}
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : Tuple = batch_size
_UpperCAmelCase : str = num_channels
_UpperCAmelCase : Optional[Any] = image_size
_UpperCAmelCase : Dict = min_resolution
_UpperCAmelCase : str = max_resolution
_UpperCAmelCase : List[Any] = size
_UpperCAmelCase : Union[str, Any] = do_normalize
_UpperCAmelCase : Optional[Any] = do_convert_rgb
_UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6]
_UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6}
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def _lowerCAmelCase ( self : Any ) -> str:
"""simple docstring"""
_UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
_UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self )
@property
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image()
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
_UpperCAmelCase : str = 2_0_4_8
_UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) )
def _lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : Union[str, Any] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
_UpperCAmelCase : str = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(lowerCAmelCase__ ):
_UpperCAmelCase : str = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
_UpperCAmelCase : Any = "Hello"
_UpperCAmelCase : Optional[int] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : List[Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
_UpperCAmelCase : Any = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : int = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Union[str, Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : int ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 )
_UpperCAmelCase : List[Any] = 3
@property
def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : str = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Any = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Tuple = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) | 17 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__a = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['PLBartTokenizer']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST',
'PLBartForCausalLM',
'PLBartForConditionalGeneration',
'PLBartForSequenceClassification',
'PLBartModel',
'PLBartPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure) | 367 | '''simple docstring'''
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Tuple = '''time_series_transformer'''
UpperCamelCase_ : Optional[Any] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = prediction_length
_UpperCAmelCase : Optional[Any] = context_length or prediction_length
_UpperCAmelCase : Optional[Any] = distribution_output
_UpperCAmelCase : Union[str, Any] = loss
_UpperCAmelCase : Dict = input_size
_UpperCAmelCase : int = num_time_features
_UpperCAmelCase : Any = lags_sequence
_UpperCAmelCase : Dict = scaling
_UpperCAmelCase : Tuple = num_dynamic_real_features
_UpperCAmelCase : Dict = num_static_real_features
_UpperCAmelCase : Union[str, Any] = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : Optional[int] = cardinality
else:
_UpperCAmelCase : Optional[Any] = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : List[Any] = embedding_dimension
else:
_UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
_UpperCAmelCase : str = num_parallel_samples
# Transformer architecture configuration
_UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features
_UpperCAmelCase : str = d_model
_UpperCAmelCase : Optional[Any] = encoder_attention_heads
_UpperCAmelCase : Dict = decoder_attention_heads
_UpperCAmelCase : List[Any] = encoder_ffn_dim
_UpperCAmelCase : str = decoder_ffn_dim
_UpperCAmelCase : Dict = encoder_layers
_UpperCAmelCase : str = decoder_layers
_UpperCAmelCase : Any = dropout
_UpperCAmelCase : str = attention_dropout
_UpperCAmelCase : List[Any] = activation_dropout
_UpperCAmelCase : Dict = encoder_layerdrop
_UpperCAmelCase : Any = decoder_layerdrop
_UpperCAmelCase : Optional[Any] = activation_function
_UpperCAmelCase : Tuple = init_std
_UpperCAmelCase : List[str] = use_cache
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def _lowerCAmelCase ( self : str ) -> int:
"""simple docstring"""
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
) | 17 | 0 |
'''simple docstring'''
def __UpperCAmelCase ( a_: str ):
_UpperCAmelCase : Optional[int] = [], []
while len(a_ ) > 1:
_UpperCAmelCase : Dict = min(a_ ), max(a_ )
start.append(a_ )
end.append(a_ )
collection.remove(a_ )
collection.remove(a_ )
end.reverse()
return start + collection + end
if __name__ == "__main__":
__a = input('Enter numbers separated by a comma:\n').strip()
__a = [int(item) for item in user_input.split(',')]
print(*merge_sort(unsorted), sep=',') | 368 | '''simple docstring'''
import baseaa
def __UpperCAmelCase ( a_: str ):
return baseaa.baaencode(string.encode("utf-8" ) )
def __UpperCAmelCase ( a_: bytes ):
return baseaa.baadecode(a_ ).decode("utf-8" )
if __name__ == "__main__":
__a = 'Hello World!'
__a = baseaa_encode(test)
print(encoded)
__a = baseaa_decode(encoded)
print(decoded) | 17 | 0 |
'''simple docstring'''
def __UpperCAmelCase ( a_: list[int] ):
if not numbers:
return 0
if not isinstance(a_, (list, tuple) ) or not all(
isinstance(a_, a_ ) for number in numbers ):
raise ValueError("numbers must be an iterable of integers" )
_UpperCAmelCase : Any = numbers[0]
for i in range(1, len(a_ ) ):
# update the maximum and minimum subarray products
_UpperCAmelCase : int = numbers[i]
if number < 0:
_UpperCAmelCase : Union[str, Any] = min_till_now, max_till_now
_UpperCAmelCase : str = max(a_, max_till_now * number )
_UpperCAmelCase : List[str] = min(a_, min_till_now * number )
# update the maximum product found till now
_UpperCAmelCase : int = max(a_, a_ )
return max_prod | 369 | '''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class A__ :
"""simple docstring"""
UpperCamelCase_ : Any = XGLMConfig
UpperCamelCase_ : Union[str, Any] = {}
UpperCamelCase_ : Dict = '''gelu'''
def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : str = batch_size
_UpperCAmelCase : str = seq_length
_UpperCAmelCase : int = is_training
_UpperCAmelCase : List[Any] = use_input_mask
_UpperCAmelCase : Optional[int] = use_labels
_UpperCAmelCase : str = vocab_size
_UpperCAmelCase : int = d_model
_UpperCAmelCase : Tuple = num_hidden_layers
_UpperCAmelCase : Tuple = num_attention_heads
_UpperCAmelCase : Tuple = ffn_dim
_UpperCAmelCase : Any = activation_function
_UpperCAmelCase : Union[str, Any] = activation_dropout
_UpperCAmelCase : Union[str, Any] = attention_dropout
_UpperCAmelCase : Any = max_position_embeddings
_UpperCAmelCase : int = initializer_range
_UpperCAmelCase : Any = None
_UpperCAmelCase : int = 0
_UpperCAmelCase : Union[str, Any] = 2
_UpperCAmelCase : Tuple = 1
def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : int = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_UpperCAmelCase : Any = None
if self.use_input_mask:
_UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : Optional[Any] = self.get_config()
_UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , )
def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
_UpperCAmelCase : Optional[int] = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else ()
UpperCamelCase_ : Tuple = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
UpperCamelCase_ : Dict = False
UpperCamelCase_ : List[Any] = False
UpperCamelCase_ : Tuple = False
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Dict = TFXGLMModelTester(self )
_UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 )
def _lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowerCAmelCase ( self : Union[str, Any] ) -> int:
"""simple docstring"""
super().test_resize_token_embeddings()
@require_tf
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1]
# fmt: on
_UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
_UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" )
_UpperCAmelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
_UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] )
_UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[int] = "left"
# use different length sentences to test batching
_UpperCAmelCase : Tuple = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
_UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = inputs["input_ids"]
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 )
_UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids
_UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] ) | 17 | 0 |
'''simple docstring'''
from scipy.stats import spearmanr
import datasets
__a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n'
__a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n'
__a = R'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A__ ( datasets.Metric ):
"""simple docstring"""
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
} ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , )
def _lowerCAmelCase ( self : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple=False ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : List[str] = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 370 | '''simple docstring'''
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"files", [
["full:README.md", "dataset_infos.json"],
["empty:README.md", "dataset_infos.json"],
["dataset_infos.json"],
["full:README.md"],
], )
def __UpperCAmelCase ( a_: Tuple, a_: Any ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" )
if "full:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("---\ndataset_info:\n dataset_size: 42\n---" )
if "empty:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f:
f.write("{\"default\": {\"dataset_size\": 42}}" )
_UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
"dataset_info", [
DatasetInfo(),
DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ),
], )
def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ):
_UpperCAmelCase : Tuple = str(a_ )
dataset_info.write_to_directory(a_ )
_UpperCAmelCase : Any = DatasetInfo.from_directory(a_ )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(a_, "dataset_info.json" ) )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = DatasetInfo(
description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, )
_UpperCAmelCase : Tuple = dataset_info._to_yaml_dict()
assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) )
_UpperCAmelCase : List[Any] = yaml.safe_dump(a_ )
_UpperCAmelCase : Optional[int] = yaml.safe_load(a_ )
assert dataset_info_yaml_dict == reloaded
def __UpperCAmelCase ( ):
_UpperCAmelCase : str = DatasetInfo()
_UpperCAmelCase : List[str] = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"dataset_infos_dict", [
DatasetInfosDict(),
DatasetInfosDict({"default": DatasetInfo()} ),
DatasetInfosDict({"my_config_name": DatasetInfo()} ),
DatasetInfosDict(
{
"default": DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, )
} ),
DatasetInfosDict(
{
"v1": DatasetInfo(dataset_size=42 ),
"v2": DatasetInfo(dataset_size=1_337 ),
} ),
], )
def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ):
_UpperCAmelCase : Union[str, Any] = str(a_ )
dataset_infos_dict.write_to_directory(a_ )
_UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
_UpperCAmelCase : Optional[int] = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
_UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(a_, "README.md" ) ) | 17 | 0 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__a = logging.get_logger(__name__)
def __UpperCAmelCase ( a_: str ):
_UpperCAmelCase : Optional[Any] = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
_UpperCAmelCase : Union[str, Any] = [144, 192, 240]
_UpperCAmelCase : Dict = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
_UpperCAmelCase : str = [96, 120, 144]
_UpperCAmelCase : Optional[int] = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
_UpperCAmelCase : Optional[Any] = [64, 80, 96]
_UpperCAmelCase : Dict = [16, 16, 24, 48, 64, 80, 320]
_UpperCAmelCase : int = 0.05
_UpperCAmelCase : Optional[int] = 2.0
if mobilevit_name.startswith("deeplabv3_" ):
_UpperCAmelCase : Dict = 512
_UpperCAmelCase : int = 16
_UpperCAmelCase : str = 21
_UpperCAmelCase : Union[str, Any] = "pascal-voc-id2label.json"
else:
_UpperCAmelCase : Optional[int] = 1_000
_UpperCAmelCase : int = "imagenet-1k-id2label.json"
_UpperCAmelCase : str = "huggingface/label-files"
_UpperCAmelCase : List[str] = json.load(open(hf_hub_download(a_, a_, repo_type="dataset" ), "r" ) )
_UpperCAmelCase : Union[str, Any] = {int(a_ ): v for k, v in idalabel.items()}
_UpperCAmelCase : Any = idalabel
_UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()}
return config
def __UpperCAmelCase ( a_: List[Any], a_: Union[str, Any]=False ):
for i in range(1, 6 ):
if f"""layer_{i}.""" in name:
_UpperCAmelCase : Optional[Any] = name.replace(f"""layer_{i}.""", f"""encoder.layer.{i - 1}.""" )
if "conv_1." in name:
_UpperCAmelCase : Optional[Any] = name.replace("conv_1.", "conv_stem." )
if ".block." in name:
_UpperCAmelCase : Dict = name.replace(".block.", "." )
if "exp_1x1" in name:
_UpperCAmelCase : List[Any] = name.replace("exp_1x1", "expand_1x1" )
if "red_1x1" in name:
_UpperCAmelCase : Any = name.replace("red_1x1", "reduce_1x1" )
if ".local_rep.conv_3x3." in name:
_UpperCAmelCase : Tuple = name.replace(".local_rep.conv_3x3.", ".conv_kxk." )
if ".local_rep.conv_1x1." in name:
_UpperCAmelCase : Union[str, Any] = name.replace(".local_rep.conv_1x1.", ".conv_1x1." )
if ".norm." in name:
_UpperCAmelCase : Any = name.replace(".norm.", ".normalization." )
if ".conv." in name:
_UpperCAmelCase : Optional[Any] = name.replace(".conv.", ".convolution." )
if ".conv_proj." in name:
_UpperCAmelCase : Any = name.replace(".conv_proj.", ".conv_projection." )
for i in range(0, 2 ):
for j in range(0, 4 ):
if f""".{i}.{j}.""" in name:
_UpperCAmelCase : Tuple = name.replace(f""".{i}.{j}.""", f""".{i}.layer.{j}.""" )
for i in range(2, 6 ):
for j in range(0, 4 ):
if f""".{i}.{j}.""" in name:
_UpperCAmelCase : Union[str, Any] = name.replace(f""".{i}.{j}.""", f""".{i}.""" )
if "expand_1x1" in name:
_UpperCAmelCase : List[str] = name.replace("expand_1x1", "downsampling_layer.expand_1x1" )
if "conv_3x3" in name:
_UpperCAmelCase : int = name.replace("conv_3x3", "downsampling_layer.conv_3x3" )
if "reduce_1x1" in name:
_UpperCAmelCase : List[Any] = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" )
for i in range(2, 5 ):
if f""".global_rep.{i}.weight""" in name:
_UpperCAmelCase : Union[str, Any] = name.replace(f""".global_rep.{i}.weight""", ".layernorm.weight" )
if f""".global_rep.{i}.bias""" in name:
_UpperCAmelCase : List[str] = name.replace(f""".global_rep.{i}.bias""", ".layernorm.bias" )
if ".global_rep." in name:
_UpperCAmelCase : Optional[Any] = name.replace(".global_rep.", ".transformer." )
if ".pre_norm_mha.0." in name:
_UpperCAmelCase : Dict = name.replace(".pre_norm_mha.0.", ".layernorm_before." )
if ".pre_norm_mha.1.out_proj." in name:
_UpperCAmelCase : Any = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." )
if ".pre_norm_ffn.0." in name:
_UpperCAmelCase : Any = name.replace(".pre_norm_ffn.0.", ".layernorm_after." )
if ".pre_norm_ffn.1." in name:
_UpperCAmelCase : Dict = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." )
if ".pre_norm_ffn.4." in name:
_UpperCAmelCase : Any = name.replace(".pre_norm_ffn.4.", ".output.dense." )
if ".transformer." in name:
_UpperCAmelCase : str = name.replace(".transformer.", ".transformer.layer." )
if ".aspp_layer." in name:
_UpperCAmelCase : Optional[Any] = name.replace(".aspp_layer.", "." )
if ".aspp_pool." in name:
_UpperCAmelCase : int = name.replace(".aspp_pool.", "." )
if "seg_head." in name:
_UpperCAmelCase : Optional[Any] = name.replace("seg_head.", "segmentation_head." )
if "segmentation_head.classifier.classifier." in name:
_UpperCAmelCase : Dict = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." )
if "classifier.fc." in name:
_UpperCAmelCase : Optional[int] = name.replace("classifier.fc.", "classifier." )
elif (not base_model) and ("segmentation_head." not in name):
_UpperCAmelCase : List[Any] = "mobilevit." + name
return name
def __UpperCAmelCase ( a_: Any, a_: List[str], a_: int=False ):
if base_model:
_UpperCAmelCase : List[str] = ""
else:
_UpperCAmelCase : Optional[Any] = "mobilevit."
for key in orig_state_dict.copy().keys():
_UpperCAmelCase : List[Any] = orig_state_dict.pop(a_ )
if key[:8] == "encoder.":
_UpperCAmelCase : Dict = key[8:]
if "qkv" in key:
_UpperCAmelCase : Any = key.split("." )
_UpperCAmelCase : List[Any] = int(key_split[0][6:] ) - 1
_UpperCAmelCase : Union[str, Any] = int(key_split[3] )
_UpperCAmelCase : Optional[Any] = model.get_submodule(f"""{model_prefix}encoder.layer.{layer_num}""" )
_UpperCAmelCase : Any = layer.transformer.layer[transformer_num].attention.attention.all_head_size
_UpperCAmelCase : Tuple = (
f"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention."""
)
if "weight" in key:
_UpperCAmelCase : Optional[Any] = val[:dim, :]
_UpperCAmelCase : Any = val[dim : dim * 2, :]
_UpperCAmelCase : Union[str, Any] = val[-dim:, :]
else:
_UpperCAmelCase : Dict = val[:dim]
_UpperCAmelCase : Optional[Any] = val[dim : dim * 2]
_UpperCAmelCase : str = val[-dim:]
else:
_UpperCAmelCase : Optional[Any] = val
return orig_state_dict
def __UpperCAmelCase ( ):
_UpperCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg"
_UpperCAmelCase : Optional[int] = Image.open(requests.get(a_, stream=a_ ).raw )
return im
@torch.no_grad()
def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: List[Any], a_: List[str]=False ):
_UpperCAmelCase : Union[str, Any] = get_mobilevit_config(a_ )
# load original state_dict
_UpperCAmelCase : List[str] = torch.load(a_, map_location="cpu" )
# load 🤗 model
if mobilevit_name.startswith("deeplabv3_" ):
_UpperCAmelCase : Union[str, Any] = MobileViTForSemanticSegmentation(a_ ).eval()
else:
_UpperCAmelCase : List[str] = MobileViTForImageClassification(a_ ).eval()
_UpperCAmelCase : Dict = convert_state_dict(a_, a_ )
model.load_state_dict(a_ )
# Check outputs on an image, prepared by MobileViTImageProcessor
_UpperCAmelCase : str = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 )
_UpperCAmelCase : int = image_processor(images=prepare_img(), return_tensors="pt" )
_UpperCAmelCase : str = model(**a_ )
_UpperCAmelCase : int = outputs.logits
if mobilevit_name.startswith("deeplabv3_" ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
_UpperCAmelCase : Optional[int] = torch.tensor(
[
[[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]],
[[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]],
[[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
_UpperCAmelCase : Tuple = torch.tensor(
[
[[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]],
[[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]],
[[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
_UpperCAmelCase : Tuple = torch.tensor(
[
[[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]],
[[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]],
[[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]],
] )
else:
raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3, :3, :3], a_, atol=1e-4 )
else:
assert logits.shape == (1, 1_000)
if mobilevit_name == "mobilevit_s":
_UpperCAmelCase : str = torch.tensor([-0.98_66, 0.23_92, -1.12_41] )
elif mobilevit_name == "mobilevit_xs":
_UpperCAmelCase : List[Any] = torch.tensor([-2.47_61, -0.93_99, -1.95_87] )
elif mobilevit_name == "mobilevit_xxs":
_UpperCAmelCase : Optional[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] )
else:
raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3], a_, atol=1e-4 )
Path(a_ ).mkdir(exist_ok=a_ )
print(f"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(a_ )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(a_ )
if push_to_hub:
_UpperCAmelCase : Any = {
"mobilevit_s": "mobilevit-small",
"mobilevit_xs": "mobilevit-x-small",
"mobilevit_xxs": "mobilevit-xx-small",
"deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small",
"deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small",
"deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small",
}
print("Pushing to the hub..." )
_UpperCAmelCase : int = model_mapping[mobilevit_name]
image_processor.push_to_hub(a_, organization="apple" )
model.push_to_hub(a_, organization="apple" )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--mobilevit_name',
default='mobilevit_s',
type=str,
help=(
'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','
' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'
),
)
parser.add_argument(
'--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
__a = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
) | 371 | '''simple docstring'''
from math import factorial
def __UpperCAmelCase ( a_: int = 100 ):
return sum(map(a_, str(factorial(a_ ) ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip()))) | 17 | 0 |
'''simple docstring'''
from copy import deepcopy
from typing import Optional, Union
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_tf_available, is_torch_available
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[Any] = ['''image_processor''']
UpperCamelCase_ : int = '''SamImageProcessor'''
def __init__( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Optional[int]:
"""simple docstring"""
super().__init__(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = self.image_processor
_UpperCAmelCase : Any = -1_0
_UpperCAmelCase : Dict = self.image_processor.size["longest_edge"]
def __call__( self : Any , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase__ : List[str] , ) -> BatchEncoding:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.image_processor(
lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , )
# pop arguments that are not used in the foward but used nevertheless
_UpperCAmelCase : Optional[int] = encoding_image_processor["original_sizes"]
if hasattr(lowerCAmelCase__ , "numpy" ): # Checks if Torch or TF tensor
_UpperCAmelCase : List[Any] = original_sizes.numpy()
_UpperCAmelCase : Union[str, Any] = self._check_and_preprocess_points(
input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , input_boxes=lowerCAmelCase__ , )
_UpperCAmelCase : Union[str, Any] = self._normalize_and_convert(
lowerCAmelCase__ , lowerCAmelCase__ , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , input_boxes=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , )
return encoding_image_processor
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Union[str, Any]="pt" , ) -> Union[str, Any]:
"""simple docstring"""
if input_points is not None:
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
_UpperCAmelCase : str = [
self._normalize_coordinates(self.target_size , lowerCAmelCase__ , original_sizes[0] ) for point in input_points
]
else:
_UpperCAmelCase : Tuple = [
self._normalize_coordinates(self.target_size , lowerCAmelCase__ , lowerCAmelCase__ )
for point, original_size in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
# check that all arrays have the same shape
if not all(point.shape == input_points[0].shape for point in input_points ):
if input_labels is not None:
_UpperCAmelCase : Optional[Any] = self._pad_points_and_labels(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = np.array(lowerCAmelCase__ )
if input_labels is not None:
_UpperCAmelCase : Union[str, Any] = np.array(lowerCAmelCase__ )
if input_boxes is not None:
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
_UpperCAmelCase : Dict = [
self._normalize_coordinates(self.target_size , lowerCAmelCase__ , original_sizes[0] , is_bounding_box=lowerCAmelCase__ )
for box in input_boxes
]
else:
_UpperCAmelCase : Dict = [
self._normalize_coordinates(self.target_size , lowerCAmelCase__ , lowerCAmelCase__ , is_bounding_box=lowerCAmelCase__ )
for box, original_size in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
_UpperCAmelCase : Tuple = np.array(lowerCAmelCase__ )
if input_boxes is not None:
if return_tensors == "pt":
_UpperCAmelCase : Optional[int] = torch.from_numpy(lowerCAmelCase__ )
# boxes batch size of 1 by default
_UpperCAmelCase : int = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes
elif return_tensors == "tf":
_UpperCAmelCase : Optional[int] = tf.convert_to_tensor(lowerCAmelCase__ )
# boxes batch size of 1 by default
_UpperCAmelCase : Union[str, Any] = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes
encoding_image_processor.update({"input_boxes": input_boxes} )
if input_points is not None:
if return_tensors == "pt":
_UpperCAmelCase : Optional[Any] = torch.from_numpy(lowerCAmelCase__ )
# point batch size of 1 by default
_UpperCAmelCase : str = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points
elif return_tensors == "tf":
_UpperCAmelCase : Optional[int] = tf.convert_to_tensor(lowerCAmelCase__ )
# point batch size of 1 by default
_UpperCAmelCase : int = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_points.shape ) != 4 else input_points
encoding_image_processor.update({"input_points": input_points} )
if input_labels is not None:
if return_tensors == "pt":
_UpperCAmelCase : Dict = torch.from_numpy(lowerCAmelCase__ )
# point batch size of 1 by default
_UpperCAmelCase : List[str] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels
elif return_tensors == "tf":
_UpperCAmelCase : Any = tf.convert_to_tensor(lowerCAmelCase__ )
# point batch size of 1 by default
_UpperCAmelCase : Optional[Any] = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_labels.shape ) != 3 else input_labels
encoding_image_processor.update({"input_labels": input_labels} )
return encoding_image_processor
def _lowerCAmelCase ( self : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = max([point.shape[0] for point in input_points] )
_UpperCAmelCase : List[str] = []
for i, point in enumerate(lowerCAmelCase__ ):
if point.shape[0] != expected_nb_points:
_UpperCAmelCase : Any = np.concatenate(
[point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 )
_UpperCAmelCase : Dict = np.append(input_labels[i] , [self.point_pad_value] )
processed_input_points.append(lowerCAmelCase__ )
_UpperCAmelCase : List[str] = processed_input_points
return input_points, input_labels
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=False ) -> np.ndarray:
"""simple docstring"""
_UpperCAmelCase : List[Any] = original_size
_UpperCAmelCase : int = self.image_processor._get_preprocess_shape(lowerCAmelCase__ , longest_edge=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = deepcopy(lowerCAmelCase__ ).astype(lowerCAmelCase__ )
if is_bounding_box:
_UpperCAmelCase : List[Any] = coords.reshape(-1 , 2 , 2 )
_UpperCAmelCase : Optional[Any] = coords[..., 0] * (new_w / old_w)
_UpperCAmelCase : List[str] = coords[..., 1] * (new_h / old_h)
if is_bounding_box:
_UpperCAmelCase : Any = coords.reshape(-1 , 4 )
return coords
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : List[str]=None , ) -> List[str]:
"""simple docstring"""
if input_points is not None:
if hasattr(lowerCAmelCase__ , "numpy" ): # Checks for TF or Torch tensor
_UpperCAmelCase : Tuple = input_points.numpy().tolist()
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(input_points[0] , lowerCAmelCase__ ):
raise ValueError("Input points must be a list of list of floating points." )
_UpperCAmelCase : List[Any] = [np.array(lowerCAmelCase__ ) for input_point in input_points]
else:
_UpperCAmelCase : Union[str, Any] = None
if input_labels is not None:
if hasattr(lowerCAmelCase__ , "numpy" ):
_UpperCAmelCase : Dict = input_labels.numpy().tolist()
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(input_labels[0] , lowerCAmelCase__ ):
raise ValueError("Input labels must be a list of list integers." )
_UpperCAmelCase : str = [np.array(lowerCAmelCase__ ) for label in input_labels]
else:
_UpperCAmelCase : str = None
if input_boxes is not None:
if hasattr(lowerCAmelCase__ , "numpy" ):
_UpperCAmelCase : Union[str, Any] = input_boxes.numpy().tolist()
if (
not isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
or not isinstance(input_boxes[0] , lowerCAmelCase__ )
or not isinstance(input_boxes[0][0] , lowerCAmelCase__ )
):
raise ValueError("Input boxes must be a list of list of list of floating points." )
_UpperCAmelCase : List[str] = [np.array(lowerCAmelCase__ ).astype(np.floataa ) for box in input_boxes]
else:
_UpperCAmelCase : str = None
return input_points, input_labels, input_boxes
@property
def _lowerCAmelCase ( self : Any ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Any = self.image_processor.model_input_names
return list(dict.fromkeys(lowerCAmelCase__ ) )
def _lowerCAmelCase ( self : str , *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : Any ) -> List[str]:
"""simple docstring"""
return self.image_processor.post_process_masks(*lowerCAmelCase__ , **lowerCAmelCase__ ) | 350 | '''simple docstring'''
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
__a = (3, 9, -11, 0, 7, 5, 1, -1)
__a = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : int
UpperCamelCase_ : Node | None
class A__ :
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None:
"""simple docstring"""
_UpperCAmelCase : Node | None = None
for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ):
_UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head )
def __iter__( self : int ) -> Iterator[int]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.head
while node:
yield node.data
_UpperCAmelCase : List[str] = node.next_node
def __len__( self : Any ) -> int:
"""simple docstring"""
return sum(1 for _ in self )
def __str__( self : Union[str, Any] ) -> str:
"""simple docstring"""
return " -> ".join([str(lowerCAmelCase__ ) for node in self] )
def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ):
return SortedLinkedList(list(a_ ) + list(a_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
__a = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even))) | 17 | 0 |
'''simple docstring'''
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
__a = 2
class A__ :
"""simple docstring"""
def __init__( self : str , *, # begin keyword-only arguments
lowerCAmelCase__ : Dict="<s>" , lowerCAmelCase__ : Optional[Any]="<pad>" , lowerCAmelCase__ : List[Any]="</s>" , lowerCAmelCase__ : Tuple="<unk>" , lowerCAmelCase__ : Tuple=None , ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = bos, unk, pad, eos
_UpperCAmelCase : Any = []
_UpperCAmelCase : Dict = []
_UpperCAmelCase : Union[str, Any] = {}
_UpperCAmelCase : List[str] = self.add_symbol(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = self.add_symbol(lowerCAmelCase__ )
_UpperCAmelCase : int = self.add_symbol(lowerCAmelCase__ )
_UpperCAmelCase : List[str] = self.add_symbol(lowerCAmelCase__ )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = len(self.symbols )
def __eq__( self : int , lowerCAmelCase__ : Optional[Any] ) -> Dict:
"""simple docstring"""
return self.indices == other.indices
def __getitem__( self : Dict , lowerCAmelCase__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : Dict ) -> int:
"""simple docstring"""
return len(self.symbols )
def __contains__( self : Tuple , lowerCAmelCase__ : Optional[Any] ) -> Tuple:
"""simple docstring"""
return sym in self.indices
@classmethod
def _lowerCAmelCase ( cls : Any , lowerCAmelCase__ : Any ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = cls()
d.add_from_file(lowerCAmelCase__ )
return d
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : List[str]=False ) -> Dict:
"""simple docstring"""
if word in self.indices and not overwrite:
_UpperCAmelCase : Dict = self.indices[word]
_UpperCAmelCase : Optional[Any] = self.count[idx] + n
return idx
else:
_UpperCAmelCase : Dict = len(self.symbols )
