code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCAmelCase ( a_: Optional[Any] = "https://www.worldometers.info/coronavirus" ): _UpperCAmelCase : List[Any] = BeautifulSoup(requests.get(UpperCAmelCase__ ).text, "html.parser" ) _UpperCAmelCase : int = soup.findAll("h1" ) _UpperCAmelCase : Optional[Any] = soup.findAll("div", {"class": "maincounter-number"} ) keys += soup.findAll("span", {"class": "panel-title"} ) values += soup.findAll("div", {"class": "number-table-main"} ) return {key.text.strip(): value.text.strip() for key, value in zip(UpperCAmelCase__, UpperCAmelCase__ )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(f'{key}\n{value}\n')
362
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: list[int] ): if not nums: return 0 _UpperCAmelCase : int = nums[0] _UpperCAmelCase : Dict = 0 for num in nums[1:]: _UpperCAmelCase , _UpperCAmelCase : Any = ( max_excluding + num, max(a_, a_ ), ) return max(a_, a_ ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
363
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): _UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" ) if key.startswith("module.decoder" ): _UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] _UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )] _UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" ) if "attn.q" in key: _UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Dict = key.replace("attn", "attention.self" ) if "fc1" in key: _UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" ) if "fc2" in key: _UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Any = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" ) _UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: _UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" ) if "skip_conv1" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" ) if "skip_conv2" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" ) if "fusion1" in key: _UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" ) if "fusion2" in key: _UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" ) if "fusion3" in key: _UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" ) if "fusion" in key and "conv" in key: _UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): _UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" ) _UpperCAmelCase : int = value return new_state_dict def __UpperCAmelCase ( a_: str, a_: List[Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ): _UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _UpperCAmelCase : Dict = GLPNImageProcessor() # prepare image _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) ) # rename keys _UpperCAmelCase : List[str] = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict _UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _UpperCAmelCase : Dict = model(a_ ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _UpperCAmelCase : Optional[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _UpperCAmelCase : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) _UpperCAmelCase : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
17
0
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __UpperCAmelCase ( ): _UpperCAmelCase : Any = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' _UpperCAmelCase : List[str] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) return image def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[int] = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def __UpperCAmelCase ( a_: Optional[Any], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : Dict = dct.pop(snake_case__ ) _UpperCAmelCase : str = val def __UpperCAmelCase ( a_: str, a_: Union[str, Any] ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _UpperCAmelCase : Optional[Any] = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) _UpperCAmelCase : int = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict _UpperCAmelCase : int = torch.cat((q_bias, torch.zeros_like(snake_case__, requires_grad=snake_case__ ), v_bias) ) _UpperCAmelCase : Tuple = qkv_bias def __UpperCAmelCase ( a_: Tuple, a_: Optional[Any] ): _UpperCAmelCase : str = 364 if 'coco' in model_name else 224 _UpperCAmelCase : Union[str, Any] = BlipaVisionConfig(image_size=snake_case__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _UpperCAmelCase : List[Any] = OPTConfig.from_pretrained("facebook/opt-2.7b", eos_token_id=snake_case__ ).to_dict() elif "opt-6.7b" in model_name: _UpperCAmelCase : int = OPTConfig.from_pretrained("facebook/opt-6.7b", eos_token_id=snake_case__ ).to_dict() elif "t5-xl" in model_name: _UpperCAmelCase : List[str] = TaConfig.from_pretrained("google/flan-t5-xl", dense_act_fn="gelu", bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _UpperCAmelCase : int = TaConfig.from_pretrained("google/flan-t5-xxl", dense_act_fn="gelu", bos_token_id=1 ).to_dict() _UpperCAmelCase : Any = BlipaConfig(vision_config=snake_case__, text_config=snake_case__ ) return config, image_size @torch.no_grad() def __UpperCAmelCase ( a_: int, a_: Dict=None, a_: int=False ): _UpperCAmelCase : str = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if 'opt' in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) _UpperCAmelCase : int = tokenizer("\n", add_special_tokens=snake_case__ ).input_ids[0] _UpperCAmelCase : Union[str, Any] = get_blipa_config(snake_case__, eos_token_id=snake_case__ ) _UpperCAmelCase : Dict = BlipaForConditionalGeneration(snake_case__ ).eval() _UpperCAmelCase : Optional[Any] = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } _UpperCAmelCase : Optional[Any] = model_name_to_original[model_name] # load original model print("Loading original model..." ) _UpperCAmelCase : List[str] = 'cuda' if torch.cuda.is_available() else 'cpu' _UpperCAmelCase : Tuple = load_model_and_preprocess( name=snake_case__, model_type=snake_case__, is_eval=snake_case__, device=snake_case__ ) original_model.eval() print("Done!" ) # update state dict keys _UpperCAmelCase : List[Any] = original_model.state_dict() _UpperCAmelCase : Tuple = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _UpperCAmelCase : Optional[Any] = state_dict.pop(snake_case__ ) if key.startswith("Qformer.bert" ): _UpperCAmelCase : List[str] = key.replace("Qformer.bert", "qformer" ) if "attention.self" in key: _UpperCAmelCase : Tuple = key.replace("self", "attention" ) if "opt_proj" in key: _UpperCAmelCase : Union[str, Any] = key.replace("opt_proj", "language_projection" ) if "t5_proj" in key: _UpperCAmelCase : Optional[Any] = key.replace("t5_proj", "language_projection" ) if key.startswith("opt" ): _UpperCAmelCase : Dict = key.replace("opt", "language" ) if key.startswith("t5" ): _UpperCAmelCase : Dict = key.replace("t5", "language" ) _UpperCAmelCase : Optional[int] = val # read in qv biases read_in_q_v_bias(snake_case__, snake_case__ ) _UpperCAmelCase : Any = hf_model.load_state_dict(snake_case__, strict=snake_case__ ) assert len(snake_case__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _UpperCAmelCase : List[str] = load_demo_image() _UpperCAmelCase : str = vis_processors['eval'](snake_case__ ).unsqueeze(0 ).to(snake_case__ ) _UpperCAmelCase : Any = tokenizer(["\n"], return_tensors="pt" ).input_ids.to(snake_case__ ) # create processor _UpperCAmelCase : Optional[Any] = BlipImageProcessor( size={"height": image_size, "width": image_size}, image_mean=snake_case__, image_std=snake_case__ ) _UpperCAmelCase : Any = BlipaProcessor(image_processor=snake_case__, tokenizer=snake_case__ ) _UpperCAmelCase : Optional[int] = processor(images=snake_case__, return_tensors="pt" ).pixel_values.to(snake_case__ ) # make sure processor creates exact same pixel values assert torch.allclose(snake_case__, snake_case__ ) original_model.to(snake_case__ ) hf_model.to(snake_case__ ) with torch.no_grad(): if "opt" in model_name: _UpperCAmelCase : Tuple = original_model({"image": original_pixel_values, "text_input": [""]} ).logits _UpperCAmelCase : str = hf_model(snake_case__, snake_case__ ).logits else: _UpperCAmelCase : Tuple = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits _UpperCAmelCase : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id, -100 ) _UpperCAmelCase : Optional[int] = hf_model(snake_case__, snake_case__, labels=snake_case__ ).logits assert original_logits.shape == logits.shape print("First values of original logits:", original_logits[0, :3, :3] ) print("First values of HF logits:", logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _UpperCAmelCase : List[str] = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]], device=snake_case__ ) assert torch.allclose(logits[0, :3, :3], snake_case__, atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _UpperCAmelCase : Union[str, Any] = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]], device=snake_case__ ) else: # cast to same type _UpperCAmelCase : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(snake_case__ ), snake_case__, atol=1e-2 ) print("Looks ok!" ) print("Generating a caption..." ) _UpperCAmelCase : Optional[int] = '' _UpperCAmelCase : Union[str, Any] = tokenizer(snake_case__, return_tensors="pt" ).input_ids.to(snake_case__ ) _UpperCAmelCase : str = original_model.generate({"image": original_pixel_values} ) _UpperCAmelCase : str = hf_model.generate( snake_case__, snake_case__, do_sample=snake_case__, num_beams=5, max_length=30, min_length=1, top_p=0.9, repetition_penalty=1.0, length_penalty=1.0, temperature=1, ) print("Original generation:", snake_case__ ) _UpperCAmelCase : Optional[int] = input_ids.shape[1] _UpperCAmelCase : Union[str, Any] = processor.batch_decode(outputs[:, prompt_length:], skip_special_tokens=snake_case__ ) _UpperCAmelCase : Dict = [text.strip() for text in output_text] print("HF generation:", snake_case__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case__ ) hf_model.save_pretrained(snake_case__ ) if push_to_hub: processor.push_to_hub(f"""nielsr/{model_name}""" ) hf_model.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() __a = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __a = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
364
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : int = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _UpperCAmelCase : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(a_ ) ), }, features=a_, ) return dataset @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=a_ ) return filename # FILE_CONTENT + files __a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt" _UpperCAmelCase : Tuple = FILE_CONTENT with open(a_, "w" ) as f: f.write(a_ ) return filename @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" ) with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import gzip _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _UpperCAmelCase : Any = bytes(a_, "utf-8" ) with gzip.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _UpperCAmelCase : str = bytes(a_, "utf-8" ) with lza.frame.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Any ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(a_, "w" ) as archive: archive.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: List[str] ): import tarfile _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): import lzma _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _UpperCAmelCase : List[str] = bytes(a_, "utf-8" ) with lzma.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: Tuple ): import zipfile _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _UpperCAmelCase : int = bytes(a_, "utf-8" ) with zstd.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml" _UpperCAmelCase : Tuple = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(a_, "w" ) as f: f.write(a_ ) return filename __a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : str = datasets.Dataset.from_dict(a_ ) _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(a_ ) ) as con: _UpperCAmelCase : List[Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str, a_: str ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(a_, "rb" ) as f: _UpperCAmelCase : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ): _UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) ) f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ): _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _UpperCAmelCase : Dict = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(a_, "wb" ) as f: _UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ ) _UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ ) writer.write_table(a_ ) writer.close() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : str = {"data": DATA} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(a_, "w" ) as f: for item in DATA_312: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(a_, "w" ) as f: for item in DATA_STR: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ): import gzip _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ): import gzip _UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ): _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : List[str] = ["0", "1", "2", "3"] _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Dict = ["0", "1", "2", "3"] _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = ["0", "1", "2", "3"] _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename("unsupported.ext" ) ) f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) return data_dir
17
0
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ : Dict = (PNDMScheduler,) UpperCamelCase_ : Optional[Any] = (('''num_inference_steps''', 50),) def _lowerCAmelCase ( self : str , **lowerCAmelCase__ : str ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[str]=0 , **lowerCAmelCase__ : int ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = dict(self.forward_default_kwargs ) _UpperCAmelCase : int = kwargs.pop("num_inference_steps" , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = self.dummy_sample _UpperCAmelCase : Union[str, Any] = 0.1 * sample _UpperCAmelCase : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _UpperCAmelCase : List[str] = self.get_scheduler_config(**lowerCAmelCase__ ) _UpperCAmelCase : Tuple = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals _UpperCAmelCase : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(lowerCAmelCase__ ) new_scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals _UpperCAmelCase : List[str] = dummy_past_residuals[:] _UpperCAmelCase : Union[str, Any] = scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample _UpperCAmelCase : str = new_scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _UpperCAmelCase : Dict = scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample _UpperCAmelCase : List[str] = new_scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" pass def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Optional[int]=0 , **lowerCAmelCase__ : List[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : str = dict(self.forward_default_kwargs ) _UpperCAmelCase : str = kwargs.pop("num_inference_steps" , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.dummy_sample _UpperCAmelCase : Union[str, Any] = 0.1 * sample _UpperCAmelCase : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _UpperCAmelCase : Optional[int] = self.get_scheduler_config() _UpperCAmelCase : Optional[Any] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residuals (must be after setting timesteps) _UpperCAmelCase : int = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = scheduler_class.from_pretrained(lowerCAmelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase__ ) # copy over dummy past residual (must be after setting timesteps) _UpperCAmelCase : Tuple = dummy_past_residuals[:] _UpperCAmelCase : List[Any] = scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample _UpperCAmelCase : Dict = new_scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _UpperCAmelCase : List[Any] = scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample _UpperCAmelCase : int = new_scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Dict ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] _UpperCAmelCase : Any = self.get_scheduler_config(**lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ ) _UpperCAmelCase : Dict = 1_0 _UpperCAmelCase : Any = self.dummy_model() _UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase__ ) for i, t in enumerate(scheduler.prk_timesteps ): _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _UpperCAmelCase : List[Any] = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = scheduler.step_plms(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample return sample def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = dict(self.forward_default_kwargs ) _UpperCAmelCase : List[str] = kwargs.pop("num_inference_steps" , lowerCAmelCase__ ) for scheduler_class in self.scheduler_classes: _UpperCAmelCase : Tuple = self.get_scheduler_config() _UpperCAmelCase : Tuple = scheduler_class(**lowerCAmelCase__ ) _UpperCAmelCase : str = self.dummy_sample _UpperCAmelCase : Any = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCAmelCase__ , "set_timesteps" ): scheduler.set_timesteps(lowerCAmelCase__ ) elif num_inference_steps is not None and not hasattr(lowerCAmelCase__ , "set_timesteps" ): _UpperCAmelCase : Any = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _UpperCAmelCase : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _UpperCAmelCase : Optional[int] = dummy_past_residuals[:] _UpperCAmelCase : Optional[Any] = scheduler.step_prk(lowerCAmelCase__ , 0 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample _UpperCAmelCase : Optional[int] = scheduler.step_prk(lowerCAmelCase__ , 1 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _UpperCAmelCase : List[Any] = scheduler.step_plms(lowerCAmelCase__ , 0 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample _UpperCAmelCase : Optional[Any] = scheduler.step_plms(lowerCAmelCase__ , 1 , lowerCAmelCase__ , **lowerCAmelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] _UpperCAmelCase : Dict = self.get_scheduler_config(steps_offset=1 ) _UpperCAmelCase : Dict = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , ) def _lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" for t in [1, 5, 1_0]: self.check_over_forward(time_step=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : str = 2_7 for scheduler_class in self.scheduler_classes: _UpperCAmelCase : Tuple = self.dummy_sample _UpperCAmelCase : str = 0.1 * sample _UpperCAmelCase : Tuple = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(lowerCAmelCase__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _UpperCAmelCase : int = scheduler.step_prk(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] _UpperCAmelCase : Optional[Any] = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = self.full_loop() _UpperCAmelCase : str = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Union[str, Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def _lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.full_loop(prediction_type="v_prediction" ) _UpperCAmelCase : Dict = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Dict = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Any = self.full_loop(set_alpha_to_one=lowerCAmelCase__ , beta_start=0.01 ) _UpperCAmelCase : str = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Tuple = self.full_loop(set_alpha_to_one=lowerCAmelCase__ , beta_start=0.01 ) _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Union[str, Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
365
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = BarthezTokenizer UpperCamelCase_ : List[Any] = BarthezTokenizerFast UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : Optional[int] = True def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" super().setUp() _UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = "<pad>" _UpperCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] _UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] _UpperCAmelCase : int = self.tokenizer( lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() _UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé." _UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase : Tuple = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , )
17
0
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = None UpperCamelCase_ : Dict = BloomTokenizerFast UpperCamelCase_ : List[str] = BloomTokenizerFast UpperCamelCase_ : Optional[Any] = True UpperCamelCase_ : Dict = False UpperCamelCase_ : int = """tokenizer_file""" UpperCamelCase_ : Optional[Any] = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" super().setUp() _UpperCAmelCase : Optional[Any] = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self : Optional[int] , **lowerCAmelCase__ : Tuple ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" _UpperCAmelCase : Any = self.get_rust_tokenizer() _UpperCAmelCase : List[Any] = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] _UpperCAmelCase : Dict = [[2_1_7_5, 2_3_7_1_4, 7_3_1_7_3, 1_4_4_2_5_2, 2], [7_7, 1_3_2_6_1_9, 3_4_7_8, 3_6_8, 1_0_9_5_8_6, 3_5_4_3_3, 2]] _UpperCAmelCase : Optional[int] = tokenizer.batch_encode_plus(__lowercase )['''input_ids'''] self.assertListEqual(__lowercase , __lowercase ) _UpperCAmelCase : Any = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Dict=6 ) -> Optional[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input _UpperCAmelCase : Optional[int] = '''This is a simple input''' _UpperCAmelCase : Optional[int] = ['''This is a simple input 1''', '''This is a simple input 2'''] _UpperCAmelCase : str = ('''This is a simple input''', '''This is a pair''') _UpperCAmelCase : List[str] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(__lowercase , max_length=__lowercase ) tokenizer_r.encode_plus(__lowercase , max_length=__lowercase ) tokenizer_r.batch_encode_plus(__lowercase , max_length=__lowercase ) tokenizer_r.encode(__lowercase , max_length=__lowercase ) tokenizer_r.batch_encode_plus(__lowercase , max_length=__lowercase ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) _UpperCAmelCase : Optional[Any] = None # Hotfixing padding = None self.assertRaises(__lowercase , tokenizer_r.encode , __lowercase , max_length=__lowercase , padding="max_length" ) # Simple input self.assertRaises(__lowercase , tokenizer_r.encode_plus , __lowercase , max_length=__lowercase , padding="max_length" ) # Simple input self.assertRaises( __lowercase , tokenizer_r.batch_encode_plus , __lowercase , max_length=__lowercase , padding="max_length" , ) # Pair input self.assertRaises(__lowercase , tokenizer_r.encode , __lowercase , max_length=__lowercase , padding="max_length" ) # Pair input self.assertRaises(__lowercase , tokenizer_r.encode_plus , __lowercase , max_length=__lowercase , padding="max_length" ) # Pair input self.assertRaises( __lowercase , tokenizer_r.batch_encode_plus , __lowercase , max_length=__lowercase , padding="max_length" , ) def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = self.get_rust_tokenizer() _UpperCAmelCase : str = load_dataset("xnli" , "all_languages" , split="test" , streaming=__lowercase ) _UpperCAmelCase : str = next(iter(__lowercase ) )['''premise'''] # pick up one data _UpperCAmelCase : Tuple = list(sample_data.values() ) _UpperCAmelCase : List[str] = list(map(tokenizer.encode , __lowercase ) ) _UpperCAmelCase : List[str] = [tokenizer.decode(__lowercase , clean_up_tokenization_spaces=__lowercase ) for x in output_tokens] self.assertListEqual(__lowercase , __lowercase ) def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
366
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0} _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : str = max_resolution _UpperCAmelCase : List[Any] = size _UpperCAmelCase : Union[str, Any] = do_normalize _UpperCAmelCase : Optional[Any] = do_convert_rgb _UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] _UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image() _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : str = 2_0_4_8 _UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Union[str, Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _UpperCAmelCase : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches _UpperCAmelCase : Any = "Hello" _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : List[Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) _UpperCAmelCase : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Union[str, Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCAmelCase : List[Any] = 3 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Tuple = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
17
0
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __a = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') __a = f'https://www.google.com/search?q={query}&num=100' __a = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: __a = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: __a = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
367
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''time_series_transformer''' UpperCamelCase_ : Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = prediction_length _UpperCAmelCase : Optional[Any] = context_length or prediction_length _UpperCAmelCase : Optional[Any] = distribution_output _UpperCAmelCase : Union[str, Any] = loss _UpperCAmelCase : Dict = input_size _UpperCAmelCase : int = num_time_features _UpperCAmelCase : Any = lags_sequence _UpperCAmelCase : Dict = scaling _UpperCAmelCase : Tuple = num_dynamic_real_features _UpperCAmelCase : Dict = num_static_real_features _UpperCAmelCase : Union[str, Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Optional[int] = cardinality else: _UpperCAmelCase : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : List[Any] = embedding_dimension else: _UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : str = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features _UpperCAmelCase : str = d_model _UpperCAmelCase : Optional[Any] = encoder_attention_heads _UpperCAmelCase : Dict = decoder_attention_heads _UpperCAmelCase : List[Any] = encoder_ffn_dim _UpperCAmelCase : str = decoder_ffn_dim _UpperCAmelCase : Dict = encoder_layers _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : Any = dropout _UpperCAmelCase : str = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : Dict = encoder_layerdrop _UpperCAmelCase : Any = decoder_layerdrop _UpperCAmelCase : Optional[Any] = activation_function _UpperCAmelCase : Tuple = init_std _UpperCAmelCase : List[str] = use_cache super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
0
'''simple docstring''' from __future__ import annotations import collections import pprint from pathlib import Path def __UpperCAmelCase ( a_: Union[str, Any] ): return "".join(sorted(lowerCAmelCase_ ) ) def __UpperCAmelCase ( a_: Tuple ): return word_by_signature[signature(lowerCAmelCase_ )] __a = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') __a = sorted({word.strip().lower() for word in data.splitlines()}) __a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
368
'''simple docstring''' import baseaa def __UpperCAmelCase ( a_: str ): return baseaa.baaencode(string.encode("utf-8" ) ) def __UpperCAmelCase ( a_: bytes ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": __a = 'Hello World!' __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
17
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase ( a_: Optional[Any], a_: Optional[int], a_: int, a_: int, a_: str ): # Load configuration defined in the metadata file with open(__SCREAMING_SNAKE_CASE ) as metadata_file: _UpperCAmelCase : List[Any] = json.load(__SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Dict = LukeConfig(use_entity_aware_attention=__SCREAMING_SNAKE_CASE, **metadata["model_config"] ) # Load in the weights from the checkpoint_path _UpperCAmelCase : Optional[Any] = torch.load(__SCREAMING_SNAKE_CASE, map_location="cpu" )["module"] # Load the entity vocab file _UpperCAmelCase : List[Any] = load_original_entity_vocab(__SCREAMING_SNAKE_CASE ) # add an entry for [MASK2] _UpperCAmelCase : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCAmelCase : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCAmelCase : str = AddedToken("<ent>", lstrip=__SCREAMING_SNAKE_CASE, rstrip=__SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[int] = AddedToken("<ent2>", lstrip=__SCREAMING_SNAKE_CASE, rstrip=__SCREAMING_SNAKE_CASE ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) with open(os.path.join(__SCREAMING_SNAKE_CASE, "tokenizer_config.json" ), "r" ) as f: _UpperCAmelCase : Optional[int] = json.load(__SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Any = "MLukeTokenizer" with open(os.path.join(__SCREAMING_SNAKE_CASE, "tokenizer_config.json" ), "w" ) as f: json.dump(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) with open(os.path.join(__SCREAMING_SNAKE_CASE, MLukeTokenizer.vocab_files_names["entity_vocab_file"] ), "w" ) as f: json.dump(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Tuple = MLukeTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # Initialize the embeddings of the special tokens _UpperCAmelCase : Union[str, Any] = tokenizer.convert_tokens_to_ids(["@"] )[0] _UpperCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(["#"] )[0] _UpperCAmelCase : Dict = state_dict["embeddings.word_embeddings.weight"] _UpperCAmelCase : Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) _UpperCAmelCase : int = word_emb[enta_init_index].unsqueeze(0 ) _UpperCAmelCase : str = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCAmelCase : Dict = state_dict[bias_name] _UpperCAmelCase : Union[str, Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCAmelCase : Optional[int] = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCAmelCase : Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCAmelCase : Optional[int] = f"""encoder.layer.{layer_index}.attention.self.""" _UpperCAmelCase : Tuple = state_dict[prefix + matrix_name] _UpperCAmelCase : Dict = state_dict[prefix + matrix_name] _UpperCAmelCase : Optional[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCAmelCase : int = state_dict["entity_embeddings.entity_embeddings.weight"] _UpperCAmelCase : Dict = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCAmelCase : str = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCAmelCase : List[str] = state_dict["entity_predictions.bias"] _UpperCAmelCase : Dict = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCAmelCase : str = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCAmelCase : Optional[int] = LukeForMaskedLM(config=__SCREAMING_SNAKE_CASE ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) _UpperCAmelCase : Tuple = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): _UpperCAmelCase : Any = state_dict[key] else: _UpperCAmelCase : Tuple = state_dict[key] _UpperCAmelCase : Tuple = model.load_state_dict(__SCREAMING_SNAKE_CASE, strict=__SCREAMING_SNAKE_CASE ) if set(__SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__SCREAMING_SNAKE_CASE ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCAmelCase : Tuple = MLukeTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE, task="entity_classification" ) _UpperCAmelCase : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." _UpperCAmelCase : Optional[Any] = (0, 9) _UpperCAmelCase : Optional[int] = tokenizer(__SCREAMING_SNAKE_CASE, entity_spans=[span], return_tensors="pt" ) _UpperCAmelCase : int = model(**__SCREAMING_SNAKE_CASE ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase : Dict = torch.Size((1, 33, 768) ) _UpperCAmelCase : Optional[int] = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], __SCREAMING_SNAKE_CASE, atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCAmelCase : Union[str, Any] = torch.Size((1, 1, 768) ) _UpperCAmelCase : Any = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], __SCREAMING_SNAKE_CASE, atol=1e-4 ): raise ValueError # Verify masked word/entity prediction _UpperCAmelCase : Tuple = MLukeTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) _UpperCAmelCase : List[Any] = "Tokyo is the capital of <mask>." _UpperCAmelCase : List[str] = (24, 30) _UpperCAmelCase : int = tokenizer(__SCREAMING_SNAKE_CASE, entity_spans=[span], return_tensors="pt" ) _UpperCAmelCase : Union[str, Any] = model(**__SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[int] = encoding["input_ids"][0].tolist() _UpperCAmelCase : int = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) _UpperCAmelCase : Optional[Any] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Any = outputs.entity_logits[0][0].argmax().item() _UpperCAmelCase : Union[str, Any] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(__SCREAMING_SNAKE_CASE ) ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Tuple = ["[MASK]", "[PAD]", "[UNK]"] _UpperCAmelCase : Optional[Any] = [json.loads(__SCREAMING_SNAKE_CASE ) for line in open(__SCREAMING_SNAKE_CASE )] _UpperCAmelCase : str = {} for entry in data: _UpperCAmelCase : Tuple = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCAmelCase : Optional[int] = entity_id break _UpperCAmelCase : Optional[Any] = f"""{language}:{entity_name}""" _UpperCAmelCase : Optional[int] = entity_id return new_mapping if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) __a = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
369
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" UpperCamelCase_ : Any = XGLMConfig UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Dict = '''gelu''' def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : str = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : int = d_model _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Tuple = ffn_dim _UpperCAmelCase : Any = activation_function _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Any = None _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Tuple = 1 def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _UpperCAmelCase : Any = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[Any] = self.get_config() _UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : Dict = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Tuple = False def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = TFXGLMModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on _UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) _UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" ) _UpperCAmelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): _UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) _UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[int] = "left" # use different length sentences to test batching _UpperCAmelCase : Tuple = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = inputs["input_ids"] _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 ) _UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
17
0
'''simple docstring''' def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : Tuple = [0] * len(__lowerCAmelCase ) _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Optional[Any] = [1] * len(__lowerCAmelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__lowerCAmelCase ) ): if indegree[i] == 0: queue.append(__lowerCAmelCase ) while queue: _UpperCAmelCase : Union[str, Any] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: _UpperCAmelCase : Optional[int] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__lowerCAmelCase ) print(max(__lowerCAmelCase ) ) # Adjacency list of Graph __a = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
370
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def __UpperCAmelCase ( a_: Tuple, a_: Any ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ), ], ) def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ): _UpperCAmelCase : Tuple = str(a_ ) dataset_info.write_to_directory(a_ ) _UpperCAmelCase : Any = DatasetInfo.from_directory(a_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a_, "dataset_info.json" ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, ) _UpperCAmelCase : Tuple = dataset_info._to_yaml_dict() assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) _UpperCAmelCase : List[Any] = yaml.safe_dump(a_ ) _UpperCAmelCase : Optional[int] = yaml.safe_load(a_ ) assert dataset_info_yaml_dict == reloaded def __UpperCAmelCase ( ): _UpperCAmelCase : str = DatasetInfo() _UpperCAmelCase : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1_337 ), } ), ], ) def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ): _UpperCAmelCase : Union[str, Any] = str(a_ ) dataset_infos_dict.write_to_directory(a_ ) _UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a_, "README.md" ) )
17
0
'''simple docstring''' def __UpperCAmelCase ( a_: List[str] ): if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1, len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _UpperCAmelCase : int = grid[0] for row_n in range(1, len(a_ ) ): _UpperCAmelCase : Tuple = grid[row_n] _UpperCAmelCase : int = fill_row(a_, a_ ) _UpperCAmelCase : List[Any] = grid[row_n] return grid[-1][-1] def __UpperCAmelCase ( a_: str, a_: Dict ): current_row[0] += row_above[0] for cell_n in range(1, len(a_ ) ): current_row[cell_n] += min(current_row[cell_n - 1], row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
371
'''simple docstring''' from math import factorial def __UpperCAmelCase ( a_: int = 100 ): return sum(map(a_, str(factorial(a_ ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
17
0
'''simple docstring''' import unittest from knapsack import knapsack as k class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = 0 _UpperCAmelCase : List[str] = [0] _UpperCAmelCase : Optional[Any] = [0] _UpperCAmelCase : List[str] = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 0 ) _UpperCAmelCase : List[Any] = [6_0] _UpperCAmelCase : Optional[Any] = [1_0] _UpperCAmelCase : int = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 0 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = 3 _UpperCAmelCase : Optional[Any] = [1, 2, 3] _UpperCAmelCase : List[Any] = [3, 2, 1] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 5 ) def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = 5_0 _UpperCAmelCase : Union[str, Any] = [6_0, 1_0_0, 1_2_0] _UpperCAmelCase : Union[str, Any] = [1_0, 2_0, 3_0] _UpperCAmelCase : List[str] = len(lowerCAmelCase__ ) self.assertEqual(k.knapsack(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , 2_2_0 ) if __name__ == "__main__": unittest.main()
350
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __a = (3, 9, -11, 0, 7, 5, 1, -1) __a = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : int UpperCamelCase_ : Node | None class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None: """simple docstring""" _UpperCAmelCase : Node | None = None for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ): _UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" _UpperCAmelCase : List[Any] = self.head while node: yield node.data _UpperCAmelCase : List[str] = node.next_node def __len__( self : Any ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return " -> ".join([str(lowerCAmelCase__ ) for node in self] ) def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ): return SortedLinkedList(list(a_ ) + list(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() __a = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
17
0
'''simple docstring''' from __future__ import annotations import math __a = '2020.9.26' __a = 'xcodz-dot, cclaus, dhruvmanila' def __UpperCAmelCase ( a_: float, a_: float, a_: float, a_: float, a_: float ): if not all(isinstance(a_, (float, int) ) for val in locals().values() ): _UpperCAmelCase : str = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(a_ ) _UpperCAmelCase : Optional[int] = ((x * distance) / (z + distance)) * scale _UpperCAmelCase : Optional[Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def __UpperCAmelCase ( a_: float, a_: float, a_: float, a_: str, a_: float ): if not isinstance(a_, a_ ): raise TypeError("Axis must be a str" ) _UpperCAmelCase : Optional[int] = locals() del input_variables["axis"] if not all(isinstance(a_, (float, int) ) for val in input_variables.values() ): _UpperCAmelCase : str = ( "Input values except axis must either be float or int: " f"""{list(input_variables.values() )}""" ) raise TypeError(a_ ) _UpperCAmelCase : Optional[Any] = (angle % 360) / 450 * 180 / math.pi if axis == "z": _UpperCAmelCase : Optional[int] = x * math.cos(a_ ) - y * math.sin(a_ ) _UpperCAmelCase : int = y * math.cos(a_ ) + x * math.sin(a_ ) _UpperCAmelCase : List[str] = z elif axis == "x": _UpperCAmelCase : str = y * math.cos(a_ ) - z * math.sin(a_ ) _UpperCAmelCase : Union[str, Any] = z * math.cos(a_ ) + y * math.sin(a_ ) _UpperCAmelCase : Union[str, Any] = x elif axis == "y": _UpperCAmelCase : Tuple = x * math.cos(a_ ) - z * math.sin(a_ ) _UpperCAmelCase : Optional[int] = z * math.cos(a_ ) + x * math.sin(a_ ) _UpperCAmelCase : List[str] = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f'{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }') print(f'{rotate(1.0, 2.0, 3.0, "y", 90.0) = }')
351
'''simple docstring''' def __UpperCAmelCase ( a_: str ): if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) _UpperCAmelCase : Optional[Any] = "" while len(a_ ) % 3 != 0: _UpperCAmelCase : List[Any] = "0" + bin_string _UpperCAmelCase : Dict = [ bin_string[index : index + 3] for index in range(len(a_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _UpperCAmelCase : Optional[Any] = 0 for index, val in enumerate(a_ ): oct_val += int(2 ** (2 - index) * int(a_ ) ) oct_string += str(a_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
17
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __a = logging.get_logger(__name__) __a = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __a = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } __a = { 'gpt-neox-20b': 2_048, } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = VOCAB_FILES_NAMES UpperCamelCase_ : str = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Tuple="<|endoftext|>" , lowerCAmelCase__ : str="<|endoftext|>" , lowerCAmelCase__ : Dict="<|endoftext|>" , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Union[str, Any] , ) -> Any: """simple docstring""" super().__init__( lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCAmelCase__ ) != add_prefix_space: _UpperCAmelCase : Tuple = getattr(lowerCAmelCase__ , pre_tok_state.pop("type" ) ) _UpperCAmelCase : List[str] = add_prefix_space _UpperCAmelCase : Optional[Any] = pre_tok_class(**lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = add_prefix_space def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" _UpperCAmelCase : List[Any] = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : "Conversation" ) -> List[int]: """simple docstring""" _UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) + [self.eos_token_id] ) if len(lowerCAmelCase__ ) > self.model_max_length: _UpperCAmelCase : Any = input_ids[-self.model_max_length :] return input_ids
352
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCAmelCase ( a_: str ): for param in module.parameters(): _UpperCAmelCase : Any = False def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : int = plt.imshow(a_ ) fig.axes.get_xaxis().set_visible(a_ ) fig.axes.get_yaxis().set_visible(a_ ) plt.show() def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = datetime.now() _UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" ) return timestamp
17
0
'''simple docstring''' import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : int = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ : int = '''AutoImageProcessor''' UpperCamelCase_ : str = '''AutoTokenizer''' def __init__( self : str , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Tuple=None , **lowerCAmelCase__ : Tuple ) -> Tuple: """simple docstring""" _UpperCAmelCase : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCAmelCase__ , ) _UpperCAmelCase : Tuple = kwargs.pop("feature_extractor" ) _UpperCAmelCase : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = self.image_processor _UpperCAmelCase : Any = False def __call__( self : Union[str, Any] , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : List[Any] ) -> int: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = kwargs.pop("images" , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = kwargs.pop("text" , lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: _UpperCAmelCase : Dict = args[0] _UpperCAmelCase : str = args[1:] if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: _UpperCAmelCase : Optional[Any] = self.image_processor(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) if text is not None: _UpperCAmelCase : List[str] = self.tokenizer(lowerCAmelCase__ , **lowerCAmelCase__ ) if text is None: return inputs elif images is None: return encodings else: _UpperCAmelCase : Optional[Any] = encodings["input_ids"] return inputs def _lowerCAmelCase ( self : str , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : int ) -> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Optional[Any] ) -> Any: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @contextmanager def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your images inputs, or in a separate call." ) _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : List[Any] = self.tokenizer yield _UpperCAmelCase : Union[str, Any] = self.image_processor _UpperCAmelCase : int = False def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : List[Any]=None ) -> str: """simple docstring""" if added_vocab is None: _UpperCAmelCase : str = self.tokenizer.get_added_vocab() _UpperCAmelCase : int = {} while tokens: _UpperCAmelCase : Union[str, Any] = re.search(R"<s_(.*?)>" , lowerCAmelCase__ , re.IGNORECASE ) if start_token is None: break _UpperCAmelCase : Union[str, Any] = start_token.group(1 ) _UpperCAmelCase : Union[str, Any] = re.search(RF"""</s_{key}>""" , lowerCAmelCase__ , re.IGNORECASE ) _UpperCAmelCase : Tuple = start_token.group() if end_token is None: _UpperCAmelCase : Any = tokens.replace(lowerCAmelCase__ , "" ) else: _UpperCAmelCase : Any = end_token.group() _UpperCAmelCase : Tuple = re.escape(lowerCAmelCase__ ) _UpperCAmelCase : Any = re.escape(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , lowerCAmelCase__ , re.IGNORECASE ) if content is not None: _UpperCAmelCase : Union[str, Any] = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node _UpperCAmelCase : Optional[Any] = self.tokenajson(lowerCAmelCase__ , is_inner_value=lowerCAmelCase__ , added_vocab=lowerCAmelCase__ ) if value: if len(lowerCAmelCase__ ) == 1: _UpperCAmelCase : str = value[0] _UpperCAmelCase : Tuple = value else: # leaf nodes _UpperCAmelCase : List[Any] = [] for leaf in content.split(R"<sep/>" ): _UpperCAmelCase : Union[str, Any] = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": _UpperCAmelCase : Tuple = leaf[1:-2] # for categorical special tokens output[key].append(lowerCAmelCase__ ) if len(output[key] ) == 1: _UpperCAmelCase : Tuple = output[key][0] _UpperCAmelCase : Tuple = tokens[tokens.find(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=lowerCAmelCase__ , added_vocab=lowerCAmelCase__ ) if len(lowerCAmelCase__ ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCAmelCase__ , ) return self.image_processor_class @property def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCAmelCase__ , ) return self.image_processor
353
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = (EulerDiscreteScheduler,) UpperCamelCase_ : Tuple = 10 def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : str = { "num_train_timesteps": 1_1_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : Any = self.dummy_model() _UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = output.prev_sample _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = self.dummy_model() _UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : Tuple = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = output.prev_sample _UpperCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : str = self.dummy_model() _UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : str = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : int = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : Optional[int] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
17
0
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class A__ ( unittest.TestCase , UpperCamelCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = load_tool("text-classification" ) self.tool.setup() _UpperCAmelCase : Any = load_tool("text-classification" , remote=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(lowerCAmelCase__ , "positive" ) def _lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(lowerCAmelCase__ , "positive" ) def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _UpperCAmelCase : List[str] = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(lowerCAmelCase__ , "positive" ) def _lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(lowerCAmelCase__ , "positive" )
354
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class A__ : """simple docstring""" UpperCamelCase_ : Tuple = PegasusConfig UpperCamelCase_ : str = {} UpperCamelCase_ : str = '''gelu''' def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=1_3 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : List[Any]=9_9 , lowerCAmelCase__ : int=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : Optional[int]=3_7 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Dict=4_0 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : int=1 , lowerCAmelCase__ : List[str]=0 , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : Any = seq_length _UpperCAmelCase : Optional[int] = is_training _UpperCAmelCase : str = use_labels _UpperCAmelCase : int = vocab_size _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : Optional[int] = num_attention_heads _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : List[Any] = eos_token_id _UpperCAmelCase : str = pad_token_id _UpperCAmelCase : Optional[int] = bos_token_id def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCAmelCase : Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCAmelCase : List[str] = prepare_pegasus_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : str ) -> int: """simple docstring""" _UpperCAmelCase : Union[str, Any] = TFPegasusModel(config=lowerCAmelCase__ ).get_decoder() _UpperCAmelCase : Optional[int] = inputs_dict["input_ids"] _UpperCAmelCase : List[Any] = input_ids[:1, :] _UpperCAmelCase : Union[str, Any] = inputs_dict["attention_mask"][:1, :] _UpperCAmelCase : Union[str, Any] = inputs_dict["head_mask"] _UpperCAmelCase : int = 1 # first forward pass _UpperCAmelCase : int = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase : Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCAmelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCAmelCase : Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] _UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCAmelCase : Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCAmelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx] _UpperCAmelCase : int = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1e-3 ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Tuple, a_: List[Any], a_: Optional[Any]=None, a_: Any=None, a_: Tuple=None, a_: Optional[int]=None, a_: Tuple=None, ): if attention_mask is None: _UpperCAmelCase : str = tf.cast(tf.math.not_equal(a_, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: _UpperCAmelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: _UpperCAmelCase : Optional[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCAmelCase : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCAmelCase : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Tuple = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () UpperCamelCase_ : List[str] = (TFPegasusForConditionalGeneration,) if is_tf_available() else () UpperCamelCase_ : int = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : int = False UpperCamelCase_ : Dict = False def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = TFPegasusModelTester(self ) _UpperCAmelCase : List[str] = ConfigTester(self , config_class=lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__ ) @require_sentencepiece @require_tokenizers @require_tf class A__ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] UpperCamelCase_ : List[str] = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers UpperCamelCase_ : str = '''google/pegasus-xsum''' @cached_property def _lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowerCAmelCase ( self : int , **lowerCAmelCase__ : Tuple ) -> int: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.translate_src_text(**lowerCAmelCase__ ) assert self.expected_text == generated_words def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : int = self.tokenizer(self.src_text , **lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="tf" ) _UpperCAmelCase : List[str] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowerCAmelCase__ , ) _UpperCAmelCase : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase__ ) return generated_words @slow def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" self._assert_generated_batch_equal_expected()
355
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( a_: int ): # A local function to see if a dot lands in the circle. def is_in_circle(a_: float, a_: float ) -> bool: _UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase : str = mean( int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) ) for _ in range(a_ ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase : Optional[int] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ): return mean( function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value) def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ): def identity_function(a_: float ) -> float: return x _UpperCAmelCase : Union[str, Any] = area_under_curve_estimator( a_, a_, a_, a_ ) _UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def __UpperCAmelCase ( a_: int ): def function_to_integrate(a_: float ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase : List[str] = area_under_curve_estimator( a_, a_, 0.0, 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class A__ ( metaclass=UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = ['''keras_nlp'''] def __init__( self : Tuple , *lowerCAmelCase__ : str , **lowerCAmelCase__ : int ) -> List[str]: """simple docstring""" requires_backends(self , ["keras_nlp"] )
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __a = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2FeatureExtractor'] __a = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class A__ : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=1_3 , lowerCAmelCase__ : int=7 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Any=9_9 , lowerCAmelCase__ : Optional[int]=3_2 , lowerCAmelCase__ : List[Any]=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Union[str, Any]=3_7 , lowerCAmelCase__ : Optional[int]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=5_1_2 , lowerCAmelCase__ : Optional[int]=1_6 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : Any=3 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Dict=None , ) -> Any: """simple docstring""" _UpperCAmelCase : int = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : Union[str, Any] = is_training _UpperCAmelCase : Any = use_input_mask _UpperCAmelCase : List[str] = use_token_type_ids _UpperCAmelCase : Optional[Any] = use_labels _UpperCAmelCase : Tuple = vocab_size _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : int = num_attention_heads _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : str = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = max_position_embeddings _UpperCAmelCase : str = type_vocab_size _UpperCAmelCase : int = type_sequence_label_size _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : List[str] = num_labels _UpperCAmelCase : int = num_choices _UpperCAmelCase : str = scope def _lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : str = None if self.use_input_mask: _UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[int] = None if self.use_token_type_ids: _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : List[Any] = None _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : Optional[int] = None if self.use_labels: _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : int = LlamaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Optional[int] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : int = True _UpperCAmelCase : Union[str, Any] = LlamaModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : List[Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , ) _UpperCAmelCase : Dict = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , ) _UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , ) -> Dict: """simple docstring""" _UpperCAmelCase : str = LlamaForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Dict = True _UpperCAmelCase : Union[str, Any] = LlamaForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() # first forward pass _UpperCAmelCase : List[Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ , ) _UpperCAmelCase : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) _UpperCAmelCase : List[Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0] _UpperCAmelCase : Dict = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0] # select random slice _UpperCAmelCase : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( _UpperCAmelCase ) : int = config_and_inputs _UpperCAmelCase : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Tuple = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () UpperCamelCase_ : Any = (LlamaForCausalLM,) if is_torch_available() else () UpperCamelCase_ : Dict = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : Any = False UpperCamelCase_ : Optional[int] = False def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" _UpperCAmelCase : Any = LlamaModelTester(self ) _UpperCAmelCase : Tuple = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 ) def _lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase : Tuple = type self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Tuple = 3 _UpperCAmelCase : Union[str, Any] = input_dict["input_ids"] _UpperCAmelCase : Dict = input_ids.ne(1 ).to(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase : Tuple = LlamaForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : List[Any] = 3 _UpperCAmelCase : str = "single_label_classification" _UpperCAmelCase : Optional[Any] = input_dict["input_ids"] _UpperCAmelCase : Optional[int] = input_ids.ne(1 ).to(lowerCAmelCase__ ) _UpperCAmelCase : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase : Tuple = LlamaForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : List[str] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = "multi_label_classification" _UpperCAmelCase : str = input_dict["input_ids"] _UpperCAmelCase : List[str] = input_ids.ne(1 ).to(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _UpperCAmelCase : Union[str, Any] = LlamaForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : List[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test" ) def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" pass @parameterized.expand([("linear",), ("dynamic",)] ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Optional[int] = ids_tensor([1, 1_0] , config.vocab_size ) _UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _UpperCAmelCase : List[Any] = LlamaModel(lowerCAmelCase__ ) original_model.to(lowerCAmelCase__ ) original_model.eval() _UpperCAmelCase : Any = original_model(lowerCAmelCase__ ).last_hidden_state _UpperCAmelCase : Tuple = original_model(lowerCAmelCase__ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _UpperCAmelCase : Union[str, Any] = {"type": scaling_type, "factor": 10.0} _UpperCAmelCase : Any = LlamaModel(lowerCAmelCase__ ) scaled_model.to(lowerCAmelCase__ ) scaled_model.eval() _UpperCAmelCase : Any = scaled_model(lowerCAmelCase__ ).last_hidden_state _UpperCAmelCase : List[Any] = scaled_model(lowerCAmelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-5 ) ) @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def _lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _UpperCAmelCase : Dict = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" ) _UpperCAmelCase : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _UpperCAmelCase : Any = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase__ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _UpperCAmelCase : List[str] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , lowerCAmelCase__ , atol=1e-5 , rtol=1e-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def _lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" _UpperCAmelCase : List[Any] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _UpperCAmelCase : Tuple = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" ) _UpperCAmelCase : Dict = model(torch.tensor(lowerCAmelCase__ ) ) # Expected mean on dim = -1 _UpperCAmelCase : int = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase__ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _UpperCAmelCase : Dict = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , lowerCAmelCase__ , atol=1e-5 , rtol=1e-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" ) _UpperCAmelCase : Optional[int] = model(torch.tensor(lowerCAmelCase__ ) ) # Expected mean on dim = -1 _UpperCAmelCase : Union[str, Any] = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase__ , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _UpperCAmelCase : List[str] = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase__ , atol=1e-2 , rtol=1e-2 ) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" ) @slow def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[str] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] _UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" ) _UpperCAmelCase : int = model(torch.tensor(lowerCAmelCase__ ) ) _UpperCAmelCase : List[Any] = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , lowerCAmelCase__ , atol=1e-2 , rtol=1e-2 ) # fmt: off _UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , lowerCAmelCase__ , atol=1e-5 , rtol=1e-5 ) @unittest.skip("Model is curently gated" ) @slow def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : str = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" _UpperCAmelCase : str = "Simply put, the theory of relativity states that " _UpperCAmelCase : Union[str, Any] = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ) _UpperCAmelCase : List[str] = tokenizer.encode(lowerCAmelCase__ , return_tensors="pt" ) _UpperCAmelCase : Optional[Any] = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=lowerCAmelCase__ ) # greedy generation outputs _UpperCAmelCase : Optional[int] = model.generate(lowerCAmelCase__ , max_new_tokens=6_4 , top_p=lowerCAmelCase__ , temperature=1 , do_sample=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = tokenizer.decode(generated_ids[0] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
357
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if not isinstance(a_, a_ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(a_, a_ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) _UpperCAmelCase : List[str] = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(a_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int=1_0_0 , lowerCAmelCase__ : Any=1_3 , lowerCAmelCase__ : Union[str, Any]=3_0 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : int=3_2 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Tuple=3_7 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Optional[int]=1_0 , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : List[Any]=3 , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : str = parent _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : Optional[int] = batch_size _UpperCAmelCase : List[Any] = image_size _UpperCAmelCase : int = patch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : str = is_training _UpperCAmelCase : Union[str, Any] = use_labels _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : List[Any] = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : Union[str, Any] = hidden_dropout_prob _UpperCAmelCase : str = attention_probs_dropout_prob _UpperCAmelCase : Any = type_sequence_label_size _UpperCAmelCase : str = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase : int = (image_size // patch_size) ** 2 _UpperCAmelCase : Dict = num_patches + 1 def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" _UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : List[str] = None if self.use_labels: _UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : str = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = FlaxBeitModel(config=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[Any] = FlaxBeitForMaskedImageModeling(config=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.type_sequence_label_size _UpperCAmelCase : Union[str, Any] = FlaxBeitForImageClassification(config=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase : str = 1 _UpperCAmelCase : str = FlaxBeitForImageClassification(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[str] = self.prepare_config_and_inputs() ( _UpperCAmelCase ) : Union[str, Any] = config_and_inputs _UpperCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowerCAmelCase ( self : Any ) -> None: """simple docstring""" _UpperCAmelCase : Union[str, Any] = FlaxBeitModelTester(self ) _UpperCAmelCase : str = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=3_7 ) def _lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : List[str] = model_class(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : Optional[int] = [*signature.parameters.keys()] _UpperCAmelCase : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase : Optional[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = model_class(lowerCAmelCase__ ) @jax.jit def model_jitted(lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Optional[int] ): return model(pixel_values=lowerCAmelCase__ , **lowerCAmelCase__ ) with self.subTest("JIT Enabled" ): _UpperCAmelCase : Any = model_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _UpperCAmelCase : int = model_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : str ) -> Any: """simple docstring""" for model_class_name in self.all_model_classes: _UpperCAmelCase : Any = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) _UpperCAmelCase : List[Any] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(lowerCAmelCase__ ) def __UpperCAmelCase ( ): _UpperCAmelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @require_flax class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : str = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) _UpperCAmelCase : Dict = self.default_image_processor _UpperCAmelCase : str = prepare_img() _UpperCAmelCase : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="np" ).pixel_values # prepare bool_masked_pos _UpperCAmelCase : Optional[int] = np.ones((1, 1_9_6) , dtype=lowerCAmelCase__ ) # forward pass _UpperCAmelCase : Optional[int] = model(pixel_values=lowerCAmelCase__ , bool_masked_pos=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = outputs.logits # verify the logits _UpperCAmelCase : Dict = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape , lowerCAmelCase__ ) _UpperCAmelCase : Dict = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , lowerCAmelCase__ , atol=1e-2 ) ) @slow def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : int = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) _UpperCAmelCase : str = self.default_image_processor _UpperCAmelCase : str = prepare_img() _UpperCAmelCase : List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="np" ) # forward pass _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase__ ) _UpperCAmelCase : Tuple = outputs.logits # verify the logits _UpperCAmelCase : str = (1, 1_0_0_0) self.assertEqual(logits.shape , lowerCAmelCase__ ) _UpperCAmelCase : Dict = np.array([-1.2385, -1.0987, -1.0108] ) self.assertTrue(np.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) _UpperCAmelCase : List[Any] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) _UpperCAmelCase : List[str] = self.default_image_processor _UpperCAmelCase : Optional[int] = prepare_img() _UpperCAmelCase : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="np" ) # forward pass _UpperCAmelCase : Optional[int] = model(**lowerCAmelCase__ ) _UpperCAmelCase : List[str] = outputs.logits # verify the logits _UpperCAmelCase : str = (1, 2_1_8_4_1) self.assertEqual(logits.shape , lowerCAmelCase__ ) _UpperCAmelCase : int = np.array([1.6881, -0.2787, 0.5901] ) self.assertTrue(np.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) _UpperCAmelCase : int = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase__ )
358
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') __a = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" if self.train_file is not None: _UpperCAmelCase : List[Any] = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCAmelCase : List[str] = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A__ : """simple docstring""" UpperCamelCase_ : PreTrainedTokenizerBase UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[int] = None def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels" _UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features] _UpperCAmelCase : str = len(lowerCAmelCase__ ) _UpperCAmelCase : int = len(features[0]["input_ids"] ) _UpperCAmelCase : str = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features ] _UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) ) _UpperCAmelCase : Any = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) return batch def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag", a_, a_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCAmelCase : Union[str, Any] = {} if data_args.train_file is not None: _UpperCAmelCase : str = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase : Optional[Any] = data_args.validation_file _UpperCAmelCase : Dict = data_args.train_file.split("." )[-1] _UpperCAmelCase : Optional[int] = load_dataset( a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: # Downloading and loading the swag dataset from the hub. _UpperCAmelCase : Dict = load_dataset( "swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )] _UpperCAmelCase : List[Any] = "sent1" _UpperCAmelCase : Optional[int] = "sent2" if data_args.max_seq_length is None: _UpperCAmelCase : List[str] = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _UpperCAmelCase : Dict = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]] _UpperCAmelCase : Tuple = examples[question_header_name] _UpperCAmelCase : Optional[Any] = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ ) ] # Flatten out _UpperCAmelCase : List[str] = list(chain(*a_ ) ) _UpperCAmelCase : Dict = list(chain(*a_ ) ) # Tokenize _UpperCAmelCase : List[Any] = tokenizer( a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _UpperCAmelCase : int = raw_datasets["train"] if data_args.max_train_samples is not None: _UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples ) _UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _UpperCAmelCase : Union[str, Any] = train_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _UpperCAmelCase : Dict = raw_datasets["validation"] if data_args.max_eval_samples is not None: _UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples ) _UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _UpperCAmelCase : Optional[int] = eval_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator _UpperCAmelCase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a_: Tuple ): _UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions _UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCAmelCase : Any = Trainer( model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, ) # Training if training_args.do_train: _UpperCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : List[str] = last_checkpoint _UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase : str = train_result.metrics _UpperCAmelCase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) _UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) ) trainer.log_metrics("train", a_ ) trainer.save_metrics("train", a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase : List[Any] = trainer.evaluate() _UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) _UpperCAmelCase : Tuple = min(a_, len(a_ ) ) trainer.log_metrics("eval", a_ ) trainer.save_metrics("eval", a_ ) _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __UpperCAmelCase ( a_: int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
17
0
'''simple docstring''' from math import pi, sqrt def __UpperCAmelCase ( a_: float ): if num <= 0: raise ValueError("math domain error" ) if num > 171.5: raise OverflowError("math range error" ) elif num - int(a_ ) not in (0, 0.5): raise NotImplementedError("num must be an integer or a half-integer" ) elif num == 0.5: return sqrt(a_ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __UpperCAmelCase ( ): assert gamma(0.5 ) == sqrt(a_ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __a = 1.0 while num: __a = float(input('Gamma of: ')) print(f'gamma({num}) = {gamma(num)}') print('\nEnter 0 to exit...')