_UpperCAmelCase : Dict = idx
self.symbols.append(lowerCAmelCase__ )
self.count.append(lowerCAmelCase__ )
return idx
def _lowerCAmelCase ( self : str , lowerCAmelCase__ : int ) -> List[str]:
"""simple docstring"""
return 0
def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Any ) -> Any:
"""simple docstring"""
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
try:
with open(lowerCAmelCase__ , "r" , encoding="utf-8" ) as fd:
self.add_from_file(lowerCAmelCase__ )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(lowerCAmelCase__ ) )
return
_UpperCAmelCase : List[str] = f.readlines()
_UpperCAmelCase : Any = self._load_meta(lowerCAmelCase__ )
for line in lines[indices_start_line:]:
try:
_UpperCAmelCase : Union[str, Any] = line.rstrip().rsplit(" " , 1 )
if field == "#fairseq:overwrite":
_UpperCAmelCase : Optional[Any] = True
_UpperCAmelCase : List[str] = line.rsplit(" " , 1 )
else:
_UpperCAmelCase : Tuple = False
_UpperCAmelCase : List[str] = int(lowerCAmelCase__ )
_UpperCAmelCase : int = line
if word in self and not overwrite:
raise RuntimeError(
"Duplicate word found when loading Dictionary: '{}'. "
"Duplicate words can overwrite earlier ones by adding the "
"#fairseq:overwrite flag at the end of the corresponding row "
"in the dictionary file. If using the Camembert model, please "
"download an updated copy of the model file.".format(lowerCAmelCase__ ) )
self.add_symbol(lowerCAmelCase__ , n=lowerCAmelCase__ , overwrite=lowerCAmelCase__ )
except ValueError:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" )
def __UpperCAmelCase ( a_: List[Any] ):
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
_UpperCAmelCase : Any = dict((re.sub(r"@@$", "", a_ ), v) if k.endswith("@@" ) else (re.sub(r"$", "</w>", a_ ), v) for k, v in d.items() )
_UpperCAmelCase : Union[str, Any] = "<s> <pad> </s> <unk>".split()
# restore the special tokens
for k in keep_keys:
del da[f"""{k}</w>"""]
_UpperCAmelCase : Tuple = d[k] # restore
return da
def __UpperCAmelCase ( a_: Any, a_: List[str] ):
# prep
if not os.path.exists(a_ ):
raise ValueError(f"""path {biogpt_checkpoint_path} does not exist!""" )
os.makedirs(a_, exist_ok=a_ )
print(f"""Writing results to {pytorch_dump_folder_path}""" )
# handle various types of models
_UpperCAmelCase : List[Any] = os.path.join(a_, "checkpoint.pt" )
if not os.path.isfile(a_ ):
raise ValueError(f"""path to the file {checkpoint_file} does not exist!""" )
_UpperCAmelCase : Dict = torch.load(a_, map_location="cpu" )
_UpperCAmelCase : List[Any] = chkpt["cfg"]["model"]
# dicts
_UpperCAmelCase : Any = os.path.join(a_, "dict.txt" )
if not os.path.isfile(a_ ):
raise ValueError(f"""path to the file {dict_file} does not exist!""" )
_UpperCAmelCase : Any = Dictionary.load(a_ )
_UpperCAmelCase : Dict = rewrite_dict_keys(src_dict.indices )
_UpperCAmelCase : List[str] = len(a_ )
_UpperCAmelCase : int = os.path.join(a_, VOCAB_FILES_NAMES["vocab_file"] )
print(f"""Generating {src_vocab_file} of {src_vocab_size} records""" )
with open(a_, "w", encoding="utf-8" ) as f:
f.write(json.dumps(a_, ensure_ascii=a_, indent=a_ ) )
# merges_file (bpecodes)
_UpperCAmelCase : int = os.path.join(a_, "bpecodes" )
if not os.path.isfile(a_ ):
raise ValueError(f"""path to the file {bpecodes_file} does not exist!""" )
_UpperCAmelCase : int = os.path.join(a_, VOCAB_FILES_NAMES["merges_file"] )
shutil.copyfile(a_, a_ )
# model config
_UpperCAmelCase : int = os.path.join(a_, "config.json" )
_UpperCAmelCase : Dict = {
"activation_dropout": args["activation_dropout"],
"architectures": ["BioGptForCausalLM"],
"attention_probs_dropout_prob": args["attention_dropout"],
"bos_token_id": 0,
"eos_token_id": 2,
"hidden_act": args["activation_fn"],
"hidden_dropout_prob": args["dropout"],
"hidden_size": args["decoder_embed_dim"],
"initializer_range": 0.02,
"intermediate_size": args["decoder_ffn_embed_dim"],
"layer_norm_eps": 1e-1_2,
"layerdrop": args["decoder_layerdrop"],
"max_position_embeddings": args["max_target_positions"],
"model_type": "biogpt",
"num_attention_heads": args["decoder_attention_heads"],
"num_hidden_layers": args["decoder_layers"],
"pad_token_id": 1,
"scale_embedding": not args["no_scale_embedding"],
"tie_word_embeddings": args["share_decoder_input_output_embed"],
"vocab_size": src_vocab_size,
}
# good hparam defaults to start with
print(f"""Generating {biogpt_model_config_file}""" )
with open(a_, "w", encoding="utf-8" ) as f:
f.write(json.dumps(a_, ensure_ascii=a_, indent=a_ ) )
# tokenizer config
_UpperCAmelCase : Dict = os.path.join(a_, a_ )
_UpperCAmelCase : Optional[Any] = {
"bos_token": "<s>",
"eos_token": "</s>",
"model_max_length": 1_024,
"pad_token": "<pad>",
"special_tokens_map_file": None,
"tokenizer_class": "BioGptTokenizer",
"unk_token": "<unk>",
}
print(f"""Generating {biogpt_tokenizer_config_file}""" )
with open(a_, "w", encoding="utf-8" ) as f:
f.write(json.dumps(a_, ensure_ascii=a_, indent=a_ ) )
# model
_UpperCAmelCase : Tuple = chkpt["model"]
# remove unneeded keys
_UpperCAmelCase : int = [
"decoder.version",
]
for k in ignore_keys:
model_state_dict.pop(a_, a_ )
_UpperCAmelCase : Any = list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith("output_projection.weight" ):
_UpperCAmelCase : int = model_state_dict.pop(a_ )
else:
_UpperCAmelCase : str = model_state_dict.pop(a_ )
_UpperCAmelCase : Union[str, Any] = BioGptConfig.from_pretrained(a_ )
_UpperCAmelCase : Optional[int] = BioGptForCausalLM(a_ )
# check that it loads ok
model_new.load_state_dict(a_ )
# save
_UpperCAmelCase : Tuple = os.path.join(a_, a_ )
print(f"""Generating {pytorch_weights_dump_path}""" )
torch.save(a_, a_ )
print("Conversion is done!" )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--biogpt_checkpoint_path',
default=None,
type=str,
required=True,
help=(
'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'
' bpecodes, etc.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__a = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path) | 351 | '''simple docstring'''
def __UpperCAmelCase ( a_: str ):
if not all(char in "01" for char in bin_string ):
raise ValueError("Non-binary value was passed to the function" )
if not bin_string:
raise ValueError("Empty string was passed to the function" )
_UpperCAmelCase : Optional[Any] = ""
while len(a_ ) % 3 != 0:
_UpperCAmelCase : List[Any] = "0" + bin_string
_UpperCAmelCase : Dict = [
bin_string[index : index + 3]
for index in range(len(a_ ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
_UpperCAmelCase : Optional[Any] = 0
for index, val in enumerate(a_ ):
oct_val += int(2 ** (2 - index) * int(a_ ) )
oct_string += str(a_ )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod() | 17 | 0 |
'''simple docstring'''
from pathlib import Path
import fire
from tqdm import tqdm
def __UpperCAmelCase ( a_: int="ro", a_: str="en", a_: str="wmt16", a_: Dict=None ) -> int:
try:
import datasets
except (ModuleNotFoundError, ImportError):
raise ImportError("run pip install datasets" )
_UpperCAmelCase : Union[str, Any] = f"""{src_lang}-{tgt_lang}"""
print(f"""Converting {dataset}-{pair}""" )
_UpperCAmelCase : Optional[int] = datasets.load_dataset(a_, a_ )
if save_dir is None:
_UpperCAmelCase : List[Any] = f"""{dataset}-{pair}"""
_UpperCAmelCase : Tuple = Path(a_ )
save_dir.mkdir(exist_ok=a_ )
for split in ds.keys():
print(f"""Splitting {split} with {ds[split].num_rows} records""" )
# to save to val.source, val.target like summary datasets
_UpperCAmelCase : Dict = "val" if split == "validation" else split
_UpperCAmelCase : Optional[Any] = save_dir.joinpath(f"""{fn}.source""" )
_UpperCAmelCase : Any = save_dir.joinpath(f"""{fn}.target""" )
_UpperCAmelCase : str = src_path.open("w+" )
_UpperCAmelCase : int = tgt_path.open("w+" )
# reader is the bottleneck so writing one record at a time doesn't slow things down
for x in tqdm(ds[split] ):
_UpperCAmelCase : Union[str, Any] = x["translation"]
src_fp.write(ex[src_lang] + "\n" )
tgt_fp.write(ex[tgt_lang] + "\n" )
print(f"""Saved {dataset} dataset to {save_dir}""" )
if __name__ == "__main__":
fire.Fire(download_wmt_dataset) | 352 | '''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def __UpperCAmelCase ( a_: str ):
for param in module.parameters():
_UpperCAmelCase : Any = False
def __UpperCAmelCase ( ):
_UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_UpperCAmelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : int = plt.imshow(a_ )
fig.axes.get_xaxis().set_visible(a_ )
fig.axes.get_yaxis().set_visible(a_ )
plt.show()
def __UpperCAmelCase ( ):
_UpperCAmelCase : Dict = datetime.now()
_UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" )
return timestamp | 17 | 0 |
'''simple docstring'''
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
__a = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN'])
def __UpperCAmelCase ( a_: Dict ):
_UpperCAmelCase : Tuple = test_results.split(" " )
_UpperCAmelCase : List[Any] = 0
_UpperCAmelCase : Tuple = 0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
_UpperCAmelCase : Any = expressions[-2] if "=" in expressions[-1] else expressions[-1]
for i, expression in enumerate(a_ ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Any = {}
_UpperCAmelCase : Optional[Any] = None
_UpperCAmelCase : int = False
for line in failures_short_lines.split("\n" ):
if re.search(r"_ \[doctest\]", a_ ):
_UpperCAmelCase : Dict = True
_UpperCAmelCase : Union[str, Any] = line.split(" " )[2]
elif in_error and not line.split(" " )[0].isdigit():
_UpperCAmelCase : Union[str, Any] = line
_UpperCAmelCase : str = False
return failures
class A__ :
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = title
_UpperCAmelCase : str = doc_test_results["time_spent"].split("," )[0]
_UpperCAmelCase : str = doc_test_results["success"]
_UpperCAmelCase : Tuple = doc_test_results["failures"]
_UpperCAmelCase : Optional[Any] = self.n_success + self.n_failures
# Failures and success of the modeling tests
_UpperCAmelCase : Optional[Any] = doc_test_results
@property
def _lowerCAmelCase ( self : Dict ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = [self._time_spent]
_UpperCAmelCase : Optional[Any] = 0
for time in time_spent:
_UpperCAmelCase : Optional[Any] = time.split(":" )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(lowerCAmelCase__ ) == 1:
_UpperCAmelCase : List[str] = [0, 0, time_parts[0]]
_UpperCAmelCase : Any = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 3_6_0_0 + minutes * 6_0 + seconds
_UpperCAmelCase : Optional[int] = total_secs // 3_6_0_0, (total_secs % 3_6_0_0) // 6_0, total_secs % 6_0
return F"""{int(lowerCAmelCase__ )}h{int(lowerCAmelCase__ )}m{int(lowerCAmelCase__ )}s"""
@property
def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def _lowerCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
return {
"type": "section",
"text": {
"type": "plain_text",
"text": F"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""",
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""",
},
}
@property
def _lowerCAmelCase ( self : int ) -> Dict:
"""simple docstring"""
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
F"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in"""
F""" {self.time}."""
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""",
},
}
@property
def _lowerCAmelCase ( self : str ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : str = 4_0
_UpperCAmelCase : Union[str, Any] = {k: v["failed"] for k, v in doc_test_results.items() if isinstance(lowerCAmelCase__ , lowerCAmelCase__ )}
_UpperCAmelCase : List[Any] = ""
for category, failures in category_failures.items():
if len(lowerCAmelCase__ ) == 0:
continue
if report != "":
report += "\n\n"
report += F"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(lowerCAmelCase__ )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": F"""The following examples had failures:\n\n\n{report}\n""",
},
}
@property
def _lowerCAmelCase ( self : List[str] ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = [self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(lowerCAmelCase__ )
@staticmethod
def _lowerCAmelCase ( ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : int = [
{
"type": "section",
"text": {
"type": "plain_text",
"text": "There was an issue running the tests.",
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""",
},
}
]
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(lowerCAmelCase__ )} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=lowerCAmelCase__ , )
def _lowerCAmelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
print("Sending the following payload" )
print(json.dumps({"blocks": json.loads(self.payload )} ) )
_UpperCAmelCase : int = F"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else "All tests passed."
_UpperCAmelCase : int = client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=lowerCAmelCase__ , )
def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = ""
for key, value in failures.items():
_UpperCAmelCase : Tuple = value[:2_0_0] + " [Truncated]" if len(lowerCAmelCase__ ) > 2_5_0 else value
failures_text += F"""*{key}*\n_{value}_\n\n"""
_UpperCAmelCase : List[Any] = job_name
_UpperCAmelCase : str = {"type": "section", "text": {"type": "mrkdwn", "text": text}}
if job_link is not None:
_UpperCAmelCase : Union[str, Any] = {
"type": "button",
"text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True},
"url": job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def _lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
if self.thread_ts is None:
raise ValueError("Can only post reply if a post has been made." )
_UpperCAmelCase : int = self.doc_test_results.pop("job_link" )
self.doc_test_results.pop("failures" )
self.doc_test_results.pop("success" )
self.doc_test_results.pop("time_spent" )
_UpperCAmelCase : List[Any] = sorted(self.doc_test_results.items() , key=lambda lowerCAmelCase__ : t[0] )
for job, job_result in sorted_dict:
if len(job_result["failures"] ):
_UpperCAmelCase : Dict = F"""*Num failures* :{len(job_result['failed'] )} \n"""
_UpperCAmelCase : Union[str, Any] = job_result["failures"]
_UpperCAmelCase : Optional[Any] = self.get_reply_blocks(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , text=lowerCAmelCase__ )
print("Sending the following reply" )
print(json.dumps({"blocks": blocks} ) )
client.chat_postMessage(
channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F"""Results for {job}""" , blocks=lowerCAmelCase__ , thread_ts=self.thread_ts["ts"] , )
time.sleep(1 )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[Any] = os.environ["GITHUB_RUN_ID"]
_UpperCAmelCase : List[Any] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100"""
_UpperCAmelCase : Dict = requests.get(a_ ).json()
_UpperCAmelCase : Optional[Any] = {}
try:
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
_UpperCAmelCase : Tuple = math.ceil((result["total_count"] - 100) / 100 )
for i in range(a_ ):
_UpperCAmelCase : Any = requests.get(url + f"""&page={i + 2}""" ).json()
jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} )
return jobs
except Exception as e:
print("Unknown error, could not fetch links.", a_ )
return {}
def __UpperCAmelCase ( a_: str ):
_UpperCAmelCase : List[str] = {}
if os.path.exists(a_ ):
_UpperCAmelCase : int = os.listdir(a_ )
for file in files:
try:
with open(os.path.join(a_, a_ ), encoding="utf-8" ) as f:
_UpperCAmelCase : Tuple = f.read()
except UnicodeDecodeError as e:
raise ValueError(f"""Could not open {os.path.join(a_, a_ )}.""" ) from e
return _artifact
def __UpperCAmelCase ( ):
class A__ :
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : str ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Any = name
_UpperCAmelCase : List[str] = []
def __str__( self : List[Any] ) -> List[Any]:
"""simple docstring"""
return self.name
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : str ) -> List[str]:
"""simple docstring"""
self.paths.append({"name": self.name, "path": path} )
_UpperCAmelCase : Dict[str, Artifact] = {}
_UpperCAmelCase : Optional[int] = filter(os.path.isdir, os.listdir() )
for directory in directories:
_UpperCAmelCase : Optional[Any] = directory
if artifact_name not in _available_artifacts:
_UpperCAmelCase : Tuple = Artifact(a_ )
_available_artifacts[artifact_name].add_path(a_ )
return _available_artifacts
if __name__ == "__main__":
__a = get_job_links()
__a = retrieve_available_artifacts()
__a = collections.OrderedDict(
[
('*.py', 'API Examples'),
('*.md', 'MD Examples'),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
__a = {
v: {
'failed': [],
'failures': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
__a = github_actions_job_links.get('run_doctests')
__a = available_artifacts['doc_tests_gpu_test_reports'].paths[0]
__a = retrieve_artifact(artifact_path['name'])
if "stats" in artifact:
__a , __a , __a = handle_test_results(artifact['stats'])
__a = failed
__a = success
__a = time_spent[1:-1] + ', '
__a = extract_first_line_failure(artifact['failures_short'])
for line in artifact["summary_short"].split('\n'):
if re.search('FAILED', line):
__a = line.replace('FAILED ', '')
__a = line.split()[0].replace('\n', '')
if "::" in line:
__a , __a = line.split('::')
else:
__a , __a = line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
__a = docs[file_regex]
doc_test_results[category]["failed"].append(test)
__a = all_failures[test] if test in all_failures else 'N/A'
__a = failure
break
__a = Message('🤗 Results of the doc tests.', doc_test_results)
message.post()
message.post_reply() | 353 | '''simple docstring'''
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[int] = (EulerDiscreteScheduler,)
UpperCamelCase_ : Tuple = 10
def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = {
"num_train_timesteps": 1_1_0_0,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**lowerCAmelCase__ )
return config
def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Any ) -> List[str]:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] ) -> List[str]:
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.scheduler_classes[0]
_UpperCAmelCase : int = self.get_scheduler_config()
_UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
_UpperCAmelCase : int = torch.manual_seed(0 )
_UpperCAmelCase : Any = self.dummy_model()
_UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma
_UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
_UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = output.prev_sample
_UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Any = self.scheduler_classes[0]
_UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" )
_UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
_UpperCAmelCase : str = torch.manual_seed(0 )
_UpperCAmelCase : Optional[Any] = self.dummy_model()
_UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
_UpperCAmelCase : Tuple = sample.to(lowerCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
_UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = output.prev_sample
_UpperCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 0.0002 ) < 1e-2
assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3
def _lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.scheduler_classes[0]
_UpperCAmelCase : List[Any] = self.get_scheduler_config()
_UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
_UpperCAmelCase : str = self.dummy_model()
_UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_UpperCAmelCase : str = sample.to(lowerCAmelCase__ )
for t in scheduler.timesteps:
_UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : int = output.prev_sample
_UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.scheduler_classes[0]
_UpperCAmelCase : int = self.get_scheduler_config()
_UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
_UpperCAmelCase : List[str] = self.dummy_model()
_UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_UpperCAmelCase : Optional[int] = sample.to(lowerCAmelCase__ )
for t in scheduler.timesteps:
_UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = output.prev_sample
_UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2
assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3 | 17 | 0 |
'''simple docstring'''
import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class A__ :
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int=1_3 , lowerCAmelCase__ : int=7 , lowerCAmelCase__ : str=6 , lowerCAmelCase__ : Tuple=1_7 , lowerCAmelCase__ : Dict=2_3 , lowerCAmelCase__ : List[Any]=1_1 , lowerCAmelCase__ : Optional[Any]=True , ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Any = parent
_UpperCAmelCase : Union[str, Any] = batch_size
_UpperCAmelCase : Dict = seq_length
_UpperCAmelCase : Optional[int] = act_dim
_UpperCAmelCase : Any = state_dim
_UpperCAmelCase : int = hidden_size
_UpperCAmelCase : List[Any] = max_length
_UpperCAmelCase : Tuple = is_training
def _lowerCAmelCase ( self : int ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) )
_UpperCAmelCase : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) )
_UpperCAmelCase : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) )
_UpperCAmelCase : str = floats_tensor((self.batch_size, self.seq_length, 1) )
_UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 )
_UpperCAmelCase : str = random_attention_mask((self.batch_size, self.seq_length) )
_UpperCAmelCase : Optional[int] = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def _lowerCAmelCase ( self : int ) -> Union[str, Any]:
"""simple docstring"""
return DecisionTransformerConfig(
batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : str = DecisionTransformerModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Optional[int] = model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
self.parent.assertEqual(result.state_preds.shape , states.shape )
self.parent.assertEqual(result.action_preds.shape , actions.shape )
self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions
def _lowerCAmelCase ( self : int ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : str = self.prepare_config_and_inputs()
(
_UpperCAmelCase
) : Optional[int] = config_and_inputs
_UpperCAmelCase : str = {
"states": states,
"actions": actions,
"rewards": rewards,
"returns_to_go": returns_to_go,
"timesteps": timesteps,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = (DecisionTransformerModel,) if is_torch_available() else ()
UpperCamelCase_ : List[str] = ()
UpperCamelCase_ : Any = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
UpperCamelCase_ : Dict = False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
UpperCamelCase_ : List[Any] = False
UpperCamelCase_ : Optional[Any] = False
UpperCamelCase_ : int = False
UpperCamelCase_ : str = False
UpperCamelCase_ : int = False
UpperCamelCase_ : Optional[int] = False
UpperCamelCase_ : Any = False
UpperCamelCase_ : List[Any] = False
UpperCamelCase_ : Optional[Any] = False
def _lowerCAmelCase ( self : Optional[int] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Tuple = DecisionTransformerModelTester(self )
_UpperCAmelCase : List[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : List[str] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Any ) -> Tuple:
"""simple docstring"""
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase : Dict = DecisionTransformerModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def _lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase : int = model_class(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase : str = [*signature.parameters.keys()]
_UpperCAmelCase : Tuple = [
"states",
"actions",
"rewards",
"returns_to_go",
"timesteps",
"attention_mask",
]
self.assertListEqual(arg_names[: len(lowerCAmelCase__ )] , lowerCAmelCase__ )
@require_torch
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : int ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = 2 # number of steps of autoregressive prediction we will perform
_UpperCAmelCase : List[str] = 1_0 # defined by the RL environment, may be normalized
_UpperCAmelCase : Optional[Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" )
_UpperCAmelCase : Optional[Any] = model.to(lowerCAmelCase__ )
_UpperCAmelCase : Any = model.config
torch.manual_seed(0 )
_UpperCAmelCase : Dict = torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase__ , dtype=torch.floataa ) # env.reset()
_UpperCAmelCase : Union[str, Any] = torch.tensor(
[[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=lowerCAmelCase__ )
_UpperCAmelCase : Any = torch.tensor(lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=torch.floataa ).reshape(1 , 1 , 1 )
_UpperCAmelCase : str = state
_UpperCAmelCase : Union[str, Any] = torch.zeros(1 , 0 , config.act_dim , device=lowerCAmelCase__ , dtype=torch.floataa )
_UpperCAmelCase : Dict = torch.zeros(1 , 0 , device=lowerCAmelCase__ , dtype=torch.floataa )
_UpperCAmelCase : Optional[Any] = torch.tensor(0 , device=lowerCAmelCase__ , dtype=torch.long ).reshape(1 , 1 )
for step in range(lowerCAmelCase__ ):
_UpperCAmelCase : Optional[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowerCAmelCase__ )] , dim=1 )
_UpperCAmelCase : Tuple = torch.cat([rewards, torch.zeros(1 , 1 , device=lowerCAmelCase__ )] , dim=1 )
_UpperCAmelCase : List[str] = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device )
with torch.no_grad():
_UpperCAmelCase : Union[str, Any] = model(
states=lowerCAmelCase__ , actions=lowerCAmelCase__ , rewards=lowerCAmelCase__ , returns_to_go=lowerCAmelCase__ , timesteps=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )
self.assertEqual(action_pred.shape , actions.shape )
self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) )
_UpperCAmelCase : Any = ( # env.step(action)
torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase__ , dtype=torch.floataa ),
1.0,
False,
{},
)
_UpperCAmelCase : List[str] = action_pred[0, -1]
_UpperCAmelCase : Union[str, Any] = torch.cat([states, state] , dim=1 )
_UpperCAmelCase : Any = returns_to_go[0, -1] - reward
_UpperCAmelCase : List[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 )
_UpperCAmelCase : Dict = torch.cat(
[timesteps, torch.ones((1, 1) , device=lowerCAmelCase__ , dtype=torch.long ) * (step + 1)] , dim=1 ) | 354 | '''simple docstring'''
def __UpperCAmelCase ( a_: int, a_: int ):
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
_UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) )
return "0b" + "".join(
str(int(char_a == "1" and char_b == "1" ) )
for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 0 |
'''simple docstring'''
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : List[str] = (DDPMScheduler,)
def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Dict ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Any = {
"num_train_timesteps": 1_0_0_0,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"variance_type": "fixed_small",
"clip_sample": True,
}
config.update(**lowerCAmelCase__ )
return config
def _lowerCAmelCase ( self : Optional[Any] ) -> Any:
"""simple docstring"""
for timesteps in [1, 5, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> Union[str, Any]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
self.check_over_configs(thresholding=lowerCAmelCase__ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=lowerCAmelCase__ , prediction_type=lowerCAmelCase__ , sample_max_value=lowerCAmelCase__ , )
def _lowerCAmelCase ( self : List[str] ) -> Tuple:
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
for t in [0, 5_0_0, 9_9_9]:
self.check_over_forward(time_step=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.scheduler_classes[0]
_UpperCAmelCase : str = self.get_scheduler_config()
_UpperCAmelCase : str = scheduler_class(**lowerCAmelCase__ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_0979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5
def _lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Any = self.scheduler_classes[0]
_UpperCAmelCase : Any = self.get_scheduler_config()
_UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ )
_UpperCAmelCase : Any = len(lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = self.dummy_model()
_UpperCAmelCase : List[str] = self.dummy_sample_deter
_UpperCAmelCase : Tuple = torch.manual_seed(0 )
for t in reversed(range(lowerCAmelCase__ ) ):
# 1. predict noise residual
_UpperCAmelCase : Tuple = model(lowerCAmelCase__ , lowerCAmelCase__ )
# 2. predict previous mean of sample x_t-1
_UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
_UpperCAmelCase : int = pred_prev_sample
_UpperCAmelCase : int = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 258.9606 ) < 1e-2
assert abs(result_mean.item() - 0.3372 ) < 1e-3
def _lowerCAmelCase ( self : int ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : int = self.scheduler_classes[0]
_UpperCAmelCase : List[str] = self.get_scheduler_config(prediction_type="v_prediction" )
_UpperCAmelCase : Dict = scheduler_class(**lowerCAmelCase__ )
_UpperCAmelCase : str = len(lowerCAmelCase__ )
_UpperCAmelCase : str = self.dummy_model()
_UpperCAmelCase : Any = self.dummy_sample_deter
_UpperCAmelCase : Tuple = torch.manual_seed(0 )
for t in reversed(range(lowerCAmelCase__ ) ):
# 1. predict noise residual
_UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ , lowerCAmelCase__ )
# 2. predict previous mean of sample x_t-1
_UpperCAmelCase : List[str] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
_UpperCAmelCase : str = pred_prev_sample
_UpperCAmelCase : Optional[int] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : int = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 202.0296 ) < 1e-2
assert abs(result_mean.item() - 0.2631 ) < 1e-3
def _lowerCAmelCase ( self : int ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Any = self.scheduler_classes[0]
_UpperCAmelCase : Any = self.get_scheduler_config()
_UpperCAmelCase : List[str] = scheduler_class(**lowerCAmelCase__ )
_UpperCAmelCase : Tuple = [1_0_0, 8_7, 5_0, 1, 0]
scheduler.set_timesteps(timesteps=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = scheduler.timesteps
for i, timestep in enumerate(lowerCAmelCase__ ):
if i == len(lowerCAmelCase__ ) - 1:
_UpperCAmelCase : Optional[Any] = -1
else:
_UpperCAmelCase : Optional[Any] = timesteps[i + 1]
_UpperCAmelCase : Union[str, Any] = scheduler.previous_timestep(lowerCAmelCase__ )
_UpperCAmelCase : str = prev_t.item()
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Dict = self.scheduler_classes[0]
_UpperCAmelCase : Union[str, Any] = self.get_scheduler_config()
_UpperCAmelCase : List[str] = scheduler_class(**lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = [1_0_0, 8_7, 5_0, 5_1, 0]
with self.assertRaises(lowerCAmelCase__ , msg="`custom_timesteps` must be in descending order." ):
scheduler.set_timesteps(timesteps=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Dict ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.scheduler_classes[0]
_UpperCAmelCase : List[Any] = self.get_scheduler_config()
_UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0]
_UpperCAmelCase : Optional[int] = len(lowerCAmelCase__ )
with self.assertRaises(lowerCAmelCase__ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ):
scheduler.set_timesteps(num_inference_steps=lowerCAmelCase__ , timesteps=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.scheduler_classes[0]
_UpperCAmelCase : List[Any] = self.get_scheduler_config()
_UpperCAmelCase : Optional[Any] = scheduler_class(**lowerCAmelCase__ )
_UpperCAmelCase : Dict = [scheduler.config.num_train_timesteps]
with self.assertRaises(
lowerCAmelCase__ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ):
scheduler.set_timesteps(timesteps=lowerCAmelCase__ )
| 355 | '''simple docstring'''
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def __UpperCAmelCase ( a_: int ):