359
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str: """simple docstring""" super().__init__() _UpperCAmelCase : List[str] = model _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass def __UpperCAmelCase ( a_: str, a_: str, a_: str ): # load longformer model from model identifier _UpperCAmelCase : int = LongformerModel.from_pretrained(a_ ) _UpperCAmelCase : Any = LightningModel(a_ ) _UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model _UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(a_ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
0
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): return int(input_a == input_a == 0 ) def __UpperCAmelCase ( ): print("Truth Table of NOR Gate:" ) print("| Input 1 | Input 2 | Output |" ) print(f"""| 0 | 0 | {nor_gate(0, 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0, 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1, 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1, 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
360
'''simple docstring''' from importlib import import_module from .logging import get_logger __a = get_logger(__name__) class A__ : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class A__ : """simple docstring""" UpperCamelCase_ : Union[str, Any] = [] def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = obj _UpperCAmelCase : int = target _UpperCAmelCase : Optional[int] = new _UpperCAmelCase : Any = target.split("." )[0] _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : Dict = attrs or [] def __enter__( self : List[str] ) -> int: """simple docstring""" *_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: _UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCAmelCase : Tuple = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) _UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: _UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCAmelCase : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.__enter__() self._active_patches.append(self ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
17
0
'''simple docstring''' import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def __UpperCAmelCase ( a_: str, a_: Dict, a_: Optional[int], a_: int ): _UpperCAmelCase : str = s.rsplit(a_, a_ ) return new.join(a_ ) def __UpperCAmelCase ( a_: Union[str, Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[Any] = {} _UpperCAmelCase : Dict = ["group_1", "group_2", "group_3", "group_4"] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: _UpperCAmelCase : Optional[Any] = key.replace(f"""{group_key}.""", f"""{group_key}.group.""" ) if "res_path" in key: _UpperCAmelCase : Optional[int] = key.replace("res_path.", "res_path.path." ) if key.endswith(".w" ): _UpperCAmelCase : Optional[int] = rreplace(a_, ".w", ".weight", 1 ) if key.endswith(".b" ): _UpperCAmelCase : Any = rreplace(a_, ".b", ".bias", 1 ) _UpperCAmelCase : Optional[Any] = value.float() return upgrade @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Dict, a_: Optional[int]=None, a_: Optional[int]=True ): from dall_e import Encoder _UpperCAmelCase : Dict = Encoder() if os.path.exists(a_ ): _UpperCAmelCase : Any = torch.load(a_ ) else: _UpperCAmelCase : List[Any] = torch.hub.load_state_dict_from_url(a_ ) if isinstance(a_, a_ ): _UpperCAmelCase : List[Any] = ckpt.state_dict() encoder.load_state_dict(a_ ) if config_path is not None: _UpperCAmelCase : Optional[int] = FlavaImageCodebookConfig.from_pretrained(a_ ) else: _UpperCAmelCase : List[str] = FlavaImageCodebookConfig() _UpperCAmelCase : int = FlavaImageCodebook(a_ ).eval() _UpperCAmelCase : str = encoder.state_dict() _UpperCAmelCase : Optional[int] = upgrade_state_dict(a_ ) hf_model.load_state_dict(a_ ) _UpperCAmelCase : List[str] = hf_model.state_dict() _UpperCAmelCase : Optional[Any] = count_parameters(a_ ) _UpperCAmelCase : Optional[Any] = count_parameters(a_ ) assert torch.allclose(a_, a_, atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(a_ ) else: return hf_state_dict if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') __a = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
361
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a = datasets.utils.logging.get_logger(__name__) __a = ['names', 'prefix'] __a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __a = ['encoding_errors', 'on_bad_lines'] __a = ['date_format'] @dataclass class A__ ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_00_00 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase : Any = self.delimiter if self.column_names is not None: _UpperCAmelCase : List[Any] = self.column_names @property def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase_ : int = CsvConfig def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : str = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase : Tuple = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): _UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
17
0
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __a = logging.get_logger(__name__) __a = TypeVar('DatasetType', Dataset, IterableDataset) def __UpperCAmelCase ( a_: List[DatasetType], a_: Optional[List[float]] = None, a_: Optional[int] = None, a_: Optional[DatasetInfo] = None, a_: Optional[NamedSplit] = None, a_: Literal["first_exhausted", "all_exhausted"] = "first_exhausted", ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(a_ ): if not isinstance(a_, (Dataset, IterableDataset) ): if isinstance(a_, (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ "is an empty dataset dictionary." ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(a_ )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(a_ ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(a_ ).__name__}.""" ) if i == 0: _UpperCAmelCase : Union[str, Any] = ( (Dataset, IterableDataset) if isinstance(a_, a_ ) else (IterableDataset, Dataset) ) elif not isinstance(a_, a_ ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( a_, a_, a_, info=a_, split=a_, stopping_strategy=a_ ) else: return _interleave_iterable_datasets( a_, a_, a_, info=a_, split=a_, stopping_strategy=a_ ) def __UpperCAmelCase ( a_: List[DatasetType], a_: Optional[DatasetInfo] = None, a_: Optional[NamedSplit] = None, a_: int = 0, ): if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(a_ ): if not isinstance(a_, (Dataset, IterableDataset) ): if isinstance(a_, (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ "is an empty dataset dictionary." ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(a_ )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(a_ ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(a_ ).__name__}.""" ) if i == 0: _UpperCAmelCase : Optional[int] = ( (Dataset, IterableDataset) if isinstance(a_, a_ ) else (IterableDataset, Dataset) ) elif not isinstance(a_, a_ ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(a_, info=a_, split=a_, axis=a_ ) else: return _concatenate_iterable_datasets(a_, info=a_, split=a_, axis=a_ )
362
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: list[int] ): if not nums: return 0 _UpperCAmelCase : int = nums[0] _UpperCAmelCase : Dict = 0 for num in nums[1:]: _UpperCAmelCase , _UpperCAmelCase : Any = ( max_excluding + num, max(a_, a_ ), ) return max(a_, a_ ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''time_series_transformer''' UpperCamelCase_ : Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = prediction_length _UpperCAmelCase : Optional[Any] = context_length or prediction_length _UpperCAmelCase : Optional[Any] = distribution_output _UpperCAmelCase : Union[str, Any] = loss _UpperCAmelCase : Dict = input_size _UpperCAmelCase : int = num_time_features _UpperCAmelCase : Any = lags_sequence _UpperCAmelCase : Dict = scaling _UpperCAmelCase : Tuple = num_dynamic_real_features _UpperCAmelCase : Dict = num_static_real_features _UpperCAmelCase : Union[str, Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Optional[int] = cardinality else: _UpperCAmelCase : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : List[Any] = embedding_dimension else: _UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : str = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features _UpperCAmelCase : str = d_model _UpperCAmelCase : Optional[Any] = encoder_attention_heads _UpperCAmelCase : Dict = decoder_attention_heads _UpperCAmelCase : List[Any] = encoder_ffn_dim _UpperCAmelCase : str = decoder_ffn_dim _UpperCAmelCase : Dict = encoder_layers _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : Any = dropout _UpperCAmelCase : str = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : Dict = encoder_layerdrop _UpperCAmelCase : Any = decoder_layerdrop _UpperCAmelCase : Optional[Any] = activation_function _UpperCAmelCase : Tuple = init_std _UpperCAmelCase : List[str] = use_cache super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
363
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): _UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" ) if key.startswith("module.decoder" ): _UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] _UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )] _UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" ) if "attn.q" in key: _UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Dict = key.replace("attn", "attention.self" ) if "fc1" in key: _UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" ) if "fc2" in key: _UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Any = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" ) _UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: _UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" ) if "skip_conv1" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" ) if "skip_conv2" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" ) if "fusion1" in key: _UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" ) if "fusion2" in key: _UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" ) if "fusion3" in key: _UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" ) if "fusion" in key and "conv" in key: _UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): _UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" ) _UpperCAmelCase : int = value return new_state_dict def __UpperCAmelCase ( a_: str, a_: List[Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ): _UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _UpperCAmelCase : Dict = GLPNImageProcessor() # prepare image _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) ) # rename keys _UpperCAmelCase : List[str] = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict _UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _UpperCAmelCase : Dict = model(a_ ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _UpperCAmelCase : Optional[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _UpperCAmelCase : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) _UpperCAmelCase : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
17
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): _UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" ) if key.startswith("module.decoder" ): _UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] _UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )] _UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" ) if "attn.q" in key: _UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Dict = key.replace("attn", "attention.self" ) if "fc1" in key: _UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" ) if "fc2" in key: _UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Any = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" ) _UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: _UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" ) if "skip_conv1" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" ) if "skip_conv2" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" ) if "fusion1" in key: _UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" ) if "fusion2" in key: _UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" ) if "fusion3" in key: _UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" ) if "fusion" in key and "conv" in key: _UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): _UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" ) _UpperCAmelCase : int = value return new_state_dict def __UpperCAmelCase ( a_: str, a_: List[Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ): _UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _UpperCAmelCase : Dict = GLPNImageProcessor() # prepare image _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) ) # rename keys _UpperCAmelCase : List[str] = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict _UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _UpperCAmelCase : Dict = model(a_ ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _UpperCAmelCase : Optional[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _UpperCAmelCase : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) _UpperCAmelCase : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
364
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : int = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _UpperCAmelCase : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(a_ ) ), }, features=a_, ) return dataset @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=a_ ) return filename # FILE_CONTENT + files __a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt" _UpperCAmelCase : Tuple = FILE_CONTENT with open(a_, "w" ) as f: f.write(a_ ) return filename @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" ) with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import gzip _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _UpperCAmelCase : Any = bytes(a_, "utf-8" ) with gzip.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _UpperCAmelCase : str = bytes(a_, "utf-8" ) with lza.frame.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Any ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(a_, "w" ) as archive: archive.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: List[str] ): import tarfile _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): import lzma _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _UpperCAmelCase : List[str] = bytes(a_, "utf-8" ) with lzma.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: Tuple ): import zipfile _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _UpperCAmelCase : int = bytes(a_, "utf-8" ) with zstd.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml" _UpperCAmelCase : Tuple = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(a_, "w" ) as f: f.write(a_ ) return filename __a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : str = datasets.Dataset.from_dict(a_ ) _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(a_ ) ) as con: _UpperCAmelCase : List[Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str, a_: str ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(a_, "rb" ) as f: _UpperCAmelCase : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ): _UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) ) f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ): _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _UpperCAmelCase : Dict = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(a_, "wb" ) as f: _UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ ) _UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ ) writer.write_table(a_ ) writer.close() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : str = {"data": DATA} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(a_, "w" ) as f: for item in DATA_312: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(a_, "w" ) as f: for item in DATA_STR: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ): import gzip _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ): import gzip _UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ): _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : List[str] = ["0", "1", "2", "3"] _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Dict = ["0", "1", "2", "3"] _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = ["0", "1", "2", "3"] _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename("unsupported.ext" ) ) f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) return data_dir
17
0
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def __UpperCAmelCase ( a_: Tuple, a_: Any ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ), ], ) def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ): _UpperCAmelCase : Tuple = str(a_ ) dataset_info.write_to_directory(a_ ) _UpperCAmelCase : Any = DatasetInfo.from_directory(a_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a_, "dataset_info.json" ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, ) _UpperCAmelCase : Tuple = dataset_info._to_yaml_dict() assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) _UpperCAmelCase : List[Any] = yaml.safe_dump(a_ ) _UpperCAmelCase : Optional[int] = yaml.safe_load(a_ ) assert dataset_info_yaml_dict == reloaded def __UpperCAmelCase ( ): _UpperCAmelCase : str = DatasetInfo() _UpperCAmelCase : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1_337 ), } ), ], ) def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ): _UpperCAmelCase : Union[str, Any] = str(a_ ) dataset_infos_dict.write_to_directory(a_ ) _UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a_, "README.md" ) )
365
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = BarthezTokenizer UpperCamelCase_ : List[Any] = BarthezTokenizerFast UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : Optional[int] = True def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" super().setUp() _UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = "<pad>" _UpperCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] _UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] _UpperCAmelCase : int = self.tokenizer( lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() _UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé." _UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase : Tuple = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , )
17
0
'''simple docstring''' import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : int , *lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Dict=None , **lowerCAmelCase__ : str ) -> int: """simple docstring""" super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = eval_examples _UpperCAmelCase : List[Any] = post_process_function def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Optional[Dataset] = None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[List[str]] = None , lowerCAmelCase__ : str = "eval" , **lowerCAmelCase__ : Any , ) -> Dict[str, float]: """simple docstring""" _UpperCAmelCase : List[Any] = gen_kwargs.copy() _UpperCAmelCase : Union[str, Any] = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) _UpperCAmelCase : Optional[Any] = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) _UpperCAmelCase : Dict = gen_kwargs _UpperCAmelCase : Any = self.eval_dataset if eval_dataset is None else eval_dataset _UpperCAmelCase : Any = self.get_eval_dataloader(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _UpperCAmelCase : Dict = self.compute_metrics _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Tuple = time.time() _UpperCAmelCase : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _UpperCAmelCase : Optional[Any] = eval_loop( lowerCAmelCase__ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , metric_key_prefix=lowerCAmelCase__ , ) finally: _UpperCAmelCase : Any = compute_metrics _UpperCAmelCase : List[Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowerCAmelCase__ , lowerCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _UpperCAmelCase : Optional[Any] = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = self.compute_metrics(lowerCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): _UpperCAmelCase : List[str] = metrics.pop(lowerCAmelCase__ ) metrics.update(output.metrics ) else: _UpperCAmelCase : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowerCAmelCase__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _UpperCAmelCase : Union[str, Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCAmelCase__ ) return metrics def _lowerCAmelCase ( self : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str = "test" , **lowerCAmelCase__ : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = gen_kwargs.copy() _UpperCAmelCase : Any = self.get_test_dataloader(lowerCAmelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. _UpperCAmelCase : List[Any] = self.compute_metrics _UpperCAmelCase : Tuple = None _UpperCAmelCase : str = time.time() _UpperCAmelCase : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _UpperCAmelCase : Optional[int] = eval_loop( lowerCAmelCase__ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , metric_key_prefix=lowerCAmelCase__ , ) finally: _UpperCAmelCase : Optional[Any] = compute_metrics _UpperCAmelCase : Optional[Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( lowerCAmelCase__ , lowerCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _UpperCAmelCase : Dict = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , "predict" ) _UpperCAmelCase : Union[str, Any] = self.compute_metrics(lowerCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): _UpperCAmelCase : Tuple = metrics.pop(lowerCAmelCase__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCAmelCase__ )
366
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0} _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : str = max_resolution _UpperCAmelCase : List[Any] = size _UpperCAmelCase : Union[str, Any] = do_normalize _UpperCAmelCase : Optional[Any] = do_convert_rgb _UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] _UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image() _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : str = 2_0_4_8 _UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Union[str, Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _UpperCAmelCase : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches _UpperCAmelCase : Any = "Hello" _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : List[Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) _UpperCAmelCase : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Union[str, Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCAmelCase : List[Any] = 3 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Tuple = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
17
0
'''simple docstring''' import baseaa def __UpperCAmelCase ( a_: str ): return baseaa.baaencode(string.encode("utf-8" ) ) def __UpperCAmelCase ( a_: bytes ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": __a = 'Hello World!' __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
367
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''time_series_transformer''' UpperCamelCase_ : Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = prediction_length _UpperCAmelCase : Optional[Any] = context_length or prediction_length _UpperCAmelCase : Optional[Any] = distribution_output _UpperCAmelCase : Union[str, Any] = loss _UpperCAmelCase : Dict = input_size _UpperCAmelCase : int = num_time_features _UpperCAmelCase : Any = lags_sequence _UpperCAmelCase : Dict = scaling _UpperCAmelCase : Tuple = num_dynamic_real_features _UpperCAmelCase : Dict = num_static_real_features _UpperCAmelCase : Union[str, Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Optional[int] = cardinality else: _UpperCAmelCase : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : List[Any] = embedding_dimension else: _UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : str = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features _UpperCAmelCase : str = d_model _UpperCAmelCase : Optional[Any] = encoder_attention_heads _UpperCAmelCase : Dict = decoder_attention_heads _UpperCAmelCase : List[Any] = encoder_ffn_dim _UpperCAmelCase : str = decoder_ffn_dim _UpperCAmelCase : Dict = encoder_layers _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : Any = dropout _UpperCAmelCase : str = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : Dict = encoder_layerdrop _UpperCAmelCase : Any = decoder_layerdrop _UpperCAmelCase : Optional[Any] = activation_function _UpperCAmelCase : Tuple = init_std _UpperCAmelCase : List[str] = use_cache super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
0
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: list[int] ): if not nums: return 0 _UpperCAmelCase : int = nums[0] _UpperCAmelCase : Dict = 0 for num in nums[1:]: _UpperCAmelCase : Any = ( max_excluding + num, max(a_, a_ ), ) return max(a_, a_ ) if __name__ == "__main__": import doctest doctest.testmod()
368
'''simple docstring''' import baseaa def __UpperCAmelCase ( a_: str ): return baseaa.baaencode(string.encode("utf-8" ) ) def __UpperCAmelCase ( a_: bytes ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": __a = 'Hello World!' __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
17
0
'''simple docstring''' def __UpperCAmelCase ( a_: float, a_: float ): if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
369
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" UpperCamelCase_ : Any = XGLMConfig UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Dict = '''gelu''' def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : str = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : int = d_model _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Tuple = ffn_dim _UpperCAmelCase : Any = activation_function _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Any = None _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Tuple = 1 def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _UpperCAmelCase : Any = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[Any] = self.get_config() _UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : Dict = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Tuple = False def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = TFXGLMModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on _UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) _UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" ) _UpperCAmelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): _UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) _UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[int] = "left" # use different length sentences to test batching _UpperCAmelCase : Tuple = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = inputs["input_ids"] _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 ) _UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
17
0
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __a = 16 __a = 32 def __UpperCAmelCase ( a_: Accelerator, a_: int = 16, a_: str = "bert-base-cased" ): _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(a_ ) _UpperCAmelCase : Union[str, Any] = load_dataset("glue", "mrpc" ) def tokenize_function(a_: Any ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : Union[str, Any] = tokenizer(examples["sentence1"], examples["sentence2"], truncation=a_, max_length=a_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _UpperCAmelCase : List[Any] = datasets.map( a_, batched=a_, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=a_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : Union[str, Any] = tokenized_datasets.rename_column("label", "labels" ) def collate_fn(a_: Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(a_, padding="max_length", max_length=128, return_tensors="pt" ) return tokenizer.pad(a_, padding="longest", return_tensors="pt" ) # Instantiate dataloaders. _UpperCAmelCase : List[str] = DataLoader( tokenized_datasets["train"], shuffle=a_, collate_fn=a_, batch_size=a_ ) _UpperCAmelCase : Any = DataLoader( tokenized_datasets["validation"], shuffle=a_, collate_fn=a_, batch_size=a_ ) return train_dataloader, eval_dataloader def __UpperCAmelCase ( a_: Optional[int], a_: str ): # Initialize accelerator _UpperCAmelCase : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Tuple = config["lr"] _UpperCAmelCase : List[Any] = int(config["num_epochs"] ) _UpperCAmelCase : Optional[int] = int(config["seed"] ) _UpperCAmelCase : Optional[Any] = int(config["batch_size"] ) _UpperCAmelCase : List[Any] = args.model_name_or_path set_seed(a_ ) _UpperCAmelCase : Optional[Any] = get_dataloaders(a_, a_, a_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained(a_, return_dict=a_ ) # Instantiate optimizer _UpperCAmelCase : str = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _UpperCAmelCase : Union[str, Any] = optimizer_cls(params=model.parameters(), lr=a_ ) if accelerator.state.deepspeed_plugin is not None: _UpperCAmelCase : int = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: _UpperCAmelCase : int = 1 _UpperCAmelCase : List[Any] = (len(a_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _UpperCAmelCase : Optional[int] = get_linear_schedule_with_warmup( optimizer=a_, num_warmup_steps=0, num_training_steps=a_, ) else: _UpperCAmelCase : str = DummyScheduler(a_, total_num_steps=a_, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase : List[str] = accelerator.prepare( a_, a_, a_, a_, a_ ) # We need to keep track of how many total steps we have iterated over _UpperCAmelCase : Any = 0 # We also need to keep track of the stating epoch so files are named properly _UpperCAmelCase : List[Any] = 0 # Now we train the model _UpperCAmelCase : str = evaluate.load("glue", "mrpc" ) _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : int = {} for epoch in range(a_, a_ ): model.train() for step, batch in enumerate(a_ ): _UpperCAmelCase : Tuple = model(**a_ ) _UpperCAmelCase : Tuple = outputs.loss _UpperCAmelCase : Tuple = loss / gradient_accumulation_steps accelerator.backward(a_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() _UpperCAmelCase : Tuple = 0 for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : Optional[Any] = model(**a_ ) _UpperCAmelCase : Union[str, Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _UpperCAmelCase : Dict = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(a_ ) - 1: _UpperCAmelCase : int = predictions[: len(eval_dataloader.dataset ) - samples_seen] _UpperCAmelCase : Union[str, Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=a_, references=a_, ) _UpperCAmelCase : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", a_ ) _UpperCAmelCase : List[str] = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: _UpperCAmelCase : Optional[Any] = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, "all_results.json" ), "w" ) as f: json.dump(a_, a_ ) def __UpperCAmelCase ( ): _UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path", type=a_, default="bert-base-cased", help="Path to pretrained model or model identifier from huggingface.co/models.", required=a_, ) parser.add_argument( "--output_dir", type=a_, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--performance_lower_bound", type=a_, default=a_, help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.", ) parser.add_argument( "--num_epochs", type=a_, default=3, help="Number of train epochs.", ) _UpperCAmelCase : List[Any] = parser.parse_args() _UpperCAmelCase : int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(a_, a_ ) if __name__ == "__main__": main()
370
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def __UpperCAmelCase ( a_: Tuple, a_: Any ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ), ], ) def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ): _UpperCAmelCase : Tuple = str(a_ ) dataset_info.write_to_directory(a_ ) _UpperCAmelCase : Any = DatasetInfo.from_directory(a_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a_, "dataset_info.json" ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, ) _UpperCAmelCase : Tuple = dataset_info._to_yaml_dict() assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) _UpperCAmelCase : List[Any] = yaml.safe_dump(a_ ) _UpperCAmelCase : Optional[int] = yaml.safe_load(a_ ) assert dataset_info_yaml_dict == reloaded def __UpperCAmelCase ( ): _UpperCAmelCase : str = DatasetInfo() _UpperCAmelCase : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1_337 ), } ), ], ) def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ): _UpperCAmelCase : Union[str, Any] = str(a_ ) dataset_infos_dict.write_to_directory(a_ ) _UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a_, "README.md" ) )
17
0
'''simple docstring''' __a = 65_521 def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : str = 0 for plain_chr in plain_text: _UpperCAmelCase : Union[str, Any] = (a + ord(a_ )) % MOD_ADLER _UpperCAmelCase : List[str] = (b + a) % MOD_ADLER return (b << 16) | a
371
'''simple docstring''' from math import factorial def __UpperCAmelCase ( a_: int = 100 ): return sum(map(a_, str(factorial(a_ ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
17
0
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __a = logging.get_logger(__name__) __a = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED __a = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } __a = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) _UpperCAmelCase : List[str] = bs[:] _UpperCAmelCase : Optional[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(a_ ) cs.append(2**8 + n ) n += 1 _UpperCAmelCase : Dict = [chr(a_ ) for n in cs] return dict(zip(a_, a_ ) ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = set() _UpperCAmelCase : List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase : Optional[int] = char return pairs class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int="replace" , lowerCAmelCase__ : Optional[int]="<s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : List[str]="</s>" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : List[Any]="<unk>" , lowerCAmelCase__ : int="<pad>" , lowerCAmelCase__ : str="<mask>" , lowerCAmelCase__ : List[Any]=False , **lowerCAmelCase__ : Tuple , ) -> Any: """simple docstring""" _UpperCAmelCase : int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token _UpperCAmelCase : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token _UpperCAmelCase : Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token _UpperCAmelCase : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token _UpperCAmelCase : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token _UpperCAmelCase : Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8" ) as vocab_handle: _UpperCAmelCase : List[str] = json.load(lowerCAmelCase__ ) _UpperCAmelCase : int = {v: k for k, v in self.encoder.items()} _UpperCAmelCase : Any = errors # how to handle errors in decoding _UpperCAmelCase : Optional[int] = bytes_to_unicode() _UpperCAmelCase : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8" ) as merges_handle: _UpperCAmelCase : Optional[int] = merges_handle.read().split("\n" )[1:-1] _UpperCAmelCase : int = [tuple(merge.split() ) for merge in bpe_merges] _UpperCAmelCase : Union[str, Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) _UpperCAmelCase : str = {} _UpperCAmelCase : Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCAmelCase : Any = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" return len(self.encoder ) def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : str ) -> Tuple: """simple docstring""" if token in self.cache: return self.cache[token] _UpperCAmelCase : Union[str, Any] = tuple(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: _UpperCAmelCase : int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break _UpperCAmelCase : Union[str, Any] = bigram _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = 0 while i < len(lowerCAmelCase__ ): try: _UpperCAmelCase : Optional[int] = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCAmelCase : str = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCAmelCase : int = tuple(lowerCAmelCase__ ) _UpperCAmelCase : Any = new_word if len(lowerCAmelCase__ ) == 1: break else: _UpperCAmelCase : List[Any] = get_pairs(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = " ".join(lowerCAmelCase__ ) _UpperCAmelCase : str = word return word def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : int ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = [] for token in re.findall(self.pat , lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.decoder.get(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : int = "".join(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + "\n" ) _UpperCAmelCase : Dict = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) _UpperCAmelCase : List[str] = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : Any = [self.cls_token_id] _UpperCAmelCase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" _UpperCAmelCase : Tuple = [self.sep_token_id] _UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Any ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Tuple = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): _UpperCAmelCase : Any = " " + text return (text, kwargs) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[bool] = None , ) -> dict: """simple docstring""" _UpperCAmelCase : Dict = super()._pad( encoded_inputs=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding_strategy=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) # Load from model defaults if return_attention_mask is None: _UpperCAmelCase : str = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _UpperCAmelCase : Tuple = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _UpperCAmelCase : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(lowerCAmelCase__ ) if needs_to_be_padded: _UpperCAmelCase : List[Any] = len(lowerCAmelCase__ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _UpperCAmelCase : Any = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _UpperCAmelCase : List[Any] = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
350
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __a = (3, 9, -11, 0, 7, 5, 1, -1) __a = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : int UpperCamelCase_ : Node | None class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None: """simple docstring""" _UpperCAmelCase : Node | None = None for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ): _UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" _UpperCAmelCase : List[Any] = self.head while node: yield node.data _UpperCAmelCase : List[str] = node.next_node def __len__( self : Any ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return " -> ".join([str(lowerCAmelCase__ ) for node in self] ) def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ): return SortedLinkedList(list(a_ ) + list(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() __a = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
17
0
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class A__ ( UpperCamelCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" _UpperCAmelCase : Tuple = tempfile.mkdtemp() _UpperCAmelCase : Optional[Any] = 8 # DPR tok _UpperCAmelCase : int = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCAmelCase : str = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) _UpperCAmelCase : Dict = os.path.join(lowerCAmelCase__ , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok _UpperCAmelCase : str = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] _UpperCAmelCase : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) _UpperCAmelCase : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] _UpperCAmelCase : Optional[int] = {"unk_token": "<unk>"} _UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = os.path.join(lowerCAmelCase__ , BART_VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : Any = os.path.join(lowerCAmelCase__ , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Tuple ) -> DPRQuestionEncoderTokenizer: """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def _lowerCAmelCase ( self : Tuple ) -> DPRContextEncoderTokenizer: """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def _lowerCAmelCase ( self : str ) -> BartTokenizer: """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def _lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" _UpperCAmelCase : List[Any] = self.get_dummy_dataset() _UpperCAmelCase : List[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: _UpperCAmelCase : str = dataset _UpperCAmelCase : Optional[int] = RagRetriever( lowerCAmelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : bool ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.get_dummy_dataset() _UpperCAmelCase : int = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: _UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , "dataset" ) _UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , "index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) ) del dataset _UpperCAmelCase : Optional[Any] = RagRetriever( lowerCAmelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: _UpperCAmelCase : Tuple = RagRetriever( lowerCAmelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , lowerCAmelCase__ ) , ) return retriever def _lowerCAmelCase ( self : str ) -> Any: """simple docstring""" _UpperCAmelCase : Any = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) _UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) ) _UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" ) _UpperCAmelCase : Optional[Any] = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(lowerCAmelCase__ , open(lowerCAmelCase__ , "wb" ) ) _UpperCAmelCase : Optional[int] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) _UpperCAmelCase : List[str] = RagRetriever( lowerCAmelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[Any] = self.get_dummy_canonical_hf_index_retriever() _UpperCAmelCase : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _UpperCAmelCase : List[str] = retriever.retrieve(lowerCAmelCase__ , n_docs=lowerCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , lowerCAmelCase__ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" _UpperCAmelCase : Tuple = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: _UpperCAmelCase : List[Any] = self.get_dummy_dataset() retriever.save_pretrained(lowerCAmelCase__ ) _UpperCAmelCase : str = RagRetriever.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _UpperCAmelCase : Optional[int] = retriever.retrieve(lowerCAmelCase__ , n_docs=1 ) self.assertTrue(out is not None ) def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = 1 _UpperCAmelCase : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _UpperCAmelCase : List[str] = retriever.retrieve(lowerCAmelCase__ , n_docs=lowerCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , lowerCAmelCase__ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase__ ) _UpperCAmelCase : str = RagRetriever.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _UpperCAmelCase : Optional[int] = retriever.retrieve(lowerCAmelCase__ , n_docs=1 ) self.assertTrue(out is not None ) def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" _UpperCAmelCase : Dict = 1 _UpperCAmelCase : int = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ ) _UpperCAmelCase : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _UpperCAmelCase : Optional[Any] = retriever.retrieve(lowerCAmelCase__ , n_docs=lowerCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , lowerCAmelCase__ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase__ ) _UpperCAmelCase : Any = RagRetriever.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _UpperCAmelCase : Optional[int] = retriever.retrieve(lowerCAmelCase__ , n_docs=1 ) self.assertTrue(out is not None ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" _UpperCAmelCase : Tuple = 1 _UpperCAmelCase : Dict = self.get_dummy_legacy_index_retriever() _UpperCAmelCase : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _UpperCAmelCase : str = retriever.retrieve(lowerCAmelCase__ , n_docs=lowerCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) , lowerCAmelCase__ ) self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Tuple = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase__ ) _UpperCAmelCase : Any = RagRetriever.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _UpperCAmelCase : Any = retriever.retrieve(lowerCAmelCase__ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" import torch _UpperCAmelCase : Any = 1 _UpperCAmelCase : Optional[int] = self.get_dummy_canonical_hf_index_retriever() _UpperCAmelCase : Dict = [[5, 7], [1_0, 1_1]] _UpperCAmelCase : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _UpperCAmelCase : Dict = retriever(lowerCAmelCase__ , lowerCAmelCase__ , prefix=retriever.config.generator.prefix , n_docs=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) _UpperCAmelCase : Tuple = retriever( lowerCAmelCase__ , lowerCAmelCase__ , prefix=retriever.config.generator.prefix , n_docs=lowerCAmelCase__ , return_tensors="pt" , ) _UpperCAmelCase : List[Any] = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = self.get_dpr_ctx_encoder_tokenizer() _UpperCAmelCase : Dict = 1 _UpperCAmelCase : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ ) retriever.set_ctx_encoder_tokenizer(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = [[5, 7], [1_0, 1_1]] _UpperCAmelCase : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _UpperCAmelCase : Tuple = retriever(lowerCAmelCase__ , lowerCAmelCase__ , prefix=retriever.config.generator.prefix , n_docs=lowerCAmelCase__ ) self.assertEqual( len(lowerCAmelCase__ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , lowerCAmelCase__ ) # check for doc token related keys in dictionary.