# A local function to see if a dot lands in the circle.
def is_in_circle(a_: float, a_: float ) -> bool:
_UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
_UpperCAmelCase : str = mean(
int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) )
for _ in range(a_ ) )
# The ratio of the area for circle to square is pi/4.
_UpperCAmelCase : Optional[int] = proportion * 4
print(f"""The estimated value of pi is {pi_estimate}""" )
print(f"""The numpy value of pi is {pi}""" )
print(f"""The total error is {abs(pi - pi_estimate )}""" )
def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ):
return mean(
function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value)
def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ):
def identity_function(a_: float ) -> float:
return x
_UpperCAmelCase : Union[str, Any] = area_under_curve_estimator(
a_, a_, a_, a_ )
_UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2
print("******************" )
print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {expected_value}""" )
print(f"""Total error is {abs(estimated_value - expected_value )}""" )
print("******************" )
def __UpperCAmelCase ( a_: int ):
def function_to_integrate(a_: float ) -> float:
return sqrt(4.0 - x * x )
_UpperCAmelCase : List[str] = area_under_curve_estimator(
a_, a_, 0.0, 2.0 )
print("******************" )
print("Estimating pi using area_under_curve_estimator" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {pi}""" )
print(f"""Total error is {abs(estimated_value - pi )}""" )
print("******************" )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__a = {
'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'],
'tokenization_deberta': ['DebertaTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['DebertaTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'DebertaForMaskedLM',
'DebertaForQuestionAnswering',
'DebertaForSequenceClassification',
'DebertaForTokenClassification',
'DebertaModel',
'DebertaPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFDebertaForMaskedLM',
'TFDebertaForQuestionAnswering',
'TFDebertaForSequenceClassification',
'TFDebertaForTokenClassification',
'TFDebertaModel',
'TFDebertaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig
from .tokenization_deberta import DebertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_deberta_fast import DebertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deberta import (
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
DebertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deberta import (
TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDebertaForMaskedLM,
TFDebertaForQuestionAnswering,
TFDebertaForSequenceClassification,
TFDebertaForTokenClassification,
TFDebertaModel,
TFDebertaPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 356 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__a = {
'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'],
'processing_layoutlmv2': ['LayoutLMv2Processor'],
'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['LayoutLMv2TokenizerFast']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['LayoutLMv2FeatureExtractor']
__a = ['LayoutLMv2ImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv2ForQuestionAnswering',
'LayoutLMv2ForSequenceClassification',
'LayoutLMv2ForTokenClassification',
'LayoutLMv2Layer',
'LayoutLMv2Model',
'LayoutLMv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 17 | 0 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class A__ ( metaclass=UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Tuple = ['''torch''', '''scipy''']
def __init__( self : List[str] , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Optional[Any] ) -> str:
"""simple docstring"""
requires_backends(self , ["torch", "scipy"] )
@classmethod
def _lowerCAmelCase ( cls : List[str] , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : List[Any] ) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["torch", "scipy"] )
@classmethod
def _lowerCAmelCase ( cls : List[str] , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Union[str, Any] ) -> str:
"""simple docstring"""
requires_backends(cls , ["torch", "scipy"] ) | 357 | '''simple docstring'''
def __UpperCAmelCase ( a_: int, a_: int ):
if not isinstance(a_, a_ ):
raise ValueError("iterations must be defined as integers" )
if not isinstance(a_, a_ ) or not number >= 1:
raise ValueError(
"starting number must be\n and integer and be more than 0" )
if not iterations >= 1:
raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" )
_UpperCAmelCase : List[str] = ""
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(a_ )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 0 |
'''simple docstring'''
from math import factorial
def __UpperCAmelCase ( a_: int = 100 ):
return sum(map(a_, str(factorial(a_ ) ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip()))) | 358 | '''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
__a = logging.getLogger(__name__)
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : str = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , )
UpperCamelCase_ : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. If passed, sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={
'''help''': (
'''Whether to pad all samples to the maximum sentence length. '''
'''If False, will pad the samples dynamically when batching to the maximum length in the batch. More '''
'''efficient on GPU but very bad for TPU.'''
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def _lowerCAmelCase ( self : Any ) -> Any:
"""simple docstring"""
if self.train_file is not None:
_UpperCAmelCase : List[Any] = self.train_file.split("." )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
_UpperCAmelCase : List[str] = self.validation_file.split("." )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : PreTrainedTokenizerBase
UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True
UpperCamelCase_ : Optional[int] = None
UpperCamelCase_ : Optional[int] = None
def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels"
_UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features]
_UpperCAmelCase : str = len(lowerCAmelCase__ )
_UpperCAmelCase : int = len(features[0]["input_ids"] )
_UpperCAmelCase : str = [
[{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features
]
_UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) )
_UpperCAmelCase : Any = self.tokenizer.pad(
lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , )
# Un-flatten
_UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()}
# Add back labels
_UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa )
return batch
def __UpperCAmelCase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_swag", a_, a_ )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_UpperCAmelCase : Optional[int] = training_args.get_process_log_level()
logger.setLevel(a_ )
datasets.utils.logging.set_verbosity(a_ )
transformers.utils.logging.set_verbosity(a_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
_UpperCAmelCase : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
_UpperCAmelCase : Union[str, Any] = {}
if data_args.train_file is not None:
_UpperCAmelCase : str = data_args.train_file
if data_args.validation_file is not None:
_UpperCAmelCase : Optional[Any] = data_args.validation_file
_UpperCAmelCase : Dict = data_args.train_file.split("." )[-1]
_UpperCAmelCase : Optional[int] = load_dataset(
a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
else:
# Downloading and loading the swag dataset from the hub.
_UpperCAmelCase : Dict = load_dataset(
"swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCAmelCase : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
_UpperCAmelCase : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
_UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
_UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )]
_UpperCAmelCase : List[Any] = "sent1"
_UpperCAmelCase : Optional[int] = "sent2"
if data_args.max_seq_length is None:
_UpperCAmelCase : List[str] = tokenizer.model_max_length
if max_seq_length > 1_024:
logger.warning(
"The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
" override this default with `--block_size xxx`." )
_UpperCAmelCase : Dict = 1_024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
_UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(a_: Union[str, Any] ):
_UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]]
_UpperCAmelCase : Tuple = examples[question_header_name]
_UpperCAmelCase : Optional[Any] = [
[f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ )
]
# Flatten out
_UpperCAmelCase : List[str] = list(chain(*a_ ) )
_UpperCAmelCase : Dict = list(chain(*a_ ) )
# Tokenize
_UpperCAmelCase : List[Any] = tokenizer(
a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset" )
_UpperCAmelCase : int = raw_datasets["train"]
if data_args.max_train_samples is not None:
_UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples )
_UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) )
with training_args.main_process_first(desc="train dataset map pre-processing" ):
_UpperCAmelCase : Union[str, Any] = train_dataset.map(
a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset" )
_UpperCAmelCase : Dict = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
_UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples )
_UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) )
with training_args.main_process_first(desc="validation dataset map pre-processing" ):
_UpperCAmelCase : Optional[int] = eval_dataset.map(
a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, )
# Data collator
_UpperCAmelCase : Tuple = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(a_: Tuple ):
_UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions
_UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
_UpperCAmelCase : Any = Trainer(
model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, )
# Training
if training_args.do_train:
_UpperCAmelCase : Optional[Any] = None
if training_args.resume_from_checkpoint is not None:
_UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_UpperCAmelCase : List[str] = last_checkpoint
_UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ )
trainer.save_model() # Saves the tokenizer too for easy upload
_UpperCAmelCase : str = train_result.metrics
_UpperCAmelCase : List[str] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ )
)
_UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) )
trainer.log_metrics("train", a_ )
trainer.save_metrics("train", a_ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
_UpperCAmelCase : List[Any] = trainer.evaluate()
_UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ )
_UpperCAmelCase : Tuple = min(a_, len(a_ ) )
trainer.log_metrics("eval", a_ )
trainer.save_metrics("eval", a_ )
_UpperCAmelCase : int = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "multiple-choice",
"dataset_tags": "swag",
"dataset_args": "regular",
"dataset": "SWAG",
"language": "en",
}
if training_args.push_to_hub:
trainer.push_to_hub(**a_ )
else:
trainer.create_model_card(**a_ )
def __UpperCAmelCase ( a_: int ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main() | 17 | 0 |
'''simple docstring'''
import math
def __UpperCAmelCase ( a_: int ):
assert isinstance(a_, a_ ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
_UpperCAmelCase : Optional[int] = range(3, int(math.sqrt(a_ ) + 1 ), 2 )
return not any(not number % i for i in odd_numbers )
def __UpperCAmelCase ( a_: List[str], a_: Any=1, **a_: Any ):
_UpperCAmelCase : str = factor * value
_UpperCAmelCase : int = value
while not is_prime(a_ ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1, **a_ )
return value | 359 | '''simple docstring'''
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class A__ ( pl.LightningModule ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str:
"""simple docstring"""
super().__init__()
_UpperCAmelCase : List[str] = model
_UpperCAmelCase : Dict = 2
_UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels )
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
pass
def __UpperCAmelCase ( a_: str, a_: str, a_: str ):
# load longformer model from model identifier
_UpperCAmelCase : int = LongformerModel.from_pretrained(a_ )
_UpperCAmelCase : Any = LightningModel(a_ )
_UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) )
lightning_model.load_state_dict(ckpt["state_dict"] )
# init longformer question answering model
_UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ )
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() )
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() )
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(a_ )
print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--longformer_model',
default=None,
type=str,
required=True,
help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.',
)
parser.add_argument(
'--longformer_question_answering_ckpt_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch Lightning Checkpoint.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__a = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
) | 17 | 0 |
'''simple docstring'''
import warnings
from typing import Dict
import numpy as np
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def __UpperCAmelCase ( a_: str ):
return 1.0 / (1.0 + np.exp(-_outputs ))
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : List[Any] = np.max(_outputs, axis=-1, keepdims=a_ )
_UpperCAmelCase : Tuple = np.exp(_outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1, keepdims=a_ )
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : str = '''sigmoid'''
UpperCamelCase_ : Optional[Any] = '''softmax'''
UpperCamelCase_ : int = '''none'''
@add_end_docstrings(
UpperCamelCase , R'''
return_all_scores (`bool`, *optional*, defaults to `False`):
Whether to return all prediction scores or just the one of the predicted class.
function_to_apply (`str`, *optional*, defaults to `"default"`):
The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:
- `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model
has several labels, will apply the softmax function on the output.
- `"sigmoid"`: Applies the sigmoid function on the output.
- `"softmax"`: Applies the softmax function on the output.
- `"none"`: Does not apply any function on the output.
''' , )
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Dict = False
UpperCamelCase_ : int = ClassificationFunction.NONE
def __init__( self : Optional[Any] , **lowerCAmelCase__ : Optional[int] ) -> int:
"""simple docstring"""
super().__init__(**lowerCAmelCase__ )
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING )
def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : str=None , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Union[str, Any]="" , **lowerCAmelCase__ : Any ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Any = tokenizer_kwargs
_UpperCAmelCase : Any = {}
if hasattr(self.model.config , "return_all_scores" ) and return_all_scores is None:
_UpperCAmelCase : Any = self.model.config.return_all_scores
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or top_k is None:
_UpperCAmelCase : int = top_k
_UpperCAmelCase : Optional[Any] = False
elif return_all_scores is not None:
warnings.warn(
"`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of"
" `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." , lowerCAmelCase__ , )
if return_all_scores:
_UpperCAmelCase : Dict = None
else:
_UpperCAmelCase : Dict = 1
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : List[Any] = ClassificationFunction[function_to_apply.upper()]
if function_to_apply is not None:
_UpperCAmelCase : Dict = function_to_apply
return preprocess_params, {}, postprocess_params
def __call__( self : Union[str, Any] , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Any = super().__call__(*lowerCAmelCase__ , **lowerCAmelCase__ )
# TODO try and retrieve it in a nicer way from _sanitize_parameters.
_UpperCAmelCase : Union[str, Any] = "top_k" not in kwargs
if isinstance(args[0] , lowerCAmelCase__ ) and _legacy:
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def _lowerCAmelCase ( self : str , lowerCAmelCase__ : str , **lowerCAmelCase__ : Optional[int] ) -> Dict[str, GenericTensor]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.framework
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
return self.tokenizer(**lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) == 1 and isinstance(inputs[0] , lowerCAmelCase__ ) and len(inputs[0] ) == 2:
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC
return self.tokenizer(
text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
# This is likely an invalid usage of the pipeline attempting to pass text pairs.
raise ValueError(
"The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a"
" dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." )
return self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Tuple ) -> Optional[Any]:
"""simple docstring"""
return self.model(**lowerCAmelCase__ )
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Dict=1 , lowerCAmelCase__ : Dict=True ) -> List[str]:
"""simple docstring"""
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
_UpperCAmelCase : Tuple = ClassificationFunction.SIGMOID
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
_UpperCAmelCase : Tuple = ClassificationFunction.SOFTMAX
elif hasattr(self.model.config , "function_to_apply" ) and function_to_apply is None:
_UpperCAmelCase : Dict = self.model.config.function_to_apply
else:
_UpperCAmelCase : Union[str, Any] = ClassificationFunction.NONE
_UpperCAmelCase : Optional[int] = model_outputs["logits"][0]
_UpperCAmelCase : Any = outputs.numpy()
if function_to_apply == ClassificationFunction.SIGMOID:
_UpperCAmelCase : List[Any] = sigmoid(lowerCAmelCase__ )
elif function_to_apply == ClassificationFunction.SOFTMAX:
_UpperCAmelCase : str = softmax(lowerCAmelCase__ )
elif function_to_apply == ClassificationFunction.NONE:
_UpperCAmelCase : Any = outputs
else:
raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" )
if top_k == 1 and _legacy:
return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()}
_UpperCAmelCase : str = [
{"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(lowerCAmelCase__ )
]
if not _legacy:
dict_scores.sort(key=lambda lowerCAmelCase__ : x["score"] , reverse=lowerCAmelCase__ )
if top_k is not None:
_UpperCAmelCase : Dict = dict_scores[:top_k]
return dict_scores | 360 | '''simple docstring'''
from importlib import import_module
from .logging import get_logger
__a = get_logger(__name__)
class A__ :
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Any = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith("__" ):
setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
_UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module
class A__ :
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = []
def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = obj
_UpperCAmelCase : int = target
_UpperCAmelCase : Optional[int] = new
_UpperCAmelCase : Any = target.split("." )[0]
_UpperCAmelCase : Optional[int] = {}
_UpperCAmelCase : Dict = attrs or []
def __enter__( self : List[str] ) -> int:
"""simple docstring"""
*_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(lowerCAmelCase__ ) ):
try:
_UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
_UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule)
):
_UpperCAmelCase : Tuple = obj_attr
# patch at top level
setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) )
_UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) )
_UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
# finally set the target attribute
setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
_UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj , lowerCAmelCase__ ) is attr_value:
_UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ )
setattr(self.obj , lowerCAmelCase__ , self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
_UpperCAmelCase : Dict = globals()["__builtins__"][target_attr]
setattr(self.obj , lowerCAmelCase__ , self.new )
else:
raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" )
def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for attr in list(self.original ):
setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
self.__enter__()
self._active_patches.append(self )
def _lowerCAmelCase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__() | 17 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class A__ :
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : str , ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = parent
_UpperCAmelCase : Any = 1_3
_UpperCAmelCase : Union[str, Any] = 7
_UpperCAmelCase : Union[str, Any] = True
_UpperCAmelCase : Any = True
_UpperCAmelCase : Union[str, Any] = False
_UpperCAmelCase : Union[str, Any] = True
_UpperCAmelCase : Union[str, Any] = 9_9
_UpperCAmelCase : Optional[int] = 3_2
_UpperCAmelCase : List[str] = 2
_UpperCAmelCase : int = 4
_UpperCAmelCase : str = 3_7
_UpperCAmelCase : List[Any] = "gelu"
_UpperCAmelCase : List[str] = 0.1
_UpperCAmelCase : int = 0.1
_UpperCAmelCase : Any = 5_1_2
_UpperCAmelCase : str = 1_6
_UpperCAmelCase : Any = 2
_UpperCAmelCase : List[str] = 0.02
_UpperCAmelCase : List[Any] = 3
_UpperCAmelCase : List[str] = 4
_UpperCAmelCase : Optional[int] = None
def _lowerCAmelCase ( self : Any ) -> int:
"""simple docstring"""
_UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase : Union[str, Any] = None
if self.use_input_mask:
_UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : List[Any] = None
_UpperCAmelCase : Tuple = None
_UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
_UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
_UpperCAmelCase : List[Any] = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : List[Any] = TFDistilBertModel(config=lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask}
_UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ )
_UpperCAmelCase : str = [input_ids, input_mask]
_UpperCAmelCase : Tuple = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Dict = TFDistilBertForMaskedLM(config=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask}
_UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any ) -> str:
"""simple docstring"""
_UpperCAmelCase : Tuple = TFDistilBertForQuestionAnswering(config=lowerCAmelCase__ )
_UpperCAmelCase : Any = {
"input_ids": input_ids,
"attention_mask": input_mask,
}
_UpperCAmelCase : int = model(lowerCAmelCase__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : int = self.num_labels
_UpperCAmelCase : List[str] = TFDistilBertForSequenceClassification(lowerCAmelCase__ )
_UpperCAmelCase : str = {"input_ids": input_ids, "attention_mask": input_mask}
_UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : str = self.num_choices
_UpperCAmelCase : Union[str, Any] = TFDistilBertForMultipleChoice(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) )
_UpperCAmelCase : List[Any] = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) )
_UpperCAmelCase : Optional[int] = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
}
_UpperCAmelCase : List[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.num_labels
_UpperCAmelCase : Any = TFDistilBertForTokenClassification(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask}
_UpperCAmelCase : List[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
(_UpperCAmelCase) : Tuple = config_and_inputs
_UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[int] = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
UpperCamelCase_ : Dict = (
{
'''feature-extraction''': TFDistilBertModel,
'''fill-mask''': TFDistilBertForMaskedLM,
'''question-answering''': TFDistilBertForQuestionAnswering,
'''text-classification''': TFDistilBertForSequenceClassification,
'''token-classification''': TFDistilBertForTokenClassification,
'''zero-shot''': TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCamelCase_ : Any = False
UpperCamelCase_ : Union[str, Any] = False
def _lowerCAmelCase ( self : str ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Dict = TFDistilBertModelTester(self )
_UpperCAmelCase : int = ConfigTester(self , config_class=lowerCAmelCase__ , dim=3_7 )
def _lowerCAmelCase ( self : Optional[int] ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
_UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Any ) -> str:
"""simple docstring"""
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
_UpperCAmelCase : Union[str, Any] = TFDistilBertModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@require_tf
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : List[str] ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : List[Any] = TFDistilBertModel.from_pretrained("distilbert-base-uncased" )
_UpperCAmelCase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] )
_UpperCAmelCase : Optional[int] = model(lowerCAmelCase__ )[0]
_UpperCAmelCase : int = [1, 6, 7_6_8]
self.assertEqual(output.shape , lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tf.constant(
[
[
[0.1926_1885, -0.1373_2955, 0.411_9799],
[0.2215_0156, -0.0742_2661, 0.3903_7204],
[0.2275_6018, -0.089_6414, 0.370_1467],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) | 361 | '''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
__a = datasets.utils.logging.get_logger(__name__)
__a = ['names', 'prefix']
__a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
__a = ['encoding_errors', 'on_bad_lines']
__a = ['date_format']
@dataclass
class A__ ( datasets.BuilderConfig ):
"""simple docstring"""
UpperCamelCase_ : str = ","
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer"
UpperCamelCase_ : Optional[List[str]] = None
UpperCamelCase_ : Optional[List[str]] = None
UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None
UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None
UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None
UpperCamelCase_ : Optional[list] = None
UpperCamelCase_ : Optional[list] = None
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[Union[int, List[int]]] = None
UpperCamelCase_ : Optional[int] = None
UpperCamelCase_ : Optional[Union[str, List[str]]] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = False
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : str = "."
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : str = '"'
UpperCamelCase_ : int = 0
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = True
UpperCamelCase_ : int = 0
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : int = 1_00_00
UpperCamelCase_ : Optional[datasets.Features] = None
UpperCamelCase_ : Optional[str] = "strict"
UpperCamelCase_ : Literal["error", "warn", "skip"] = "error"
UpperCamelCase_ : Optional[str] = None
def _lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
if self.delimiter is not None:
_UpperCAmelCase : Any = self.delimiter
if self.column_names is not None:
_UpperCAmelCase : List[Any] = self.column_names
@property
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Dict = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class A__ ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
UpperCamelCase_ : int = CsvConfig
def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
_UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCAmelCase__ , (str, list, tuple) ):
_UpperCAmelCase : int = data_files
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : Any = [files]
_UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
_UpperCAmelCase : Optional[Any] = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : str = [files]
_UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) )
return splits
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
_UpperCAmelCase : Tuple = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
_UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
_UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ )
return pa_table
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
_UpperCAmelCase : Optional[Any] = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ):
_UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(lowerCAmelCase__ ):
_UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" )
raise | 17 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from torch.backends.cuda import sdp_kernel
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
from diffusers.utils import randn_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[int] = ConsistencyModelPipeline
UpperCamelCase_ : Union[str, Any] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
UpperCamelCase_ : Dict = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
# Override required_optional_params to remove num_images_per_prompt
UpperCamelCase_ : Union[str, Any] = frozenset(
[
'''num_inference_steps''',
'''generator''',
'''latents''',
'''output_type''',
'''return_dict''',
'''callback''',
'''callback_steps''',
] )
@property
def _lowerCAmelCase ( self : Dict ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : List[str] = UNetaDModel.from_pretrained(
"diffusers/consistency-models-test" , subfolder="test_unet" , )
return unet
@property
def _lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : str = UNetaDModel.from_pretrained(
"diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , )
return unet
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Optional[int]=False ) -> Any:
"""simple docstring"""
if class_cond:
_UpperCAmelCase : Optional[int] = self.dummy_cond_unet
else:
_UpperCAmelCase : Tuple = self.dummy_uncond_unet
# Default to CM multistep sampler
_UpperCAmelCase : List[str] = CMStochasticIterativeScheduler(
num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , )
_UpperCAmelCase : str = {
"unet": unet,
"scheduler": scheduler,
}
return components
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any]=0 ) -> str:
"""simple docstring"""
if str(lowerCAmelCase__ ).startswith("mps" ):
_UpperCAmelCase : Tuple = torch.manual_seed(lowerCAmelCase__ )
else:
_UpperCAmelCase : str = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
_UpperCAmelCase : int = {
"batch_size": 1,
"num_inference_steps": None,
"timesteps": [2_2, 0],
"generator": generator,
"output_type": "np",
}
return inputs
def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator
_UpperCAmelCase : Any = self.get_dummy_components()
_UpperCAmelCase : List[str] = ConsistencyModelPipeline(**lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = pipe(**lowerCAmelCase__ ).images
assert image.shape == (1, 3_2, 3_2, 3)
_UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1]
_UpperCAmelCase : str = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator
_UpperCAmelCase : Optional[Any] = self.get_dummy_components(class_cond=lowerCAmelCase__ )
_UpperCAmelCase : Tuple = ConsistencyModelPipeline(**lowerCAmelCase__ )
_UpperCAmelCase : Any = pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : int = self.get_dummy_inputs(lowerCAmelCase__ )
_UpperCAmelCase : Any = 0
_UpperCAmelCase : Union[str, Any] = pipe(**lowerCAmelCase__ ).images
assert image.shape == (1, 3_2, 3_2, 3)
_UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1]
_UpperCAmelCase : List[str] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator
_UpperCAmelCase : int = self.get_dummy_components()
_UpperCAmelCase : str = ConsistencyModelPipeline(**lowerCAmelCase__ )
_UpperCAmelCase : Any = pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : Any = self.get_dummy_inputs(lowerCAmelCase__ )
_UpperCAmelCase : Any = 1
_UpperCAmelCase : Dict = None
_UpperCAmelCase : str = pipe(**lowerCAmelCase__ ).images
assert image.shape == (1, 3_2, 3_2, 3)
_UpperCAmelCase : Tuple = image[0, -3:, -3:, -1]
_UpperCAmelCase : List[Any] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def _lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator
_UpperCAmelCase : Optional[Any] = self.get_dummy_components(class_cond=lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = ConsistencyModelPipeline(**lowerCAmelCase__ )
_UpperCAmelCase : Dict = pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = self.get_dummy_inputs(lowerCAmelCase__ )
_UpperCAmelCase : str = 1
_UpperCAmelCase : Tuple = None
_UpperCAmelCase : List[Any] = 0
_UpperCAmelCase : Tuple = pipe(**lowerCAmelCase__ ).images
assert image.shape == (1, 3_2, 3_2, 3)
_UpperCAmelCase : Tuple = image[0, -3:, -3:, -1]
_UpperCAmelCase : Union[str, Any] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@slow
@require_torch_gpu
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Optional[int]=0 , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : int="cpu" , lowerCAmelCase__ : int=torch.floataa , lowerCAmelCase__ : List[str]=(1, 3, 6_4, 6_4) ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = torch.manual_seed(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = {
"num_inference_steps": None,
"timesteps": [2_2, 0],
"class_labels": 0,
"generator": generator,
"output_type": "np",
}
if get_fixed_latents:
_UpperCAmelCase : Optional[int] = self.get_fixed_latents(seed=lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=lowerCAmelCase__ , shape=lowerCAmelCase__ )
_UpperCAmelCase : Dict = latents
return inputs
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : Optional[Any]="cpu" , lowerCAmelCase__ : Optional[int]=torch.floataa , lowerCAmelCase__ : str=(1, 3, 6_4, 6_4) ) -> Dict:
"""simple docstring"""
if type(lowerCAmelCase__ ) == str:
_UpperCAmelCase : Dict = torch.device(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=lowerCAmelCase__ )
return latents
def _lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[Any] = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" )
_UpperCAmelCase : Dict = CMStochasticIterativeScheduler(
num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , )
_UpperCAmelCase : Tuple = ConsistencyModelPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ )
pipe.to(torch_device=lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : Any = self.get_inputs()
_UpperCAmelCase : int = pipe(**lowerCAmelCase__ ).images
assert image.shape == (1, 6_4, 6_4, 3)
_UpperCAmelCase : str = image[0, -3:, -3:, -1]
_UpperCAmelCase : List[str] = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Any = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" )
_UpperCAmelCase : Tuple = CMStochasticIterativeScheduler(
num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , )
_UpperCAmelCase : Tuple = ConsistencyModelPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ )
pipe.to(torch_device=lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = self.get_inputs()
_UpperCAmelCase : List[str] = 1
_UpperCAmelCase : Union[str, Any] = None
_UpperCAmelCase : List[Any] = pipe(**lowerCAmelCase__ ).images
assert image.shape == (1, 6_4, 6_4, 3)
_UpperCAmelCase : Dict = image[0, -3:, -3:, -1]
_UpperCAmelCase : int = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
@require_torch_a
def _lowerCAmelCase ( self : Tuple ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Any = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" )
_UpperCAmelCase : Optional[Any] = CMStochasticIterativeScheduler(
num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , )
_UpperCAmelCase : List[str] = ConsistencyModelPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ )
pipe.to(torch_device=lowerCAmelCase__ , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : int = self.get_inputs(get_fixed_latents=lowerCAmelCase__ , device=lowerCAmelCase__ )
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=lowerCAmelCase__ , enable_math=lowerCAmelCase__ , enable_mem_efficient=lowerCAmelCase__ ):
_UpperCAmelCase : List[Any] = pipe(**lowerCAmelCase__ ).images
assert image.shape == (1, 6_4, 6_4, 3)
_UpperCAmelCase : str = image[0, -3:, -3:, -1]
_UpperCAmelCase : List[Any] = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@require_torch_a
def _lowerCAmelCase ( self : Tuple ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Dict = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" )
_UpperCAmelCase : List[str] = CMStochasticIterativeScheduler(
num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , )
_UpperCAmelCase : Tuple = ConsistencyModelPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ )
pipe.to(torch_device=lowerCAmelCase__ , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = self.get_inputs(get_fixed_latents=lowerCAmelCase__ , device=lowerCAmelCase__ )
_UpperCAmelCase : str = 1
_UpperCAmelCase : Any = None
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=lowerCAmelCase__ , enable_math=lowerCAmelCase__ , enable_mem_efficient=lowerCAmelCase__ ):
_UpperCAmelCase : str = pipe(**lowerCAmelCase__ ).images
assert image.shape == (1, 6_4, 6_4, 3)
_UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1]
_UpperCAmelCase : int = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 | 362 | '''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( a_: list[int] ):
if not nums:
return 0
_UpperCAmelCase : int = nums[0]
_UpperCAmelCase : Dict = 0
for num in nums[1:]:
_UpperCAmelCase , _UpperCAmelCase : Any = (
max_excluding + num,
max(a_, a_ ),
)
return max(a_, a_ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 0 |
'''simple docstring'''
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
__a = logging.getLogger()
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("-f" )
_UpperCAmelCase : Optional[int] = parser.parse_args()
return args.f
class A__ ( UpperCamelCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : int ) -> None:
"""simple docstring"""
_UpperCAmelCase : Dict = logging.StreamHandler(sys.stdout )
logger.addHandler(lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : List[Any] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , "run_glue_deebert.py" )
with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ):
_UpperCAmelCase : Optional[int] = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(lowerCAmelCase__ , 0.666 )
@slow
@require_torch_non_multi_gpu
def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : int = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split()
self.run_and_check(lowerCAmelCase__ )
_UpperCAmelCase : str = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(lowerCAmelCase__ )
_UpperCAmelCase : List[str] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(lowerCAmelCase__ ) | 363 | '''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a = logging.get_logger(__name__)
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if key.startswith("module.encoder" ):
_UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" )
if key.startswith("module.decoder" ):
_UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )]
_UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" )
if "norm" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )]
_UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" )
if "layer_norm1" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" )
if "layer_norm2" in key:
_UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
_UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )]
_UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" )
if "attn.q" in key:
_UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" )
if "attn.proj" in key:
_UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" )
if "attn" in key:
_UpperCAmelCase : Dict = key.replace("attn", "attention.self" )
if "fc1" in key:
_UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" )
if "fc2" in key:
_UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" )
if "linear_pred" in key:
_UpperCAmelCase : Any = key.replace("linear_pred", "classifier" )
if "linear_fuse" in key:
_UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" )
_UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )]
_UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" )
if "bot_conv" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" )
if "skip_conv1" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" )
if "skip_conv2" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" )
if "fusion1" in key:
_UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" )
if "fusion2" in key:
_UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" )
if "fusion3" in key:
_UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" )
if "fusion" in key and "conv" in key:
_UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" )
if key.startswith("module.last_layer_depth" ):
_UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" )
_UpperCAmelCase : int = value
return new_state_dict
def __UpperCAmelCase ( a_: str, a_: List[Any] ):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" )
_UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
_UpperCAmelCase : Optional[int] = kv_weight[
: config.hidden_sizes[i], :
]
_UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]]
_UpperCAmelCase : Optional[int] = kv_weight[
config.hidden_sizes[i] :, :
]
_UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :]
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw )
return image
@torch.no_grad()
def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ):
_UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
_UpperCAmelCase : Dict = GLPNImageProcessor()
# prepare image
_UpperCAmelCase : List[Any] = prepare_img()
_UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values
logger.info("Converting model..." )
# load original state dict
_UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) )
# rename keys
_UpperCAmelCase : List[str] = rename_keys(a_ )
# key and value matrices need special treatment
read_in_k_v(a_, a_ )
# create HuggingFace model and load state dict
_UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ )
model.load_state_dict(a_ )
model.eval()
# forward pass
_UpperCAmelCase : Dict = model(a_ )
_UpperCAmelCase : List[str] = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
_UpperCAmelCase : Optional[Any] = torch.tensor(
[[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] )
elif "kitti" in model_name:
_UpperCAmelCase : Tuple = torch.tensor(
[[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] )
else:
raise ValueError(f"""Unknown model name: {model_name}""" )
_UpperCAmelCase : Dict = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 )
print("Looks ok!" )
# finally, push to hub if required
if push_to_hub:
logger.info("Pushing model and image processor to the hub..." )
model.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, )
image_processor.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path',
default=None,
type=str,
help='Path to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.'
)
parser.add_argument(
'--model_name',
default='glpn-kitti',
type=str,
help='Name of the model in case you\'re pushing to the hub.',
)
__a = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name) | 17 | 0 |
'''simple docstring'''
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[Any] = 10
_UpperCAmelCase : int = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string" ) ),
"labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ),
"answers": datasets.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
"id": datasets.Value("int64" ),
} )
_UpperCAmelCase : List[str] = datasets.Dataset.from_dict(
{
"tokens": [["foo"] * 5] * n,
"labels": [[1] * 5] * n,
"answers": [{"answer_start": [97], "text": ["1976"]}] * 10,
"id": list(range(a_ ) ),
}, features=a_, )
return dataset
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" )
dataset.map(cache_file_name=a_ )
return filename
# FILE_CONTENT + files
__a = '\\n Text data.\n Second line of data.'
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt"
_UpperCAmelCase : Tuple = FILE_CONTENT
with open(a_, "w" ) as f:
f.write(a_ )
return filename
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2"
_UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" )
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import gzip
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" )
_UpperCAmelCase : Any = bytes(a_, "utf-8" )
with gzip.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
if datasets.config.LZ4_AVAILABLE:
import lza.frame
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4"
_UpperCAmelCase : str = bytes(a_, "utf-8" )
with lza.frame.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Any ):
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z"
with pyazr.SevenZipFile(a_, "w" ) as archive:
archive.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: List[str] ):
import tarfile
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
import lzma
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz"
_UpperCAmelCase : List[str] = bytes(a_, "utf-8" )
with lzma.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: Tuple ):
import zipfile
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst"
_UpperCAmelCase : int = bytes(a_, "utf-8" )
with zstd.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
_UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml"
_UpperCAmelCase : Tuple = textwrap.dedent(
"\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" )
with open(a_, "w" ) as f:
f.write(a_ )
return filename
__a = [
{'col_1': '0', 'col_2': 0, 'col_3': 0.0},
{'col_1': '1', 'col_2': 1, 'col_3': 1.0},
{'col_1': '2', 'col_2': 2, 'col_3': 2.0},
{'col_1': '3', 'col_2': 3, 'col_3': 3.0},
]
__a = [
{'col_1': '4', 'col_2': 4, 'col_3': 4.0},
{'col_1': '5', 'col_2': 5, 'col_3': 5.0},
]
__a = {
'col_1': ['0', '1', '2', '3'],
'col_2': [0, 1, 2, 3],
'col_3': [0.0, 1.0, 2.0, 3.0],
}
__a = [
{'col_3': 0.0, 'col_1': '0', 'col_2': 0},
{'col_3': 1.0, 'col_1': '1', 'col_2': 1},
]
__a = [
{'col_1': 's0', 'col_2': 0, 'col_3': 0.0},
{'col_1': 's1', 'col_2': 1, 'col_3': 1.0},
{'col_1': 's2', 'col_2': 2, 'col_3': 2.0},
{'col_1': 's3', 'col_2': 3, 'col_3': 3.0},
]
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : str = datasets.Dataset.from_dict(a_ )
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" )
dataset.map(cache_file_name=a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" )
with contextlib.closing(sqlitea.connect(a_ ) ) as con:
_UpperCAmelCase : List[Any] = con.cursor()
cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" )
for item in DATA:
cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str, a_: str ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2"
with open(a_, "rb" ) as f:
_UpperCAmelCase : Any = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ):
_UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) )
f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ):
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" )
_UpperCAmelCase : Dict = pa.schema(
{
"col_1": pa.string(),
"col_2": pa.intaa(),
"col_3": pa.floataa(),
} )
with open(a_, "wb" ) as f:
_UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ )
_UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ )
writer.write_table(a_ )
writer.close()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : str = {"data": DATA}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_312:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_STR:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ):
import gzip
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ):
import gzip
_UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ):
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : List[str] = ["0", "1", "2", "3"]
_UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Dict = ["0", "1", "2", "3"]
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = ["0", "1", "2", "3"]
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc"
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename("unsupported.ext" ) )
f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] )
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" )
with open(a_, "w", encoding="utf-8" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_image_rgb.jpg" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_audio_44100.wav" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Optional[Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" )
(data_dir / "subdir").mkdir()
with open(data_dir / "subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / "subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden file
with open(data_dir / "subdir" / ".test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / ".subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / ".subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
return data_dir | 364 | '''simple docstring'''
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[Any] = 10
_UpperCAmelCase : int = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string" ) ),
"labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ),
"answers": datasets.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
"id": datasets.Value("int64" ),
} )
_UpperCAmelCase : List[str] = datasets.Dataset.from_dict(
{
"tokens": [["foo"] * 5] * n,
"labels": [[1] * 5] * n,
"answers": [{"answer_start": [97], "text": ["1976"]}] * 10,
"id": list(range(a_ ) ),
}, features=a_, )
return dataset
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" )
dataset.map(cache_file_name=a_ )
return filename
# FILE_CONTENT + files
__a = '\\n Text data.\n Second line of data.'
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt"
_UpperCAmelCase : Tuple = FILE_CONTENT
with open(a_, "w" ) as f:
f.write(a_ )
return filename
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2"
_UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" )
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import gzip
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" )
_UpperCAmelCase : Any = bytes(a_, "utf-8" )
with gzip.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
if datasets.config.LZ4_AVAILABLE:
import lza.frame
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4"
_UpperCAmelCase : str = bytes(a_, "utf-8" )
with lza.frame.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Any ):
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z"
with pyazr.SevenZipFile(a_, "w" ) as archive:
archive.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: List[str] ):
import tarfile
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
import lzma
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz"
_UpperCAmelCase : List[str] = bytes(a_, "utf-8" )
with lzma.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: Tuple ):
import zipfile
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst"
_UpperCAmelCase : int = bytes(a_, "utf-8" )
with zstd.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
_UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml"
_UpperCAmelCase : Tuple = textwrap.dedent(
"\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" )
with open(a_, "w" ) as f:
f.write(a_ )
return filename
__a = [
{'col_1': '0', 'col_2': 0, 'col_3': 0.0},
{'col_1': '1', 'col_2': 1, 'col_3': 1.0},
{'col_1': '2', 'col_2': 2, 'col_3': 2.0},
{'col_1': '3', 'col_2': 3, 'col_3': 3.0},
]
__a = [
{'col_1': '4', 'col_2': 4, 'col_3': 4.0},
{'col_1': '5', 'col_2': 5, 'col_3': 5.0},
]
__a = {
'col_1': ['0', '1', '2', '3'],
'col_2': [0, 1, 2, 3],
'col_3': [0.0, 1.0, 2.0, 3.0],
}
__a = [
{'col_3': 0.0, 'col_1': '0', 'col_2': 0},
{'col_3': 1.0, 'col_1': '1', 'col_2': 1},
]
__a = [
{'col_1': 's0', 'col_2': 0, 'col_3': 0.0},
{'col_1': 's1', 'col_2': 1, 'col_3': 1.0},
{'col_1': 's2', 'col_2': 2, 'col_3': 2.0},
{'col_1': 's3', 'col_2': 3, 'col_3': 3.0},
]
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : str = datasets.Dataset.from_dict(a_ )
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" )
dataset.map(cache_file_name=a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" )
with contextlib.closing(sqlitea.connect(a_ ) ) as con:
_UpperCAmelCase : List[Any] = con.cursor()
cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" )
for item in DATA:
cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str, a_: str ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2"
with open(a_, "rb" ) as f:
_UpperCAmelCase : Any = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ):
_UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) )
f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ):
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" )
_UpperCAmelCase : Dict = pa.schema(
{
"col_1": pa.string(),
"col_2": pa.intaa(),
"col_3": pa.floataa(),
} )
with open(a_, "wb" ) as f:
_UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ )
_UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ )
writer.write_table(a_ )
writer.close()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : str = {"data": DATA}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_312:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_STR:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ):
import gzip
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ):
import gzip
_UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ):
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : List[str] = ["0", "1", "2", "3"]
_UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Dict = ["0", "1", "2", "3"]
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = ["0", "1", "2", "3"]
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc"
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename("unsupported.ext" ) )
f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] )
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" )
with open(a_, "w", encoding="utf-8" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_image_rgb.jpg" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_audio_44100.wav" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Optional[Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" )
(data_dir / "subdir").mkdir()
with open(data_dir / "subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / "subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden file
with open(data_dir / "subdir" / ".test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / ".subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / ".subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
return data_dir | 17 | 0 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=UpperCamelCase )
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : str = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
UpperCamelCase_ : ClassVar[Features] = Features({'''image''': Image()} )
UpperCamelCase_ : ClassVar[Features] = Features({'''labels''': ClassLabel} )
UpperCamelCase_ : str = "image"
UpperCamelCase_ : str = "labels"
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Tuple ) -> Dict:
"""simple docstring"""
if self.label_column not in features:
raise ValueError(F"""Column {self.label_column} is not present in features.""" )
if not isinstance(features[self.label_column] , lowerCAmelCase__ ):
raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" )
_UpperCAmelCase : Optional[int] = copy.deepcopy(self )
_UpperCAmelCase : Optional[int] = self.label_schema.copy()
_UpperCAmelCase : List[str] = features[self.label_column]
_UpperCAmelCase : Optional[Any] = label_schema
return task_template
@property
def _lowerCAmelCase ( self : str ) -> Dict[str, str]:
"""simple docstring"""
return {
self.image_column: "image",
self.label_column: "labels",
} | 365 | '''simple docstring'''
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = BarthezTokenizer
UpperCamelCase_ : List[Any] = BarthezTokenizerFast
UpperCamelCase_ : Optional[int] = True
UpperCamelCase_ : Optional[int] = True
def _lowerCAmelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
super().setUp()
_UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer
def _lowerCAmelCase ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = "<pad>"
_UpperCAmelCase : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 )
@require_torch
def _lowerCAmelCase ( self : Any ) -> int:
"""simple docstring"""
_UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."]
_UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2]
_UpperCAmelCase : int = self.tokenizer(
lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
_UpperCAmelCase : str = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
_UpperCAmelCase : Optional[int] = self.get_tokenizer()
_UpperCAmelCase : Optional[int] = self.get_rust_tokenizer()
_UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé."
_UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer()
_UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
_UpperCAmelCase : Tuple = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , ) | 17 | 0 |
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
__a = datasets.utils.logging.get_logger(__name__)
__a = ['names', 'prefix']
__a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
__a = ['encoding_errors', 'on_bad_lines']
__a = ['date_format']
@dataclass
class A__ ( datasets.BuilderConfig ):
"""simple docstring"""
UpperCamelCase_ : str = ","
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer"
UpperCamelCase_ : Optional[List[str]] = None
UpperCamelCase_ : Optional[List[str]] = None
UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None
UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None
UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None
UpperCamelCase_ : Optional[list] = None
UpperCamelCase_ : Optional[list] = None
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[Union[int, List[int]]] = None
UpperCamelCase_ : Optional[int] = None
UpperCamelCase_ : Optional[Union[str, List[str]]] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = False
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : str = "."
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : str = '"'
UpperCamelCase_ : int = 0
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = True
UpperCamelCase_ : int = 0
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : int = 1_00_00
UpperCamelCase_ : Optional[datasets.Features] = None
UpperCamelCase_ : Optional[str] = "strict"
UpperCamelCase_ : Literal["error", "warn", "skip"] = "error"
UpperCamelCase_ : Optional[str] = None
def _lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
if self.delimiter is not None:
_UpperCAmelCase : Any = self.delimiter
if self.column_names is not None:
_UpperCAmelCase : List[Any] = self.column_names
@property
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Dict = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class A__ ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
UpperCamelCase_ : int = CsvConfig
def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
_UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCAmelCase__ , (str, list, tuple) ):
_UpperCAmelCase : int = data_files
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : Any = [files]
_UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
_UpperCAmelCase : Optional[Any] = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : str = [files]
_UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) )
return splits
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
_UpperCAmelCase : Tuple = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
_UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
_UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ )
return pa_table
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
_UpperCAmelCase : Optional[Any] = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ):
_UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(lowerCAmelCase__ ):
_UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" )
raise | 366 | '''simple docstring'''
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
__a = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class A__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0}
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : Tuple = batch_size
_UpperCAmelCase : str = num_channels
_UpperCAmelCase : Optional[Any] = image_size
_UpperCAmelCase : Dict = min_resolution
_UpperCAmelCase : str = max_resolution
_UpperCAmelCase : List[Any] = size
_UpperCAmelCase : Union[str, Any] = do_normalize
_UpperCAmelCase : Optional[Any] = do_convert_rgb
_UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6]
_UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6}
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def _lowerCAmelCase ( self : Any ) -> str:
"""simple docstring"""
_UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
_UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self )
@property
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image()
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
_UpperCAmelCase : str = 2_0_4_8
_UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) )
def _lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : Union[str, Any] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
_UpperCAmelCase : str = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(lowerCAmelCase__ ):
_UpperCAmelCase : str = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
_UpperCAmelCase : Any = "Hello"
_UpperCAmelCase : Optional[int] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : List[Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
_UpperCAmelCase : Any = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : int = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Union[str, Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : int ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 )
_UpperCAmelCase : List[Any] = 3
@property
def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : str = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Any = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Tuple = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) | 17 | 0 |
'''simple docstring'''
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = get_activation("swish" )
self.assertIsInstance(lowerCAmelCase__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 )
def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Dict = get_activation("silu" )
self.assertIsInstance(lowerCAmelCase__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 )
def _lowerCAmelCase ( self : Dict ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Tuple = get_activation("mish" )
self.assertIsInstance(lowerCAmelCase__ , nn.Mish )
self.assertEqual(act(torch.tensor(-2_0_0 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 )
def _lowerCAmelCase ( self : Any ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : str = get_activation("gelu" )
self.assertIsInstance(lowerCAmelCase__ , nn.GELU )
self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 ) | 367 | '''simple docstring'''
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Tuple = '''time_series_transformer'''
UpperCamelCase_ : Optional[Any] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = prediction_length
_UpperCAmelCase : Optional[Any] = context_length or prediction_length
_UpperCAmelCase : Optional[Any] = distribution_output
_UpperCAmelCase : Union[str, Any] = loss
_UpperCAmelCase : Dict = input_size
_UpperCAmelCase : int = num_time_features
_UpperCAmelCase : Any = lags_sequence
_UpperCAmelCase : Dict = scaling
_UpperCAmelCase : Tuple = num_dynamic_real_features
_UpperCAmelCase : Dict = num_static_real_features
_UpperCAmelCase : Union[str, Any] = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : Optional[int] = cardinality
else:
_UpperCAmelCase : Optional[Any] = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : List[Any] = embedding_dimension
else:
_UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
_UpperCAmelCase : str = num_parallel_samples
# Transformer architecture configuration
_UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features
_UpperCAmelCase : str = d_model
_UpperCAmelCase : Optional[Any] = encoder_attention_heads
_UpperCAmelCase : Dict = decoder_attention_heads
_UpperCAmelCase : List[Any] = encoder_ffn_dim
_UpperCAmelCase : str = decoder_ffn_dim
_UpperCAmelCase : Dict = encoder_layers
_UpperCAmelCase : str = decoder_layers
_UpperCAmelCase : Any = dropout
_UpperCAmelCase : str = attention_dropout
_UpperCAmelCase : List[Any] = activation_dropout
_UpperCAmelCase : Dict = encoder_layerdrop
_UpperCAmelCase : Any = decoder_layerdrop
_UpperCAmelCase : Optional[Any] = activation_function
_UpperCAmelCase : Tuple = init_std
_UpperCAmelCase : List[str] = use_cache
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def _lowerCAmelCase ( self : str ) -> int:
"""simple docstring"""
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
) | 17 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = '''realm'''
def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int]=3_0_5_2_2 , lowerCAmelCase__ : Tuple=7_6_8 , lowerCAmelCase__ : Optional[int]=1_2_8 , lowerCAmelCase__ : List[str]=1_2 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : List[str]=8 , lowerCAmelCase__ : str=3_0_7_2 , lowerCAmelCase__ : str="gelu_new" , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : List[Any]=0.02 , lowerCAmelCase__ : str=1e-12 , lowerCAmelCase__ : Union[str, Any]=2_5_6 , lowerCAmelCase__ : str=1_0 , lowerCAmelCase__ : Dict=1e-3 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : int=3_2_0 , lowerCAmelCase__ : List[str]=1_3_3_5_3_7_1_8 , lowerCAmelCase__ : List[str]=5_0_0_0 , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : Dict=0 , lowerCAmelCase__ : Dict=2 , **lowerCAmelCase__ : Union[str, Any] , ) -> str:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
# Common config
_UpperCAmelCase : Optional[Any] = vocab_size
_UpperCAmelCase : Dict = max_position_embeddings
_UpperCAmelCase : Tuple = hidden_size
_UpperCAmelCase : Union[str, Any] = retriever_proj_size
_UpperCAmelCase : Tuple = num_hidden_layers
_UpperCAmelCase : Optional[Any] = num_attention_heads
_UpperCAmelCase : Any = num_candidates
_UpperCAmelCase : str = intermediate_size
_UpperCAmelCase : List[str] = hidden_act
_UpperCAmelCase : Tuple = hidden_dropout_prob
_UpperCAmelCase : int = attention_probs_dropout_prob
_UpperCAmelCase : Any = initializer_range
_UpperCAmelCase : List[Any] = type_vocab_size
_UpperCAmelCase : List[str] = layer_norm_eps
# Reader config
_UpperCAmelCase : List[str] = span_hidden_size
_UpperCAmelCase : Optional[Any] = max_span_width
_UpperCAmelCase : Optional[Any] = reader_layer_norm_eps
_UpperCAmelCase : int = reader_beam_size
_UpperCAmelCase : Optional[int] = reader_seq_len
# Retrieval config
_UpperCAmelCase : Dict = num_block_records
_UpperCAmelCase : Any = searcher_beam_size | 368 | '''simple docstring'''
import baseaa
def __UpperCAmelCase ( a_: str ):
return baseaa.baaencode(string.encode("utf-8" ) )
def __UpperCAmelCase ( a_: bytes ):
return baseaa.baadecode(a_ ).decode("utf-8" )
if __name__ == "__main__":