351
'''simple docstring''' def __UpperCAmelCase ( a_: str ): if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) _UpperCAmelCase : Optional[Any] = "" while len(a_ ) % 3 != 0: _UpperCAmelCase : List[Any] = "0" + bin_string _UpperCAmelCase : Dict = [ bin_string[index : index + 3] for index in range(len(a_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _UpperCAmelCase : Optional[Any] = 0 for index, val in enumerate(a_ ): oct_val += int(2 ** (2 - index) * int(a_ ) ) oct_string += str(a_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
17
0
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __a = get_tests_dir('fixtures/dummy-config.json') class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" _UpperCAmelCase : List[str] = 0 def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" _UpperCAmelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _UpperCAmelCase : Tuple = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = AutoConfig.for_model("roberta" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _UpperCAmelCase : Optional[int] = os.path.join(lowerCAmelCase__ , "fake-roberta" ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , "config.json" ) , "w" ) as f: f.write(json.dumps({} ) ) _UpperCAmelCase : Tuple = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(type(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" try: AutoConfig.register("custom" , lowerCAmelCase__ ) # Wrong model type will raise an error with self.assertRaises(lowerCAmelCase__ ): AutoConfig.register("model" , lowerCAmelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase__ ): AutoConfig.register("bert" , lowerCAmelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API _UpperCAmelCase : Any = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ ) _UpperCAmelCase : Any = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase__ , "bert-base is not a local folder and is not a valid model identifier" ): _UpperCAmelCase : str = AutoConfig.from_pretrained("bert-base" ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase__ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _UpperCAmelCase : Tuple = AutoConfig.from_pretrained(lowerCAmelCase__ , revision="aaaaaa" ) def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase__ , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ): _UpperCAmelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : str = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : Tuple = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowerCAmelCase__ , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig" ) def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : List[Any] = '''new-model''' try: AutoConfig.register("new-model" , lowerCAmelCase__ ) # If remote code is not set, the default is to use local _UpperCAmelCase : str = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote code is disabled, we load the local one. _UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote is enabled, we load from the Hub _UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
352
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCAmelCase ( a_: str ): for param in module.parameters(): _UpperCAmelCase : Any = False def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : int = plt.imshow(a_ ) fig.axes.get_xaxis().set_visible(a_ ) fig.axes.get_yaxis().set_visible(a_ ) plt.show() def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = datetime.now() _UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" ) return timestamp
17
0
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False __a = logging.get_logger(__name__) __a = 'ybelkada/fonts' def __UpperCAmelCase ( ): if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ "Pix2StructImageProcessor. Please upgrade torch." ) def __UpperCAmelCase ( a_: Any, a_: Optional[Any], a_: Optional[Any] ): requires_backends(a_, ["torch"] ) _check_torch_version() _UpperCAmelCase : Tuple = image_tensor.unsqueeze(0 ) _UpperCAmelCase : str = torch.nn.functional.unfold(a_, (patch_height, patch_width), stride=(patch_height, patch_width) ) _UpperCAmelCase : Optional[Any] = patches.reshape(image_tensor.size(0 ), image_tensor.size(1 ), a_, a_, -1 ) _UpperCAmelCase : Optional[int] = patches.permute(0, 4, 2, 3, 1 ).reshape( image_tensor.size(2 ) // patch_height, image_tensor.size(3 ) // patch_width, image_tensor.size(1 ) * patch_height * patch_width, ) return patches.unsqueeze(0 ) def __UpperCAmelCase ( a_: str, a_: int = 36, a_: str = "black", a_: str = "white", a_: int = 5, a_: int = 5, a_: int = 5, a_: int = 5, a_: Optional[bytes] = None, a_: Optional[str] = None, ): requires_backends(a_, "vision" ) # Add new lines so that each line is no more than 80 characters. _UpperCAmelCase : Union[str, Any] = textwrap.TextWrapper(width=80 ) _UpperCAmelCase : Optional[int] = wrapper.wrap(text=a_ ) _UpperCAmelCase : Optional[int] = "\n".join(a_ ) if font_bytes is not None and font_path is None: _UpperCAmelCase : List[str] = io.BytesIO(a_ ) elif font_path is not None: _UpperCAmelCase : str = font_path else: _UpperCAmelCase : Union[str, Any] = hf_hub_download(a_, "Arial.TTF" ) _UpperCAmelCase : Any = ImageFont.truetype(a_, encoding="UTF-8", size=a_ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. _UpperCAmelCase : Dict = ImageDraw.Draw(Image.new("RGB", (1, 1), a_ ) ) _UpperCAmelCase : Union[str, Any] = temp_draw.textbbox((0, 0), a_, a_ ) # Create the actual image with a bit of padding around the text. _UpperCAmelCase : Any = text_width + left_padding + right_padding _UpperCAmelCase : Dict = text_height + top_padding + bottom_padding _UpperCAmelCase : List[Any] = Image.new("RGB", (image_width, image_height), a_ ) _UpperCAmelCase : List[Any] = ImageDraw.Draw(a_ ) draw.text(xy=(left_padding, top_padding), text=a_, fill=a_, font=a_ ) return image def __UpperCAmelCase ( a_: np.ndarray, a_: str, **a_: Tuple ): requires_backends(a_, "vision" ) # Convert to PIL image if necessary _UpperCAmelCase : Optional[Any] = to_pil_image(a_ ) _UpperCAmelCase : Optional[Any] = render_text(a_, **a_ ) _UpperCAmelCase : int = max(header_image.width, image.width ) _UpperCAmelCase : List[str] = int(image.height * (new_width / image.width) ) _UpperCAmelCase : Optional[int] = int(header_image.height * (new_width / header_image.width) ) _UpperCAmelCase : Any = Image.new("RGB", (new_width, new_height + new_header_height), "white" ) new_image.paste(header_image.resize((new_width, new_header_height) ), (0, 0) ) new_image.paste(image.resize((new_width, new_height) ), (0, new_header_height) ) # Convert back to the original framework if necessary _UpperCAmelCase : Optional[Any] = to_numpy_array(a_ ) if infer_channel_dimension_format(a_ ) == ChannelDimension.LAST: _UpperCAmelCase : Union[str, Any] = to_channel_dimension_format(a_, ChannelDimension.LAST ) return new_image class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = ['''flattened_patches'''] def __init__( self : Optional[int] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : int = 2_0_4_8 , lowerCAmelCase__ : bool = False , **lowerCAmelCase__ : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} _UpperCAmelCase : List[str] = do_normalize _UpperCAmelCase : List[str] = do_convert_rgb _UpperCAmelCase : List[Any] = max_patches _UpperCAmelCase : Any = is_vqa def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : int , lowerCAmelCase__ : dict , **lowerCAmelCase__ : Union[str, Any] ) -> np.ndarray: """simple docstring""" requires_backends(self.extract_flattened_patches , "torch" ) _check_torch_version() # convert to torch _UpperCAmelCase : Dict = to_channel_dimension_format(lowerCAmelCase__ , ChannelDimension.FIRST ) _UpperCAmelCase : Any = torch.from_numpy(lowerCAmelCase__ ) _UpperCAmelCase : str = patch_size["height"], patch_size["width"] _UpperCAmelCase : Optional[int] = get_image_size(lowerCAmelCase__ ) # maximize scale s.t. _UpperCAmelCase : Any = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) _UpperCAmelCase : Dict = max(min(math.floor(scale * image_height / patch_height ) , lowerCAmelCase__ ) , 1 ) _UpperCAmelCase : Union[str, Any] = max(min(math.floor(scale * image_width / patch_width ) , lowerCAmelCase__ ) , 1 ) _UpperCAmelCase : Optional[Any] = max(num_feasible_rows * patch_height , 1 ) _UpperCAmelCase : Tuple = max(num_feasible_cols * patch_width , 1 ) _UpperCAmelCase : Tuple = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=lowerCAmelCase__ , antialias=lowerCAmelCase__ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] _UpperCAmelCase : Optional[Any] = torch_extract_patches(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = patches.shape _UpperCAmelCase : Optional[Any] = patches_shape[1] _UpperCAmelCase : List[Any] = patches_shape[2] _UpperCAmelCase : Optional[int] = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] _UpperCAmelCase : List[Any] = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] _UpperCAmelCase : List[str] = torch.arange(lowerCAmelCase__ ).reshape([rows, 1] ).repeat(1 , lowerCAmelCase__ ).reshape([rows * columns, 1] ) _UpperCAmelCase : List[str] = torch.arange(lowerCAmelCase__ ).reshape([1, columns] ).repeat(lowerCAmelCase__ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] _UpperCAmelCase : str = row_ids.to(torch.floataa ) _UpperCAmelCase : Tuple = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] _UpperCAmelCase : Tuple = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] _UpperCAmelCase : Dict = torch.nn.functional.pad(lowerCAmelCase__ , [0, 0, 0, max_patches - (rows * columns)] ).float() _UpperCAmelCase : Optional[int] = to_numpy_array(lowerCAmelCase__ ) return result def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Dict ) -> np.ndarray: """simple docstring""" if image.dtype == np.uinta: _UpperCAmelCase : str = image.astype(np.floataa ) # take mean across the whole `image` _UpperCAmelCase : Tuple = np.mean(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = np.std(lowerCAmelCase__ ) _UpperCAmelCase : int = max(lowerCAmelCase__ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase__ : Optional[Any] , ) -> ImageInput: """simple docstring""" _UpperCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCAmelCase : Optional[Any] = patch_size if patch_size is not None else self.patch_size _UpperCAmelCase : Optional[Any] = max_patches if max_patches is not None else self.max_patches _UpperCAmelCase : Tuple = self.is_vqa if kwargs.get("data_format" , lowerCAmelCase__ ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) _UpperCAmelCase : Any = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCAmelCase : Tuple = [convert_to_rgb(lowerCAmelCase__ ) for image in images] # All transformations expect numpy arrays. _UpperCAmelCase : List[Any] = [to_numpy_array(lowerCAmelCase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) _UpperCAmelCase : List[Any] = kwargs.pop("font_bytes" , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = kwargs.pop("font_path" , lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = [header_text] * len(lowerCAmelCase__ ) _UpperCAmelCase : Any = [ render_header(lowerCAmelCase__ , header_text[i] , font_bytes=lowerCAmelCase__ , font_path=lowerCAmelCase__ ) for i, image in enumerate(lowerCAmelCase__ ) ] if do_normalize: _UpperCAmelCase : Optional[Any] = [self.normalize(image=lowerCAmelCase__ ) for image in images] # convert to torch tensor and permute _UpperCAmelCase : Optional[int] = [ self.extract_flattened_patches(image=lowerCAmelCase__ , max_patches=lowerCAmelCase__ , patch_size=lowerCAmelCase__ ) for image in images ] # create attention mask in numpy _UpperCAmelCase : Optional[int] = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] _UpperCAmelCase : Optional[Any] = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=lowerCAmelCase__ ) return encoded_outputs
353
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = (EulerDiscreteScheduler,) UpperCamelCase_ : Tuple = 10 def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : str = { "num_train_timesteps": 1_1_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : Any = self.dummy_model() _UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = output.prev_sample _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = self.dummy_model() _UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : Tuple = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = output.prev_sample _UpperCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : str = self.dummy_model() _UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : str = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : int = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : Optional[int] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
17
0
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) _UpperCAmelCase : Dict = AutoTokenizer.from_pretrained("google/mt5-small" ) _UpperCAmelCase : Dict = tokenizer("Hello there" , return_tensors="np" ).input_ids _UpperCAmelCase : Any = tokenizer("Hi I am" , return_tensors="np" ).input_ids _UpperCAmelCase : str = shift_tokens_right(lowerCAmelCase__ , model.config.pad_token_id , model.config.decoder_start_token_id ) _UpperCAmelCase : int = model(lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ).logits _UpperCAmelCase : Dict = optax.softmax_cross_entropy(lowerCAmelCase__ , onehot(lowerCAmelCase__ , logits.shape[-1] ) ).mean() _UpperCAmelCase : Any = -(labels.shape[-1] * loss.item()) _UpperCAmelCase : Optional[int] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
354
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict=1_3 , lowerCAmelCase__ : Dict=7 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Dict=9_9 , lowerCAmelCase__ : Dict=3_2 , lowerCAmelCase__ : List[str]=5 , lowerCAmelCase__ : Union[str, Any]=4 , lowerCAmelCase__ : int=3_7 , lowerCAmelCase__ : Union[str, Any]="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : List[Any]=5_1_2 , lowerCAmelCase__ : Optional[int]=1_6 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : Tuple=4 , lowerCAmelCase__ : Tuple=None , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : List[str] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : List[Any] = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : str = use_token_type_ids _UpperCAmelCase : int = use_labels _UpperCAmelCase : Tuple = vocab_size _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : int = max_position_embeddings _UpperCAmelCase : List[Any] = type_vocab_size _UpperCAmelCase : Dict = type_sequence_label_size _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Dict = num_labels _UpperCAmelCase : str = num_choices _UpperCAmelCase : List[str] = scope def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Tuple = None if self.use_input_mask: _UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Tuple = None if self.use_token_type_ids: _UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : str = None _UpperCAmelCase : List[Any] = None _UpperCAmelCase : Optional[Any] = None if self.use_labels: _UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , use_stable_embedding=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : List[str] = OpenLlamaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = True _UpperCAmelCase : Optional[int] = OpenLlamaModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Any = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , ) _UpperCAmelCase : Tuple = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , ) _UpperCAmelCase : int = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , ) -> int: """simple docstring""" _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : int = True _UpperCAmelCase : Optional[int] = OpenLlamaForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() # first forward pass _UpperCAmelCase : Any = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ , ) _UpperCAmelCase : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _UpperCAmelCase : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase : Dict = torch.cat([input_mask, next_mask] , dim=-1 ) _UpperCAmelCase : List[Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0] _UpperCAmelCase : Tuple = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0] # select random slice _UpperCAmelCase : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Dict = self.prepare_config_and_inputs() ( _UpperCAmelCase ) : Tuple = config_and_inputs _UpperCAmelCase : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) UpperCamelCase_ : Dict = (OpenLlamaForCausalLM,) if is_torch_available() else () UpperCamelCase_ : str = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Optional[Any] = False def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase : int = OpenLlamaModelTester(self ) _UpperCAmelCase : str = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase : Any = type self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Dict = 3 _UpperCAmelCase : Union[str, Any] = input_dict["input_ids"] _UpperCAmelCase : Union[str, Any] = input_ids.ne(1 ).to(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase : Union[str, Any] = OpenLlamaForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Tuple = 3 _UpperCAmelCase : Dict = "single_label_classification" _UpperCAmelCase : str = input_dict["input_ids"] _UpperCAmelCase : Union[str, Any] = input_ids.ne(1 ).to(lowerCAmelCase__ ) _UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase : str = OpenLlamaForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Dict = 3 _UpperCAmelCase : Union[str, Any] = "multi_label_classification" _UpperCAmelCase : str = input_dict["input_ids"] _UpperCAmelCase : str = input_ids.ne(1 ).to(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _UpperCAmelCase : int = OpenLlamaForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("Open-Llama buffers include complex numbers, which breaks this test" ) def _lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" pass @parameterized.expand([("linear",), ("dynamic",)] ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : str = ids_tensor([1, 1_0] , config.vocab_size ) _UpperCAmelCase : Optional[int] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _UpperCAmelCase : Optional[Any] = OpenLlamaModel(lowerCAmelCase__ ) original_model.to(lowerCAmelCase__ ) original_model.eval() _UpperCAmelCase : Optional[Any] = original_model(lowerCAmelCase__ ).last_hidden_state _UpperCAmelCase : Any = original_model(lowerCAmelCase__ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _UpperCAmelCase : Dict = {"type": scaling_type, "factor": 10.0} _UpperCAmelCase : Union[str, Any] = OpenLlamaModel(lowerCAmelCase__ ) scaled_model.to(lowerCAmelCase__ ) scaled_model.eval() _UpperCAmelCase : str = scaled_model(lowerCAmelCase__ ).last_hidden_state _UpperCAmelCase : List[str] = scaled_model(lowerCAmelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-5 ) )
355
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( a_: int ): # A local function to see if a dot lands in the circle. def is_in_circle(a_: float, a_: float ) -> bool: _UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase : str = mean( int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) ) for _ in range(a_ ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase : Optional[int] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ): return mean( function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value) def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ): def identity_function(a_: float ) -> float: return x _UpperCAmelCase : Union[str, Any] = area_under_curve_estimator( a_, a_, a_, a_ ) _UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def __UpperCAmelCase ( a_: int ): def function_to_integrate(a_: float ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase : List[str] = area_under_curve_estimator( a_, a_, 0.0, 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" UpperCamelCase_ : Any = XGLMConfig UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Dict = '''gelu''' def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : str = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : int = d_model _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Tuple = ffn_dim _UpperCAmelCase : Any = activation_function _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Any = None _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Tuple = 1 def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _UpperCAmelCase : Any = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[Any] = self.get_config() _UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( _UpperCAmelCase ) : List[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : Dict = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Tuple = False def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = TFXGLMModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on _UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) _UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" ) _UpperCAmelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): _UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) _UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[int] = "left" # use different length sentences to test batching _UpperCAmelCase : Tuple = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = inputs["input_ids"] _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 ) _UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __a = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2FeatureExtractor'] __a = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
0
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=8 , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=9_9 , lowerCAmelCase__ : Any=1_6 , lowerCAmelCase__ : Union[str, Any]=5 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : List[str]=3_6 , lowerCAmelCase__ : Tuple="gelu" , lowerCAmelCase__ : Any=0.0 , lowerCAmelCase__ : List[str]=0.0 , lowerCAmelCase__ : Union[str, Any]=5_1_2 , lowerCAmelCase__ : Optional[Any]=1_6 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : int=None , ) -> Dict: """simple docstring""" _UpperCAmelCase : str = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : List[str] = is_training _UpperCAmelCase : List[str] = use_input_mask _UpperCAmelCase : Any = use_token_type_ids _UpperCAmelCase : List[Any] = use_labels _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : int = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : int = attention_probs_dropout_prob _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[str] = type_sequence_label_size _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : Any = num_labels _UpperCAmelCase : List[Any] = num_choices _UpperCAmelCase : Tuple = scope def _lowerCAmelCase ( self : str ) -> Any: """simple docstring""" _UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : List[Any] = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Any = None if self.use_token_type_ids: _UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : List[str] = None _UpperCAmelCase : int = None _UpperCAmelCase : str = None if self.use_labels: _UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = self.get_config() _UpperCAmelCase : Optional[int] = 3_0_0 return config def _lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" ( _UpperCAmelCase ) : List[str] = self.prepare_config_and_inputs() _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : int = MraModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : List[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Optional[Any] = MraModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Tuple = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , ) _UpperCAmelCase : Dict = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , ) _UpperCAmelCase : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : str = MraForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> Dict: """simple docstring""" _UpperCAmelCase : Tuple = MraForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Optional[Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = self.num_labels _UpperCAmelCase : Dict = MraForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str ) -> str: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.num_labels _UpperCAmelCase : List[str] = MraForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : str = self.num_choices _UpperCAmelCase : Optional[Any] = MraForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : str = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( _UpperCAmelCase ) : Union[str, Any] = config_and_inputs _UpperCAmelCase : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase_ : Any = False UpperCamelCase_ : Tuple = False UpperCamelCase_ : str = False UpperCamelCase_ : str = False UpperCamelCase_ : Union[str, Any] = () def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[Any] = MraModelTester(self ) _UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase : int = type self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Union[str, Any] = MraModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="MRA does not output attentions" ) def _lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" return @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : str = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) _UpperCAmelCase : Optional[Any] = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): _UpperCAmelCase : Tuple = model(lowerCAmelCase__ )[0] _UpperCAmelCase : Union[str, Any] = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase__ ) _UpperCAmelCase : str = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" _UpperCAmelCase : Union[str, Any] = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) _UpperCAmelCase : Any = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): _UpperCAmelCase : str = model(lowerCAmelCase__ )[0] _UpperCAmelCase : Union[str, Any] = 5_0_2_6_5 _UpperCAmelCase : Any = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase__ ) _UpperCAmelCase : Dict = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" _UpperCAmelCase : Tuple = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) _UpperCAmelCase : Dict = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ )[0] _UpperCAmelCase : Dict = 5_0_2_6_5 _UpperCAmelCase : List[str] = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase__ ) _UpperCAmelCase : int = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) )
357
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if not isinstance(a_, a_ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(a_, a_ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) _UpperCAmelCase : List[str] = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(a_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __a = 500_000 __a , __a = os.path.split(__file__) __a = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def __UpperCAmelCase ( a_: datasets.Dataset, **a_: Tuple ): _UpperCAmelCase : Optional[Any] = dataset.map(**a_ ) @get_duration def __UpperCAmelCase ( a_: datasets.Dataset, **a_: Any ): _UpperCAmelCase : Dict = dataset.filter(**a_ ) def __UpperCAmelCase ( ): _UpperCAmelCase : List[Any] = {"num examples": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : Optional[Any] = datasets.Features({"text": datasets.Value("string" ), "numbers": datasets.Value("float32" )} ) _UpperCAmelCase : Any = generate_example_dataset( os.path.join(a_, "dataset.arrow" ), a_, num_examples=a_ ) _UpperCAmelCase : Tuple = transformers.AutoTokenizer.from_pretrained("bert-base-cased", use_fast=a_ ) def tokenize(a_: Optional[Any] ): return tokenizer(examples["text"] ) _UpperCAmelCase : Optional[Any] = map(a_ ) _UpperCAmelCase : List[Any] = map(a_, batched=a_ ) _UpperCAmelCase : Optional[int] = map(a_, function=lambda a_ : None, batched=a_ ) with dataset.formatted_as(type="numpy" ): _UpperCAmelCase : Dict = map(a_, function=lambda a_ : None, batched=a_ ) with dataset.formatted_as(type="pandas" ): _UpperCAmelCase : Optional[Any] = map(a_, function=lambda a_ : None, batched=a_ ) with dataset.formatted_as(type="torch", columns="numbers" ): _UpperCAmelCase : List[Any] = map(a_, function=lambda a_ : None, batched=a_ ) with dataset.formatted_as(type="tensorflow", columns="numbers" ): _UpperCAmelCase : str = map(a_, function=lambda a_ : None, batched=a_ ) _UpperCAmelCase : str = map(a_, function=a_, batched=a_ ) _UpperCAmelCase : Union[str, Any] = filter(a_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(a_, "wb" ) as f: f.write(json.dumps(a_ ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
358
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') __a = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" if self.train_file is not None: _UpperCAmelCase : List[Any] = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCAmelCase : List[str] = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A__ : """simple docstring""" UpperCamelCase_ : PreTrainedTokenizerBase UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[int] = None def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels" _UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features] _UpperCAmelCase : str = len(lowerCAmelCase__ ) _UpperCAmelCase : int = len(features[0]["input_ids"] ) _UpperCAmelCase : str = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features ] _UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) ) _UpperCAmelCase : Any = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) return batch def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag", a_, a_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCAmelCase : Union[str, Any] = {} if data_args.train_file is not None: _UpperCAmelCase : str = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase : Optional[Any] = data_args.validation_file _UpperCAmelCase : Dict = data_args.train_file.split("." )[-1] _UpperCAmelCase : Optional[int] = load_dataset( a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: # Downloading and loading the swag dataset from the hub. _UpperCAmelCase : Dict = load_dataset( "swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )] _UpperCAmelCase : List[Any] = "sent1" _UpperCAmelCase : Optional[int] = "sent2" if data_args.max_seq_length is None: _UpperCAmelCase : List[str] = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _UpperCAmelCase : Dict = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]] _UpperCAmelCase : Tuple = examples[question_header_name] _UpperCAmelCase : Optional[Any] = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ ) ] # Flatten out _UpperCAmelCase : List[str] = list(chain(*a_ ) ) _UpperCAmelCase : Dict = list(chain(*a_ ) ) # Tokenize _UpperCAmelCase : List[Any] = tokenizer( a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _UpperCAmelCase : int = raw_datasets["train"] if data_args.max_train_samples is not None: _UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples ) _UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _UpperCAmelCase : Union[str, Any] = train_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _UpperCAmelCase : Dict = raw_datasets["validation"] if data_args.max_eval_samples is not None: _UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples ) _UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _UpperCAmelCase : Optional[int] = eval_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator _UpperCAmelCase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a_: Tuple ): _UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions _UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCAmelCase : Any = Trainer( model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, ) # Training if training_args.do_train: _UpperCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : List[str] = last_checkpoint _UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase : str = train_result.metrics _UpperCAmelCase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) _UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) ) trainer.log_metrics("train", a_ ) trainer.save_metrics("train", a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase : List[Any] = trainer.evaluate() _UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) _UpperCAmelCase : Tuple = min(a_, len(a_ ) ) trainer.log_metrics("eval", a_ ) trainer.save_metrics("eval", a_ ) _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __UpperCAmelCase ( a_: int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
17
0
'''simple docstring''' from math import pow, sqrt def __UpperCAmelCase ( *a_: float ): _UpperCAmelCase : List[Any] = len(a_ ) > 0 and all(value > 0.0 for value in values ) return result def __UpperCAmelCase ( a_: float, a_: float ): return ( round(sqrt(molar_mass_a / molar_mass_a ), 6 ) if validate(a_, a_ ) else ValueError("Input Error: Molar mass values must greater than 0." ) ) def __UpperCAmelCase ( a_: float, a_: float, a_: float ): return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ), 6 ) if validate(a_, a_, a_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __UpperCAmelCase ( a_: float, a_: float, a_: float ): return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ), 6 ) if validate(a_, a_, a_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __UpperCAmelCase ( a_: float, a_: float, a_: float ): return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a, 2 ), 6 ) if validate(a_, a_, a_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __UpperCAmelCase ( a_: float, a_: float, a_: float ): return ( round(pow(effusion_rate_a / effusion_rate_a, 2 ) / molar_mass, 6 ) if validate(a_, a_, a_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) )
359
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str: """simple docstring""" super().__init__() _UpperCAmelCase : List[str] = model _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass def __UpperCAmelCase ( a_: str, a_: str, a_: str ): # load longformer model from model identifier _UpperCAmelCase : int = LongformerModel.from_pretrained(a_ ) _UpperCAmelCase : Any = LightningModel(a_ ) _UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model _UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(a_ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = StableDiffusionSAGPipeline UpperCamelCase_ : List[str] = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ : List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ : Any = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ : Dict = False def _lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) _UpperCAmelCase : List[str] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _UpperCAmelCase : List[str] = CLIPTextModel(lowerCAmelCase__ ) _UpperCAmelCase : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase : str = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=0 ) -> Any: """simple docstring""" if str(lowerCAmelCase__ ).startswith("mps" ): _UpperCAmelCase : int = torch.manual_seed(lowerCAmelCase__ ) else: _UpperCAmelCase : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = { "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" _UpperCAmelCase : str = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) _UpperCAmelCase : Any = sag_pipe.to(lowerCAmelCase__ ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : int = "." _UpperCAmelCase : List[Any] = torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = sag_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type="np" ) _UpperCAmelCase : Tuple = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : Optional[Any] = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[int] = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) _UpperCAmelCase : Dict = sag_pipe.to(lowerCAmelCase__ ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Dict = "." _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = sag_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type="np" ) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : Optional[int] = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) _UpperCAmelCase : Any = sag_pipe.to(lowerCAmelCase__ ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = "." _UpperCAmelCase : Tuple = torch.manual_seed(0 ) _UpperCAmelCase : str = sag_pipe( [prompt] , width=7_6_8 , height=5_1_2 , generator=lowerCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type="np" , ) _UpperCAmelCase : Union[str, Any] = output.images assert image.shape == (1, 5_1_2, 7_6_8, 3)
360
'''simple docstring''' from importlib import import_module from .logging import get_logger __a = get_logger(__name__) class A__ : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class A__ : """simple docstring""" UpperCamelCase_ : Union[str, Any] = [] def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = obj _UpperCAmelCase : int = target _UpperCAmelCase : Optional[int] = new _UpperCAmelCase : Any = target.split("." )[0] _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : Dict = attrs or [] def __enter__( self : List[str] ) -> int: """simple docstring""" *_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: _UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCAmelCase : Tuple = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) _UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: _UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCAmelCase : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.__enter__() self._active_patches.append(self ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