__a = 'Hello World!'
__a = baseaa_encode(test)
print(encoded)
__a = baseaa_decode(encoded)
print(decoded) | 17 | 0 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
__a = logging.get_logger(__name__)
class A__ ( UpperCamelCase ):
"""simple docstring"""
def __init__( self : str , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : Any ) -> None:
"""simple docstring"""
warnings.warn(
"The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use SegformerImageProcessor instead." , lowerCAmelCase__ , )
super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) | 369 | '''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class A__ :
"""simple docstring"""
UpperCamelCase_ : Any = XGLMConfig
UpperCamelCase_ : Union[str, Any] = {}
UpperCamelCase_ : Dict = '''gelu'''
def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : str = batch_size
_UpperCAmelCase : str = seq_length
_UpperCAmelCase : int = is_training
_UpperCAmelCase : List[Any] = use_input_mask
_UpperCAmelCase : Optional[int] = use_labels
_UpperCAmelCase : str = vocab_size
_UpperCAmelCase : int = d_model
_UpperCAmelCase : Tuple = num_hidden_layers
_UpperCAmelCase : Tuple = num_attention_heads
_UpperCAmelCase : Tuple = ffn_dim
_UpperCAmelCase : Any = activation_function
_UpperCAmelCase : Union[str, Any] = activation_dropout
_UpperCAmelCase : Union[str, Any] = attention_dropout
_UpperCAmelCase : Any = max_position_embeddings
_UpperCAmelCase : int = initializer_range
_UpperCAmelCase : Any = None
_UpperCAmelCase : int = 0
_UpperCAmelCase : Union[str, Any] = 2
_UpperCAmelCase : Tuple = 1
def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : int = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_UpperCAmelCase : Any = None
if self.use_input_mask:
_UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : Optional[Any] = self.get_config()
_UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , )
def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
_UpperCAmelCase : Optional[int] = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else ()
UpperCamelCase_ : Tuple = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
UpperCamelCase_ : Dict = False
UpperCamelCase_ : List[Any] = False
UpperCamelCase_ : Tuple = False
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Dict = TFXGLMModelTester(self )
_UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 )
def _lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowerCAmelCase ( self : Union[str, Any] ) -> int:
"""simple docstring"""
super().test_resize_token_embeddings()
@require_tf
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1]
# fmt: on
_UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
_UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" )
_UpperCAmelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
_UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] )
_UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[int] = "left"
# use different length sentences to test batching
_UpperCAmelCase : Tuple = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
_UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = inputs["input_ids"]
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 )
_UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids
_UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] ) | 17 | 0 |
'''simple docstring'''
__a = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
__a = [{'type': 'code', 'content': INSTALL_CONTENT}]
__a = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
} | 371 | '''simple docstring'''
from math import factorial
def __UpperCAmelCase ( a_: int = 100 ):
return sum(map(a_, str(factorial(a_ ) ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip()))) | 17 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__a = {
'configuration_upernet': ['UperNetConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'UperNetForSemanticSegmentation',
'UperNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_upernet import UperNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 350 | '''simple docstring'''
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
__a = (3, 9, -11, 0, 7, 5, 1, -1)
__a = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : int
UpperCamelCase_ : Node | None
class A__ :
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None:
"""simple docstring"""
_UpperCAmelCase : Node | None = None
for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ):
_UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head )
def __iter__( self : int ) -> Iterator[int]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.head
while node:
yield node.data
_UpperCAmelCase : List[str] = node.next_node
def __len__( self : Any ) -> int:
"""simple docstring"""
return sum(1 for _ in self )
def __str__( self : Union[str, Any] ) -> str:
"""simple docstring"""
return " -> ".join([str(lowerCAmelCase__ ) for node in self] )
def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ):
return SortedLinkedList(list(a_ ) + list(a_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
__a = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even))) | 17 | 0 |
'''simple docstring'''
from math import factorial
__a = {str(d): factorial(d) for d in range(10)}
def __UpperCAmelCase ( a_: int ):
return sum(DIGIT_FACTORIAL[d] for d in str(a_ ) )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[Any] = 7 * factorial(9 ) + 1
return sum(i for i in range(3, a_ ) if sum_of_digit_factorial(a_ ) == i )
if __name__ == "__main__":
print(f'{solution() = }') | 351 | '''simple docstring'''
def __UpperCAmelCase ( a_: str ):
if not all(char in "01" for char in bin_string ):
raise ValueError("Non-binary value was passed to the function" )
if not bin_string:
raise ValueError("Empty string was passed to the function" )
_UpperCAmelCase : Optional[Any] = ""
while len(a_ ) % 3 != 0:
_UpperCAmelCase : List[Any] = "0" + bin_string
_UpperCAmelCase : Dict = [
bin_string[index : index + 3]
for index in range(len(a_ ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
_UpperCAmelCase : Optional[Any] = 0
for index, val in enumerate(a_ ):
oct_val += int(2 ** (2 - index) * int(a_ ) )
oct_string += str(a_ )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod() | 17 | 0 |
'''simple docstring'''
import pickle
import numpy as np
from matplotlib import pyplot as plt
class A__ :
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str]=0.2 , lowerCAmelCase__ : str=0.2 ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = bp_numa
_UpperCAmelCase : Any = bp_numa
_UpperCAmelCase : Union[str, Any] = bp_numa
_UpperCAmelCase : str = conva_get[:2]
_UpperCAmelCase : Union[str, Any] = conva_get[2]
_UpperCAmelCase : Dict = size_pa
_UpperCAmelCase : List[Any] = rate_w
_UpperCAmelCase : Dict = rate_t
_UpperCAmelCase : List[Any] = [
np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
_UpperCAmelCase : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
_UpperCAmelCase : Optional[int] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
_UpperCAmelCase : Any = -2 * np.random.rand(self.conva[1] ) + 1
_UpperCAmelCase : Optional[Any] = -2 * np.random.rand(self.num_bpa ) + 1
_UpperCAmelCase : Optional[int] = -2 * np.random.rand(self.num_bpa ) + 1
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : str ) -> int:
"""simple docstring"""
_UpperCAmelCase : Tuple = {
"num_bp1": self.num_bpa,
"num_bp2": self.num_bpa,
"num_bp3": self.num_bpa,
"conv1": self.conva,
"step_conv1": self.step_conva,
"size_pooling1": self.size_poolinga,
"rate_weight": self.rate_weight,
"rate_thre": self.rate_thre,
"w_conv1": self.w_conva,
"wkj": self.wkj,
"vji": self.vji,
"thre_conv1": self.thre_conva,
"thre_bp2": self.thre_bpa,
"thre_bp3": self.thre_bpa,
}
with open(lowerCAmelCase__ , "wb" ) as f:
pickle.dump(lowerCAmelCase__ , lowerCAmelCase__ )
print(F"""Model saved: {save_path}""" )
@classmethod
def _lowerCAmelCase ( cls : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
with open(lowerCAmelCase__ , "rb" ) as f:
_UpperCAmelCase : int = pickle.load(lowerCAmelCase__ ) # noqa: S301
_UpperCAmelCase : int = model_dic.get("conv1" )
conv_get.append(model_dic.get("step_conv1" ) )
_UpperCAmelCase : List[str] = model_dic.get("size_pooling1" )
_UpperCAmelCase : List[Any] = model_dic.get("num_bp1" )
_UpperCAmelCase : Optional[Any] = model_dic.get("num_bp2" )
_UpperCAmelCase : List[str] = model_dic.get("num_bp3" )
_UpperCAmelCase : Tuple = model_dic.get("rate_weight" )
_UpperCAmelCase : str = model_dic.get("rate_thre" )
# create model instance
_UpperCAmelCase : Tuple = CNN(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# modify model parameter
_UpperCAmelCase : List[Any] = model_dic.get("w_conv1" )
_UpperCAmelCase : int = model_dic.get("wkj" )
_UpperCAmelCase : Dict = model_dic.get("vji" )
_UpperCAmelCase : int = model_dic.get("thre_conv1" )
_UpperCAmelCase : Any = model_dic.get("thre_bp2" )
_UpperCAmelCase : Optional[int] = model_dic.get("thre_bp3" )
return conv_ins
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : List[str] ) -> Optional[int]:
"""simple docstring"""
return 1 / (1 + np.exp(-1 * x ))
def _lowerCAmelCase ( self : str , lowerCAmelCase__ : List[Any] ) -> int:
"""simple docstring"""
return round(lowerCAmelCase__ , 3 )
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Any = convs[0]
_UpperCAmelCase : str = convs[1]
_UpperCAmelCase : Optional[int] = np.shape(lowerCAmelCase__ )[0]
# get the data slice of original image data, data_focus
_UpperCAmelCase : Tuple = []
for i_focus in range(0 , size_data - size_conv + 1 , lowerCAmelCase__ ):
for j_focus in range(0 , size_data - size_conv + 1 , lowerCAmelCase__ ):
_UpperCAmelCase : Tuple = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(lowerCAmelCase__ )
# calculate the feature map of every single kernel, and saved as list of matrix
_UpperCAmelCase : List[Any] = []
_UpperCAmelCase : List[Any] = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(lowerCAmelCase__ ):
_UpperCAmelCase : List[Any] = []
for i_focus in range(len(lowerCAmelCase__ ) ):
_UpperCAmelCase : Tuple = (
np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(lowerCAmelCase__ ) )
_UpperCAmelCase : List[str] = np.asmatrix(lowerCAmelCase__ ).reshape(
lowerCAmelCase__ , lowerCAmelCase__ )
data_featuremap.append(lowerCAmelCase__ )
# expanding the data slice to One dimenssion
_UpperCAmelCase : Optional[int] = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(lowerCAmelCase__ ) )
_UpperCAmelCase : Tuple = np.asarray(lowerCAmelCase__ )
return focus_list, data_featuremap
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple="average_pool" ) -> str:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = len(featuremaps[0] )
_UpperCAmelCase : Optional[Any] = int(size_map / size_pooling )
_UpperCAmelCase : List[str] = []
for i_map in range(len(lowerCAmelCase__ ) ):
_UpperCAmelCase : int = featuremaps[i_map]
_UpperCAmelCase : Union[str, Any] = []
for i_focus in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ):
for j_focus in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : Any = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(lowerCAmelCase__ ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(lowerCAmelCase__ ) )
_UpperCAmelCase : str = np.asmatrix(lowerCAmelCase__ ).reshape(lowerCAmelCase__ , lowerCAmelCase__ )
featuremap_pooled.append(lowerCAmelCase__ )
return featuremap_pooled
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = []
for i in range(len(lowerCAmelCase__ ) ):
_UpperCAmelCase : Dict = np.shape(data[i] )
_UpperCAmelCase : Optional[int] = data[i].reshape(1 , shapes[0] * shapes[1] )
_UpperCAmelCase : Dict = data_listed.getA().tolist()[0]
data_expanded.extend(lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = np.asarray(lowerCAmelCase__ )
return data_expanded
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : str ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Dict = np.asarray(lowerCAmelCase__ )
_UpperCAmelCase : Any = np.shape(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = data_mat.reshape(1 , shapes[0] * shapes[1] )
return data_expanded
def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = []
_UpperCAmelCase : Optional[Any] = 0
for i_map in range(lowerCAmelCase__ ):
_UpperCAmelCase : List[str] = np.ones((size_map, size_map) )
for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ):
for j in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : Optional[Any] = pd_pool[
i_pool
]
_UpperCAmelCase : Tuple = i_pool + 1
_UpperCAmelCase : Union[str, Any] = np.multiply(
lowerCAmelCase__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) )
pd_all.append(lowerCAmelCase__ )
return pd_all
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int]=bool ) -> str:
"""simple docstring"""
print("----------------------Start Training-------------------------" )
print((" - - Shape: Train_Data ", np.shape(lowerCAmelCase__ )) )
print((" - - Shape: Teach_Data ", np.shape(lowerCAmelCase__ )) )
_UpperCAmelCase : str = 0
_UpperCAmelCase : List[Any] = []
_UpperCAmelCase : Tuple = 1_0_0_0_0
while rp < n_repeat and mse >= error_accuracy:
_UpperCAmelCase : List[str] = 0
print(F"""-------------Learning Time {rp}--------------""" )
for p in range(len(lowerCAmelCase__ ) ):
# print('------------Learning Image: %d--------------'%p)
_UpperCAmelCase : Optional[int] = np.asmatrix(datas_train[p] )
_UpperCAmelCase : Tuple = np.asarray(datas_teach[p] )
_UpperCAmelCase : Tuple = self.convolute(
lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_UpperCAmelCase : Optional[Any] = self.pooling(lowerCAmelCase__ , self.size_poolinga )
_UpperCAmelCase : List[Any] = np.shape(lowerCAmelCase__ )
_UpperCAmelCase : Any = self._expand(lowerCAmelCase__ )
_UpperCAmelCase : str = data_bp_input
_UpperCAmelCase : Union[str, Any] = np.dot(lowerCAmelCase__ , self.vji.T ) - self.thre_bpa
_UpperCAmelCase : str = self.sig(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = np.dot(lowerCAmelCase__ , self.wkj.T ) - self.thre_bpa
_UpperCAmelCase : List[Any] = self.sig(lowerCAmelCase__ )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
_UpperCAmelCase : Optional[Any] = np.multiply(
(data_teach - bp_outa) , np.multiply(lowerCAmelCase__ , (1 - bp_outa) ) )
_UpperCAmelCase : int = np.multiply(
np.dot(lowerCAmelCase__ , self.wkj ) , np.multiply(lowerCAmelCase__ , (1 - bp_outa) ) )
_UpperCAmelCase : List[Any] = np.dot(lowerCAmelCase__ , self.vji )
_UpperCAmelCase : List[str] = pd_i_all / (self.size_poolinga * self.size_poolinga)
_UpperCAmelCase : Optional[int] = pd_conva_pooled.T.getA().tolist()
_UpperCAmelCase : Optional[Any] = self._calculate_gradient_from_pool(
lowerCAmelCase__ , lowerCAmelCase__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , )
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
_UpperCAmelCase : str = self._expand_mat(pd_conva_all[k_conv] )
_UpperCAmelCase : Tuple = self.rate_weight * np.dot(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
_UpperCAmelCase : Dict = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
_UpperCAmelCase : int = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
_UpperCAmelCase : Optional[int] = self.vji + pd_j_all.T * bp_outa * self.rate_weight
_UpperCAmelCase : Dict = self.thre_bpa - pd_k_all * self.rate_thre
_UpperCAmelCase : Union[str, Any] = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
_UpperCAmelCase : Tuple = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
_UpperCAmelCase : Optional[int] = rp + 1
_UpperCAmelCase : Optional[int] = error_count / patterns
all_mse.append(lowerCAmelCase__ )
def draw_error():
_UpperCAmelCase : Tuple = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(lowerCAmelCase__ , "+-" )
plt.plot(lowerCAmelCase__ , "r--" )
plt.xlabel("Learning Times" )
plt.ylabel("All_mse" )
plt.grid(lowerCAmelCase__ , alpha=0.5 )
plt.show()
print("------------------Training Complished---------------------" )
print((" - - Training epoch: ", rp, F""" - - Mse: {mse:.6f}""") )
if draw_e:
draw_error()
return mse
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : int = []
print("-------------------Start Testing-------------------------" )
print((" - - Shape: Test_Data ", np.shape(lowerCAmelCase__ )) )
for p in range(len(lowerCAmelCase__ ) ):
_UpperCAmelCase : int = np.asmatrix(datas_test[p] )
_UpperCAmelCase : Dict = self.convolute(
lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_UpperCAmelCase : Union[str, Any] = self.pooling(lowerCAmelCase__ , self.size_poolinga )
_UpperCAmelCase : List[Any] = self._expand(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = data_bp_input
_UpperCAmelCase : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa
_UpperCAmelCase : int = self.sig(lowerCAmelCase__ )
_UpperCAmelCase : Dict = bp_outa * self.wkj.T - self.thre_bpa
_UpperCAmelCase : List[str] = self.sig(lowerCAmelCase__ )
produce_out.extend(bp_outa.getA().tolist() )
_UpperCAmelCase : List[str] = [list(map(self.do_round , lowerCAmelCase__ ) ) for each in produce_out]
return np.asarray(lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Dict ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Any = np.asmatrix(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = self.convolute(
lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_UpperCAmelCase : Tuple = self.pooling(lowerCAmelCase__ , self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass | 352 | '''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def __UpperCAmelCase ( a_: str ):
for param in module.parameters():
_UpperCAmelCase : Any = False
def __UpperCAmelCase ( ):
_UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_UpperCAmelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : int = plt.imshow(a_ )
fig.axes.get_xaxis().set_visible(a_ )
fig.axes.get_yaxis().set_visible(a_ )
plt.show()
def __UpperCAmelCase ( ):
_UpperCAmelCase : Dict = datetime.now()
_UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" )
return timestamp | 17 | 0 |
'''simple docstring'''
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[Any] = '''ssube/stable-diffusion-x4-upscaler-onnx'''
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : List[Any]=0 ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(lowerCAmelCase__ ) )
_UpperCAmelCase : int = torch.manual_seed(lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs()
_UpperCAmelCase : str = pipe(**lowerCAmelCase__ ).images
_UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 5_1_2, 5_1_2, 3)
_UpperCAmelCase : Union[str, Any] = np.array(
[0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223] )
assert np.abs(image_slice - expected_slice ).max() < 1e-1
def _lowerCAmelCase ( self : List[Any] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
_UpperCAmelCase : List[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : int = self.get_dummy_inputs()
_UpperCAmelCase : List[Any] = pipe(**lowerCAmelCase__ ).images
_UpperCAmelCase : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
_UpperCAmelCase : Optional[Any] = np.array(
[0.689_8892, 0.5924_0556, 0.5249_9527, 0.5886_6215, 0.5225_8235, 0.5257_2715, 0.6241_4473, 0.617_4387, 0.621_4964] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
_UpperCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = self.get_dummy_inputs()
_UpperCAmelCase : Any = pipe(**lowerCAmelCase__ ).images
_UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
_UpperCAmelCase : int = np.array(
[0.765_9278, 0.7643_7664, 0.7557_9107, 0.769_1116, 0.7766_6986, 0.772_7672, 0.775_8664, 0.781_2226, 0.7694_2515] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def _lowerCAmelCase ( self : Tuple ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
_UpperCAmelCase : Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : str = self.get_dummy_inputs()
_UpperCAmelCase : Optional[Any] = pipe(**lowerCAmelCase__ ).images
_UpperCAmelCase : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
_UpperCAmelCase : Dict = np.array(
[0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
def _lowerCAmelCase ( self : str ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
_UpperCAmelCase : Dict = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : Tuple = self.get_dummy_inputs()
_UpperCAmelCase : Tuple = pipe(**lowerCAmelCase__ ).images
_UpperCAmelCase : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
_UpperCAmelCase : Union[str, Any] = np.array(
[0.7742_4496, 0.77_3601, 0.764_5288, 0.776_9598, 0.777_2739, 0.773_8688, 0.7818_7233, 0.7787_9584, 0.76_7043] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class A__ ( unittest.TestCase ):
"""simple docstring"""
@property
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _lowerCAmelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : int = ort.SessionOptions()
_UpperCAmelCase : List[str] = False
return options
def _lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
_UpperCAmelCase : Dict = init_image.resize((1_2_8, 1_2_8) )
# using the PNDM scheduler by default
_UpperCAmelCase : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx" , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = "A fantasy landscape, trending on artstation"
_UpperCAmelCase : List[Any] = torch.manual_seed(0 )
_UpperCAmelCase : int = pipe(
prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=1_0 , generator=lowerCAmelCase__ , output_type="np" , )
_UpperCAmelCase : Dict = output.images
_UpperCAmelCase : Dict = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
_UpperCAmelCase : Any = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Tuple = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
_UpperCAmelCase : Dict = init_image.resize((1_2_8, 1_2_8) )
_UpperCAmelCase : Dict = LMSDiscreteScheduler.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx" , subfolder="scheduler" )
_UpperCAmelCase : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx" , scheduler=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : str = "A fantasy landscape, trending on artstation"
_UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
_UpperCAmelCase : Dict = pipe(
prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=2_0 , generator=lowerCAmelCase__ , output_type="np" , )
_UpperCAmelCase : List[str] = output.images
_UpperCAmelCase : List[str] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1]
assert images.shape == (1, 5_1_2, 5_1_2, 3)
_UpperCAmelCase : Union[str, Any] = np.array(
[0.5017_3753, 0.5022_3356, 0.50_2039, 0.5023_3036, 0.502_3725, 0.502_2601, 0.501_8758, 0.5023_4085, 0.5024_1566] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 | 353 | '''simple docstring'''
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[int] = (EulerDiscreteScheduler,)
UpperCamelCase_ : Tuple = 10
def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = {
"num_train_timesteps": 1_1_0_0,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**lowerCAmelCase__ )
return config
def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Any ) -> List[str]:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] ) -> List[str]:
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.scheduler_classes[0]
_UpperCAmelCase : int = self.get_scheduler_config()
_UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
_UpperCAmelCase : int = torch.manual_seed(0 )
_UpperCAmelCase : Any = self.dummy_model()
_UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma
_UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
_UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = output.prev_sample
_UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Any = self.scheduler_classes[0]
_UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" )
_UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
_UpperCAmelCase : str = torch.manual_seed(0 )
_UpperCAmelCase : Optional[Any] = self.dummy_model()
_UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
_UpperCAmelCase : Tuple = sample.to(lowerCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
_UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = output.prev_sample
_UpperCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 0.0002 ) < 1e-2
assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3
def _lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.scheduler_classes[0]
_UpperCAmelCase : List[Any] = self.get_scheduler_config()
_UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
_UpperCAmelCase : str = self.dummy_model()
_UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_UpperCAmelCase : str = sample.to(lowerCAmelCase__ )
for t in scheduler.timesteps:
_UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : int = output.prev_sample
_UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.scheduler_classes[0]
_UpperCAmelCase : int = self.get_scheduler_config()
_UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
_UpperCAmelCase : List[str] = self.dummy_model()
_UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_UpperCAmelCase : Optional[int] = sample.to(lowerCAmelCase__ )
for t in scheduler.timesteps:
_UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = output.prev_sample
_UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2
assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3 | 17 | 0 |
'''simple docstring'''
def __UpperCAmelCase ( a_: list[int] ):
if not nums: # Makes sure that the list is not empty
raise ValueError("List is empty" )
_UpperCAmelCase : List[Any] = sum(a_ ) / len(a_ ) # Calculate the average
return sum(abs(x - average ) for x in nums ) / len(a_ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 354 | '''simple docstring'''
def __UpperCAmelCase ( a_: int, a_: int ):
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
_UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) )
return "0b" + "".join(
str(int(char_a == "1" and char_b == "1" ) )
for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 0 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Any = tempfile.mkdtemp()
_UpperCAmelCase : str = BlipImageProcessor()
_UpperCAmelCase : Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
_UpperCAmelCase : Any = BlipProcessor(lowerCAmelCase__ , lowerCAmelCase__ )
processor.save_pretrained(self.tmpdirname )
def _lowerCAmelCase ( self : List[Any] , **lowerCAmelCase__ : Tuple ) -> Union[str, Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).tokenizer
def _lowerCAmelCase ( self : str , **lowerCAmelCase__ : List[str] ) -> List[Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).image_processor
def _lowerCAmelCase ( self : Any ) -> Tuple:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def _lowerCAmelCase ( self : str ) -> str:
"""simple docstring"""
_UpperCAmelCase : str = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
_UpperCAmelCase : List[str] = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_UpperCAmelCase : List[str] = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_UpperCAmelCase : Optional[int] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
_UpperCAmelCase : Optional[int] = self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0 )
_UpperCAmelCase : List[str] = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCAmelCase__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Dict = self.get_image_processor()
_UpperCAmelCase : Union[str, Any] = self.get_tokenizer()
_UpperCAmelCase : str = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ )
_UpperCAmelCase : int = self.prepare_image_inputs()
_UpperCAmelCase : Optional[Any] = image_processor(lowerCAmelCase__ , return_tensors="np" )
_UpperCAmelCase : Optional[Any] = processor(images=lowerCAmelCase__ , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _lowerCAmelCase ( self : int ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.get_image_processor()
_UpperCAmelCase : Union[str, Any] = self.get_tokenizer()
_UpperCAmelCase : List[str] = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = "lower newer"
_UpperCAmelCase : Optional[Any] = processor(text=lowerCAmelCase__ )
_UpperCAmelCase : Tuple = tokenizer(lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
_UpperCAmelCase : str = self.get_image_processor()
_UpperCAmelCase : Optional[Any] = self.get_tokenizer()
_UpperCAmelCase : Optional[int] = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ )
_UpperCAmelCase : str = "lower newer"
_UpperCAmelCase : List[str] = self.prepare_image_inputs()
_UpperCAmelCase : Optional[int] = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(lowerCAmelCase__ ):
processor()
def _lowerCAmelCase ( self : Tuple ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.get_image_processor()
_UpperCAmelCase : int = self.get_tokenizer()
_UpperCAmelCase : Tuple = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_UpperCAmelCase : str = processor.batch_decode(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = tokenizer.batch_decode(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Dict ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Dict = self.get_image_processor()
_UpperCAmelCase : Tuple = self.get_tokenizer()
_UpperCAmelCase : List[str] = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = "lower newer"
_UpperCAmelCase : Optional[Any] = self.prepare_image_inputs()
_UpperCAmelCase : Optional[Any] = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
| 355 | '''simple docstring'''
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def __UpperCAmelCase ( a_: int ):
# A local function to see if a dot lands in the circle.
def is_in_circle(a_: float, a_: float ) -> bool:
_UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
_UpperCAmelCase : str = mean(
int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) )
for _ in range(a_ ) )
# The ratio of the area for circle to square is pi/4.
_UpperCAmelCase : Optional[int] = proportion * 4
print(f"""The estimated value of pi is {pi_estimate}""" )
print(f"""The numpy value of pi is {pi}""" )
print(f"""The total error is {abs(pi - pi_estimate )}""" )
def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ):
return mean(
function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value)
def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ):
def identity_function(a_: float ) -> float:
return x
_UpperCAmelCase : Union[str, Any] = area_under_curve_estimator(
a_, a_, a_, a_ )
_UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2
print("******************" )
print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {expected_value}""" )
print(f"""Total error is {abs(estimated_value - expected_value )}""" )
print("******************" )
def __UpperCAmelCase ( a_: int ):
def function_to_integrate(a_: float ) -> float:
return sqrt(4.0 - x * x )
_UpperCAmelCase : List[str] = area_under_curve_estimator(
a_, a_, 0.0, 2.0 )
print("******************" )
print("Estimating pi using area_under_curve_estimator" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {pi}""" )
print(f"""Total error is {abs(estimated_value - pi )}""" )
print("******************" )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__a = {
'configuration_groupvit': [
'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'GroupViTConfig',
'GroupViTOnnxConfig',
'GroupViTTextConfig',
'GroupViTVisionConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GroupViTModel',
'GroupViTPreTrainedModel',
'GroupViTTextModel',
'GroupViTVisionModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFGroupViTModel',
'TFGroupViTPreTrainedModel',
'TFGroupViTTextModel',
'TFGroupViTVisionModel',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 356 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__a = {
'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'],
'processing_layoutlmv2': ['LayoutLMv2Processor'],
'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['LayoutLMv2TokenizerFast']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['LayoutLMv2FeatureExtractor']
__a = ['LayoutLMv2ImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv2ForQuestionAnswering',
'LayoutLMv2ForSequenceClassification',
'LayoutLMv2ForTokenClassification',
'LayoutLMv2Layer',
'LayoutLMv2Model',
'LayoutLMv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 17 | 0 |
'''simple docstring'''
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
__a = logging.getLogger(__name__)
__a = 'Hello world! cécé herlolip'
__a = namedtuple(
'BertAbsConfig',
[
'temp_dir',
'large',
'use_bert_emb',
'finetune_bert',
'encoder',
'share_emb',
'max_pos',
'enc_layers',
'enc_hidden_size',
'enc_heads',
'enc_ff_size',
'enc_dropout',
'dec_layers',
'dec_hidden_size',
'dec_heads',
'dec_ff_size',
'dec_dropout',
],
)
def __UpperCAmelCase ( a_: Optional[int], a_: str ):
_UpperCAmelCase : Optional[Any] = BertAbsConfig(
temp_dir=".", finetune_bert=a_, large=a_, share_emb=a_, use_bert_emb=a_, encoder="bert", max_pos=512, enc_layers=6, enc_hidden_size=512, enc_heads=8, enc_ff_size=512, enc_dropout=0.2, dec_layers=6, dec_hidden_size=768, dec_heads=8, dec_ff_size=2_048, dec_dropout=0.2, )
_UpperCAmelCase : Dict = torch.load(a_, lambda a_, a_ : storage )
_UpperCAmelCase : Tuple = AbsSummarizer(a_, torch.device("cpu" ), a_ )
original.eval()
_UpperCAmelCase : Dict = BertAbsSummarizer(a_, torch.device("cpu" ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info("convert the model" )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info("Make sure that the models' outputs are identical" )
_UpperCAmelCase : Dict = BertTokenizer.from_pretrained("bert-base-uncased" )
# prepare the model inputs
_UpperCAmelCase : List[Any] = tokenizer.encode("This is sample éàalj'-." )
encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(a_ )) )
_UpperCAmelCase : Union[str, Any] = torch.tensor(a_ ).unsqueeze(0 )
_UpperCAmelCase : List[str] = tokenizer.encode("This is sample 3 éàalj'-." )
decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(a_ )) )
_UpperCAmelCase : Any = torch.tensor(a_ ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
_UpperCAmelCase : Union[str, Any] = encoder_input_ids
_UpperCAmelCase : Optional[int] = decoder_input_ids
_UpperCAmelCase : List[str] = None
_UpperCAmelCase : List[Any] = None
_UpperCAmelCase : Dict = None
_UpperCAmelCase : List[str] = None
_UpperCAmelCase : Optional[int] = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
_UpperCAmelCase : Tuple = original(a_, a_, a_, a_, a_, a_, a_ )[0]
_UpperCAmelCase : str = original.generator(a_ )
_UpperCAmelCase : int = new_model(
a_, a_, a_, a_, a_ )[0]
_UpperCAmelCase : Union[str, Any] = new_model.generator(a_ )
_UpperCAmelCase : Tuple = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print("Maximum absolute difference beween weights: {:.2f}".format(a_ ) )
_UpperCAmelCase : List[Any] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print("Maximum absolute difference beween weights: {:.2f}".format(a_ ) )
_UpperCAmelCase : Dict = torch.allclose(a_, a_, atol=1e-3 )
if are_identical:
logging.info("all weights are equal up to 1e-3" )
else:
raise ValueError("the weights are different. The new model is likely different from the original one." )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info("saving the model's state dictionary" )
torch.save(
new_model.state_dict(), "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument(
'--bertabs_checkpoint_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model.',
)
__a = parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
) | 357 | '''simple docstring'''
def __UpperCAmelCase ( a_: int, a_: int ):
if not isinstance(a_, a_ ):
raise ValueError("iterations must be defined as integers" )
if not isinstance(a_, a_ ) or not number >= 1:
raise ValueError(
"starting number must be\n and integer and be more than 0" )
if not iterations >= 1:
raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" )
_UpperCAmelCase : List[str] = ""
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(a_ )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 0 |
'''simple docstring'''
import os
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : int = len(grid[0] )
_UpperCAmelCase : Tuple = len(a_ )
_UpperCAmelCase : str = 0
_UpperCAmelCase : str = 0
_UpperCAmelCase : Dict = 0
# Check vertically, horizontally, diagonally at the same time (only works
# for nxn grid)
for i in range(a_ ):
for j in range(n_rows - 3 ):
_UpperCAmelCase : Any = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i]
_UpperCAmelCase : List[str] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3]
# Left-to-right diagonal (\) product
if i < n_columns - 3:
_UpperCAmelCase : Dict = (
grid[i][j]
* grid[i + 1][j + 1]
* grid[i + 2][j + 2]
* grid[i + 3][j + 3]
)
# Right-to-left diagonal(/) product
if i > 2:
_UpperCAmelCase : int = (
grid[i][j]
* grid[i - 1][j + 1]
* grid[i - 2][j + 2]
* grid[i - 3][j + 3]
)
_UpperCAmelCase : Tuple = max(
a_, a_, a_, a_ )
if max_product > largest:
_UpperCAmelCase : Any = max_product
return largest
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = []
with open(os.path.dirname(a_ ) + "/grid.txt" ) as file:
for line in file:
grid.append(line.strip("\n" ).split(" " ) )
_UpperCAmelCase : Tuple = [[int(a_ ) for i in grid[j]] for j in range(len(a_ ) )]
return largest_product(a_ )
if __name__ == "__main__":
print(solution()) | 358 | '''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
__a = logging.getLogger(__name__)
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : str = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , )
UpperCamelCase_ : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. If passed, sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={
'''help''': (
'''Whether to pad all samples to the maximum sentence length. '''
'''If False, will pad the samples dynamically when batching to the maximum length in the batch. More '''
'''efficient on GPU but very bad for TPU.'''
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def _lowerCAmelCase ( self : Any ) -> Any:
"""simple docstring"""
if self.train_file is not None:
_UpperCAmelCase : List[Any] = self.train_file.split("." )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
_UpperCAmelCase : List[str] = self.validation_file.split("." )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : PreTrainedTokenizerBase
UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True
UpperCamelCase_ : Optional[int] = None
UpperCamelCase_ : Optional[int] = None
def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels"
_UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features]
_UpperCAmelCase : str = len(lowerCAmelCase__ )
_UpperCAmelCase : int = len(features[0]["input_ids"] )
_UpperCAmelCase : str = [
[{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features
]
_UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) )
_UpperCAmelCase : Any = self.tokenizer.pad(
lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , )
# Un-flatten
_UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()}
# Add back labels
_UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa )
return batch
def __UpperCAmelCase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_swag", a_, a_ )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_UpperCAmelCase : Optional[int] = training_args.get_process_log_level()
logger.setLevel(a_ )
datasets.utils.logging.set_verbosity(a_ )
transformers.utils.logging.set_verbosity(a_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
_UpperCAmelCase : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
_UpperCAmelCase : Union[str, Any] = {}
if data_args.train_file is not None:
_UpperCAmelCase : str = data_args.train_file
if data_args.validation_file is not None:
_UpperCAmelCase : Optional[Any] = data_args.validation_file
_UpperCAmelCase : Dict = data_args.train_file.split("." )[-1]
_UpperCAmelCase : Optional[int] = load_dataset(
a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
else:
# Downloading and loading the swag dataset from the hub.
_UpperCAmelCase : Dict = load_dataset(
"swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCAmelCase : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
_UpperCAmelCase : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
_UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
_UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )]
_UpperCAmelCase : List[Any] = "sent1"
_UpperCAmelCase : Optional[int] = "sent2"
if data_args.max_seq_length is None:
_UpperCAmelCase : List[str] = tokenizer.model_max_length
if max_seq_length > 1_024:
logger.warning(
"The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
" override this default with `--block_size xxx`." )
_UpperCAmelCase : Dict = 1_024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
_UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(a_: Union[str, Any] ):
_UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]]
_UpperCAmelCase : Tuple = examples[question_header_name]
_UpperCAmelCase : Optional[Any] = [
[f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ )
]
# Flatten out
_UpperCAmelCase : List[str] = list(chain(*a_ ) )
_UpperCAmelCase : Dict = list(chain(*a_ ) )
# Tokenize
_UpperCAmelCase : List[Any] = tokenizer(
a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset" )
_UpperCAmelCase : int = raw_datasets["train"]
if data_args.max_train_samples is not None:
_UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples )
_UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) )
with training_args.main_process_first(desc="train dataset map pre-processing" ):
_UpperCAmelCase : Union[str, Any] = train_dataset.map(
a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset" )
_UpperCAmelCase : Dict = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
_UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples )
_UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) )
with training_args.main_process_first(desc="validation dataset map pre-processing" ):
_UpperCAmelCase : Optional[int] = eval_dataset.map(
a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, )
# Data collator
_UpperCAmelCase : Tuple = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(a_: Tuple ):
_UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions
_UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
_UpperCAmelCase : Any = Trainer(
model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, )
# Training
if training_args.do_train:
_UpperCAmelCase : Optional[Any] = None
if training_args.resume_from_checkpoint is not None:
_UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_UpperCAmelCase : List[str] = last_checkpoint
_UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ )
trainer.save_model() # Saves the tokenizer too for easy upload
_UpperCAmelCase : str = train_result.metrics
_UpperCAmelCase : List[str] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ )
)
_UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) )
trainer.log_metrics("train", a_ )
trainer.save_metrics("train", a_ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
_UpperCAmelCase : List[Any] = trainer.evaluate()
_UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ )
_UpperCAmelCase : Tuple = min(a_, len(a_ ) )
trainer.log_metrics("eval", a_ )
trainer.save_metrics("eval", a_ )
_UpperCAmelCase : int = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "multiple-choice",
"dataset_tags": "swag",
"dataset_args": "regular",
"dataset": "SWAG",
"language": "en",
}
if training_args.push_to_hub:
trainer.push_to_hub(**a_ )
else:
trainer.create_model_card(**a_ )
def __UpperCAmelCase ( a_: int ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main() | 17 | 0 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
__a = (3, 9, -11, 0, 7, 5, 1, -1)
__a = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : int
UpperCamelCase_ : Node | None
class A__ :
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None:
"""simple docstring"""
_UpperCAmelCase : Node | None = None
for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ):
_UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head )
def __iter__( self : int ) -> Iterator[int]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.head
while node:
yield node.data
_UpperCAmelCase : List[str] = node.next_node
def __len__( self : Any ) -> int:
"""simple docstring"""
return sum(1 for _ in self )
def __str__( self : Union[str, Any] ) -> str:
"""simple docstring"""
return " -> ".join([str(lowerCAmelCase__ ) for node in self] )
def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ):
return SortedLinkedList(list(a_ ) + list(a_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
__a = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even))) | 359 | '''simple docstring'''
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class A__ ( pl.LightningModule ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str:
"""simple docstring"""
super().__init__()
_UpperCAmelCase : List[str] = model
_UpperCAmelCase : Dict = 2
_UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels )
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
pass
def __UpperCAmelCase ( a_: str, a_: str, a_: str ):
# load longformer model from model identifier
_UpperCAmelCase : int = LongformerModel.from_pretrained(a_ )
_UpperCAmelCase : Any = LightningModel(a_ )
_UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) )
lightning_model.load_state_dict(ckpt["state_dict"] )
# init longformer question answering model
_UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ )
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() )
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() )
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(a_ )
print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--longformer_model',
default=None,
type=str,
required=True,
help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.',
)
parser.add_argument(
'--longformer_question_answering_ckpt_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch Lightning Checkpoint.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__a = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
) | 17 | 0 |
'''simple docstring'''
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def __UpperCAmelCase ( ):
_UpperCAmelCase : str = HfArgumentParser(a_ )
_UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0]
_UpperCAmelCase : List[str] = TensorFlowBenchmark(args=a_ )
try:
_UpperCAmelCase : Tuple = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
_UpperCAmelCase : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead."
_UpperCAmelCase : str = " ".join(str(a_ ).split(" " )[:-1] )
_UpperCAmelCase : Any = ""
_UpperCAmelCase : Tuple = eval(str(a_ ).split(" " )[-1] )
_UpperCAmelCase : Optional[int] = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(a_ )
if len(a_ ) > 0:
_UpperCAmelCase : Optional[int] = full_error_msg + begin_error_msg + str(a_ )
raise ValueError(a_ )
benchmark.run()
if __name__ == "__main__":
main() | 360 | '''simple docstring'''
from importlib import import_module
from .logging import get_logger
__a = get_logger(__name__)
class A__ :
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Any = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith("__" ):
setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
_UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module
class A__ :
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = []
def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = obj
_UpperCAmelCase : int = target
_UpperCAmelCase : Optional[int] = new
_UpperCAmelCase : Any = target.split("." )[0]
_UpperCAmelCase : Optional[int] = {}
_UpperCAmelCase : Dict = attrs or []
def __enter__( self : List[str] ) -> int:
"""simple docstring"""
*_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(lowerCAmelCase__ ) ):
try:
_UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
_UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule)
):
_UpperCAmelCase : Tuple = obj_attr
# patch at top level
setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) )
_UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) )
_UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
# finally set the target attribute
setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
_UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj , lowerCAmelCase__ ) is attr_value:
_UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ )
setattr(self.obj , lowerCAmelCase__ , self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
_UpperCAmelCase : Dict = globals()["__builtins__"][target_attr]
setattr(self.obj , lowerCAmelCase__ , self.new )
else:
raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" )
def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for attr in list(self.original ):
setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
self.__enter__()
self._active_patches.append(self )
def _lowerCAmelCase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__() | 17 | 0 |
'''simple docstring'''
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import timm
import torch
import torch.nn as nn
from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf
from huggingface_hub import cached_download, hf_hub_url
from torch import Tensor
from vissl.models.model_helpers import get_trunk_forward_outputs
from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel
from transformers.utils import logging
logging.set_verbosity_info()
__a = logging.get_logger()
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : nn.Module
UpperCamelCase_ : List[nn.Module] = field(default_factory=UpperCamelCase )
UpperCamelCase_ : list = field(default_factory=UpperCamelCase )
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Tensor ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = len(list(m.modules() ) ) == 1 or isinstance(lowerCAmelCase__ , nn.Convad ) or isinstance(lowerCAmelCase__ , nn.BatchNormad )
if has_not_submodules:
self.traced.append(lowerCAmelCase__ )
def __call__( self : Optional[int] , lowerCAmelCase__ : Tensor ) -> List[Any]:
"""simple docstring"""
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(lowerCAmelCase__ )
[x.remove() for x in self.handles]
return self
@property
def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return list(filter(lambda lowerCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : nn.Module
UpperCamelCase_ : nn.Module
UpperCamelCase_ : int = 1
UpperCamelCase_ : List = field(default_factory=UpperCamelCase )
UpperCamelCase_ : List = field(default_factory=UpperCamelCase )
UpperCamelCase_ : bool = True
def __call__( self : List[str] , lowerCAmelCase__ : Tensor ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = Tracker(self.dest )(lowerCAmelCase__ ).parametrized
_UpperCAmelCase : str = Tracker(self.src )(lowerCAmelCase__ ).parametrized
_UpperCAmelCase : Optional[int] = list(filter(lambda lowerCAmelCase__ : type(lowerCAmelCase__ ) not in self.src_skip , lowerCAmelCase__ ) )
_UpperCAmelCase : Optional[Any] = list(filter(lambda lowerCAmelCase__ : type(lowerCAmelCase__ ) not in self.dest_skip , lowerCAmelCase__ ) )
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ) and self.raise_if_mismatch:
raise Exception(
F"""Numbers of operations are different. Source module has {len(lowerCAmelCase__ )} operations while"""
F""" destination module has {len(lowerCAmelCase__ )}.""" )
for dest_m, src_m in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(F"""Transfered from={src_m} to={dest_m}""" )
class A__ ( nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , lowerCAmelCase__ : nn.Module ) -> Dict:
"""simple docstring"""
super().__init__()
_UpperCAmelCase : List[Tuple[str, nn.Module]] = []
# - get the stem
feature_blocks.append(("conv1", model.stem) )
# - get all the feature blocks
for k, v in model.trunk_output.named_children():
assert k.startswith("block" ), F"""Unexpected layer name {k}"""
_UpperCAmelCase : Tuple = len(lowerCAmelCase__ ) + 1
feature_blocks.append((F"""res{block_index}""", v) )
_UpperCAmelCase : Optional[Any] = nn.ModuleDict(lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Tensor ) -> List[str]:
"""simple docstring"""
return get_trunk_forward_outputs(
lowerCAmelCase__ , out_feat_keys=lowerCAmelCase__ , feature_blocks=self._feature_blocks , )
class A__ ( UpperCamelCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : str , lowerCAmelCase__ : str ) -> str:
"""simple docstring"""
_UpperCAmelCase : int = x.split("-" )
return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] )
def __getitem__( self : Dict , lowerCAmelCase__ : str ) -> Callable[[], Tuple[nn.Module, Dict]]:
"""simple docstring"""
if x not in self:
_UpperCAmelCase : Tuple = self.convert_name_to_timm(lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = partial(lambda: (timm.create_model(lowerCAmelCase__ , pretrained=lowerCAmelCase__ ).eval(), None) )
else:
_UpperCAmelCase : List[Any] = super().__getitem__(lowerCAmelCase__ )
return val
class A__ ( UpperCamelCase ):
"""simple docstring"""
def __getitem__( self : Optional[int] , lowerCAmelCase__ : str ) -> Callable[[], nn.Module]:
"""simple docstring"""
if "seer" in x and "in1k" not in x:
_UpperCAmelCase : Optional[Any] = RegNetModel
else:
_UpperCAmelCase : Dict = RegNetForImageClassification
return val
def __UpperCAmelCase ( a_: Tuple, a_: Dict, a_: List[Tuple[str, str]] ):
for from_key, to_key in keys:
_UpperCAmelCase : Union[str, Any] = from_state_dict[from_key].clone()
print(f"""Copied key={from_key} to={to_key}""" )
return to_state_dict
def __UpperCAmelCase ( a_: str, a_: Callable[[], nn.Module], a_: Callable[[], nn.Module], a_: RegNetConfig, a_: Path, a_: bool = True, ):
print(f"""Converting {name}...""" )
with torch.no_grad():
_UpperCAmelCase : Any = from_model_func()
_UpperCAmelCase : int = our_model_func(a_ ).eval()
_UpperCAmelCase : List[Any] = ModuleTransfer(src=a_, dest=a_, raise_if_mismatch=a_ )
_UpperCAmelCase : Any = torch.randn((1, 3, 224, 224) )
module_transfer(a_ )
if from_state_dict is not None:
_UpperCAmelCase : Optional[Any] = []
# for seer - in1k finetuned we have to manually copy the head
if "seer" in name and "in1k" in name:
_UpperCAmelCase : Optional[int] = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")]
_UpperCAmelCase : List[Any] = manually_copy_vissl_head(a_, our_model.state_dict(), a_ )
our_model.load_state_dict(a_ )
_UpperCAmelCase : Dict = our_model(a_, output_hidden_states=a_ )
_UpperCAmelCase : Optional[int] = (
our_outputs.logits if isinstance(a_, a_ ) else our_outputs.last_hidden_state
)
_UpperCAmelCase : str = from_model(a_ )
_UpperCAmelCase : List[Any] = from_output[-1] if type(a_ ) is list else from_output
# now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state
if "seer" in name and "in1k" in name:
_UpperCAmelCase : List[str] = our_outputs.hidden_states[-1]
assert torch.allclose(a_, a_ ), "The model logits don't match the original one."
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / name, commit_message="Add model", use_temp_dir=a_, )
_UpperCAmelCase : Optional[Any] = 224 if "seer" not in name else 384
# we can use the convnext one
_UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k", size=a_ )
image_processor.push_to_hub(
repo_path_or_name=save_directory / name, commit_message="Add image processor", use_temp_dir=a_, )
print(f"""Pushed {name}""" )
def __UpperCAmelCase ( a_: Path, a_: str = None, a_: bool = True ):
_UpperCAmelCase : Union[str, Any] = "imagenet-1k-id2label.json"
_UpperCAmelCase : Any = 1_000
_UpperCAmelCase : int = (1, num_labels)
_UpperCAmelCase : Any = "huggingface/label-files"
_UpperCAmelCase : str = num_labels
_UpperCAmelCase : List[Any] = json.load(open(cached_download(hf_hub_url(a_, a_, repo_type="dataset" ) ), "r" ) )
_UpperCAmelCase : Union[str, Any] = {int(a_ ): v for k, v in idalabel.items()}
_UpperCAmelCase : Tuple = idalabel
_UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()}
_UpperCAmelCase : str = partial(a_, num_labels=a_, idalabel=a_, labelaid=a_ )
_UpperCAmelCase : Union[str, Any] = {
"regnet-x-002": ImageNetPreTrainedConfig(
depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type="x" ),
"regnet-x-004": ImageNetPreTrainedConfig(
depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type="x" ),
"regnet-x-006": ImageNetPreTrainedConfig(
depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type="x" ),
"regnet-x-008": ImageNetPreTrainedConfig(
depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type="x" ),
"regnet-x-016": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type="x" ),
"regnet-x-032": ImageNetPreTrainedConfig(
depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1_008], groups_width=48, layer_type="x" ),
"regnet-x-040": ImageNetPreTrainedConfig(
depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1_360], groups_width=40, layer_type="x" ),
"regnet-x-064": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1_624], groups_width=56, layer_type="x" ),
"regnet-x-080": ImageNetPreTrainedConfig(
depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1_920], groups_width=120, layer_type="x" ),
"regnet-x-120": ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2_240], groups_width=112, layer_type="x" ),
"regnet-x-160": ImageNetPreTrainedConfig(
depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2_048], groups_width=128, layer_type="x" ),
"regnet-x-320": ImageNetPreTrainedConfig(
depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1_344, 2_520], groups_width=168, layer_type="x" ),
# y variant
"regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ),
"regnet-y-004": ImageNetPreTrainedConfig(
depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ),
"regnet-y-006": ImageNetPreTrainedConfig(
depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ),
"regnet-y-008": ImageNetPreTrainedConfig(
depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ),
"regnet-y-016": ImageNetPreTrainedConfig(
depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ),
"regnet-y-032": ImageNetPreTrainedConfig(
depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1_512], groups_width=24 ),
"regnet-y-040": ImageNetPreTrainedConfig(
depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1_088], groups_width=64 ),
"regnet-y-064": ImageNetPreTrainedConfig(
depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1_296], groups_width=72 ),
"regnet-y-080": ImageNetPreTrainedConfig(
depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2_016], groups_width=56 ),
"regnet-y-120": ImageNetPreTrainedConfig(
depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2_240], groups_width=112 ),
"regnet-y-160": ImageNetPreTrainedConfig(
depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1_232, 3_024], groups_width=112 ),
"regnet-y-320": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1_392, 3_712], groups_width=232 ),
# models created by SEER -> https://arxiv.org/abs/2202.08360
"regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1_392, 3_712], groups_width=232 ),
"regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1_968, 4_920], groups_width=328 ),
"regnet-y-1280-seer": RegNetConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1_056, 2_904, 7_392], groups_width=264 ),
"regnet-y-2560-seer": RegNetConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1_696, 2_544, 5_088], groups_width=640 ),
"regnet-y-10b-seer": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2_020, 4_040, 11_110, 28_280], groups_width=1_010 ),
# finetuned on imagenet
"regnet-y-320-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1_392, 3_712], groups_width=232 ),
"regnet-y-640-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1_968, 4_920], groups_width=328 ),
"regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[528, 1_056, 2_904, 7_392], groups_width=264 ),
"regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig(
depths=[3, 7, 16, 1], hidden_sizes=[640, 1_696, 2_544, 5_088], groups_width=640 ),
"regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig(
depths=[2, 7, 17, 1], hidden_sizes=[2_020, 4_040, 11_110, 28_280], groups_width=1_010 ),
}
_UpperCAmelCase : Optional[int] = NameToOurModelFuncMap()
_UpperCAmelCase : List[Any] = NameToFromModelFuncMap()
# add seer weights logic
def load_using_classy_vision(a_: str, a_: Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]:
_UpperCAmelCase : Dict = torch.hub.load_state_dict_from_url(a_, model_dir=str(a_ ), map_location="cpu" )
_UpperCAmelCase : str = model_func()
# check if we have a head, if yes add it
_UpperCAmelCase : Tuple = files["classy_state_dict"]["base_model"]["model"]
_UpperCAmelCase : List[Any] = model_state_dict["trunk"]
model.load_state_dict(a_ )
return model.eval(), model_state_dict["heads"]
# pretrained
_UpperCAmelCase : Optional[Any] = partial(
a_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
_UpperCAmelCase : str = partial(
a_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
_UpperCAmelCase : int = partial(
a_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch", lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), )
_UpperCAmelCase : Optional[Any] = partial(
a_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch", lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1_010, w_a=1_744, w_a=620.83, w_m=2.52 ) ) ), )
# IN1K finetuned
_UpperCAmelCase : Optional[Any] = partial(
a_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
_UpperCAmelCase : Tuple = partial(
a_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), )
_UpperCAmelCase : Dict = partial(
a_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), )
_UpperCAmelCase : Dict = partial(
a_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch", lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=27, group_width=1_010, w_a=1_744, w_a=620.83, w_m=2.52 ) ) ), )
if model_name:
convert_weight_and_push(
a_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], a_, a_, )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(
a_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], a_, a_, a_, )
return config, expected_shape
if __name__ == "__main__":
__a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default=None,
type=str,
help=(
'The name of the model you wish to convert, it must be one of the supported regnet* architecture,'
' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=Path,
required=True,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
default=True,
type=bool,
required=False,
help='If True, push model and image processor to the hub.',
)
__a = parser.parse_args()
__a = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub) | 361 | '''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
__a = datasets.utils.logging.get_logger(__name__)
__a = ['names', 'prefix']
__a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
__a = ['encoding_errors', 'on_bad_lines']
__a = ['date_format']
@dataclass
class A__ ( datasets.BuilderConfig ):
"""simple docstring"""
UpperCamelCase_ : str = ","
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer"
UpperCamelCase_ : Optional[List[str]] = None
UpperCamelCase_ : Optional[List[str]] = None
UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None
UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None
UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None
UpperCamelCase_ : Optional[list] = None
UpperCamelCase_ : Optional[list] = None
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[Union[int, List[int]]] = None
UpperCamelCase_ : Optional[int] = None
UpperCamelCase_ : Optional[Union[str, List[str]]] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = False
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : str = "."