17
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase__ ).to(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("google/mt5-small" ) _UpperCAmelCase : Union[str, Any] = tokenizer("Hello there" , return_tensors="pt" ).input_ids _UpperCAmelCase : Dict = tokenizer("Hi I am" , return_tensors="pt" ).input_ids _UpperCAmelCase : Dict = model(input_ids.to(lowerCAmelCase__ ) , labels=labels.to(lowerCAmelCase__ ) ).loss _UpperCAmelCase : Any = -(labels.shape[-1] * loss.item()) _UpperCAmelCase : Optional[Any] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
361
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a = datasets.utils.logging.get_logger(__name__) __a = ['names', 'prefix'] __a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __a = ['encoding_errors', 'on_bad_lines'] __a = ['date_format'] @dataclass class A__ ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_00_00 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase : Any = self.delimiter if self.column_names is not None: _UpperCAmelCase : List[Any] = self.column_names @property def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase_ : int = CsvConfig def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : str = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase : Tuple = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): _UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
17
0
'''simple docstring''' from math import factorial def __UpperCAmelCase ( a_: int = 100 ): return sum(int(a_ ) for x in str(factorial(a_ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
362
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: list[int] ): if not nums: return 0 _UpperCAmelCase : int = nums[0] _UpperCAmelCase : Dict = 0 for num in nums[1:]: _UpperCAmelCase , _UpperCAmelCase : Any = ( max_excluding + num, max(a_, a_ ), ) return max(a_, a_ ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[str] = StableUnCLIPPipeline UpperCamelCase_ : List[str] = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ : str = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCamelCase_ : Optional[Any] = False def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" _UpperCAmelCase : int = 3_2 _UpperCAmelCase : List[str] = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase__ , projection_dim=lowerCAmelCase__ , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = PriorTransformer( num_attention_heads=2 , attention_head_dim=1_2 , embedding_dim=lowerCAmelCase__ , num_layers=1 , ) torch.manual_seed(0 ) _UpperCAmelCase : Tuple = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_0_0_0 , clip_sample=lowerCAmelCase__ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) _UpperCAmelCase : int = StableUnCLIPImageNormalizer(embedding_dim=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) _UpperCAmelCase : str = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase__ , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCAmelCase__ , layers_per_block=1 , upcast_attention=lowerCAmelCase__ , use_linear_projection=lowerCAmelCase__ , ) torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCAmelCase : Any = AutoencoderKL() _UpperCAmelCase : int = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict=0 ) -> Tuple: """simple docstring""" if str(lowerCAmelCase__ ).startswith("mps" ): _UpperCAmelCase : Union[str, Any] = torch.manual_seed(lowerCAmelCase__ ) else: _UpperCAmelCase : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCAmelCase__ ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) _UpperCAmelCase : Tuple = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCAmelCase : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) _UpperCAmelCase : Tuple = pipe("anime turle" , generator=lowerCAmelCase__ , output_type="np" ) _UpperCAmelCase : str = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase : Tuple = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) _UpperCAmelCase : Dict = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCAmelCase : List[str] = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase : Optional[Any] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
363
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): _UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" ) if key.startswith("module.decoder" ): _UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] _UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )] _UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" ) if "attn.q" in key: _UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Dict = key.replace("attn", "attention.self" ) if "fc1" in key: _UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" ) if "fc2" in key: _UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Any = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" ) _UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: _UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" ) if "skip_conv1" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" ) if "skip_conv2" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" ) if "fusion1" in key: _UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" ) if "fusion2" in key: _UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" ) if "fusion3" in key: _UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" ) if "fusion" in key and "conv" in key: _UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): _UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" ) _UpperCAmelCase : int = value return new_state_dict def __UpperCAmelCase ( a_: str, a_: List[Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ): _UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _UpperCAmelCase : Dict = GLPNImageProcessor() # prepare image _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) ) # rename keys _UpperCAmelCase : List[str] = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict _UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _UpperCAmelCase : Dict = model(a_ ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _UpperCAmelCase : Optional[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _UpperCAmelCase : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) _UpperCAmelCase : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
17
0
'''simple docstring''' from manim import * class A__ ( UpperCamelCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Any = Rectangle(height=0.25 , width=0.25 ) _UpperCAmelCase : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _UpperCAmelCase : List[Any] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Tuple = [mem.copy() for i in range(6 )] _UpperCAmelCase : Optional[Any] = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) _UpperCAmelCase : Any = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) _UpperCAmelCase : int = VGroup(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) _UpperCAmelCase : Optional[Any] = Text("CPU" , font_size=2_4 ) _UpperCAmelCase : Tuple = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCAmelCase__ ) _UpperCAmelCase : Dict = [mem.copy() for i in range(4 )] _UpperCAmelCase : str = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) _UpperCAmelCase : List[Any] = Text("GPU" , font_size=2_4 ) _UpperCAmelCase : Tuple = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCAmelCase__ ) _UpperCAmelCase : Dict = [mem.copy() for i in range(6 )] _UpperCAmelCase : Union[str, Any] = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) _UpperCAmelCase : Tuple = Text("Model" , font_size=2_4 ) _UpperCAmelCase : Dict = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) model.move_to([3, -1.0, 0] ) self.add(lowerCAmelCase__ ) _UpperCAmelCase : str = [] _UpperCAmelCase : int = [] _UpperCAmelCase : Dict = [] for i, rect in enumerate(lowerCAmelCase__ ): rect.set_stroke(lowerCAmelCase__ ) _UpperCAmelCase : Dict = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCAmelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowerCAmelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=lowerCAmelCase__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=lowerCAmelCase__ , buff=0.0 ) self.add(lowerCAmelCase__ ) model_cpu_arr.append(lowerCAmelCase__ ) self.add(*lowerCAmelCase__ , *lowerCAmelCase__ , *lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] _UpperCAmelCase : Any = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("Loaded Checkpoint" , font_size=2_4 ) _UpperCAmelCase : List[str] = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Any = [] for i, rect in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Any = fill.copy().set_fill(lowerCAmelCase__ , opacity=0.7 ) target.move_to(lowerCAmelCase__ ) ckpt_arr.append(lowerCAmelCase__ ) _UpperCAmelCase : Any = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(lowerCAmelCase__ ) self.add(*lowerCAmelCase__ , *lowerCAmelCase__ ) _UpperCAmelCase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Any = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=1_8 , ) blue_text.next_to(lowerCAmelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = MarkupText( F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) _UpperCAmelCase : Dict = [meta_mem.copy() for i in range(6 )] _UpperCAmelCase : int = [meta_mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) _UpperCAmelCase : str = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) _UpperCAmelCase : List[Any] = VGroup(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) _UpperCAmelCase : List[Any] = Text("Disk" , font_size=2_4 ) _UpperCAmelCase : Dict = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(lowerCAmelCase__ , run_time=3 ) , Write(lowerCAmelCase__ , run_time=1 ) , Create(lowerCAmelCase__ , run_time=1 ) ) _UpperCAmelCase : List[str] = [] for i, rect in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(lowerCAmelCase__ , run_time=1.5 ) ) self.play(*lowerCAmelCase__ ) self.play(FadeOut(lowerCAmelCase__ ) ) _UpperCAmelCase : Union[str, Any] = MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCAmelCase__ , run_time=3 ) ) self.play( FadeOut(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ , *lowerCAmelCase__ ) , ) self.wait()
364
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : int = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _UpperCAmelCase : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(a_ ) ), }, features=a_, ) return dataset @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=a_ ) return filename # FILE_CONTENT + files __a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt" _UpperCAmelCase : Tuple = FILE_CONTENT with open(a_, "w" ) as f: f.write(a_ ) return filename @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" ) with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import gzip _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _UpperCAmelCase : Any = bytes(a_, "utf-8" ) with gzip.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _UpperCAmelCase : str = bytes(a_, "utf-8" ) with lza.frame.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Any ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(a_, "w" ) as archive: archive.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: List[str] ): import tarfile _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): import lzma _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _UpperCAmelCase : List[str] = bytes(a_, "utf-8" ) with lzma.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: Tuple ): import zipfile _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _UpperCAmelCase : int = bytes(a_, "utf-8" ) with zstd.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml" _UpperCAmelCase : Tuple = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(a_, "w" ) as f: f.write(a_ ) return filename __a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : str = datasets.Dataset.from_dict(a_ ) _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(a_ ) ) as con: _UpperCAmelCase : List[Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str, a_: str ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(a_, "rb" ) as f: _UpperCAmelCase : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ): _UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) ) f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ): _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _UpperCAmelCase : Dict = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(a_, "wb" ) as f: _UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ ) _UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ ) writer.write_table(a_ ) writer.close() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : str = {"data": DATA} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(a_, "w" ) as f: for item in DATA_312: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(a_, "w" ) as f: for item in DATA_STR: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ): import gzip _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ): import gzip _UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ): _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : List[str] = ["0", "1", "2", "3"] _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Dict = ["0", "1", "2", "3"] _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = ["0", "1", "2", "3"] _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename("unsupported.ext" ) ) f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) return data_dir
17
0
'''simple docstring''' import math __a = 10 __a = 7 __a = BALLS_PER_COLOUR * NUM_COLOURS def __UpperCAmelCase ( a_: int = 20 ): _UpperCAmelCase : int = math.comb(a_, a_ ) _UpperCAmelCase : Tuple = math.comb(NUM_BALLS - BALLS_PER_COLOUR, a_ ) _UpperCAmelCase : Union[str, Any] = NUM_COLOURS * (1 - missing_colour / total) return f"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
365
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = BarthezTokenizer UpperCamelCase_ : List[Any] = BarthezTokenizerFast UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : Optional[int] = True def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" super().setUp() _UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = "<pad>" _UpperCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] _UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] _UpperCAmelCase : int = self.tokenizer( lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() _UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé." _UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase : Tuple = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , )
17
0
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : Union[str, Any] = filter(lambda a_ : p.requires_grad, model.parameters() ) _UpperCAmelCase : Optional[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params __a = logging.getLogger(__name__) def __UpperCAmelCase ( a_: Any, a_: Optional[Any] ): if metric == "rouge2": _UpperCAmelCase : Union[str, Any] = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _UpperCAmelCase : Dict = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _UpperCAmelCase : Dict = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) _UpperCAmelCase : str = ModelCheckpoint( dirpath=a_, filename=a_, monitor=f"""val_{metric}""", mode="max", save_top_k=3, every_n_epochs=1, ) return checkpoint_callback def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int] ): return EarlyStopping( monitor=f"""val_{metric}""", mode="min" if "loss" in metric else "max", patience=a_, verbose=a_, ) class A__ ( pl.Callback ): """simple docstring""" def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Tuple = {F"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCAmelCase__ ) @rank_zero_only def _lowerCAmelCase ( self : str , lowerCAmelCase__ : pl.Trainer , lowerCAmelCase__ : pl.LightningModule , lowerCAmelCase__ : str , lowerCAmelCase__ : str=True ) -> None: """simple docstring""" logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _UpperCAmelCase : Optional[Any] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _UpperCAmelCase : Optional[int] = Path(pl_module.hparams.output_dir ) if type_path == "test": _UpperCAmelCase : Any = od / "test_results.txt" _UpperCAmelCase : Optional[int] = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase : Tuple = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" _UpperCAmelCase : Optional[Any] = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=lowerCAmelCase__ ) generations_file.parent.mkdir(exist_ok=lowerCAmelCase__ ) with open(lowerCAmelCase__ , "a+" ) as writer: for key in sorted(lowerCAmelCase__ ): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase : Union[str, Any] = metrics[key] if isinstance(lowerCAmelCase__ , torch.Tensor ): _UpperCAmelCase : List[str] = val.item() _UpperCAmelCase : Any = F"""{key}: {val:.6f}\n""" writer.write(lowerCAmelCase__ ) if not save_generations: return if "preds" in metrics: _UpperCAmelCase : List[Any] = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(lowerCAmelCase__ ) @rank_zero_only def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ) -> str: """simple docstring""" try: _UpperCAmelCase : Any = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase : Union[str, Any] = pl_module.model.num_parameters() _UpperCAmelCase : List[str] = count_trainable_parameters(lowerCAmelCase__ ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : pl.Trainer , lowerCAmelCase__ : pl.LightningModule ) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCAmelCase__ , lowerCAmelCase__ , "test" ) @rank_zero_only def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pl.Trainer , lowerCAmelCase__ : Any ) -> List[str]: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
366
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0} _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : str = max_resolution _UpperCAmelCase : List[Any] = size _UpperCAmelCase : Union[str, Any] = do_normalize _UpperCAmelCase : Optional[Any] = do_convert_rgb _UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] _UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image() _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : str = 2_0_4_8 _UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Union[str, Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _UpperCAmelCase : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches _UpperCAmelCase : Any = "Hello" _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : List[Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) _UpperCAmelCase : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Union[str, Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCAmelCase : List[Any] = 3 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Tuple = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
17
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __a = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure)
367
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''time_series_transformer''' UpperCamelCase_ : Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = prediction_length _UpperCAmelCase : Optional[Any] = context_length or prediction_length _UpperCAmelCase : Optional[Any] = distribution_output _UpperCAmelCase : Union[str, Any] = loss _UpperCAmelCase : Dict = input_size _UpperCAmelCase : int = num_time_features _UpperCAmelCase : Any = lags_sequence _UpperCAmelCase : Dict = scaling _UpperCAmelCase : Tuple = num_dynamic_real_features _UpperCAmelCase : Dict = num_static_real_features _UpperCAmelCase : Union[str, Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Optional[int] = cardinality else: _UpperCAmelCase : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : List[Any] = embedding_dimension else: _UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : str = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features _UpperCAmelCase : str = d_model _UpperCAmelCase : Optional[Any] = encoder_attention_heads _UpperCAmelCase : Dict = decoder_attention_heads _UpperCAmelCase : List[Any] = encoder_ffn_dim _UpperCAmelCase : str = decoder_ffn_dim _UpperCAmelCase : Dict = encoder_layers _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : Any = dropout _UpperCAmelCase : str = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : Dict = encoder_layerdrop _UpperCAmelCase : Any = decoder_layerdrop _UpperCAmelCase : Optional[Any] = activation_function _UpperCAmelCase : Tuple = init_std _UpperCAmelCase : List[str] = use_cache super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
0
'''simple docstring''' def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : Optional[int] = [], [] while len(a_ ) > 1: _UpperCAmelCase : Dict = min(a_ ), max(a_ ) start.append(a_ ) end.append(a_ ) collection.remove(a_ ) collection.remove(a_ ) end.reverse() return start + collection + end if __name__ == "__main__": __a = input('Enter numbers separated by a comma:\n').strip() __a = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
368
'''simple docstring''' import baseaa def __UpperCAmelCase ( a_: str ): return baseaa.baaencode(string.encode("utf-8" ) ) def __UpperCAmelCase ( a_: bytes ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": __a = 'Hello World!' __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
17
0
'''simple docstring''' def __UpperCAmelCase ( a_: list[int] ): if not numbers: return 0 if not isinstance(a_, (list, tuple) ) or not all( isinstance(a_, a_ ) for number in numbers ): raise ValueError("numbers must be an iterable of integers" ) _UpperCAmelCase : Any = numbers[0] for i in range(1, len(a_ ) ): # update the maximum and minimum subarray products _UpperCAmelCase : int = numbers[i] if number < 0: _UpperCAmelCase : Union[str, Any] = min_till_now, max_till_now _UpperCAmelCase : str = max(a_, max_till_now * number ) _UpperCAmelCase : List[str] = min(a_, min_till_now * number ) # update the maximum product found till now _UpperCAmelCase : int = max(a_, a_ ) return max_prod
369
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" UpperCamelCase_ : Any = XGLMConfig UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Dict = '''gelu''' def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : str = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : int = d_model _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Tuple = ffn_dim _UpperCAmelCase : Any = activation_function _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Any = None _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Tuple = 1 def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _UpperCAmelCase : Any = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[Any] = self.get_config() _UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : Dict = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Tuple = False def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = TFXGLMModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on _UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) _UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" ) _UpperCAmelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): _UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) _UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[int] = "left" # use different length sentences to test batching _UpperCAmelCase : Tuple = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = inputs["input_ids"] _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 ) _UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
17
0
'''simple docstring''' from scipy.stats import spearmanr import datasets __a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' __a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' __a = R'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): """simple docstring""" def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple=False ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[str] = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
370
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def __UpperCAmelCase ( a_: Tuple, a_: Any ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ), ], ) def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ): _UpperCAmelCase : Tuple = str(a_ ) dataset_info.write_to_directory(a_ ) _UpperCAmelCase : Any = DatasetInfo.from_directory(a_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a_, "dataset_info.json" ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, ) _UpperCAmelCase : Tuple = dataset_info._to_yaml_dict() assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) _UpperCAmelCase : List[Any] = yaml.safe_dump(a_ ) _UpperCAmelCase : Optional[int] = yaml.safe_load(a_ ) assert dataset_info_yaml_dict == reloaded def __UpperCAmelCase ( ): _UpperCAmelCase : str = DatasetInfo() _UpperCAmelCase : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1_337 ), } ), ], ) def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ): _UpperCAmelCase : Union[str, Any] = str(a_ ) dataset_infos_dict.write_to_directory(a_ ) _UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a_, "README.md" ) )
17
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : Optional[Any] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _UpperCAmelCase : Union[str, Any] = [144, 192, 240] _UpperCAmelCase : Dict = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _UpperCAmelCase : str = [96, 120, 144] _UpperCAmelCase : Optional[int] = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _UpperCAmelCase : Optional[Any] = [64, 80, 96] _UpperCAmelCase : Dict = [16, 16, 24, 48, 64, 80, 320] _UpperCAmelCase : int = 0.05 _UpperCAmelCase : Optional[int] = 2.0 if mobilevit_name.startswith("deeplabv3_" ): _UpperCAmelCase : Dict = 512 _UpperCAmelCase : int = 16 _UpperCAmelCase : str = 21 _UpperCAmelCase : Union[str, Any] = "pascal-voc-id2label.json" else: _UpperCAmelCase : Optional[int] = 1_000 _UpperCAmelCase : int = "imagenet-1k-id2label.json" _UpperCAmelCase : str = "huggingface/label-files" _UpperCAmelCase : List[str] = json.load(open(hf_hub_download(a_, a_, repo_type="dataset" ), "r" ) ) _UpperCAmelCase : Union[str, Any] = {int(a_ ): v for k, v in idalabel.items()} _UpperCAmelCase : Any = idalabel _UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( a_: List[Any], a_: Union[str, Any]=False ): for i in range(1, 6 ): if f"""layer_{i}.""" in name: _UpperCAmelCase : Optional[Any] = name.replace(f"""layer_{i}.""", f"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: _UpperCAmelCase : Optional[Any] = name.replace("conv_1.", "conv_stem." ) if ".block." in name: _UpperCAmelCase : Dict = name.replace(".block.", "." ) if "exp_1x1" in name: _UpperCAmelCase : List[Any] = name.replace("exp_1x1", "expand_1x1" ) if "red_1x1" in name: _UpperCAmelCase : Any = name.replace("red_1x1", "reduce_1x1" ) if ".local_rep.conv_3x3." in name: _UpperCAmelCase : Tuple = name.replace(".local_rep.conv_3x3.", ".conv_kxk." ) if ".local_rep.conv_1x1." in name: _UpperCAmelCase : Union[str, Any] = name.replace(".local_rep.conv_1x1.", ".conv_1x1." ) if ".norm." in name: _UpperCAmelCase : Any = name.replace(".norm.", ".normalization." ) if ".conv." in name: _UpperCAmelCase : Optional[Any] = name.replace(".conv.", ".convolution." ) if ".conv_proj." in name: _UpperCAmelCase : Any = name.replace(".conv_proj.", ".conv_projection." ) for i in range(0, 2 ): for j in range(0, 4 ): if f""".{i}.{j}.""" in name: _UpperCAmelCase : Tuple = name.replace(f""".{i}.{j}.""", f""".{i}.layer.{j}.""" ) for i in range(2, 6 ): for j in range(0, 4 ): if f""".{i}.{j}.""" in name: _UpperCAmelCase : Union[str, Any] = name.replace(f""".{i}.{j}.""", f""".{i}.""" ) if "expand_1x1" in name: _UpperCAmelCase : List[str] = name.replace("expand_1x1", "downsampling_layer.expand_1x1" ) if "conv_3x3" in name: _UpperCAmelCase : int = name.replace("conv_3x3", "downsampling_layer.conv_3x3" ) if "reduce_1x1" in name: _UpperCAmelCase : List[Any] = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" ) for i in range(2, 5 ): if f""".global_rep.{i}.weight""" in name: _UpperCAmelCase : Union[str, Any] = name.replace(f""".global_rep.{i}.weight""", ".layernorm.weight" ) if f""".global_rep.{i}.bias""" in name: _UpperCAmelCase : List[str] = name.replace(f""".global_rep.{i}.bias""", ".layernorm.bias" ) if ".global_rep." in name: _UpperCAmelCase : Optional[Any] = name.replace(".global_rep.", ".transformer." ) if ".pre_norm_mha.0." in name: _UpperCAmelCase : Dict = name.replace(".pre_norm_mha.0.", ".layernorm_before." ) if ".pre_norm_mha.1.out_proj." in name: _UpperCAmelCase : Any = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." ) if ".pre_norm_ffn.0." in name: _UpperCAmelCase : Any = name.replace(".pre_norm_ffn.0.", ".layernorm_after." ) if ".pre_norm_ffn.1." in name: _UpperCAmelCase : Dict = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." ) if ".pre_norm_ffn.4." in name: _UpperCAmelCase : Any = name.replace(".pre_norm_ffn.4.", ".output.dense." ) if ".transformer." in name: _UpperCAmelCase : str = name.replace(".transformer.", ".transformer.layer." ) if ".aspp_layer." in name: _UpperCAmelCase : Optional[Any] = name.replace(".aspp_layer.", "." ) if ".aspp_pool." in name: _UpperCAmelCase : int = name.replace(".aspp_pool.", "." ) if "seg_head." in name: _UpperCAmelCase : Optional[Any] = name.replace("seg_head.", "segmentation_head." ) if "segmentation_head.classifier.classifier." in name: _UpperCAmelCase : Dict = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." ) if "classifier.fc." in name: _UpperCAmelCase : Optional[int] = name.replace("classifier.fc.", "classifier." ) elif (not base_model) and ("segmentation_head." not in name): _UpperCAmelCase : List[Any] = "mobilevit." + name return name def __UpperCAmelCase ( a_: Any, a_: List[str], a_: int=False ): if base_model: _UpperCAmelCase : List[str] = "" else: _UpperCAmelCase : Optional[Any] = "mobilevit." for key in orig_state_dict.copy().keys(): _UpperCAmelCase : List[Any] = orig_state_dict.pop(a_ ) if key[:8] == "encoder.": _UpperCAmelCase : Dict = key[8:] if "qkv" in key: _UpperCAmelCase : Any = key.split("." ) _UpperCAmelCase : List[Any] = int(key_split[0][6:] ) - 1 _UpperCAmelCase : Union[str, Any] = int(key_split[3] ) _UpperCAmelCase : Optional[Any] = model.get_submodule(f"""{model_prefix}encoder.layer.{layer_num}""" ) _UpperCAmelCase : Any = layer.transformer.layer[transformer_num].attention.attention.all_head_size _UpperCAmelCase : Tuple = ( f"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: _UpperCAmelCase : Optional[Any] = val[:dim, :] _UpperCAmelCase : Any = val[dim : dim * 2, :] _UpperCAmelCase : Union[str, Any] = val[-dim:, :] else: _UpperCAmelCase : Dict = val[:dim] _UpperCAmelCase : Optional[Any] = val[dim : dim * 2] _UpperCAmelCase : str = val[-dim:] else: _UpperCAmelCase : Optional[Any] = val return orig_state_dict def __UpperCAmelCase ( ): _UpperCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Optional[int] = Image.open(requests.get(a_, stream=a_ ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: List[Any], a_: List[str]=False ): _UpperCAmelCase : Union[str, Any] = get_mobilevit_config(a_ ) # load original state_dict _UpperCAmelCase : List[str] = torch.load(a_, map_location="cpu" ) # load 🤗 model if mobilevit_name.startswith("deeplabv3_" ): _UpperCAmelCase : Union[str, Any] = MobileViTForSemanticSegmentation(a_ ).eval() else: _UpperCAmelCase : List[str] = MobileViTForImageClassification(a_ ).eval() _UpperCAmelCase : Dict = convert_state_dict(a_, a_ ) model.load_state_dict(a_ ) # Check outputs on an image, prepared by MobileViTImageProcessor _UpperCAmelCase : str = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 ) _UpperCAmelCase : int = image_processor(images=prepare_img(), return_tensors="pt" ) _UpperCAmelCase : str = model(**a_ ) _UpperCAmelCase : int = outputs.logits if mobilevit_name.startswith("deeplabv3_" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _UpperCAmelCase : Optional[int] = torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _UpperCAmelCase : Tuple = torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _UpperCAmelCase : Tuple = torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3], a_, atol=1e-4 ) else: assert logits.shape == (1, 1_000) if mobilevit_name == "mobilevit_s": _UpperCAmelCase : str = torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": _UpperCAmelCase : List[Any] = torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": _UpperCAmelCase : Optional[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3], a_, atol=1e-4 ) Path(a_ ).mkdir(exist_ok=a_ ) print(f"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a_ ) if push_to_hub: _UpperCAmelCase : Any = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print("Pushing to the hub..." ) _UpperCAmelCase : int = model_mapping[mobilevit_name] image_processor.push_to_hub(a_, organization="apple" ) model.push_to_hub(a_, organization="apple" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--mobilevit_name', default='mobilevit_s', type=str, help=( 'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',' ' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.' ), ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __a = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
371
'''simple docstring''' from math import factorial def __UpperCAmelCase ( a_: int = 100 ): return sum(map(a_, str(factorial(a_ ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
17
0
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = ['''image_processor'''] UpperCamelCase_ : int = '''SamImageProcessor''' def __init__( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Optional[int]: """simple docstring""" super().__init__(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = self.image_processor _UpperCAmelCase : Any = -1_0 _UpperCAmelCase : Dict = self.image_processor.size["longest_edge"] def __call__( self : Any , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase__ : List[str] , ) -> BatchEncoding: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processor( lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) # pop arguments that are not used in the foward but used nevertheless _UpperCAmelCase : Optional[int] = encoding_image_processor["original_sizes"] if hasattr(lowerCAmelCase__ , "numpy" ): # Checks if Torch or TF tensor _UpperCAmelCase : List[Any] = original_sizes.numpy() _UpperCAmelCase : Union[str, Any] = self._check_and_preprocess_points( input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , input_boxes=lowerCAmelCase__ , ) _UpperCAmelCase : Union[str, Any] = self._normalize_and_convert( lowerCAmelCase__ , lowerCAmelCase__ , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , input_boxes=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , ) return encoding_image_processor def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Union[str, Any]="pt" , ) -> Union[str, Any]: """simple docstring""" if input_points is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): _UpperCAmelCase : str = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , original_sizes[0] ) for point in input_points ] else: _UpperCAmelCase : Tuple = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , lowerCAmelCase__ ) for point, original_size in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: _UpperCAmelCase : Optional[Any] = self._pad_points_and_labels(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = np.array(lowerCAmelCase__ ) if input_labels is not None: _UpperCAmelCase : Union[str, Any] = np.array(lowerCAmelCase__ ) if input_boxes is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): _UpperCAmelCase : Dict = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , original_sizes[0] , is_bounding_box=lowerCAmelCase__ ) for box in input_boxes ] else: _UpperCAmelCase : Dict = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , lowerCAmelCase__ , is_bounding_box=lowerCAmelCase__ ) for box, original_size in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] _UpperCAmelCase : Tuple = np.array(lowerCAmelCase__ ) if input_boxes is not None: if return_tensors == "pt": _UpperCAmelCase : Optional[int] = torch.from_numpy(lowerCAmelCase__ ) # boxes batch size of 1 by default _UpperCAmelCase : int = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": _UpperCAmelCase : Optional[int] = tf.convert_to_tensor(lowerCAmelCase__ ) # boxes batch size of 1 by default _UpperCAmelCase : Union[str, Any] = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": _UpperCAmelCase : Optional[Any] = torch.from_numpy(lowerCAmelCase__ ) # point batch size of 1 by default _UpperCAmelCase : str = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": _UpperCAmelCase : Optional[int] = tf.convert_to_tensor(lowerCAmelCase__ ) # point batch size of 1 by default _UpperCAmelCase : int = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": _UpperCAmelCase : Dict = torch.from_numpy(lowerCAmelCase__ ) # point batch size of 1 by default _UpperCAmelCase : List[str] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": _UpperCAmelCase : Any = tf.convert_to_tensor(lowerCAmelCase__ ) # point batch size of 1 by default _UpperCAmelCase : Optional[Any] = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def _lowerCAmelCase ( self : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = max([point.shape[0] for point in input_points] ) _UpperCAmelCase : List[str] = [] for i, point in enumerate(lowerCAmelCase__ ): if point.shape[0] != expected_nb_points: _UpperCAmelCase : Any = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) _UpperCAmelCase : Dict = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = processed_input_points return input_points, input_labels def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=False ) -> np.ndarray: """simple docstring""" _UpperCAmelCase : List[Any] = original_size _UpperCAmelCase : int = self.image_processor._get_preprocess_shape(lowerCAmelCase__ , longest_edge=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = deepcopy(lowerCAmelCase__ ).astype(lowerCAmelCase__ ) if is_bounding_box: _UpperCAmelCase : List[Any] = coords.reshape(-1 , 2 , 2 ) _UpperCAmelCase : Optional[Any] = coords[..., 0] * (new_w / old_w) _UpperCAmelCase : List[str] = coords[..., 1] * (new_h / old_h) if is_bounding_box: _UpperCAmelCase : Any = coords.reshape(-1 , 4 ) return coords def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : List[str]=None , ) -> List[str]: """simple docstring""" if input_points is not None: if hasattr(lowerCAmelCase__ , "numpy" ): # Checks for TF or Torch tensor _UpperCAmelCase : Tuple = input_points.numpy().tolist() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(input_points[0] , lowerCAmelCase__ ): raise ValueError("Input points must be a list of list of floating points." ) _UpperCAmelCase : List[Any] = [np.array(lowerCAmelCase__ ) for input_point in input_points] else: _UpperCAmelCase : Union[str, Any] = None if input_labels is not None: if hasattr(lowerCAmelCase__ , "numpy" ): _UpperCAmelCase : Dict = input_labels.numpy().tolist() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(input_labels[0] , lowerCAmelCase__ ): raise ValueError("Input labels must be a list of list integers." ) _UpperCAmelCase : str = [np.array(lowerCAmelCase__ ) for label in input_labels] else: _UpperCAmelCase : str = None if input_boxes is not None: if hasattr(lowerCAmelCase__ , "numpy" ): _UpperCAmelCase : Union[str, Any] = input_boxes.numpy().tolist() if ( not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(input_boxes[0] , lowerCAmelCase__ ) or not isinstance(input_boxes[0][0] , lowerCAmelCase__ ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) _UpperCAmelCase : List[str] = [np.array(lowerCAmelCase__ ).astype(np.floataa ) for box in input_boxes] else: _UpperCAmelCase : str = None return input_points, input_labels, input_boxes @property def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.image_processor.model_input_names return list(dict.fromkeys(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : str , *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : Any ) -> List[str]: """simple docstring""" return self.image_processor.post_process_masks(*lowerCAmelCase__ , **lowerCAmelCase__ )