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : str = '"'
UpperCamelCase_ : int = 0
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = True
UpperCamelCase_ : int = 0
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : int = 1_00_00
UpperCamelCase_ : Optional[datasets.Features] = None
UpperCamelCase_ : Optional[str] = "strict"
UpperCamelCase_ : Literal["error", "warn", "skip"] = "error"
UpperCamelCase_ : Optional[str] = None
def _lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
if self.delimiter is not None:
_UpperCAmelCase : Any = self.delimiter
if self.column_names is not None:
_UpperCAmelCase : List[Any] = self.column_names
@property
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Dict = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class A__ ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
UpperCamelCase_ : int = CsvConfig
def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
_UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCAmelCase__ , (str, list, tuple) ):
_UpperCAmelCase : int = data_files
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : Any = [files]
_UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
_UpperCAmelCase : Optional[Any] = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : str = [files]
_UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) )
return splits
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
_UpperCAmelCase : Tuple = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
_UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
_UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ )
return pa_table
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
_UpperCAmelCase : Optional[Any] = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ):
_UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(lowerCAmelCase__ ):
_UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" )
raise | 17 | 0 |
'''simple docstring'''
from __future__ import annotations
from math import pow, sqrt
def __UpperCAmelCase ( a_: float, a_: float, a_: float ):
if (resistance, reactance, impedance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if resistance == 0:
return {"resistance": sqrt(pow(a_, 2 ) - pow(a_, 2 ) )}
elif reactance == 0:
return {"reactance": sqrt(pow(a_, 2 ) - pow(a_, 2 ) )}
elif impedance == 0:
return {"impedance": sqrt(pow(a_, 2 ) + pow(a_, 2 ) )}
else:
raise ValueError("Exactly one argument must be 0" )
if __name__ == "__main__":
import doctest
doctest.testmod() | 362 | '''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( a_: list[int] ):
if not nums:
return 0
_UpperCAmelCase : int = nums[0]
_UpperCAmelCase : Dict = 0
for num in nums[1:]:
_UpperCAmelCase , _UpperCAmelCase : Any = (
max_excluding + num,
max(a_, a_ ),
)
return max(a_, a_ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 0 |
'''simple docstring'''
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def __UpperCAmelCase ( a_: int ):
return 1 / (1 + np.exp(-z ))
def __UpperCAmelCase ( a_: Optional[int], a_: int ):
return (-y * np.log(a_ ) - (1 - y) * np.log(1 - h )).mean()
def __UpperCAmelCase ( a_: Optional[int], a_: int, a_: Optional[Any] ):
_UpperCAmelCase : Optional[int] = np.dot(a_, a_ )
return np.sum(y * scores - np.log(1 + np.exp(a_ ) ) )
def __UpperCAmelCase ( a_: List[str], a_: str, a_: Tuple, a_: List[str]=70_000 ):
_UpperCAmelCase : int = np.zeros(x.shape[1] )
for iterations in range(a_ ):
_UpperCAmelCase : Optional[int] = np.dot(a_, a_ )
_UpperCAmelCase : Any = sigmoid_function(a_ )
_UpperCAmelCase : List[str] = np.dot(x.T, h - y ) / y.size
_UpperCAmelCase : List[str] = theta - alpha * gradient # updating the weights
_UpperCAmelCase : Optional[Any] = np.dot(a_, a_ )
_UpperCAmelCase : int = sigmoid_function(a_ )
_UpperCAmelCase : Tuple = cost_function(a_, a_ )
if iterations % 100 == 0:
print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
__a = datasets.load_iris()
__a = iris.data[:, :2]
__a = (iris.target != 0) * 1
__a = 0.1
__a = logistic_reg(alpha, x, y, max_iterations=70_000)
print('theta: ', theta) # printing the theta i.e our weights vector
def __UpperCAmelCase ( a_: List[str] ):
return sigmoid_function(
np.dot(a_, a_ ) ) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0')
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1')
((__a) , (__a)) = (x[:, 0].min(), x[:, 0].max())
((__a) , (__a)) = (x[:, 1].min(), x[:, 1].max())
((__a) , (__a)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
__a = np.c_[xxa.ravel(), xxa.ravel()]
__a = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black')
plt.legend()
plt.show() | 363 | '''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a = logging.get_logger(__name__)
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if key.startswith("module.encoder" ):
_UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" )
if key.startswith("module.decoder" ):
_UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )]
_UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" )
if "norm" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )]
_UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" )
if "layer_norm1" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" )
if "layer_norm2" in key:
_UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
_UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )]
_UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" )
if "attn.q" in key:
_UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" )
if "attn.proj" in key:
_UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" )
if "attn" in key:
_UpperCAmelCase : Dict = key.replace("attn", "attention.self" )
if "fc1" in key:
_UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" )
if "fc2" in key:
_UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" )
if "linear_pred" in key:
_UpperCAmelCase : Any = key.replace("linear_pred", "classifier" )
if "linear_fuse" in key:
_UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" )
_UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )]
_UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" )
if "bot_conv" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" )
if "skip_conv1" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" )
if "skip_conv2" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" )
if "fusion1" in key:
_UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" )
if "fusion2" in key:
_UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" )
if "fusion3" in key:
_UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" )
if "fusion" in key and "conv" in key:
_UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" )
if key.startswith("module.last_layer_depth" ):
_UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" )
_UpperCAmelCase : int = value
return new_state_dict
def __UpperCAmelCase ( a_: str, a_: List[Any] ):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" )
_UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
_UpperCAmelCase : Optional[int] = kv_weight[
: config.hidden_sizes[i], :
]
_UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]]
_UpperCAmelCase : Optional[int] = kv_weight[
config.hidden_sizes[i] :, :
]
_UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :]
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw )
return image
@torch.no_grad()
def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ):
_UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
_UpperCAmelCase : Dict = GLPNImageProcessor()
# prepare image
_UpperCAmelCase : List[Any] = prepare_img()
_UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values
logger.info("Converting model..." )
# load original state dict
_UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) )
# rename keys
_UpperCAmelCase : List[str] = rename_keys(a_ )
# key and value matrices need special treatment
read_in_k_v(a_, a_ )
# create HuggingFace model and load state dict
_UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ )
model.load_state_dict(a_ )
model.eval()
# forward pass
_UpperCAmelCase : Dict = model(a_ )
_UpperCAmelCase : List[str] = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
_UpperCAmelCase : Optional[Any] = torch.tensor(
[[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] )
elif "kitti" in model_name:
_UpperCAmelCase : Tuple = torch.tensor(
[[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] )
else:
raise ValueError(f"""Unknown model name: {model_name}""" )
_UpperCAmelCase : Dict = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 )
print("Looks ok!" )
# finally, push to hub if required
if push_to_hub:
logger.info("Pushing model and image processor to the hub..." )
model.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, )
image_processor.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path',
default=None,
type=str,
help='Path to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.'
)
parser.add_argument(
'--model_name',
default='glpn-kitti',
type=str,
help='Name of the model in case you\'re pushing to the hub.',
)
__a = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name) | 17 | 0 |
'''simple docstring'''
import unittest
from typing import Tuple
import torch
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
from diffusers.utils.testing_utils import require_torch
@require_torch
class A__ :
"""simple docstring"""
@property
def _lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
return self.get_dummy_input()
@property
def _lowerCAmelCase ( self : List[Any] ) -> Any:
"""simple docstring"""
if self.block_type == "down":
return (4, 3_2, 1_6, 1_6)
elif self.block_type == "mid":
return (4, 3_2, 3_2, 3_2)
elif self.block_type == "up":
return (4, 3_2, 6_4, 6_4)
raise ValueError(F"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" )
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : Optional[int]=False , ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Tuple = 4
_UpperCAmelCase : List[str] = 3_2
_UpperCAmelCase : Dict = (3_2, 3_2)
_UpperCAmelCase : List[str] = torch.manual_seed(0 )
_UpperCAmelCase : Any = torch.device(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = (batch_size, num_channels) + sizes
_UpperCAmelCase : int = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = {"hidden_states": hidden_states}
if include_temb:
_UpperCAmelCase : List[str] = 1_2_8
_UpperCAmelCase : int = randn_tensor((batch_size, temb_channels) , generator=lowerCAmelCase__ , device=lowerCAmelCase__ )
if include_res_hidden_states_tuple:
_UpperCAmelCase : List[Any] = torch.manual_seed(1 )
_UpperCAmelCase : int = (randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ ),)
if include_encoder_hidden_states:
_UpperCAmelCase : List[Any] = floats_tensor((batch_size, 3_2, 3_2) ).to(lowerCAmelCase__ )
if include_skip_sample:
_UpperCAmelCase : Any = randn_tensor(((batch_size, 3) + sizes) , generator=lowerCAmelCase__ , device=lowerCAmelCase__ )
return dummy_input
def _lowerCAmelCase ( self : int ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = {
"in_channels": 3_2,
"out_channels": 3_2,
"temb_channels": 1_2_8,
}
if self.block_type == "up":
_UpperCAmelCase : Any = 3_2
if self.block_type == "mid":
init_dict.pop("out_channels" )
_UpperCAmelCase : Optional[int] = self.dummy_input
return init_dict, inputs_dict
def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : int ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.prepare_init_args_and_inputs_for_common()
_UpperCAmelCase : str = self.block_class(**lowerCAmelCase__ )
unet_block.to(lowerCAmelCase__ )
unet_block.eval()
with torch.no_grad():
_UpperCAmelCase : List[str] = unet_block(**lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : List[str] = output[0]
self.assertEqual(output.shape , self.output_shape )
_UpperCAmelCase : List[str] = output[0, -1, -3:, -3:]
_UpperCAmelCase : Optional[Any] = torch.tensor(lowerCAmelCase__ ).to(lowerCAmelCase__ )
assert torch_all_close(output_slice.flatten() , lowerCAmelCase__ , atol=5e-3 )
@unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" )
def _lowerCAmelCase ( self : List[str] ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Tuple = self.prepare_init_args_and_inputs_for_common()
_UpperCAmelCase : Optional[int] = self.block_class(**lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.train()
_UpperCAmelCase : Optional[int] = model(**lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : Dict = output[0]
_UpperCAmelCase : Tuple = torch.device(lowerCAmelCase__ )
_UpperCAmelCase : Dict = randn_tensor(output.shape , device=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = torch.nn.functional.mse_loss(lowerCAmelCase__ , lowerCAmelCase__ )
loss.backward() | 364 | '''simple docstring'''
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[Any] = 10
_UpperCAmelCase : int = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string" ) ),
"labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ),
"answers": datasets.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
"id": datasets.Value("int64" ),
} )
_UpperCAmelCase : List[str] = datasets.Dataset.from_dict(
{
"tokens": [["foo"] * 5] * n,
"labels": [[1] * 5] * n,
"answers": [{"answer_start": [97], "text": ["1976"]}] * 10,
"id": list(range(a_ ) ),
}, features=a_, )
return dataset
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" )
dataset.map(cache_file_name=a_ )
return filename
# FILE_CONTENT + files
__a = '\\n Text data.\n Second line of data.'
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt"
_UpperCAmelCase : Tuple = FILE_CONTENT
with open(a_, "w" ) as f:
f.write(a_ )
return filename
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2"
_UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" )
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import gzip
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" )
_UpperCAmelCase : Any = bytes(a_, "utf-8" )
with gzip.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
if datasets.config.LZ4_AVAILABLE:
import lza.frame
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4"
_UpperCAmelCase : str = bytes(a_, "utf-8" )
with lza.frame.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Any ):
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z"
with pyazr.SevenZipFile(a_, "w" ) as archive:
archive.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: List[str] ):
import tarfile
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
import lzma
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz"
_UpperCAmelCase : List[str] = bytes(a_, "utf-8" )
with lzma.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: Tuple ):
import zipfile
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst"
_UpperCAmelCase : int = bytes(a_, "utf-8" )
with zstd.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
_UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml"
_UpperCAmelCase : Tuple = textwrap.dedent(
"\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" )
with open(a_, "w" ) as f:
f.write(a_ )
return filename
__a = [
{'col_1': '0', 'col_2': 0, 'col_3': 0.0},
{'col_1': '1', 'col_2': 1, 'col_3': 1.0},
{'col_1': '2', 'col_2': 2, 'col_3': 2.0},
{'col_1': '3', 'col_2': 3, 'col_3': 3.0},
]
__a = [
{'col_1': '4', 'col_2': 4, 'col_3': 4.0},
{'col_1': '5', 'col_2': 5, 'col_3': 5.0},
]
__a = {
'col_1': ['0', '1', '2', '3'],
'col_2': [0, 1, 2, 3],
'col_3': [0.0, 1.0, 2.0, 3.0],
}
__a = [
{'col_3': 0.0, 'col_1': '0', 'col_2': 0},
{'col_3': 1.0, 'col_1': '1', 'col_2': 1},
]
__a = [
{'col_1': 's0', 'col_2': 0, 'col_3': 0.0},
{'col_1': 's1', 'col_2': 1, 'col_3': 1.0},
{'col_1': 's2', 'col_2': 2, 'col_3': 2.0},
{'col_1': 's3', 'col_2': 3, 'col_3': 3.0},
]
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : str = datasets.Dataset.from_dict(a_ )
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" )
dataset.map(cache_file_name=a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" )
with contextlib.closing(sqlitea.connect(a_ ) ) as con:
_UpperCAmelCase : List[Any] = con.cursor()
cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" )
for item in DATA:
cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str, a_: str ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2"
with open(a_, "rb" ) as f:
_UpperCAmelCase : Any = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ):
_UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) )
f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ):
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" )
_UpperCAmelCase : Dict = pa.schema(
{
"col_1": pa.string(),
"col_2": pa.intaa(),
"col_3": pa.floataa(),
} )
with open(a_, "wb" ) as f:
_UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ )
_UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ )
writer.write_table(a_ )
writer.close()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : str = {"data": DATA}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_312:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_STR:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ):
import gzip
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ):
import gzip
_UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ):
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : List[str] = ["0", "1", "2", "3"]
_UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Dict = ["0", "1", "2", "3"]
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = ["0", "1", "2", "3"]
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc"
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename("unsupported.ext" ) )
f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] )
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" )
with open(a_, "w", encoding="utf-8" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_image_rgb.jpg" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_audio_44100.wav" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Optional[Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" )
(data_dir / "subdir").mkdir()
with open(data_dir / "subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / "subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden file
with open(data_dir / "subdir" / ".test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / ".subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / ".subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
return data_dir | 17 | 0 |
'''simple docstring'''
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import BatchEncoding, MarianTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available
if is_sentencepiece_available():
from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
__a = get_tests_dir('fixtures/test_sentencepiece.model')
__a = {'target_lang': 'fi', 'source_lang': 'en'}
__a = '>>zh<<'
__a = 'Helsinki-NLP/'
if is_torch_available():
__a = 'pt'
elif is_tf_available():
__a = 'tf'
else:
__a = 'jax'
@require_sentencepiece
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[str] = MarianTokenizer
UpperCamelCase_ : str = False
UpperCamelCase_ : Union[str, Any] = True
def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
super().setUp()
_UpperCAmelCase : Dict = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"]
_UpperCAmelCase : Union[str, Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
_UpperCAmelCase : int = Path(self.tmpdirname )
save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["vocab"] )
save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] )
if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists():
copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["source_spm"] )
copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["target_spm"] )
_UpperCAmelCase : Optional[int] = MarianTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def _lowerCAmelCase ( self : Any , **lowerCAmelCase__ : Optional[int] ) -> MarianTokenizer:
"""simple docstring"""
return MarianTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : List[str] ) -> List[Any]:
"""simple docstring"""
return (
"This is a test",
"This is a test",
)
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Any = "</s>"
_UpperCAmelCase : int = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "</s>" )
self.assertEqual(vocab_keys[1] , "<unk>" )
self.assertEqual(vocab_keys[-1] , "<pad>" )
self.assertEqual(len(lowerCAmelCase__ ) , 9 )
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 9 )
def _lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""" )
_UpperCAmelCase : int = en_de_tokenizer(["I am a small frog"] , return_tensors=lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Dict = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0]
self.assertListEqual(lowerCAmelCase__ , batch.input_ids[0] )
_UpperCAmelCase : Optional[int] = tempfile.mkdtemp()
en_de_tokenizer.save_pretrained(lowerCAmelCase__ )
_UpperCAmelCase : Any = [x.name for x in Path(lowerCAmelCase__ ).glob("*" )]
self.assertIn("source.spm" , lowerCAmelCase__ )
MarianTokenizer.from_pretrained(lowerCAmelCase__ )
def _lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.get_tokenizer()
_UpperCAmelCase : Any = tok(
["I am a small frog" * 1_0_0_0, "I am a small frog"] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(batch.input_ids.shape , (2, 5_1_2) )
def _lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.get_tokenizer()
_UpperCAmelCase : Optional[int] = tok(["I am a tiny frog", "I am a small frog"] , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0) )
@slow
def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : str = {"input_ids": [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name="Helsinki-NLP/opus-mt-en-de" , revision="1a8c2263da11e68e50938f97e10cd57820bd504c" , decode_kwargs={"use_source_tokenizer": True} , )
def _lowerCAmelCase ( self : int ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" )
_UpperCAmelCase : Dict = "Tämä on testi"
_UpperCAmelCase : Union[str, Any] = "This is a test"
_UpperCAmelCase : Dict = [7_6, 7, 2_0_4_7, 2]
_UpperCAmelCase : Tuple = [6_9, 1_2, 1_1, 9_4_0, 2]
_UpperCAmelCase : Optional[Any] = tokenizer(lowerCAmelCase__ ).input_ids
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = tokenizer(text_target=lowerCAmelCase__ ).input_ids
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) | 365 | '''simple docstring'''
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = BarthezTokenizer
UpperCamelCase_ : List[Any] = BarthezTokenizerFast
UpperCamelCase_ : Optional[int] = True
UpperCamelCase_ : Optional[int] = True
def _lowerCAmelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
super().setUp()
_UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer
def _lowerCAmelCase ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = "<pad>"
_UpperCAmelCase : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 )
@require_torch
def _lowerCAmelCase ( self : Any ) -> int:
"""simple docstring"""
_UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."]
_UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2]
_UpperCAmelCase : int = self.tokenizer(
lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
_UpperCAmelCase : str = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
_UpperCAmelCase : Optional[int] = self.get_tokenizer()
_UpperCAmelCase : Optional[int] = self.get_rust_tokenizer()
_UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé."
_UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer()
_UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
_UpperCAmelCase : Tuple = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , ) | 17 | 0 |
'''simple docstring'''
__a = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
def __UpperCAmelCase ( a_: Dict, a_: Optional[int], a_: Any, a_: Optional[Any] ):
# Return True if there is node that has not iterated.
_UpperCAmelCase : List[str] = [False] * len(a_ )
_UpperCAmelCase : List[Any] = [s]
_UpperCAmelCase : List[str] = True
while queue:
_UpperCAmelCase : Dict = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(a_ )
_UpperCAmelCase : Optional[Any] = True
_UpperCAmelCase : Union[str, Any] = u
return visited[t]
def __UpperCAmelCase ( a_: str, a_: List[Any], a_: List[Any] ):
_UpperCAmelCase : List[Any] = [-1] * (len(a_ ))
_UpperCAmelCase : Tuple = 0
_UpperCAmelCase : Dict = []
_UpperCAmelCase : List[Any] = [i[:] for i in graph] # Record original cut, copy.
while bfs(a_, a_, a_, a_ ):
_UpperCAmelCase : int = float("Inf" )
_UpperCAmelCase : List[str] = sink
while s != source:
# Find the minimum value in select path
_UpperCAmelCase : List[str] = min(a_, graph[parent[s]][s] )
_UpperCAmelCase : Optional[Any] = parent[s]
max_flow += path_flow
_UpperCAmelCase : List[str] = sink
while v != source:
_UpperCAmelCase : Tuple = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
_UpperCAmelCase : str = parent[v]
for i in range(len(a_ ) ):
for j in range(len(graph[0] ) ):
if graph[i][j] == 0 and temp[i][j] > 0:
res.append((i, j) )
return res
if __name__ == "__main__":
print(mincut(test_graph, source=0, sink=5)) | 366 | '''simple docstring'''
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
__a = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class A__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0}
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : Tuple = batch_size
_UpperCAmelCase : str = num_channels
_UpperCAmelCase : Optional[Any] = image_size
_UpperCAmelCase : Dict = min_resolution
_UpperCAmelCase : str = max_resolution
_UpperCAmelCase : List[Any] = size
_UpperCAmelCase : Union[str, Any] = do_normalize
_UpperCAmelCase : Optional[Any] = do_convert_rgb
_UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6]
_UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6}
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def _lowerCAmelCase ( self : Any ) -> str:
"""simple docstring"""
_UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
_UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self )
@property
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image()
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
_UpperCAmelCase : str = 2_0_4_8
_UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) )
def _lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : Union[str, Any] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
_UpperCAmelCase : str = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(lowerCAmelCase__ ):
_UpperCAmelCase : str = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
_UpperCAmelCase : Any = "Hello"
_UpperCAmelCase : Optional[int] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : List[Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
_UpperCAmelCase : Any = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : int = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Union[str, Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : int ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 )
_UpperCAmelCase : List[Any] = 3
@property
def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : str = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Any = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Tuple = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) | 17 | 0 |
'''simple docstring'''
import json
import multiprocessing
import os
import re
from collections import defaultdict
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import HumanEvalArguments
from datasets import load_dataset, load_metric
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList
__a = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif']
class A__ ( UpperCamelCase ):
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : List[Any]=1 ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : List[str] = tokenizer
_UpperCAmelCase : Dict = dataset
_UpperCAmelCase : Optional[Any] = len(lowerCAmelCase__ ) if n_tasks is None else n_tasks
_UpperCAmelCase : Dict = n_copies
def __iter__( self : Dict ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Dict = []
for task in range(self.n_tasks ):
# without strip, the model generate commented codes ...
prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() )
_UpperCAmelCase : List[Any] = self.tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt" )
for task in range(self.n_tasks ):
for _ in range(self.n_copies ):
yield {
"ids": outputs.input_ids[task],
"task_id": task,
"input_len": outputs.attention_mask[task].sum(),
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = start_length
_UpperCAmelCase : Tuple = eof_strings
_UpperCAmelCase : Any = tokenizer
def __call__( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , **lowerCAmelCase__ : int ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] )
_UpperCAmelCase : str = []
for decoded_generation in decoded_generations:
done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) )
return all(lowerCAmelCase__ )
def __UpperCAmelCase ( a_: int ):
_UpperCAmelCase : List[str] = re.split("(%s)" % "|".join(a_ ), a_ )
# last string should be ""
return "".join(string_list[:-2] )
def __UpperCAmelCase ( a_: Optional[Any], a_: int, a_: str, a_: Optional[Any], a_: Dict, a_: Union[str, Any]=20, **a_: Tuple ):
_UpperCAmelCase : List[Any] = defaultdict(a_ ) # dict of list of generated tokens
for step, batch in tqdm(enumerate(a_ ) ):
with torch.no_grad():
_UpperCAmelCase : Any = batch["ids"].shape[-1]
_UpperCAmelCase : Optional[int] = accelerator.unwrap_model(a_ ).generate(
input_ids=batch["ids"][:, : batch["input_len"]], num_return_sequences=a_, **a_ )
# each task is generated batch_size times
_UpperCAmelCase : Union[str, Any] = batch["task_id"].repeat(a_ )
_UpperCAmelCase : List[str] = accelerator.pad_across_processes(
a_, dim=1, pad_index=tokenizer.pad_token_id )
_UpperCAmelCase : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) )
_UpperCAmelCase : Any = generated_tokens.cpu().numpy()
_UpperCAmelCase : Any = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(a_, a_ ):
gen_token_dict[task].append(a_ )
_UpperCAmelCase : Tuple = [[] for _ in range(a_ )]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
_UpperCAmelCase : List[str] = tokenizer.decode(a_, skip_special_tokens=a_, clean_up_tokenization_spaces=a_ )
code_gens[task].append(remove_last_block(a_ ) )
return code_gens
def __UpperCAmelCase ( ):
# Setup configuration
_UpperCAmelCase : Union[str, Any] = HfArgumentParser(a_ )
_UpperCAmelCase : Optional[Any] = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
_UpperCAmelCase : Dict = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
_UpperCAmelCase : List[str] = "false"
if args.num_workers is None:
_UpperCAmelCase : Any = multiprocessing.cpu_count()
# Use dataset load to feed to accelerate
_UpperCAmelCase : Tuple = Accelerator()
set_seed(args.seed, device_specific=a_ )
# Load model and tokenizer
_UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt )
_UpperCAmelCase : Dict = tokenizer.eos_token
_UpperCAmelCase : Dict = AutoModelForCausalLM.from_pretrained(args.model_ckpt )
# Generation settings
_UpperCAmelCase : List[str] = {
"do_sample": args.do_sample,
"temperature": args.temperature,
"max_new_tokens": args.max_new_tokens,
"top_p": args.top_p,
"top_k": args.top_k,
"stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0, a_, a_ )] ),
}
# Load evaluation dataset and metric
_UpperCAmelCase : int = load_dataset("openai_humaneval" )
_UpperCAmelCase : List[Any] = load_metric("code_eval" )
_UpperCAmelCase : Tuple = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] )
_UpperCAmelCase : Optional[Any] = args.n_samples // args.batch_size
_UpperCAmelCase : Any = TokenizedDataset(a_, human_eval["test"], n_copies=a_, n_tasks=a_ )
# do not confuse args.batch_size, which is actually the num_return_sequences
_UpperCAmelCase : Any = DataLoader(a_, batch_size=1 )
# Run a quick test to see if code evaluation is enabled
try:
_UpperCAmelCase : Optional[Any] = code_eval_metric.compute(references=[""], predictions=[[""]] )
except ValueError as exception:
print(
"Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`"
" flag to enable code evaluation." )
raise exception
_UpperCAmelCase : List[Any] = accelerator.prepare(a_, a_ )
_UpperCAmelCase : int = complete_code(
a_, a_, a_, a_, n_tasks=a_, batch_size=args.batch_size, **a_, )
if accelerator.is_main_process:
_UpperCAmelCase : List[str] = []
for task in tqdm(range(a_ ) ):
_UpperCAmelCase : Union[str, Any] = human_eval["test"][task]["test"]
_UpperCAmelCase : Tuple = f"""check({human_eval['test'][task]['entry_point']})"""
references.append("\n" + test_func + "\n" + entry_point )
# Evaluate completions with "code_eval" metric
_UpperCAmelCase : Union[str, Any] = code_eval_metric.compute(
references=a_, predictions=a_, num_workers=args.num_workers )
print(f"""Results: {pass_at_k}""" )
# Save results to json file
with open(args.output_file, "w" ) as fp:
json.dump(a_, a_ )
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main() | 367 | '''simple docstring'''
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Tuple = '''time_series_transformer'''
UpperCamelCase_ : Optional[Any] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = prediction_length
_UpperCAmelCase : Optional[Any] = context_length or prediction_length
_UpperCAmelCase : Optional[Any] = distribution_output
_UpperCAmelCase : Union[str, Any] = loss
_UpperCAmelCase : Dict = input_size
_UpperCAmelCase : int = num_time_features
_UpperCAmelCase : Any = lags_sequence
_UpperCAmelCase : Dict = scaling
_UpperCAmelCase : Tuple = num_dynamic_real_features
_UpperCAmelCase : Dict = num_static_real_features
_UpperCAmelCase : Union[str, Any] = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : Optional[int] = cardinality
else:
_UpperCAmelCase : Optional[Any] = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : List[Any] = embedding_dimension
else:
_UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
_UpperCAmelCase : str = num_parallel_samples
# Transformer architecture configuration
_UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features
_UpperCAmelCase : str = d_model
_UpperCAmelCase : Optional[Any] = encoder_attention_heads
_UpperCAmelCase : Dict = decoder_attention_heads
_UpperCAmelCase : List[Any] = encoder_ffn_dim
_UpperCAmelCase : str = decoder_ffn_dim
_UpperCAmelCase : Dict = encoder_layers
_UpperCAmelCase : str = decoder_layers
_UpperCAmelCase : Any = dropout
_UpperCAmelCase : str = attention_dropout
_UpperCAmelCase : List[Any] = activation_dropout
_UpperCAmelCase : Dict = encoder_layerdrop
_UpperCAmelCase : Any = decoder_layerdrop
_UpperCAmelCase : Optional[Any] = activation_function
_UpperCAmelCase : Tuple = init_std
_UpperCAmelCase : List[str] = use_cache
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def _lowerCAmelCase ( self : str ) -> int:
"""simple docstring"""
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
) | 17 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__a = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['FNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['FNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'FNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'FNetForMaskedLM',
'FNetForMultipleChoice',
'FNetForNextSentencePrediction',
'FNetForPreTraining',
'FNetForQuestionAnswering',
'FNetForSequenceClassification',
'FNetForTokenClassification',
'FNetLayer',
'FNetModel',
'FNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 368 | '''simple docstring'''
import baseaa
def __UpperCAmelCase ( a_: str ):
return baseaa.baaencode(string.encode("utf-8" ) )
def __UpperCAmelCase ( a_: bytes ):
return baseaa.baadecode(a_ ).decode("utf-8" )
if __name__ == "__main__":
__a = 'Hello World!'
__a = baseaa_encode(test)
print(encoded)
__a = baseaa_decode(encoded)
print(decoded) | 17 | 0 |
'''simple docstring'''
import os
import sys
import tempfile
import torch
from .state import AcceleratorState
from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment
def __UpperCAmelCase ( a_: Tuple, a_: Any=(), a_: int=None, a_: Dict="no", a_: Dict="29500" ):
_UpperCAmelCase : int = False
_UpperCAmelCase : Any = False
if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ):
_UpperCAmelCase : Union[str, Any] = True
elif "IPython" in sys.modules:
_UpperCAmelCase : List[Any] = "google.colab" in str(sys.modules["IPython"].get_ipython() )
try:
_UpperCAmelCase : List[Any] = PrecisionType(mixed_precision.lower() )
except ValueError:
raise ValueError(
f"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" )
if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME", a_ ) is not None):
# TPU launch
import torch_xla.distributed.xla_multiprocessing as xmp
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
"To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside "
"your training function. Restart your notebook and make sure no cells initializes an "
"`Accelerator`." )
if num_processes is None:
_UpperCAmelCase : Union[str, Any] = 8
_UpperCAmelCase : Tuple = PrepareForLaunch(a_, distributed_type="TPU" )
print(f"""Launching a training on {num_processes} TPU cores.""" )
xmp.spawn(a_, args=a_, nprocs=a_, start_method="fork" )
elif in_colab:
# No need for a distributed launch otherwise as it's either CPU or one GPU.
if torch.cuda.is_available():
print("Launching training on one GPU." )
else:
print("Launching training on one CPU." )
function(*a_ )
else:
if num_processes is None:
raise ValueError(
"You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." )
if num_processes > 1:
# Multi-GPU launch
from torch.multiprocessing import start_processes
from torch.multiprocessing.spawn import ProcessRaisedException
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
"To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized "
"inside your training function. Restart your notebook and make sure no cells initializes an "
"`Accelerator`." )
if torch.cuda.is_initialized():
raise ValueError(
"To launch a multi-GPU training from your notebook, you need to avoid running any instruction "
"using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA "
"function." )
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=a_, master_addr="127.0.01", master_port=a_, mixed_precision=a_ ):
_UpperCAmelCase : str = PrepareForLaunch(a_, distributed_type="MULTI_GPU" )
print(f"""Launching training on {num_processes} GPUs.""" )
try:
start_processes(a_, args=a_, nprocs=a_, start_method="fork" )
except ProcessRaisedException as e:
if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]:
raise RuntimeError(
"CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. "
"This likely stems from an outside import causing issues once the `notebook_launcher()` is called. "
"Please review your imports and test them when running the `notebook_launcher()` to identify "
"which one is problematic." ) from e
else:
# No need for a distributed launch otherwise as it's either CPU, GPU or MPS.
if is_mps_available():
_UpperCAmelCase : Any = "1"
print("Launching training on MPS." )
elif torch.cuda.is_available():
print("Launching training on one GPU." )
else:
print("Launching training on CPU." )
function(*a_ )
def __UpperCAmelCase ( a_: Tuple, a_: List[Any]=(), a_: Dict=2 ):
from torch.multiprocessing import start_processes
with tempfile.NamedTemporaryFile() as tmp_file:
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=a_, master_addr="127.0.01", master_port="29500", accelerate_mixed_precision="no", accelerate_debug_rdv_file=tmp_file.name, accelerate_use_cpu="yes", ):
_UpperCAmelCase : List[Any] = PrepareForLaunch(a_, debug=a_ )
start_processes(a_, args=a_, nprocs=a_, start_method="fork" ) | 369 | '''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class A__ :
"""simple docstring"""
UpperCamelCase_ : Any = XGLMConfig
UpperCamelCase_ : Union[str, Any] = {}
UpperCamelCase_ : Dict = '''gelu'''
def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : str = batch_size
_UpperCAmelCase : str = seq_length
_UpperCAmelCase : int = is_training
_UpperCAmelCase : List[Any] = use_input_mask
_UpperCAmelCase : Optional[int] = use_labels
_UpperCAmelCase : str = vocab_size
_UpperCAmelCase : int = d_model
_UpperCAmelCase : Tuple = num_hidden_layers
_UpperCAmelCase : Tuple = num_attention_heads
_UpperCAmelCase : Tuple = ffn_dim
_UpperCAmelCase : Any = activation_function
_UpperCAmelCase : Union[str, Any] = activation_dropout
_UpperCAmelCase : Union[str, Any] = attention_dropout
_UpperCAmelCase : Any = max_position_embeddings
_UpperCAmelCase : int = initializer_range
_UpperCAmelCase : Any = None
_UpperCAmelCase : int = 0
_UpperCAmelCase : Union[str, Any] = 2
_UpperCAmelCase : Tuple = 1
def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : int = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_UpperCAmelCase : Any = None
if self.use_input_mask:
_UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : Optional[Any] = self.get_config()
_UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , )
def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
_UpperCAmelCase : Optional[int] = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else ()
UpperCamelCase_ : Tuple = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
UpperCamelCase_ : Dict = False
UpperCamelCase_ : List[Any] = False
UpperCamelCase_ : Tuple = False
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Dict = TFXGLMModelTester(self )
_UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 )
def _lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowerCAmelCase ( self : Union[str, Any] ) -> int:
"""simple docstring"""
super().test_resize_token_embeddings()
@require_tf
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1]
# fmt: on
_UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
_UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" )
_UpperCAmelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
_UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] )
_UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[int] = "left"
# use different length sentences to test batching
_UpperCAmelCase : Tuple = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
_UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = inputs["input_ids"]
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 )
_UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids
_UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] ) | 17 | 0 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : int = KandinskyVaaImgaImgPipeline
UpperCamelCase_ : List[str] = ['''image_embeds''', '''negative_image_embeds''', '''image''']
UpperCamelCase_ : Tuple = [
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
]
UpperCamelCase_ : str = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
UpperCamelCase_ : Any = False
@property
def _lowerCAmelCase ( self : Any ) -> Tuple:
"""simple docstring"""
return 3_2
@property
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
return 3_2
@property
def _lowerCAmelCase ( self : Any ) -> Tuple:
"""simple docstring"""
return self.time_input_dim
@property
def _lowerCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
return self.time_input_dim * 4
@property
def _lowerCAmelCase ( self : Dict ) -> List[str]:
"""simple docstring"""
return 1_0_0
@property
def _lowerCAmelCase ( self : List[Any] ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
_UpperCAmelCase : Dict = {
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
_UpperCAmelCase : Dict = UNetaDConditionModel(**lowerCAmelCase__ )
return model
@property
def _lowerCAmelCase ( self : Union[str, Any] ) -> str:
"""simple docstring"""
return {
"block_out_channels": [3_2, 6_4],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def _lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
torch.manual_seed(0 )
_UpperCAmelCase : Union[str, Any] = VQModel(**self.dummy_movq_kwargs )
return model
def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.dummy_unet
_UpperCAmelCase : str = self.dummy_movq
_UpperCAmelCase : Optional[int] = {
"num_train_timesteps": 1_0_0_0,
"beta_schedule": "linear",
"beta_start": 0.0_0085,
"beta_end": 0.012,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
_UpperCAmelCase : Union[str, Any] = DDIMScheduler(**lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any]=0 ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
_UpperCAmelCase : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
lowerCAmelCase__ )
# create init_image
_UpperCAmelCase : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_UpperCAmelCase : Dict = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) )
if str(lowerCAmelCase__ ).startswith("mps" ):
_UpperCAmelCase : int = torch.manual_seed(lowerCAmelCase__ )
else:
_UpperCAmelCase : int = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = {
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 6_4,
"width": 6_4,
"num_inference_steps": 1_0,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = "cpu"
_UpperCAmelCase : List[Any] = self.get_dummy_components()
_UpperCAmelCase : Optional[int] = self.pipeline_class(**lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : int = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) )
_UpperCAmelCase : Any = output.images
_UpperCAmelCase : str = pipe(
**self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0]
_UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1]
_UpperCAmelCase : List[str] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
_UpperCAmelCase : List[str] = np.array(
[0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
@slow
@require_torch_gpu
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self : Dict ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : List[Any] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_img2img_frog.npy" )
_UpperCAmelCase : Optional[int] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
_UpperCAmelCase : List[str] = "A red cartoon frog, 4k"
_UpperCAmelCase : str = KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa )
_UpperCAmelCase : List[Any] = pipeline.to(lowerCAmelCase__ )
pipeline.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : Tuple = torch.Generator(device="cpu" ).manual_seed(0 )
_UpperCAmelCase : Optional[Any] = pipe_prior(
lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
_UpperCAmelCase : Dict = pipeline(
image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type="np" , )
_UpperCAmelCase : Optional[int] = output.images[0]
assert image.shape == (7_6_8, 7_6_8, 3)
assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
| 370 | '''simple docstring'''
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"files", [
["full:README.md", "dataset_infos.json"],
["empty:README.md", "dataset_infos.json"],
["dataset_infos.json"],
["full:README.md"],
], )
def __UpperCAmelCase ( a_: Tuple, a_: Any ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" )
if "full:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("---\ndataset_info:\n dataset_size: 42\n---" )
if "empty:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f:
f.write("{\"default\": {\"dataset_size\": 42}}" )
_UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
"dataset_info", [
DatasetInfo(),
DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ),
], )
def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ):
_UpperCAmelCase : Tuple = str(a_ )
dataset_info.write_to_directory(a_ )
_UpperCAmelCase : Any = DatasetInfo.from_directory(a_ )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(a_, "dataset_info.json" ) )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = DatasetInfo(
description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, )
_UpperCAmelCase : Tuple = dataset_info._to_yaml_dict()
assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) )
_UpperCAmelCase : List[Any] = yaml.safe_dump(a_ )
_UpperCAmelCase : Optional[int] = yaml.safe_load(a_ )
assert dataset_info_yaml_dict == reloaded
def __UpperCAmelCase ( ):
_UpperCAmelCase : str = DatasetInfo()
_UpperCAmelCase : List[str] = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"dataset_infos_dict", [
DatasetInfosDict(),
DatasetInfosDict({"default": DatasetInfo()} ),
DatasetInfosDict({"my_config_name": DatasetInfo()} ),
DatasetInfosDict(
{
"default": DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, )
} ),
DatasetInfosDict(
{
"v1": DatasetInfo(dataset_size=42 ),
"v2": DatasetInfo(dataset_size=1_337 ),
} ),
], )
def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ):
_UpperCAmelCase : Union[str, Any] = str(a_ )
dataset_infos_dict.write_to_directory(a_ )
_UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
_UpperCAmelCase : Optional[int] = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
_UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(a_, "README.md" ) ) | 17 | 0 |
'''simple docstring'''
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
__a = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class A__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0}
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : Tuple = batch_size
_UpperCAmelCase : str = num_channels
_UpperCAmelCase : Optional[Any] = image_size
_UpperCAmelCase : Dict = min_resolution
_UpperCAmelCase : str = max_resolution
_UpperCAmelCase : List[Any] = size
_UpperCAmelCase : Union[str, Any] = do_normalize
_UpperCAmelCase : Optional[Any] = do_convert_rgb
_UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6]
_UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6}
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def _lowerCAmelCase ( self : Any ) -> str:
"""simple docstring"""
_UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
_UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self )
@property
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image()
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
_UpperCAmelCase : str = 2_0_4_8
_UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) )
def _lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : Union[str, Any] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
_UpperCAmelCase : str = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(lowerCAmelCase__ ):
_UpperCAmelCase : str = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
_UpperCAmelCase : Any = "Hello"
_UpperCAmelCase : Optional[int] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : List[Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
_UpperCAmelCase : Any = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : int = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Union[str, Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : int ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 )
_UpperCAmelCase : List[Any] = 3
@property
def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : str = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Any = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Tuple = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) | 371 | '''simple docstring'''
from math import factorial
def __UpperCAmelCase ( a_: int = 100 ):
return sum(map(a_, str(factorial(a_ ) ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip()))) | 17 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json',
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = '''nllb-moe'''
UpperCamelCase_ : Union[str, Any] = ['''past_key_values''']
UpperCamelCase_ : Union[str, Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : Any , lowerCAmelCase__ : Union[str, Any]=1_2_8_1_1_2 , lowerCAmelCase__ : List[str]=1_0_2_4 , lowerCAmelCase__ : Optional[int]=1_2 , lowerCAmelCase__ : Tuple=4_0_9_6 , lowerCAmelCase__ : Union[str, Any]=1_6 , lowerCAmelCase__ : Dict=1_2 , lowerCAmelCase__ : Any=4_0_9_6 , lowerCAmelCase__ : Any=1_6 , lowerCAmelCase__ : List[Any]=0.05 , lowerCAmelCase__ : List[str]=0.05 , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : List[str]="relu" , lowerCAmelCase__ : Any=1_0_2_4 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=0.0 , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Dict="float32" , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : Union[str, Any]=1_2_8 , lowerCAmelCase__ : Dict=6_4 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : str=0.001 , lowerCAmelCase__ : Union[str, Any]=0.001 , lowerCAmelCase__ : Union[str, Any]="all" , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : str=False , lowerCAmelCase__ : List[str]=1.0 , lowerCAmelCase__ : Any=0.2 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Any=0 , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : str=False , **lowerCAmelCase__ : int , ) -> int:
"""simple docstring"""
_UpperCAmelCase : Tuple = vocab_size
_UpperCAmelCase : Tuple = max_position_embeddings
_UpperCAmelCase : Union[str, Any] = d_model
_UpperCAmelCase : str = encoder_ffn_dim
_UpperCAmelCase : Tuple = encoder_layers
_UpperCAmelCase : Tuple = encoder_attention_heads
_UpperCAmelCase : List[str] = decoder_ffn_dim
_UpperCAmelCase : List[str] = decoder_layers
_UpperCAmelCase : Optional[int] = decoder_attention_heads
_UpperCAmelCase : int = dropout
_UpperCAmelCase : List[Any] = attention_dropout
_UpperCAmelCase : Any = activation_dropout
_UpperCAmelCase : Union[str, Any] = activation_function
_UpperCAmelCase : str = init_std
_UpperCAmelCase : Union[str, Any] = encoder_layerdrop
_UpperCAmelCase : List[Any] = decoder_layerdrop
_UpperCAmelCase : int = use_cache
_UpperCAmelCase : str = encoder_layers
_UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True
_UpperCAmelCase : List[Any] = router_z_loss_coef
_UpperCAmelCase : Optional[int] = router_aux_loss_coef
_UpperCAmelCase : int = decoder_sparse_step
_UpperCAmelCase : Optional[Any] = encoder_sparse_step
_UpperCAmelCase : List[Any] = num_experts
_UpperCAmelCase : Optional[int] = expert_capacity
_UpperCAmelCase : int = router_bias
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" )
_UpperCAmelCase : int = router_dtype
_UpperCAmelCase : int = router_ignore_padding_tokens
_UpperCAmelCase : Union[str, Any] = batch_prioritized_routing
_UpperCAmelCase : Optional[int] = second_expert_policy
_UpperCAmelCase : Union[str, Any] = normalize_router_prob_before_dropping
_UpperCAmelCase : int = moe_eval_capacity_token_fraction
_UpperCAmelCase : List[str] = moe_token_dropout
_UpperCAmelCase : List[Any] = output_router_logits
super().__init__(
pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) | 350 | '''simple docstring'''
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
__a = (3, 9, -11, 0, 7, 5, 1, -1)
__a = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : int
UpperCamelCase_ : Node | None
class A__ :
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None:
"""simple docstring"""
_UpperCAmelCase : Node | None = None
for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ):
_UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head )
def __iter__( self : int ) -> Iterator[int]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.head
while node:
yield node.data
_UpperCAmelCase : List[str] = node.next_node
def __len__( self : Any ) -> int:
"""simple docstring"""
return sum(1 for _ in self )
def __str__( self : Union[str, Any] ) -> str:
"""simple docstring"""
return " -> ".join([str(lowerCAmelCase__ ) for node in self] )
def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ):
return SortedLinkedList(list(a_ ) + list(a_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
__a = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even))) | 17 | 0 |
'''simple docstring'''
class A__ :
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : str = "" , lowerCAmelCase__ : bool = False ) -> None:
"""simple docstring"""
_UpperCAmelCase : dict[str, RadixNode] = {}
# A node will be a leaf if the tree contains its word
_UpperCAmelCase : Union[str, Any] = is_leaf
_UpperCAmelCase : Any = prefix
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : str ) -> tuple[str, str, str]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = 0
for q, w in zip(self.prefix , lowerCAmelCase__ ):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : list[str] ) -> None:
"""simple docstring"""
for word in words:
self.insert(lowerCAmelCase__ )
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : str ) -> None:
"""simple docstring"""
if self.prefix == word:
_UpperCAmelCase : Optional[int] = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
_UpperCAmelCase : Dict = RadixNode(prefix=lowerCAmelCase__ , is_leaf=lowerCAmelCase__ )
else:
_UpperCAmelCase : Dict = self.nodes[word[0]]
_UpperCAmelCase : Optional[int] = incoming_node.match(
lowerCAmelCase__ )
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(lowerCAmelCase__ )
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
_UpperCAmelCase : Optional[Any] = remaining_prefix
_UpperCAmelCase : Optional[Any] = self.nodes[matching_string[0]]
_UpperCAmelCase : Optional[Any] = RadixNode(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = aux_node
if remaining_word == "":
_UpperCAmelCase : Optional[Any] = True
else:
self.nodes[matching_string[0]].insert(lowerCAmelCase__ )
def _lowerCAmelCase ( self : str , lowerCAmelCase__ : str ) -> bool:
"""simple docstring"""
_UpperCAmelCase : int = self.nodes.get(word[0] , lowerCAmelCase__ )
if not incoming_node:
return False
else:
_UpperCAmelCase : Dict = incoming_node.match(
lowerCAmelCase__ )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : str ) -> bool:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.nodes.get(word[0] , lowerCAmelCase__ )
if not incoming_node:
return False
else:
_UpperCAmelCase : Dict = incoming_node.match(
lowerCAmelCase__ )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(lowerCAmelCase__ )
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes ) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes ) == 1 and not self.is_leaf:
_UpperCAmelCase : Optional[int] = list(self.nodes.values() )[0]
_UpperCAmelCase : Union[str, Any] = merging_node.is_leaf
self.prefix += merging_node.prefix
_UpperCAmelCase : Any = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes ) > 1:
_UpperCAmelCase : int = False
# If there is 1 edge, we merge it with its child
else:
_UpperCAmelCase : str = list(incoming_node.nodes.values() )[0]
_UpperCAmelCase : str = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
_UpperCAmelCase : Optional[int] = merging_node.nodes
return True
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : int = 0 ) -> None:
"""simple docstring"""
if self.prefix != "":
print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" )
for value in self.nodes.values():
value.print_tree(height + 1 )
def __UpperCAmelCase ( ):
_UpperCAmelCase : List[Any] = "banana bananas bandana band apple all beast".split()
_UpperCAmelCase : Union[str, Any] = RadixNode()
root.insert_many(a_ )
assert all(root.find(a_ ) for word in words )
assert not root.find("bandanas" )
assert not root.find("apps" )
root.delete("all" )
assert not root.find("all" )
root.delete("banana" )
assert not root.find("banana" )
assert root.find("bananas" )
return True
def __UpperCAmelCase ( ):
assert test_trie()
def __UpperCAmelCase ( ):
_UpperCAmelCase : Dict = RadixNode()
_UpperCAmelCase : Union[str, Any] = "banana bananas bandanas bandana band apple all beast".split()
root.insert_many(a_ )
print("Words:", a_ )
print("Tree:" )
root.print_tree()
if __name__ == "__main__":
main() | 351 | '''simple docstring'''
def __UpperCAmelCase ( a_: str ):
if not all(char in "01" for char in bin_string ):
raise ValueError("Non-binary value was passed to the function" )
if not bin_string:
raise ValueError("Empty string was passed to the function" )
_UpperCAmelCase : Optional[Any] = ""
while len(a_ ) % 3 != 0:
_UpperCAmelCase : List[Any] = "0" + bin_string
_UpperCAmelCase : Dict = [
bin_string[index : index + 3]
for index in range(len(a_ ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
_UpperCAmelCase : Optional[Any] = 0
for index, val in enumerate(a_ ):
oct_val += int(2 ** (2 - index) * int(a_ ) )
oct_string += str(a_ )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod() | 17 | 0 |
'''simple docstring'''
from ... import PretrainedConfig
__a = {
'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json',
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Dict = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP
UpperCamelCase_ : Optional[Any] = '''nezha'''
def __init__( self : Any , lowerCAmelCase__ : Optional[int]=2_1_1_2_8 , lowerCAmelCase__ : List[Any]=7_6_8 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : str=1_2 , lowerCAmelCase__ : int=3_0_7_2 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Dict=6_4 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : Any=1e-12 , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Union[str, Any]=0 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : Optional[int]=True , **lowerCAmelCase__ : List[Any] , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCAmelCase : int = vocab_size
_UpperCAmelCase : Optional[int] = hidden_size
_UpperCAmelCase : Optional[Any] = num_hidden_layers
_UpperCAmelCase : int = num_attention_heads
_UpperCAmelCase : Dict = hidden_act
_UpperCAmelCase : Optional[Any] = intermediate_size
_UpperCAmelCase : Optional[Any] = hidden_dropout_prob
_UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
_UpperCAmelCase : Optional[Any] = max_position_embeddings
_UpperCAmelCase : Tuple = max_relative_position
_UpperCAmelCase : Optional[Any] = type_vocab_size
_UpperCAmelCase : int = initializer_range
_UpperCAmelCase : List[Any] = layer_norm_eps
_UpperCAmelCase : int = classifier_dropout
_UpperCAmelCase : Any = use_cache | 352 | '''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def __UpperCAmelCase ( a_: str ):
for param in module.parameters():
_UpperCAmelCase : Any = False
def __UpperCAmelCase ( ):
_UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_UpperCAmelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : int = plt.imshow(a_ )
fig.axes.get_xaxis().set_visible(a_ )
fig.axes.get_yaxis().set_visible(a_ )
plt.show()
def __UpperCAmelCase ( ):
_UpperCAmelCase : Dict = datetime.now()
_UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" )
return timestamp | 17 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.