350
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __a = (3, 9, -11, 0, 7, 5, 1, -1) __a = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : int UpperCamelCase_ : Node | None class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None: """simple docstring""" _UpperCAmelCase : Node | None = None for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ): _UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" _UpperCAmelCase : List[Any] = self.head while node: yield node.data _UpperCAmelCase : List[str] = node.next_node def __len__( self : Any ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return " -> ".join([str(lowerCAmelCase__ ) for node in self] ) def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ): return SortedLinkedList(list(a_ ) + list(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() __a = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
17
0
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __a = 2 class A__ : """simple docstring""" def __init__( self : str , *, # begin keyword-only arguments lowerCAmelCase__ : Dict="<s>" , lowerCAmelCase__ : Optional[Any]="<pad>" , lowerCAmelCase__ : List[Any]="</s>" , lowerCAmelCase__ : Tuple="<unk>" , lowerCAmelCase__ : Tuple=None , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = bos, unk, pad, eos _UpperCAmelCase : Any = [] _UpperCAmelCase : Dict = [] _UpperCAmelCase : Union[str, Any] = {} _UpperCAmelCase : List[str] = self.add_symbol(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = self.add_symbol(lowerCAmelCase__ ) _UpperCAmelCase : int = self.add_symbol(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = self.add_symbol(lowerCAmelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = len(self.symbols ) def __eq__( self : int , lowerCAmelCase__ : Optional[Any] ) -> Dict: """simple docstring""" return self.indices == other.indices def __getitem__( self : Dict , lowerCAmelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Dict ) -> int: """simple docstring""" return len(self.symbols ) def __contains__( self : Tuple , lowerCAmelCase__ : Optional[Any] ) -> Tuple: """simple docstring""" return sym in self.indices @classmethod def _lowerCAmelCase ( cls : Any , lowerCAmelCase__ : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[int] = cls() d.add_from_file(lowerCAmelCase__ ) return d def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : List[str]=False ) -> Dict: """simple docstring""" if word in self.indices and not overwrite: _UpperCAmelCase : Dict = self.indices[word] _UpperCAmelCase : Optional[Any] = self.count[idx] + n return idx else: _UpperCAmelCase : Dict = len(self.symbols ) _UpperCAmelCase : Dict = idx self.symbols.append(lowerCAmelCase__ ) self.count.append(lowerCAmelCase__ ) return idx def _lowerCAmelCase ( self : str , lowerCAmelCase__ : int ) -> List[str]: """simple docstring""" return 0 def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Any ) -> Any: """simple docstring""" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): try: with open(lowerCAmelCase__ , "r" , encoding="utf-8" ) as fd: self.add_from_file(lowerCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(lowerCAmelCase__ ) ) return _UpperCAmelCase : List[str] = f.readlines() _UpperCAmelCase : Any = self._load_meta(lowerCAmelCase__ ) for line in lines[indices_start_line:]: try: _UpperCAmelCase : Union[str, Any] = line.rstrip().rsplit(" " , 1 ) if field == "#fairseq:overwrite": _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : List[str] = line.rsplit(" " , 1 ) else: _UpperCAmelCase : Tuple = False _UpperCAmelCase : List[str] = int(lowerCAmelCase__ ) _UpperCAmelCase : int = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(lowerCAmelCase__ ) ) self.add_symbol(lowerCAmelCase__ , n=lowerCAmelCase__ , overwrite=lowerCAmelCase__ ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def __UpperCAmelCase ( a_: List[Any] ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} _UpperCAmelCase : Any = dict((re.sub(r"@@$", "", a_ ), v) if k.endswith("@@" ) else (re.sub(r"$", "</w>", a_ ), v) for k, v in d.items() ) _UpperCAmelCase : Union[str, Any] = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] _UpperCAmelCase : Tuple = d[k] # restore return da def __UpperCAmelCase ( a_: Any, a_: List[str] ): # prep if not os.path.exists(a_ ): raise ValueError(f"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(a_, exist_ok=a_ ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models _UpperCAmelCase : List[Any] = os.path.join(a_, "checkpoint.pt" ) if not os.path.isfile(a_ ): raise ValueError(f"""path to the file {checkpoint_file} does not exist!""" ) _UpperCAmelCase : Dict = torch.load(a_, map_location="cpu" ) _UpperCAmelCase : List[Any] = chkpt["cfg"]["model"] # dicts _UpperCAmelCase : Any = os.path.join(a_, "dict.txt" ) if not os.path.isfile(a_ ): raise ValueError(f"""path to the file {dict_file} does not exist!""" ) _UpperCAmelCase : Any = Dictionary.load(a_ ) _UpperCAmelCase : Dict = rewrite_dict_keys(src_dict.indices ) _UpperCAmelCase : List[str] = len(a_ ) _UpperCAmelCase : int = os.path.join(a_, VOCAB_FILES_NAMES["vocab_file"] ) print(f"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(json.dumps(a_, ensure_ascii=a_, indent=a_ ) ) # merges_file (bpecodes) _UpperCAmelCase : int = os.path.join(a_, "bpecodes" ) if not os.path.isfile(a_ ): raise ValueError(f"""path to the file {bpecodes_file} does not exist!""" ) _UpperCAmelCase : int = os.path.join(a_, VOCAB_FILES_NAMES["merges_file"] ) shutil.copyfile(a_, a_ ) # model config _UpperCAmelCase : int = os.path.join(a_, "config.json" ) _UpperCAmelCase : Dict = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1e-1_2, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(f"""Generating {biogpt_model_config_file}""" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(json.dumps(a_, ensure_ascii=a_, indent=a_ ) ) # tokenizer config _UpperCAmelCase : Dict = os.path.join(a_, a_ ) _UpperCAmelCase : Optional[Any] = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1_024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(f"""Generating {biogpt_tokenizer_config_file}""" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(json.dumps(a_, ensure_ascii=a_, indent=a_ ) ) # model _UpperCAmelCase : Tuple = chkpt["model"] # remove unneeded keys _UpperCAmelCase : int = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(a_, a_ ) _UpperCAmelCase : Any = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("output_projection.weight" ): _UpperCAmelCase : int = model_state_dict.pop(a_ ) else: _UpperCAmelCase : str = model_state_dict.pop(a_ ) _UpperCAmelCase : Union[str, Any] = BioGptConfig.from_pretrained(a_ ) _UpperCAmelCase : Optional[int] = BioGptForCausalLM(a_ ) # check that it loads ok model_new.load_state_dict(a_ ) # save _UpperCAmelCase : Tuple = os.path.join(a_, a_ ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(a_, a_ ) print("Conversion is done!" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
351
'''simple docstring''' def __UpperCAmelCase ( a_: str ): if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) _UpperCAmelCase : Optional[Any] = "" while len(a_ ) % 3 != 0: _UpperCAmelCase : List[Any] = "0" + bin_string _UpperCAmelCase : Dict = [ bin_string[index : index + 3] for index in range(len(a_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _UpperCAmelCase : Optional[Any] = 0 for index, val in enumerate(a_ ): oct_val += int(2 ** (2 - index) * int(a_ ) ) oct_string += str(a_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
17
0
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def __UpperCAmelCase ( a_: int="ro", a_: str="en", a_: str="wmt16", a_: Dict=None ) -> int: try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) _UpperCAmelCase : Union[str, Any] = f"""{src_lang}-{tgt_lang}""" print(f"""Converting {dataset}-{pair}""" ) _UpperCAmelCase : Optional[int] = datasets.load_dataset(a_, a_ ) if save_dir is None: _UpperCAmelCase : List[Any] = f"""{dataset}-{pair}""" _UpperCAmelCase : Tuple = Path(a_ ) save_dir.mkdir(exist_ok=a_ ) for split in ds.keys(): print(f"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets _UpperCAmelCase : Dict = "val" if split == "validation" else split _UpperCAmelCase : Optional[Any] = save_dir.joinpath(f"""{fn}.source""" ) _UpperCAmelCase : Any = save_dir.joinpath(f"""{fn}.target""" ) _UpperCAmelCase : str = src_path.open("w+" ) _UpperCAmelCase : int = tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): _UpperCAmelCase : Union[str, Any] = x["translation"] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(f"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
352
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCAmelCase ( a_: str ): for param in module.parameters(): _UpperCAmelCase : Any = False def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : int = plt.imshow(a_ ) fig.axes.get_xaxis().set_visible(a_ ) fig.axes.get_yaxis().set_visible(a_ ) plt.show() def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = datetime.now() _UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" ) return timestamp
17
0
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __a = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN']) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : Tuple = test_results.split(" " ) _UpperCAmelCase : List[Any] = 0 _UpperCAmelCase : Tuple = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. _UpperCAmelCase : Any = expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(a_ ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Any = {} _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : int = False for line in failures_short_lines.split("\n" ): if re.search(r"_ \[doctest\]", a_ ): _UpperCAmelCase : Dict = True _UpperCAmelCase : Union[str, Any] = line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): _UpperCAmelCase : Union[str, Any] = line _UpperCAmelCase : str = False return failures class A__ : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = title _UpperCAmelCase : str = doc_test_results["time_spent"].split("," )[0] _UpperCAmelCase : str = doc_test_results["success"] _UpperCAmelCase : Tuple = doc_test_results["failures"] _UpperCAmelCase : Optional[Any] = self.n_success + self.n_failures # Failures and success of the modeling tests _UpperCAmelCase : Optional[Any] = doc_test_results @property def _lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = [self._time_spent] _UpperCAmelCase : Optional[Any] = 0 for time in time_spent: _UpperCAmelCase : Optional[Any] = time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(lowerCAmelCase__ ) == 1: _UpperCAmelCase : List[str] = [0, 0, time_parts[0]] _UpperCAmelCase : Any = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_6_0_0 + minutes * 6_0 + seconds _UpperCAmelCase : Optional[int] = total_secs // 3_6_0_0, (total_secs % 3_6_0_0) // 6_0, total_secs % 6_0 return F"""{int(lowerCAmelCase__ )}h{int(lowerCAmelCase__ )}m{int(lowerCAmelCase__ )}s""" @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": F"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": ( F"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" F""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _UpperCAmelCase : str = 4_0 _UpperCAmelCase : Union[str, Any] = {k: v["failed"] for k, v in doc_test_results.items() if isinstance(lowerCAmelCase__ , lowerCAmelCase__ )} _UpperCAmelCase : List[Any] = "" for category, failures in category_failures.items(): if len(lowerCAmelCase__ ) == 0: continue if report != "": report += "\n\n" report += F"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(lowerCAmelCase__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F"""The following examples had failures:\n\n\n{report}\n""", }, } @property def _lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(lowerCAmelCase__ ) @staticmethod def _lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : int = [ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(lowerCAmelCase__ )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) _UpperCAmelCase : int = F"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else "All tests passed." _UpperCAmelCase : int = client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[str] = "" for key, value in failures.items(): _UpperCAmelCase : Tuple = value[:2_0_0] + " [Truncated]" if len(lowerCAmelCase__ ) > 2_5_0 else value failures_text += F"""*{key}*\n_{value}_\n\n""" _UpperCAmelCase : List[Any] = job_name _UpperCAmelCase : str = {"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: _UpperCAmelCase : Union[str, Any] = { "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) _UpperCAmelCase : int = self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) _UpperCAmelCase : List[Any] = sorted(self.doc_test_results.items() , key=lambda lowerCAmelCase__ : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): _UpperCAmelCase : Dict = F"""*Num failures* :{len(job_result['failed'] )} \n""" _UpperCAmelCase : Union[str, Any] = job_result["failures"] _UpperCAmelCase : Optional[Any] = self.get_reply_blocks(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , text=lowerCAmelCase__ ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=F"""Results for {job}""" , blocks=lowerCAmelCase__ , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = os.environ["GITHUB_RUN_ID"] _UpperCAmelCase : List[Any] = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" _UpperCAmelCase : Dict = requests.get(a_ ).json() _UpperCAmelCase : Optional[Any] = {} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) _UpperCAmelCase : Tuple = math.ceil((result["total_count"] - 100) / 100 ) for i in range(a_ ): _UpperCAmelCase : Any = requests.get(url + f"""&page={i + 2}""" ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links.", a_ ) return {} def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : List[str] = {} if os.path.exists(a_ ): _UpperCAmelCase : int = os.listdir(a_ ) for file in files: try: with open(os.path.join(a_, a_ ), encoding="utf-8" ) as f: _UpperCAmelCase : Tuple = f.read() except UnicodeDecodeError as e: raise ValueError(f"""Could not open {os.path.join(a_, a_ )}.""" ) from e return _artifact def __UpperCAmelCase ( ): class A__ : """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : str ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = name _UpperCAmelCase : List[str] = [] def __str__( self : List[Any] ) -> List[Any]: """simple docstring""" return self.name def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" self.paths.append({"name": self.name, "path": path} ) _UpperCAmelCase : Dict[str, Artifact] = {} _UpperCAmelCase : Optional[int] = filter(os.path.isdir, os.listdir() ) for directory in directories: _UpperCAmelCase : Optional[Any] = directory if artifact_name not in _available_artifacts: _UpperCAmelCase : Tuple = Artifact(a_ ) _available_artifacts[artifact_name].add_path(a_ ) return _available_artifacts if __name__ == "__main__": __a = get_job_links() __a = retrieve_available_artifacts() __a = collections.OrderedDict( [ ('*.py', 'API Examples'), ('*.md', 'MD Examples'), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __a = { v: { 'failed': [], 'failures': {}, } for v in docs.values() } # Link to the GitHub Action job __a = github_actions_job_links.get('run_doctests') __a = available_artifacts['doc_tests_gpu_test_reports'].paths[0] __a = retrieve_artifact(artifact_path['name']) if "stats" in artifact: __a , __a , __a = handle_test_results(artifact['stats']) __a = failed __a = success __a = time_spent[1:-1] + ', ' __a = extract_first_line_failure(artifact['failures_short']) for line in artifact["summary_short"].split('\n'): if re.search('FAILED', line): __a = line.replace('FAILED ', '') __a = line.split()[0].replace('\n', '') if "::" in line: __a , __a = line.split('::') else: __a , __a = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __a = docs[file_regex] doc_test_results[category]["failed"].append(test) __a = all_failures[test] if test in all_failures else 'N/A' __a = failure break __a = Message('🤗 Results of the doc tests.', doc_test_results) message.post() message.post_reply()
353
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = (EulerDiscreteScheduler,) UpperCamelCase_ : Tuple = 10 def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : str = { "num_train_timesteps": 1_1_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : Any = self.dummy_model() _UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = output.prev_sample _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = self.dummy_model() _UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : Tuple = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = output.prev_sample _UpperCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : str = self.dummy_model() _UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : str = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : int = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : Optional[int] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
17
0
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class A__ : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int=1_3 , lowerCAmelCase__ : int=7 , lowerCAmelCase__ : str=6 , lowerCAmelCase__ : Tuple=1_7 , lowerCAmelCase__ : Dict=2_3 , lowerCAmelCase__ : List[Any]=1_1 , lowerCAmelCase__ : Optional[Any]=True , ) -> Any: """simple docstring""" _UpperCAmelCase : Any = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : Dict = seq_length _UpperCAmelCase : Optional[int] = act_dim _UpperCAmelCase : Any = state_dim _UpperCAmelCase : int = hidden_size _UpperCAmelCase : List[Any] = max_length _UpperCAmelCase : Tuple = is_training def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _UpperCAmelCase : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _UpperCAmelCase : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) _UpperCAmelCase : str = floats_tensor((self.batch_size, self.seq_length, 1) ) _UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) _UpperCAmelCase : str = random_attention_mask((self.batch_size, self.seq_length) ) _UpperCAmelCase : Optional[int] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : str = DecisionTransformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Optional[int] = model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : str = self.prepare_config_and_inputs() ( _UpperCAmelCase ) : Optional[int] = config_and_inputs _UpperCAmelCase : str = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = (DecisionTransformerModel,) if is_torch_available() else () UpperCamelCase_ : List[str] = () UpperCamelCase_ : Any = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids UpperCamelCase_ : Dict = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : int = False UpperCamelCase_ : str = False UpperCamelCase_ : int = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : Any = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Optional[Any] = False def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" _UpperCAmelCase : Tuple = DecisionTransformerModelTester(self ) _UpperCAmelCase : List[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Dict = DecisionTransformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : int = model_class(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : str = [*signature.parameters.keys()] _UpperCAmelCase : Tuple = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(lowerCAmelCase__ )] , lowerCAmelCase__ ) @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = 2 # number of steps of autoregressive prediction we will perform _UpperCAmelCase : List[str] = 1_0 # defined by the RL environment, may be normalized _UpperCAmelCase : Optional[Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) _UpperCAmelCase : Optional[Any] = model.to(lowerCAmelCase__ ) _UpperCAmelCase : Any = model.config torch.manual_seed(0 ) _UpperCAmelCase : Dict = torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase__ , dtype=torch.floataa ) # env.reset() _UpperCAmelCase : Union[str, Any] = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=lowerCAmelCase__ ) _UpperCAmelCase : Any = torch.tensor(lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _UpperCAmelCase : str = state _UpperCAmelCase : Union[str, Any] = torch.zeros(1 , 0 , config.act_dim , device=lowerCAmelCase__ , dtype=torch.floataa ) _UpperCAmelCase : Dict = torch.zeros(1 , 0 , device=lowerCAmelCase__ , dtype=torch.floataa ) _UpperCAmelCase : Optional[Any] = torch.tensor(0 , device=lowerCAmelCase__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowerCAmelCase__ )] , dim=1 ) _UpperCAmelCase : Tuple = torch.cat([rewards, torch.zeros(1 , 1 , device=lowerCAmelCase__ )] , dim=1 ) _UpperCAmelCase : List[str] = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = model( states=lowerCAmelCase__ , actions=lowerCAmelCase__ , rewards=lowerCAmelCase__ , returns_to_go=lowerCAmelCase__ , timesteps=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) _UpperCAmelCase : Any = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase__ , dtype=torch.floataa ), 1.0, False, {}, ) _UpperCAmelCase : List[str] = action_pred[0, -1] _UpperCAmelCase : Union[str, Any] = torch.cat([states, state] , dim=1 ) _UpperCAmelCase : Any = returns_to_go[0, -1] - reward _UpperCAmelCase : List[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _UpperCAmelCase : Dict = torch.cat( [timesteps, torch.ones((1, 1) , device=lowerCAmelCase__ , dtype=torch.long ) * (step + 1)] , dim=1 )
354
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : List[str] = (DDPMScheduler,) def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Dict ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**lowerCAmelCase__ ) return config def _lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase__ , prediction_type=lowerCAmelCase__ , sample_max_value=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : str = self.get_scheduler_config() _UpperCAmelCase : str = scheduler_class(**lowerCAmelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : Any = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ ) _UpperCAmelCase : Any = len(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = self.dummy_model() _UpperCAmelCase : List[str] = self.dummy_sample_deter _UpperCAmelCase : Tuple = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase__ ) ): # 1. predict noise residual _UpperCAmelCase : Tuple = model(lowerCAmelCase__ , lowerCAmelCase__ ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCAmelCase : int = pred_prev_sample _UpperCAmelCase : int = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : int = self.scheduler_classes[0] _UpperCAmelCase : List[str] = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase : Dict = scheduler_class(**lowerCAmelCase__ ) _UpperCAmelCase : str = len(lowerCAmelCase__ ) _UpperCAmelCase : str = self.dummy_model() _UpperCAmelCase : Any = self.dummy_sample_deter _UpperCAmelCase : Tuple = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase__ ) ): # 1. predict noise residual _UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ , lowerCAmelCase__ ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase : List[str] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCAmelCase : str = pred_prev_sample _UpperCAmelCase : Optional[int] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : int = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : Any = self.get_scheduler_config() _UpperCAmelCase : List[str] = scheduler_class(**lowerCAmelCase__ ) _UpperCAmelCase : Tuple = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase__ ): if i == len(lowerCAmelCase__ ) - 1: _UpperCAmelCase : Optional[Any] = -1 else: _UpperCAmelCase : Optional[Any] = timesteps[i + 1] _UpperCAmelCase : Union[str, Any] = scheduler.previous_timestep(lowerCAmelCase__ ) _UpperCAmelCase : str = prev_t.item() self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = self.scheduler_classes[0] _UpperCAmelCase : Union[str, Any] = self.get_scheduler_config() _UpperCAmelCase : List[str] = scheduler_class(**lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase__ , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[Any] = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] _UpperCAmelCase : Optional[int] = len(lowerCAmelCase__ ) with self.assertRaises(lowerCAmelCase__ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase__ , timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : Optional[Any] = scheduler_class(**lowerCAmelCase__ ) _UpperCAmelCase : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase__ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=lowerCAmelCase__ )
355
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( a_: int ): # A local function to see if a dot lands in the circle. def is_in_circle(a_: float, a_: float ) -> bool: _UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase : str = mean( int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) ) for _ in range(a_ ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase : Optional[int] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ): return mean( function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value) def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ): def identity_function(a_: float ) -> float: return x _UpperCAmelCase : Union[str, Any] = area_under_curve_estimator( a_, a_, a_, a_ ) _UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def __UpperCAmelCase ( a_: int ): def function_to_integrate(a_: float ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase : List[str] = area_under_curve_estimator( a_, a_, 0.0, 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { 'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'], 'tokenization_deberta': ['DebertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['DebertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'DebertaForMaskedLM', 'DebertaForQuestionAnswering', 'DebertaForSequenceClassification', 'DebertaForTokenClassification', 'DebertaModel', 'DebertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDebertaForMaskedLM', 'TFDebertaForQuestionAnswering', 'TFDebertaForSequenceClassification', 'TFDebertaForTokenClassification', 'TFDebertaModel', 'TFDebertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __a = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2FeatureExtractor'] __a = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class A__ ( metaclass=UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = ['''torch''', '''scipy'''] def __init__( self : List[str] , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Optional[Any] ) -> str: """simple docstring""" requires_backends(self , ["torch", "scipy"] ) @classmethod def _lowerCAmelCase ( cls : List[str] , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : List[Any] ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch", "scipy"] ) @classmethod def _lowerCAmelCase ( cls : List[str] , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls , ["torch", "scipy"] )
357
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if not isinstance(a_, a_ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(a_, a_ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) _UpperCAmelCase : List[str] = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(a_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from math import factorial def __UpperCAmelCase ( a_: int = 100 ): return sum(map(a_, str(factorial(a_ ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
358
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') __a = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" if self.train_file is not None: _UpperCAmelCase : List[Any] = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCAmelCase : List[str] = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A__ : """simple docstring""" UpperCamelCase_ : PreTrainedTokenizerBase UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[int] = None def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels" _UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features] _UpperCAmelCase : str = len(lowerCAmelCase__ ) _UpperCAmelCase : int = len(features[0]["input_ids"] ) _UpperCAmelCase : str = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features ] _UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) ) _UpperCAmelCase : Any = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) return batch def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag", a_, a_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCAmelCase : Union[str, Any] = {} if data_args.train_file is not None: _UpperCAmelCase : str = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase : Optional[Any] = data_args.validation_file _UpperCAmelCase : Dict = data_args.train_file.split("." )[-1] _UpperCAmelCase : Optional[int] = load_dataset( a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: # Downloading and loading the swag dataset from the hub. _UpperCAmelCase : Dict = load_dataset( "swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )] _UpperCAmelCase : List[Any] = "sent1" _UpperCAmelCase : Optional[int] = "sent2" if data_args.max_seq_length is None: _UpperCAmelCase : List[str] = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _UpperCAmelCase : Dict = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]] _UpperCAmelCase : Tuple = examples[question_header_name] _UpperCAmelCase : Optional[Any] = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ ) ] # Flatten out _UpperCAmelCase : List[str] = list(chain(*a_ ) ) _UpperCAmelCase : Dict = list(chain(*a_ ) ) # Tokenize _UpperCAmelCase : List[Any] = tokenizer( a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _UpperCAmelCase : int = raw_datasets["train"] if data_args.max_train_samples is not None: _UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples ) _UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _UpperCAmelCase : Union[str, Any] = train_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _UpperCAmelCase : Dict = raw_datasets["validation"] if data_args.max_eval_samples is not None: _UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples ) _UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _UpperCAmelCase : Optional[int] = eval_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator _UpperCAmelCase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a_: Tuple ): _UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions _UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCAmelCase : Any = Trainer( model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, ) # Training if training_args.do_train: _UpperCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : List[str] = last_checkpoint _UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase : str = train_result.metrics _UpperCAmelCase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) _UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) ) trainer.log_metrics("train", a_ ) trainer.save_metrics("train", a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase : List[Any] = trainer.evaluate() _UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) _UpperCAmelCase : Tuple = min(a_, len(a_ ) ) trainer.log_metrics("eval", a_ ) trainer.save_metrics("eval", a_ ) _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __UpperCAmelCase ( a_: int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
17
0
'''simple docstring''' import math def __UpperCAmelCase ( a_: int ): assert isinstance(a_, a_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _UpperCAmelCase : Optional[int] = range(3, int(math.sqrt(a_ ) + 1 ), 2 ) return not any(not number % i for i in odd_numbers ) def __UpperCAmelCase ( a_: List[str], a_: Any=1, **a_: Any ): _UpperCAmelCase : str = factor * value _UpperCAmelCase : int = value while not is_prime(a_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1, **a_ ) return value
359
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str: """simple docstring""" super().__init__() _UpperCAmelCase : List[str] = model _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass def __UpperCAmelCase ( a_: str, a_: str, a_: str ): # load longformer model from model identifier _UpperCAmelCase : int = LongformerModel.from_pretrained(a_ ) _UpperCAmelCase : Any = LightningModel(a_ ) _UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model _UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(a_ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
0
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def __UpperCAmelCase ( a_: str ): return 1.0 / (1.0 + np.exp(-_outputs )) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : List[Any] = np.max(_outputs, axis=-1, keepdims=a_ ) _UpperCAmelCase : Tuple = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=a_ ) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : str = '''sigmoid''' UpperCamelCase_ : Optional[Any] = '''softmax''' UpperCamelCase_ : int = '''none''' @add_end_docstrings( UpperCamelCase , R''' return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `"default"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `"sigmoid"`: Applies the sigmoid function on the output. - `"softmax"`: Applies the softmax function on the output. - `"none"`: Does not apply any function on the output. ''' , ) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Dict = False UpperCamelCase_ : int = ClassificationFunction.NONE def __init__( self : Optional[Any] , **lowerCAmelCase__ : Optional[int] ) -> int: """simple docstring""" super().__init__(**lowerCAmelCase__ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : str=None , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Union[str, Any]="" , **lowerCAmelCase__ : Any ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = tokenizer_kwargs _UpperCAmelCase : Any = {} if hasattr(self.model.config , "return_all_scores" ) and return_all_scores is None: _UpperCAmelCase : Any = self.model.config.return_all_scores if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or top_k is None: _UpperCAmelCase : int = top_k _UpperCAmelCase : Optional[Any] = False elif return_all_scores is not None: warnings.warn( "`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of" " `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." , lowerCAmelCase__ , ) if return_all_scores: _UpperCAmelCase : Dict = None else: _UpperCAmelCase : Dict = 1 if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _UpperCAmelCase : Dict = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : Union[str, Any] , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Any = super().__call__(*lowerCAmelCase__ , **lowerCAmelCase__ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _UpperCAmelCase : Union[str, Any] = "top_k" not in kwargs if isinstance(args[0] , lowerCAmelCase__ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def _lowerCAmelCase ( self : str , lowerCAmelCase__ : str , **lowerCAmelCase__ : Optional[int] ) -> Dict[str, GenericTensor]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.framework if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return self.tokenizer(**lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) == 1 and isinstance(inputs[0] , lowerCAmelCase__ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( "The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a" " dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." ) return self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Tuple ) -> Optional[Any]: """simple docstring""" return self.model(**lowerCAmelCase__ ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Dict=1 , lowerCAmelCase__ : Dict=True ) -> List[str]: """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _UpperCAmelCase : Tuple = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _UpperCAmelCase : Tuple = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , "function_to_apply" ) and function_to_apply is None: _UpperCAmelCase : Dict = self.model.config.function_to_apply else: _UpperCAmelCase : Union[str, Any] = ClassificationFunction.NONE _UpperCAmelCase : Optional[int] = model_outputs["logits"][0] _UpperCAmelCase : Any = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _UpperCAmelCase : List[Any] = sigmoid(lowerCAmelCase__ ) elif function_to_apply == ClassificationFunction.SOFTMAX: _UpperCAmelCase : str = softmax(lowerCAmelCase__ ) elif function_to_apply == ClassificationFunction.NONE: _UpperCAmelCase : Any = outputs else: raise ValueError(F"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _UpperCAmelCase : str = [ {"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(lowerCAmelCase__ ) ] if not _legacy: dict_scores.sort(key=lambda lowerCAmelCase__ : x["score"] , reverse=lowerCAmelCase__ ) if top_k is not None: _UpperCAmelCase : Dict = dict_scores[:top_k] return dict_scores
360
'''simple docstring''' from importlib import import_module from .logging import get_logger __a = get_logger(__name__) class A__ : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class A__ : """simple docstring""" UpperCamelCase_ : Union[str, Any] = [] def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = obj _UpperCAmelCase : int = target _UpperCAmelCase : Optional[int] = new _UpperCAmelCase : Any = target.split("." )[0] _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : Dict = attrs or [] def __enter__( self : List[str] ) -> int: """simple docstring""" *_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: _UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCAmelCase : Tuple = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) _UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: _UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCAmelCase : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.__enter__() self._active_patches.append(self ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
17
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A__ : """simple docstring""" def __init__( self : int , lowerCAmelCase__ : str , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = parent _UpperCAmelCase : Any = 1_3 _UpperCAmelCase : Union[str, Any] = 7 _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Any = True _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Union[str, Any] = 9_9 _UpperCAmelCase : Optional[int] = 3_2 _UpperCAmelCase : List[str] = 2 _UpperCAmelCase : int = 4 _UpperCAmelCase : str = 3_7 _UpperCAmelCase : List[Any] = "gelu" _UpperCAmelCase : List[str] = 0.1 _UpperCAmelCase : int = 0.1 _UpperCAmelCase : Any = 5_1_2 _UpperCAmelCase : str = 1_6 _UpperCAmelCase : Any = 2 _UpperCAmelCase : List[str] = 0.02 _UpperCAmelCase : List[Any] = 3 _UpperCAmelCase : List[str] = 4 _UpperCAmelCase : Optional[int] = None def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Union[str, Any] = None if self.use_input_mask: _UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : List[Any] = None _UpperCAmelCase : Tuple = None _UpperCAmelCase : Union[str, Any] = None if self.use_labels: _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : List[Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[Any] = TFDistilBertModel(config=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} _UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ ) _UpperCAmelCase : str = [input_ids, input_mask] _UpperCAmelCase : Tuple = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Dict = TFDistilBertForMaskedLM(config=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask} _UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any ) -> str: """simple docstring""" _UpperCAmelCase : Tuple = TFDistilBertForQuestionAnswering(config=lowerCAmelCase__ ) _UpperCAmelCase : Any = { "input_ids": input_ids, "attention_mask": input_mask, } _UpperCAmelCase : int = model(lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : int = self.num_labels _UpperCAmelCase : List[str] = TFDistilBertForSequenceClassification(lowerCAmelCase__ ) _UpperCAmelCase : str = {"input_ids": input_ids, "attention_mask": input_mask} _UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int ) -> Tuple: """simple docstring""" _UpperCAmelCase : str = self.num_choices _UpperCAmelCase : Union[str, Any] = TFDistilBertForMultipleChoice(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase : List[Any] = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase : Optional[int] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } _UpperCAmelCase : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.num_labels _UpperCAmelCase : Any = TFDistilBertForTokenClassification(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask} _UpperCAmelCase : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() (_UpperCAmelCase) : Tuple = config_and_inputs _UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ : Dict = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ : Any = False UpperCamelCase_ : Union[str, Any] = False def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _UpperCAmelCase : Dict = TFDistilBertModelTester(self ) _UpperCAmelCase : int = ConfigTester(self , config_class=lowerCAmelCase__ , dim=3_7 ) def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): _UpperCAmelCase : Union[str, Any] = TFDistilBertModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[Any] = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) _UpperCAmelCase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase : Optional[int] = model(lowerCAmelCase__ )[0] _UpperCAmelCase : int = [1, 6, 7_6_8] self.assertEqual(output.shape , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tf.constant( [ [ [0.1926_1885, -0.1373_2955, 0.411_9799], [0.2215_0156, -0.0742_2661, 0.3903_7204], [0.2275_6018, -0.089_6414, 0.370_1467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 )
361
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a = datasets.utils.logging.get_logger(__name__) __a = ['names', 'prefix'] __a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __a = ['encoding_errors', 'on_bad_lines'] __a = ['date_format'] @dataclass class A__ ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_00_00 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase : Any = self.delimiter if self.column_names is not None: _UpperCAmelCase : List[Any] = self.column_names @property def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase_ : int = CsvConfig def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : str = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase : Tuple = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): _UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
17
0
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = ConsistencyModelPipeline UpperCamelCase_ : Union[str, Any] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCamelCase_ : Dict = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt UpperCamelCase_ : Union[str, Any] = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) @property def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : List[str] = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet" , ) return unet @property def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , ) return unet def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Optional[int]=False ) -> Any: """simple docstring""" if class_cond: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet else: _UpperCAmelCase : Tuple = self.dummy_uncond_unet # Default to CM multistep sampler _UpperCAmelCase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) _UpperCAmelCase : str = { "unet": unet, "scheduler": scheduler, } return components def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any]=0 ) -> str: """simple docstring""" if str(lowerCAmelCase__ ).startswith("mps" ): _UpperCAmelCase : Tuple = torch.manual_seed(lowerCAmelCase__ ) else: _UpperCAmelCase : str = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : int = { "batch_size": 1, "num_inference_steps": None, "timesteps": [2_2, 0], "generator": generator, "output_type": "np", } return inputs def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Any = self.get_dummy_components() _UpperCAmelCase : List[str] = ConsistencyModelPipeline(**lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 3_2, 3_2, 3) _UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : str = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Optional[Any] = self.get_dummy_components(class_cond=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = ConsistencyModelPipeline(**lowerCAmelCase__ ) _UpperCAmelCase : Any = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : int = self.get_dummy_inputs(lowerCAmelCase__ ) _UpperCAmelCase : Any = 0 _UpperCAmelCase : Union[str, Any] = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 3_2, 3_2, 3) _UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : int = self.get_dummy_components() _UpperCAmelCase : str = ConsistencyModelPipeline(**lowerCAmelCase__ ) _UpperCAmelCase : Any = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Any = self.get_dummy_inputs(lowerCAmelCase__ ) _UpperCAmelCase : Any = 1 _UpperCAmelCase : Dict = None _UpperCAmelCase : str = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 3_2, 3_2, 3) _UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Optional[Any] = self.get_dummy_components(class_cond=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = ConsistencyModelPipeline(**lowerCAmelCase__ ) _UpperCAmelCase : Dict = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = self.get_dummy_inputs(lowerCAmelCase__ ) _UpperCAmelCase : str = 1 _UpperCAmelCase : Tuple = None _UpperCAmelCase : List[Any] = 0 _UpperCAmelCase : Tuple = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 3_2, 3_2, 3) _UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] _UpperCAmelCase : Union[str, Any] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Optional[int]=0 , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : int="cpu" , lowerCAmelCase__ : int=torch.floataa , lowerCAmelCase__ : List[str]=(1, 3, 6_4, 6_4) ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = torch.manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = { "num_inference_steps": None, "timesteps": [2_2, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: _UpperCAmelCase : Optional[int] = self.get_fixed_latents(seed=lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=lowerCAmelCase__ , shape=lowerCAmelCase__ ) _UpperCAmelCase : Dict = latents return inputs def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : Optional[Any]="cpu" , lowerCAmelCase__ : Optional[int]=torch.floataa , lowerCAmelCase__ : str=(1, 3, 6_4, 6_4) ) -> Dict: """simple docstring""" if type(lowerCAmelCase__ ) == str: _UpperCAmelCase : Dict = torch.device(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) return latents def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[Any] = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) _UpperCAmelCase : Dict = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) _UpperCAmelCase : Tuple = ConsistencyModelPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) pipe.to(torch_device=lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Any = self.get_inputs() _UpperCAmelCase : int = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 6_4, 6_4, 3) _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) _UpperCAmelCase : Tuple = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) _UpperCAmelCase : Tuple = ConsistencyModelPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) pipe.to(torch_device=lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = self.get_inputs() _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : List[Any] = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 6_4, 6_4, 3) _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) _UpperCAmelCase : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) _UpperCAmelCase : List[str] = ConsistencyModelPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) pipe.to(torch_device=lowerCAmelCase__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : int = self.get_inputs(get_fixed_latents=lowerCAmelCase__ , device=lowerCAmelCase__ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCAmelCase__ , enable_math=lowerCAmelCase__ , enable_mem_efficient=lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 6_4, 6_4, 3) _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" _UpperCAmelCase : Dict = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) _UpperCAmelCase : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=80.0 , ) _UpperCAmelCase : Tuple = ConsistencyModelPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) pipe.to(torch_device=lowerCAmelCase__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_inputs(get_fixed_latents=lowerCAmelCase__ , device=lowerCAmelCase__ ) _UpperCAmelCase : str = 1 _UpperCAmelCase : Any = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCAmelCase__ , enable_math=lowerCAmelCase__ , enable_mem_efficient=lowerCAmelCase__ ): _UpperCAmelCase : str = pipe(**lowerCAmelCase__ ).images assert image.shape == (1, 6_4, 6_4, 3) _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
362
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: list[int] ): if not nums: return 0 _UpperCAmelCase : int = nums[0] _UpperCAmelCase : Dict = 0 for num in nums[1:]: _UpperCAmelCase , _UpperCAmelCase : Any = ( max_excluding + num, max(a_, a_ ), ) return max(a_, a_ ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __a = logging.getLogger() def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("-f" ) _UpperCAmelCase : Optional[int] = parser.parse_args() return args.f class A__ ( UpperCamelCase ): """simple docstring""" def _lowerCAmelCase ( self : int ) -> None: """simple docstring""" _UpperCAmelCase : Dict = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCAmelCase__ , 0.666 ) @slow @require_torch_non_multi_gpu def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : int = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(lowerCAmelCase__ ) _UpperCAmelCase : str = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowerCAmelCase__ )
363
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): _UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" ) if key.startswith("module.decoder" ): _UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] _UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )] _UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" ) if "attn.q" in key: _UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Dict = key.replace("attn", "attention.self" ) if "fc1" in key: _UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" ) if "fc2" in key: _UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Any = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" ) _UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: _UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" ) if "skip_conv1" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" ) if "skip_conv2" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" ) if "fusion1" in key: _UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" ) if "fusion2" in key: _UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" ) if "fusion3" in key: _UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" ) if "fusion" in key and "conv" in key: _UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): _UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" ) _UpperCAmelCase : int = value return new_state_dict def __UpperCAmelCase ( a_: str, a_: List[Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ): _UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _UpperCAmelCase : Dict = GLPNImageProcessor() # prepare image _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) ) # rename keys _UpperCAmelCase : List[str] = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict _UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _UpperCAmelCase : Dict = model(a_ ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _UpperCAmelCase : Optional[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _UpperCAmelCase : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) _UpperCAmelCase : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
17
0
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : int = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _UpperCAmelCase : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(a_ ) ), }, features=a_, ) return dataset @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=a_ ) return filename # FILE_CONTENT + files __a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt" _UpperCAmelCase : Tuple = FILE_CONTENT with open(a_, "w" ) as f: f.write(a_ ) return filename @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" ) with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import gzip _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _UpperCAmelCase : Any = bytes(a_, "utf-8" ) with gzip.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _UpperCAmelCase : str = bytes(a_, "utf-8" ) with lza.frame.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Any ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(a_, "w" ) as archive: archive.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: List[str] ): import tarfile _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): import lzma _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _UpperCAmelCase : List[str] = bytes(a_, "utf-8" ) with lzma.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: Tuple ): import zipfile _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _UpperCAmelCase : int = bytes(a_, "utf-8" ) with zstd.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml" _UpperCAmelCase : Tuple = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(a_, "w" ) as f: f.write(a_ ) return filename __a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : str = datasets.Dataset.from_dict(a_ ) _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(a_ ) ) as con: _UpperCAmelCase : List[Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str, a_: str ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(a_, "rb" ) as f: _UpperCAmelCase : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ): _UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) ) f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ): _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _UpperCAmelCase : Dict = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(a_, "wb" ) as f: _UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ ) _UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ ) writer.write_table(a_ ) writer.close() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : str = {"data": DATA} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(a_, "w" ) as f: for item in DATA_312: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(a_, "w" ) as f: for item in DATA_STR: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ): import gzip _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ): import gzip _UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ): _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : List[str] = ["0", "1", "2", "3"] _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Dict = ["0", "1", "2", "3"] _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = ["0", "1", "2", "3"] _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename("unsupported.ext" ) ) f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) return data_dir
364
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : int = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _UpperCAmelCase : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(a_ ) ), }, features=a_, ) return dataset @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=a_ ) return filename # FILE_CONTENT + files __a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt" _UpperCAmelCase : Tuple = FILE_CONTENT with open(a_, "w" ) as f: f.write(a_ ) return filename @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" ) with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import gzip _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _UpperCAmelCase : Any = bytes(a_, "utf-8" ) with gzip.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _UpperCAmelCase : str = bytes(a_, "utf-8" ) with lza.frame.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Any ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(a_, "w" ) as archive: archive.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: List[str] ): import tarfile _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): import lzma _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _UpperCAmelCase : List[str] = bytes(a_, "utf-8" ) with lzma.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: Tuple ): import zipfile _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _UpperCAmelCase : int = bytes(a_, "utf-8" ) with zstd.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml" _UpperCAmelCase : Tuple = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(a_, "w" ) as f: f.write(a_ ) return filename __a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : str = datasets.Dataset.from_dict(a_ ) _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(a_ ) ) as con: _UpperCAmelCase : List[Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str, a_: str ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(a_, "rb" ) as f: _UpperCAmelCase : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ): _UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) ) f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ): _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _UpperCAmelCase : Dict = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(a_, "wb" ) as f: _UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ ) _UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ ) writer.write_table(a_ ) writer.close() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : str = {"data": DATA} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(a_, "w" ) as f: for item in DATA_312: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(a_, "w" ) as f: for item in DATA_STR: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ): import gzip _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ): import gzip _UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ): _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : List[str] = ["0", "1", "2", "3"] _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Dict = ["0", "1", "2", "3"] _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = ["0", "1", "2", "3"] _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename("unsupported.ext" ) ) f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) return data_dir
17
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : str = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase_ : ClassVar[Features] = Features({'''image''': Image()} ) UpperCamelCase_ : ClassVar[Features] = Features({'''labels''': ClassLabel} ) UpperCamelCase_ : str = "image" UpperCamelCase_ : str = "labels" def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Tuple ) -> Dict: """simple docstring""" if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , lowerCAmelCase__ ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) _UpperCAmelCase : Optional[int] = copy.deepcopy(self ) _UpperCAmelCase : Optional[int] = self.label_schema.copy() _UpperCAmelCase : List[str] = features[self.label_column] _UpperCAmelCase : Optional[Any] = label_schema return task_template @property def _lowerCAmelCase ( self : str ) -> Dict[str, str]: """simple docstring""" return { self.image_column: "image", self.label_column: "labels", }
365
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = BarthezTokenizer UpperCamelCase_ : List[Any] = BarthezTokenizerFast UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : Optional[int] = True def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" super().setUp() _UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = "<pad>" _UpperCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] _UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] _UpperCAmelCase : int = self.tokenizer( lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() _UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé." _UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase : Tuple = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , )
17
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a = datasets.utils.logging.get_logger(__name__) __a = ['names', 'prefix'] __a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __a = ['encoding_errors', 'on_bad_lines'] __a = ['date_format'] @dataclass class A__ ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_00_00 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase : Any = self.delimiter if self.column_names is not None: _UpperCAmelCase : List[Any] = self.column_names @property def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase_ : int = CsvConfig def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : str = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase : Tuple = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): _UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
366
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0} _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : str = max_resolution _UpperCAmelCase : List[Any] = size _UpperCAmelCase : Union[str, Any] = do_normalize _UpperCAmelCase : Optional[Any] = do_convert_rgb _UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] _UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image() _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : str = 2_0_4_8 _UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Union[str, Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _UpperCAmelCase : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches _UpperCAmelCase : Any = "Hello" _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : List[Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) _UpperCAmelCase : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Union[str, Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCAmelCase : List[Any] = 3 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Tuple = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
17
0
'''simple docstring''' import unittest import torch from torch import nn from diffusers.models.activations import get_activation class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = get_activation("swish" ) self.assertIsInstance(lowerCAmelCase__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 ) def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = get_activation("silu" ) self.assertIsInstance(lowerCAmelCase__ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 ) def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" _UpperCAmelCase : Tuple = get_activation("mish" ) self.assertIsInstance(lowerCAmelCase__ , nn.Mish ) self.assertEqual(act(torch.tensor(-2_0_0 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 ) def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" _UpperCAmelCase : str = get_activation("gelu" ) self.assertIsInstance(lowerCAmelCase__ , nn.GELU ) self.assertEqual(act(torch.tensor(-1_0_0 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(2_0 , dtype=torch.floataa ) ).item() , 2_0 )
367
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''time_series_transformer''' UpperCamelCase_ : Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = prediction_length _UpperCAmelCase : Optional[Any] = context_length or prediction_length _UpperCAmelCase : Optional[Any] = distribution_output _UpperCAmelCase : Union[str, Any] = loss _UpperCAmelCase : Dict = input_size _UpperCAmelCase : int = num_time_features _UpperCAmelCase : Any = lags_sequence _UpperCAmelCase : Dict = scaling _UpperCAmelCase : Tuple = num_dynamic_real_features _UpperCAmelCase : Dict = num_static_real_features _UpperCAmelCase : Union[str, Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Optional[int] = cardinality else: _UpperCAmelCase : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : List[Any] = embedding_dimension else: _UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : str = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features _UpperCAmelCase : str = d_model _UpperCAmelCase : Optional[Any] = encoder_attention_heads _UpperCAmelCase : Dict = decoder_attention_heads _UpperCAmelCase : List[Any] = encoder_ffn_dim _UpperCAmelCase : str = decoder_ffn_dim _UpperCAmelCase : Dict = encoder_layers _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : Any = dropout _UpperCAmelCase : str = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : Dict = encoder_layerdrop _UpperCAmelCase : Any = decoder_layerdrop _UpperCAmelCase : Optional[Any] = activation_function _UpperCAmelCase : Tuple = init_std _UpperCAmelCase : List[str] = use_cache super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = '''realm''' def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int]=3_0_5_2_2 , lowerCAmelCase__ : Tuple=7_6_8 , lowerCAmelCase__ : Optional[int]=1_2_8 , lowerCAmelCase__ : List[str]=1_2 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : List[str]=8 , lowerCAmelCase__ : str=3_0_7_2 , lowerCAmelCase__ : str="gelu_new" , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : List[Any]=0.02 , lowerCAmelCase__ : str=1e-12 , lowerCAmelCase__ : Union[str, Any]=2_5_6 , lowerCAmelCase__ : str=1_0 , lowerCAmelCase__ : Dict=1e-3 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : int=3_2_0 , lowerCAmelCase__ : List[str]=1_3_3_5_3_7_1_8 , lowerCAmelCase__ : List[str]=5_0_0_0 , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : Dict=0 , lowerCAmelCase__ : Dict=2 , **lowerCAmelCase__ : Union[str, Any] , ) -> str: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) # Common config _UpperCAmelCase : Optional[Any] = vocab_size _UpperCAmelCase : Dict = max_position_embeddings _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : Union[str, Any] = retriever_proj_size _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Any = num_candidates _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : int = attention_probs_dropout_prob _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : List[Any] = type_vocab_size _UpperCAmelCase : List[str] = layer_norm_eps # Reader config _UpperCAmelCase : List[str] = span_hidden_size _UpperCAmelCase : Optional[Any] = max_span_width _UpperCAmelCase : Optional[Any] = reader_layer_norm_eps _UpperCAmelCase : int = reader_beam_size _UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config _UpperCAmelCase : Dict = num_block_records _UpperCAmelCase : Any = searcher_beam_size
368
'''simple docstring''' import baseaa def __UpperCAmelCase ( a_: str ): return baseaa.baaencode(string.encode("utf-8" ) ) def __UpperCAmelCase ( a_: bytes ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": __a = 'Hello World!' __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
17
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : str , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : Any ) -> None: """simple docstring""" warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead." , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
369
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" UpperCamelCase_ : Any = XGLMConfig UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Dict = '''gelu''' def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : str = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : int = d_model _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Tuple = ffn_dim _UpperCAmelCase : Any = activation_function _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Any = None _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Tuple = 1 def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _UpperCAmelCase : Any = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[Any] = self.get_config() _UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : Dict = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Tuple = False def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = TFXGLMModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on _UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) _UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" ) _UpperCAmelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): _UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) _UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[int] = "left" # use different length sentences to test batching _UpperCAmelCase : Tuple = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = inputs["input_ids"] _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 ) _UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
17
0
'''simple docstring''' __a = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __a = [{'type': 'code', 'content': INSTALL_CONTENT}] __a = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
371
'''simple docstring''' from math import factorial def __UpperCAmelCase ( a_: int = 100 ): return sum(map(a_, str(factorial(a_ ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
17
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
350
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __a = (3, 9, -11, 0, 7, 5, 1, -1) __a = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : int UpperCamelCase_ : Node | None class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None: """simple docstring""" _UpperCAmelCase : Node | None = None for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ): _UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" _UpperCAmelCase : List[Any] = self.head while node: yield node.data _UpperCAmelCase : List[str] = node.next_node def __len__( self : Any ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return " -> ".join([str(lowerCAmelCase__ ) for node in self] ) def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ): return SortedLinkedList(list(a_ ) + list(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() __a = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
17
0
'''simple docstring''' from math import factorial __a = {str(d): factorial(d) for d in range(10)} def __UpperCAmelCase ( a_: int ): return sum(DIGIT_FACTORIAL[d] for d in str(a_ ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 7 * factorial(9 ) + 1 return sum(i for i in range(3, a_ ) if sum_of_digit_factorial(a_ ) == i ) if __name__ == "__main__": print(f'{solution() = }')
351
'''simple docstring''' def __UpperCAmelCase ( a_: str ): if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) _UpperCAmelCase : Optional[Any] = "" while len(a_ ) % 3 != 0: _UpperCAmelCase : List[Any] = "0" + bin_string _UpperCAmelCase : Dict = [ bin_string[index : index + 3] for index in range(len(a_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _UpperCAmelCase : Optional[Any] = 0 for index, val in enumerate(a_ ): oct_val += int(2 ** (2 - index) * int(a_ ) ) oct_string += str(a_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
17
0
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str]=0.2 , lowerCAmelCase__ : str=0.2 ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[Any] = bp_numa _UpperCAmelCase : Any = bp_numa _UpperCAmelCase : Union[str, Any] = bp_numa _UpperCAmelCase : str = conva_get[:2] _UpperCAmelCase : Union[str, Any] = conva_get[2] _UpperCAmelCase : Dict = size_pa _UpperCAmelCase : List[Any] = rate_w _UpperCAmelCase : Dict = rate_t _UpperCAmelCase : List[Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] _UpperCAmelCase : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) _UpperCAmelCase : Optional[int] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) _UpperCAmelCase : Any = -2 * np.random.rand(self.conva[1] ) + 1 _UpperCAmelCase : Optional[Any] = -2 * np.random.rand(self.num_bpa ) + 1 _UpperCAmelCase : Optional[int] = -2 * np.random.rand(self.num_bpa ) + 1 def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : str ) -> int: """simple docstring""" _UpperCAmelCase : Tuple = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(lowerCAmelCase__ , "wb" ) as f: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__ ) print(F"""Model saved: {save_path}""" ) @classmethod def _lowerCAmelCase ( cls : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" with open(lowerCAmelCase__ , "rb" ) as f: _UpperCAmelCase : int = pickle.load(lowerCAmelCase__ ) # noqa: S301 _UpperCAmelCase : int = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) _UpperCAmelCase : List[str] = model_dic.get("size_pooling1" ) _UpperCAmelCase : List[Any] = model_dic.get("num_bp1" ) _UpperCAmelCase : Optional[Any] = model_dic.get("num_bp2" ) _UpperCAmelCase : List[str] = model_dic.get("num_bp3" ) _UpperCAmelCase : Tuple = model_dic.get("rate_weight" ) _UpperCAmelCase : str = model_dic.get("rate_thre" ) # create model instance _UpperCAmelCase : Tuple = CNN(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # modify model parameter _UpperCAmelCase : List[Any] = model_dic.get("w_conv1" ) _UpperCAmelCase : int = model_dic.get("wkj" ) _UpperCAmelCase : Dict = model_dic.get("vji" ) _UpperCAmelCase : int = model_dic.get("thre_conv1" ) _UpperCAmelCase : Any = model_dic.get("thre_bp2" ) _UpperCAmelCase : Optional[int] = model_dic.get("thre_bp3" ) return conv_ins def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : List[str] ) -> Optional[int]: """simple docstring""" return 1 / (1 + np.exp(-1 * x )) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : List[Any] ) -> int: """simple docstring""" return round(lowerCAmelCase__ , 3 ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Any = convs[0] _UpperCAmelCase : str = convs[1] _UpperCAmelCase : Optional[int] = np.shape(lowerCAmelCase__ )[0] # get the data slice of original image data, data_focus _UpperCAmelCase : Tuple = [] for i_focus in range(0 , size_data - size_conv + 1 , lowerCAmelCase__ ): for j_focus in range(0 , size_data - size_conv + 1 , lowerCAmelCase__ ): _UpperCAmelCase : Tuple = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowerCAmelCase__ ) # calculate the feature map of every single kernel, and saved as list of matrix _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = [] for i_focus in range(len(lowerCAmelCase__ ) ): _UpperCAmelCase : Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowerCAmelCase__ ) ) _UpperCAmelCase : List[str] = np.asmatrix(lowerCAmelCase__ ).reshape( lowerCAmelCase__ , lowerCAmelCase__ ) data_featuremap.append(lowerCAmelCase__ ) # expanding the data slice to One dimenssion _UpperCAmelCase : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowerCAmelCase__ ) ) _UpperCAmelCase : Tuple = np.asarray(lowerCAmelCase__ ) return focus_list, data_featuremap def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple="average_pool" ) -> str: """simple docstring""" _UpperCAmelCase : Union[str, Any] = len(featuremaps[0] ) _UpperCAmelCase : Optional[Any] = int(size_map / size_pooling ) _UpperCAmelCase : List[str] = [] for i_map in range(len(lowerCAmelCase__ ) ): _UpperCAmelCase : int = featuremaps[i_map] _UpperCAmelCase : Union[str, Any] = [] for i_focus in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): for j_focus in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowerCAmelCase__ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowerCAmelCase__ ) ) _UpperCAmelCase : str = np.asmatrix(lowerCAmelCase__ ).reshape(lowerCAmelCase__ , lowerCAmelCase__ ) featuremap_pooled.append(lowerCAmelCase__ ) return featuremap_pooled def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = [] for i in range(len(lowerCAmelCase__ ) ): _UpperCAmelCase : Dict = np.shape(data[i] ) _UpperCAmelCase : Optional[int] = data[i].reshape(1 , shapes[0] * shapes[1] ) _UpperCAmelCase : Dict = data_listed.getA().tolist()[0] data_expanded.extend(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = np.asarray(lowerCAmelCase__ ) return data_expanded def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : str ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Dict = np.asarray(lowerCAmelCase__ ) _UpperCAmelCase : Any = np.shape(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Optional[Any] = 0 for i_map in range(lowerCAmelCase__ ): _UpperCAmelCase : List[str] = np.ones((size_map, size_map) ) for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): for j in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] = pd_pool[ i_pool ] _UpperCAmelCase : Tuple = i_pool + 1 _UpperCAmelCase : Union[str, Any] = np.multiply( lowerCAmelCase__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(lowerCAmelCase__ ) return pd_all def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int]=bool ) -> str: """simple docstring""" print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(lowerCAmelCase__ )) ) print((" - - Shape: Teach_Data ", np.shape(lowerCAmelCase__ )) ) _UpperCAmelCase : str = 0 _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Tuple = 1_0_0_0_0 while rp < n_repeat and mse >= error_accuracy: _UpperCAmelCase : List[str] = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(lowerCAmelCase__ ) ): # print('------------Learning Image: %d--------------'%p) _UpperCAmelCase : Optional[int] = np.asmatrix(datas_train[p] ) _UpperCAmelCase : Tuple = np.asarray(datas_teach[p] ) _UpperCAmelCase : Tuple = self.convolute( lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _UpperCAmelCase : Optional[Any] = self.pooling(lowerCAmelCase__ , self.size_poolinga ) _UpperCAmelCase : List[Any] = np.shape(lowerCAmelCase__ ) _UpperCAmelCase : Any = self._expand(lowerCAmelCase__ ) _UpperCAmelCase : str = data_bp_input _UpperCAmelCase : Union[str, Any] = np.dot(lowerCAmelCase__ , self.vji.T ) - self.thre_bpa _UpperCAmelCase : str = self.sig(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = np.dot(lowerCAmelCase__ , self.wkj.T ) - self.thre_bpa _UpperCAmelCase : List[Any] = self.sig(lowerCAmelCase__ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- _UpperCAmelCase : Optional[Any] = np.multiply( (data_teach - bp_outa) , np.multiply(lowerCAmelCase__ , (1 - bp_outa) ) ) _UpperCAmelCase : int = np.multiply( np.dot(lowerCAmelCase__ , self.wkj ) , np.multiply(lowerCAmelCase__ , (1 - bp_outa) ) ) _UpperCAmelCase : List[Any] = np.dot(lowerCAmelCase__ , self.vji ) _UpperCAmelCase : List[str] = pd_i_all / (self.size_poolinga * self.size_poolinga) _UpperCAmelCase : Optional[int] = pd_conva_pooled.T.getA().tolist() _UpperCAmelCase : Optional[Any] = self._calculate_gradient_from_pool( lowerCAmelCase__ , lowerCAmelCase__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): _UpperCAmelCase : str = self._expand_mat(pd_conva_all[k_conv] ) _UpperCAmelCase : Tuple = self.rate_weight * np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) _UpperCAmelCase : Dict = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer _UpperCAmelCase : int = self.wkj + pd_k_all.T * bp_outa * self.rate_weight _UpperCAmelCase : Optional[int] = self.vji + pd_j_all.T * bp_outa * self.rate_weight _UpperCAmelCase : Dict = self.thre_bpa - pd_k_all * self.rate_thre _UpperCAmelCase : Union[str, Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image _UpperCAmelCase : Tuple = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) _UpperCAmelCase : Optional[int] = rp + 1 _UpperCAmelCase : Optional[int] = error_count / patterns all_mse.append(lowerCAmelCase__ ) def draw_error(): _UpperCAmelCase : Tuple = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowerCAmelCase__ , "+-" ) plt.plot(lowerCAmelCase__ , "r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(lowerCAmelCase__ , alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(lowerCAmelCase__ )) ) for p in range(len(lowerCAmelCase__ ) ): _UpperCAmelCase : int = np.asmatrix(datas_test[p] ) _UpperCAmelCase : Dict = self.convolute( lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _UpperCAmelCase : Union[str, Any] = self.pooling(lowerCAmelCase__ , self.size_poolinga ) _UpperCAmelCase : List[Any] = self._expand(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = data_bp_input _UpperCAmelCase : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa _UpperCAmelCase : int = self.sig(lowerCAmelCase__ ) _UpperCAmelCase : Dict = bp_outa * self.wkj.T - self.thre_bpa _UpperCAmelCase : List[str] = self.sig(lowerCAmelCase__ ) produce_out.extend(bp_outa.getA().tolist() ) _UpperCAmelCase : List[str] = [list(map(self.do_round , lowerCAmelCase__ ) ) for each in produce_out] return np.asarray(lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Dict ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = np.asmatrix(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = self.convolute( lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _UpperCAmelCase : Tuple = self.pooling(lowerCAmelCase__ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
352
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCAmelCase ( a_: str ): for param in module.parameters(): _UpperCAmelCase : Any = False def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : int = plt.imshow(a_ ) fig.axes.get_xaxis().set_visible(a_ ) fig.axes.get_yaxis().set_visible(a_ ) plt.show() def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = datetime.now() _UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" ) return timestamp
17
0
'''simple docstring''' import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = '''ssube/stable-diffusion-x4-upscaler-onnx''' def _lowerCAmelCase ( self : int , lowerCAmelCase__ : List[Any]=0 ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[int] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(lowerCAmelCase__ ) ) _UpperCAmelCase : int = torch.manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs() _UpperCAmelCase : str = pipe(**lowerCAmelCase__ ).images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : Union[str, Any] = np.array( [0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) _UpperCAmelCase : List[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : int = self.get_dummy_inputs() _UpperCAmelCase : List[Any] = pipe(**lowerCAmelCase__ ).images _UpperCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : Optional[Any] = np.array( [0.689_8892, 0.5924_0556, 0.5249_9527, 0.5886_6215, 0.5225_8235, 0.5257_2715, 0.6241_4473, 0.617_4387, 0.621_4964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) _UpperCAmelCase : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = self.get_dummy_inputs() _UpperCAmelCase : Any = pipe(**lowerCAmelCase__ ).images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : int = np.array( [0.765_9278, 0.7643_7664, 0.7557_9107, 0.769_1116, 0.7766_6986, 0.772_7672, 0.775_8664, 0.781_2226, 0.7694_2515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) _UpperCAmelCase : Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : str = self.get_dummy_inputs() _UpperCAmelCase : Optional[Any] = pipe(**lowerCAmelCase__ ).images _UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : Dict = np.array( [0.697_4782, 0.6890_2093, 0.7013_5885, 0.758_3618, 0.780_4545, 0.785_4912, 0.7866_7426, 0.7874_3863, 0.7807_0223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) _UpperCAmelCase : Dict = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = self.get_dummy_inputs() _UpperCAmelCase : Tuple = pipe(**lowerCAmelCase__ ).images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : Union[str, Any] = np.array( [0.7742_4496, 0.77_3601, 0.764_5288, 0.776_9598, 0.777_2739, 0.773_8688, 0.7818_7233, 0.7787_9584, 0.76_7043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" @property def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" _UpperCAmelCase : int = ort.SessionOptions() _UpperCAmelCase : List[str] = False return options def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _UpperCAmelCase : Dict = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default _UpperCAmelCase : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = "A fantasy landscape, trending on artstation" _UpperCAmelCase : List[Any] = torch.manual_seed(0 ) _UpperCAmelCase : int = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=1_0 , generator=lowerCAmelCase__ , output_type="np" , ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : Dict = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : Any = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _UpperCAmelCase : Dict = init_image.resize((1_2_8, 1_2_8) ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , subfolder="scheduler" ) _UpperCAmelCase : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , scheduler=lowerCAmelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : str = "A fantasy landscape, trending on artstation" _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : Dict = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=2_0 , generator=lowerCAmelCase__ , output_type="np" , ) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : Union[str, Any] = np.array( [0.5017_3753, 0.5022_3356, 0.50_2039, 0.5023_3036, 0.502_3725, 0.502_2601, 0.501_8758, 0.5023_4085, 0.5024_1566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
353
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = (EulerDiscreteScheduler,) UpperCamelCase_ : Tuple = 10 def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : str = { "num_train_timesteps": 1_1_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : Any = self.dummy_model() _UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = output.prev_sample _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = self.dummy_model() _UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : Tuple = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = output.prev_sample _UpperCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : str = self.dummy_model() _UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : str = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : int = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : Optional[int] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
17
0
'''simple docstring''' def __UpperCAmelCase ( a_: list[int] ): if not nums: # Makes sure that the list is not empty raise ValueError("List is empty" ) _UpperCAmelCase : List[Any] = sum(a_ ) / len(a_ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(a_ ) if __name__ == "__main__": import doctest doctest.testmod()
354
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Any = tempfile.mkdtemp() _UpperCAmelCase : str = BlipImageProcessor() _UpperCAmelCase : Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) _UpperCAmelCase : Any = BlipProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self : List[Any] , **lowerCAmelCase__ : Tuple ) -> Union[str, Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).tokenizer def _lowerCAmelCase ( self : str , **lowerCAmelCase__ : List[str] ) -> List[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).image_processor def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" _UpperCAmelCase : str = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _UpperCAmelCase : List[str] = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : List[str] = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Optional[int] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _UpperCAmelCase : Optional[int] = self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0 ) _UpperCAmelCase : List[str] = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = self.get_image_processor() _UpperCAmelCase : Union[str, Any] = self.get_tokenizer() _UpperCAmelCase : str = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) _UpperCAmelCase : int = self.prepare_image_inputs() _UpperCAmelCase : Optional[Any] = image_processor(lowerCAmelCase__ , return_tensors="np" ) _UpperCAmelCase : Optional[Any] = processor(images=lowerCAmelCase__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = self.get_image_processor() _UpperCAmelCase : Union[str, Any] = self.get_tokenizer() _UpperCAmelCase : List[str] = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = "lower newer" _UpperCAmelCase : Optional[Any] = processor(text=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer(lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" _UpperCAmelCase : str = self.get_image_processor() _UpperCAmelCase : Optional[Any] = self.get_tokenizer() _UpperCAmelCase : Optional[int] = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) _UpperCAmelCase : str = "lower newer" _UpperCAmelCase : List[str] = self.prepare_image_inputs() _UpperCAmelCase : Optional[int] = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def _lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.get_image_processor() _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : Tuple = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase : str = processor.batch_decode(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" _UpperCAmelCase : Dict = self.get_image_processor() _UpperCAmelCase : Tuple = self.get_tokenizer() _UpperCAmelCase : List[str] = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = "lower newer" _UpperCAmelCase : Optional[Any] = self.prepare_image_inputs() _UpperCAmelCase : Optional[Any] = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
355
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( a_: int ): # A local function to see if a dot lands in the circle. def is_in_circle(a_: float, a_: float ) -> bool: _UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase : str = mean( int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) ) for _ in range(a_ ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase : Optional[int] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ): return mean( function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value) def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ): def identity_function(a_: float ) -> float: return x _UpperCAmelCase : Union[str, Any] = area_under_curve_estimator( a_, a_, a_, a_ ) _UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def __UpperCAmelCase ( a_: int ): def function_to_integrate(a_: float ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase : List[str] = area_under_curve_estimator( a_, a_, 0.0, 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __a = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __a = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2FeatureExtractor'] __a = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
0
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) __a = logging.getLogger(__name__) __a = 'Hello world! cécé herlolip' __a = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def __UpperCAmelCase ( a_: Optional[int], a_: str ): _UpperCAmelCase : Optional[Any] = BertAbsConfig( temp_dir=".", finetune_bert=a_, large=a_, share_emb=a_, use_bert_emb=a_, encoder="bert", max_pos=512, enc_layers=6, enc_hidden_size=512, enc_heads=8, enc_ff_size=512, enc_dropout=0.2, dec_layers=6, dec_hidden_size=768, dec_heads=8, dec_ff_size=2_048, dec_dropout=0.2, ) _UpperCAmelCase : Dict = torch.load(a_, lambda a_, a_ : storage ) _UpperCAmelCase : Tuple = AbsSummarizer(a_, torch.device("cpu" ), a_ ) original.eval() _UpperCAmelCase : Dict = BertAbsSummarizer(a_, torch.device("cpu" ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model" ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical" ) _UpperCAmelCase : Dict = BertTokenizer.from_pretrained("bert-base-uncased" ) # prepare the model inputs _UpperCAmelCase : List[Any] = tokenizer.encode("This is sample éàalj'-." ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(a_ )) ) _UpperCAmelCase : Union[str, Any] = torch.tensor(a_ ).unsqueeze(0 ) _UpperCAmelCase : List[str] = tokenizer.encode("This is sample 3 éàalj'-." ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(a_ )) ) _UpperCAmelCase : Any = torch.tensor(a_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass _UpperCAmelCase : Union[str, Any] = encoder_input_ids _UpperCAmelCase : Optional[int] = decoder_input_ids _UpperCAmelCase : List[str] = None _UpperCAmelCase : List[Any] = None _UpperCAmelCase : Dict = None _UpperCAmelCase : List[str] = None _UpperCAmelCase : Optional[int] = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical _UpperCAmelCase : Tuple = original(a_, a_, a_, a_, a_, a_, a_ )[0] _UpperCAmelCase : str = original.generator(a_ ) _UpperCAmelCase : int = new_model( a_, a_, a_, a_, a_ )[0] _UpperCAmelCase : Union[str, Any] = new_model.generator(a_ ) _UpperCAmelCase : Tuple = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(a_ ) ) _UpperCAmelCase : List[Any] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print("Maximum absolute difference beween weights: {:.2f}".format(a_ ) ) _UpperCAmelCase : Dict = torch.allclose(a_, a_, atol=1e-3 ) if are_identical: logging.info("all weights are equal up to 1e-3" ) else: raise ValueError("the weights are different. The new model is likely different from the original one." ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary" ) torch.save( new_model.state_dict(), "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) __a = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
357
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if not isinstance(a_, a_ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(a_, a_ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) _UpperCAmelCase : List[str] = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(a_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import os def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : int = len(grid[0] ) _UpperCAmelCase : Tuple = len(a_ ) _UpperCAmelCase : str = 0 _UpperCAmelCase : str = 0 _UpperCAmelCase : Dict = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(a_ ): for j in range(n_rows - 3 ): _UpperCAmelCase : Any = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] _UpperCAmelCase : List[str] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: _UpperCAmelCase : Dict = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: _UpperCAmelCase : int = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) _UpperCAmelCase : Tuple = max( a_, a_, a_, a_ ) if max_product > largest: _UpperCAmelCase : Any = max_product return largest def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = [] with open(os.path.dirname(a_ ) + "/grid.txt" ) as file: for line in file: grid.append(line.strip("\n" ).split(" " ) ) _UpperCAmelCase : Tuple = [[int(a_ ) for i in grid[j]] for j in range(len(a_ ) )] return largest_product(a_ ) if __name__ == "__main__": print(solution())
358
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') __a = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" if self.train_file is not None: _UpperCAmelCase : List[Any] = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCAmelCase : List[str] = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A__ : """simple docstring""" UpperCamelCase_ : PreTrainedTokenizerBase UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[int] = None def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels" _UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features] _UpperCAmelCase : str = len(lowerCAmelCase__ ) _UpperCAmelCase : int = len(features[0]["input_ids"] ) _UpperCAmelCase : str = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features ] _UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) ) _UpperCAmelCase : Any = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) return batch def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag", a_, a_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCAmelCase : Union[str, Any] = {} if data_args.train_file is not None: _UpperCAmelCase : str = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase : Optional[Any] = data_args.validation_file _UpperCAmelCase : Dict = data_args.train_file.split("." )[-1] _UpperCAmelCase : Optional[int] = load_dataset( a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: # Downloading and loading the swag dataset from the hub. _UpperCAmelCase : Dict = load_dataset( "swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )] _UpperCAmelCase : List[Any] = "sent1" _UpperCAmelCase : Optional[int] = "sent2" if data_args.max_seq_length is None: _UpperCAmelCase : List[str] = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _UpperCAmelCase : Dict = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]] _UpperCAmelCase : Tuple = examples[question_header_name] _UpperCAmelCase : Optional[Any] = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ ) ] # Flatten out _UpperCAmelCase : List[str] = list(chain(*a_ ) ) _UpperCAmelCase : Dict = list(chain(*a_ ) ) # Tokenize _UpperCAmelCase : List[Any] = tokenizer( a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _UpperCAmelCase : int = raw_datasets["train"] if data_args.max_train_samples is not None: _UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples ) _UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _UpperCAmelCase : Union[str, Any] = train_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _UpperCAmelCase : Dict = raw_datasets["validation"] if data_args.max_eval_samples is not None: _UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples ) _UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _UpperCAmelCase : Optional[int] = eval_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator _UpperCAmelCase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a_: Tuple ): _UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions _UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCAmelCase : Any = Trainer( model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, ) # Training if training_args.do_train: _UpperCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : List[str] = last_checkpoint _UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase : str = train_result.metrics _UpperCAmelCase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) _UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) ) trainer.log_metrics("train", a_ ) trainer.save_metrics("train", a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase : List[Any] = trainer.evaluate() _UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) _UpperCAmelCase : Tuple = min(a_, len(a_ ) ) trainer.log_metrics("eval", a_ ) trainer.save_metrics("eval", a_ ) _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __UpperCAmelCase ( a_: int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
17
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __a = (3, 9, -11, 0, 7, 5, 1, -1) __a = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : int UpperCamelCase_ : Node | None class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None: """simple docstring""" _UpperCAmelCase : Node | None = None for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ): _UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" _UpperCAmelCase : List[Any] = self.head while node: yield node.data _UpperCAmelCase : List[str] = node.next_node def __len__( self : Any ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return " -> ".join([str(lowerCAmelCase__ ) for node in self] ) def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ): return SortedLinkedList(list(a_ ) + list(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() __a = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
359
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str: """simple docstring""" super().__init__() _UpperCAmelCase : List[str] = model _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass def __UpperCAmelCase ( a_: str, a_: str, a_: str ): # load longformer model from model identifier _UpperCAmelCase : int = LongformerModel.from_pretrained(a_ ) _UpperCAmelCase : Any = LightningModel(a_ ) _UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model _UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(a_ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
0
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __UpperCAmelCase ( ): _UpperCAmelCase : str = HfArgumentParser(a_ ) _UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] _UpperCAmelCase : List[str] = TensorFlowBenchmark(args=a_ ) try: _UpperCAmelCase : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: _UpperCAmelCase : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." _UpperCAmelCase : str = " ".join(str(a_ ).split(" " )[:-1] ) _UpperCAmelCase : Any = "" _UpperCAmelCase : Tuple = eval(str(a_ ).split(" " )[-1] ) _UpperCAmelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(a_ ) if len(a_ ) > 0: _UpperCAmelCase : Optional[int] = full_error_msg + begin_error_msg + str(a_ ) raise ValueError(a_ ) benchmark.run() if __name__ == "__main__": main()
360
'''simple docstring''' from importlib import import_module from .logging import get_logger __a = get_logger(__name__) class A__ : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class A__ : """simple docstring""" UpperCamelCase_ : Union[str, Any] = [] def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = obj _UpperCAmelCase : int = target _UpperCAmelCase : Optional[int] = new _UpperCAmelCase : Any = target.split("." )[0] _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : Dict = attrs or [] def __enter__( self : List[str] ) -> int: """simple docstring""" *_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: _UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCAmelCase : Tuple = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) _UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: _UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCAmelCase : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.__enter__() self._active_patches.append(self ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
17
0
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger() @dataclass class A__ : """simple docstring""" UpperCamelCase_ : nn.Module UpperCamelCase_ : List[nn.Module] = field(default_factory=UpperCamelCase ) UpperCamelCase_ : list = field(default_factory=UpperCamelCase ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Tensor ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = len(list(m.modules() ) ) == 1 or isinstance(lowerCAmelCase__ , nn.Convad ) or isinstance(lowerCAmelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(lowerCAmelCase__ ) def __call__( self : Optional[int] , lowerCAmelCase__ : Tensor ) -> List[Any]: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(lowerCAmelCase__ ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return list(filter(lambda lowerCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : nn.Module UpperCamelCase_ : nn.Module UpperCamelCase_ : int = 1 UpperCamelCase_ : List = field(default_factory=UpperCamelCase ) UpperCamelCase_ : List = field(default_factory=UpperCamelCase ) UpperCamelCase_ : bool = True def __call__( self : List[str] , lowerCAmelCase__ : Tensor ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = Tracker(self.dest )(lowerCAmelCase__ ).parametrized _UpperCAmelCase : str = Tracker(self.src )(lowerCAmelCase__ ).parametrized _UpperCAmelCase : Optional[int] = list(filter(lambda lowerCAmelCase__ : type(lowerCAmelCase__ ) not in self.src_skip , lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[Any] = list(filter(lambda lowerCAmelCase__ : type(lowerCAmelCase__ ) not in self.dest_skip , lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ) and self.raise_if_mismatch: raise Exception( F"""Numbers of operations are different. Source module has {len(lowerCAmelCase__ )} operations while""" F""" destination module has {len(lowerCAmelCase__ )}.""" ) for dest_m, src_m in zip(lowerCAmelCase__ , lowerCAmelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) class A__ ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : nn.Module ) -> Dict: """simple docstring""" super().__init__() _UpperCAmelCase : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("conv1", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block" ), F"""Unexpected layer name {k}""" _UpperCAmelCase : Tuple = len(lowerCAmelCase__ ) + 1 feature_blocks.append((F"""res{block_index}""", v) ) _UpperCAmelCase : Optional[Any] = nn.ModuleDict(lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Tensor ) -> List[str]: """simple docstring""" return get_trunk_forward_outputs( lowerCAmelCase__ , out_feat_keys=lowerCAmelCase__ , feature_blocks=self._feature_blocks , ) class A__ ( UpperCamelCase ): """simple docstring""" def _lowerCAmelCase ( self : str , lowerCAmelCase__ : str ) -> str: """simple docstring""" _UpperCAmelCase : int = x.split("-" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Dict , lowerCAmelCase__ : str ) -> Callable[[], Tuple[nn.Module, Dict]]: """simple docstring""" if x not in self: _UpperCAmelCase : Tuple = self.convert_name_to_timm(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = partial(lambda: (timm.create_model(lowerCAmelCase__ , pretrained=lowerCAmelCase__ ).eval(), None) ) else: _UpperCAmelCase : List[Any] = super().__getitem__(lowerCAmelCase__ ) return val class A__ ( UpperCamelCase ): """simple docstring""" def __getitem__( self : Optional[int] , lowerCAmelCase__ : str ) -> Callable[[], nn.Module]: """simple docstring""" if "seer" in x and "in1k" not in x: _UpperCAmelCase : Optional[Any] = RegNetModel else: _UpperCAmelCase : Dict = RegNetForImageClassification return val def __UpperCAmelCase ( a_: Tuple, a_: Dict, a_: List[Tuple[str, str]] ): for from_key, to_key in keys: _UpperCAmelCase : Union[str, Any] = from_state_dict[from_key].clone() print(f"""Copied key={from_key} to={to_key}""" ) return to_state_dict def __UpperCAmelCase ( a_: str, a_: Callable[[], nn.Module], a_: Callable[[], nn.Module], a_: RegNetConfig, a_: Path, a_: bool = True, ): print(f"""Converting {name}...""" ) with torch.no_grad(): _UpperCAmelCase : Any = from_model_func() _UpperCAmelCase : int = our_model_func(a_ ).eval() _UpperCAmelCase : List[Any] = ModuleTransfer(src=a_, dest=a_, raise_if_mismatch=a_ ) _UpperCAmelCase : Any = torch.randn((1, 3, 224, 224) ) module_transfer(a_ ) if from_state_dict is not None: _UpperCAmelCase : Optional[Any] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: _UpperCAmelCase : Optional[int] = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] _UpperCAmelCase : List[Any] = manually_copy_vissl_head(a_, our_model.state_dict(), a_ ) our_model.load_state_dict(a_ ) _UpperCAmelCase : Dict = our_model(a_, output_hidden_states=a_ ) _UpperCAmelCase : Optional[int] = ( our_outputs.logits if isinstance(a_, a_ ) else our_outputs.last_hidden_state ) _UpperCAmelCase : str = from_model(a_ ) _UpperCAmelCase : List[Any] = from_output[-1] if type(a_ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: _UpperCAmelCase : List[str] = our_outputs.hidden_states[-1] assert torch.allclose(a_, a_ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name, commit_message="Add model", use_temp_dir=a_, ) _UpperCAmelCase : Optional[Any] = 224 if "seer" not in name else 384 # we can use the convnext one _UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k", size=a_ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name, commit_message="Add image processor", use_temp_dir=a_, ) print(f"""Pushed {name}""" ) def __UpperCAmelCase ( a_: Path, a_: str = None, a_: bool = True ): _UpperCAmelCase : Union[str, Any] = "imagenet-1k-id2label.json" _UpperCAmelCase : Any = 1_000 _UpperCAmelCase : int = (1, num_labels) _UpperCAmelCase : Any = "huggingface/label-files" _UpperCAmelCase : str = num_labels _UpperCAmelCase : List[Any] = json.load(open(cached_download(hf_hub_url(a_, a_, repo_type="dataset" ) ), "r" ) ) _UpperCAmelCase : Union[str, Any] = {int(a_ ): v for k, v in idalabel.items()} _UpperCAmelCase : Tuple = idalabel _UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} _UpperCAmelCase : str = partial(a_, num_labels=a_, idalabel=a_, labelaid=a_ ) _UpperCAmelCase : Union[str, Any] = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1_008], groups_width=48, layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1_360], groups_width=40, layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1_624], groups_width=56, layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1_920], groups_width=120, layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2_240], groups_width=112, layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2_048], groups_width=128, layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1_344, 2_520], groups_width=168, layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1_512], groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1_088], groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1_296], groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2_016], groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2_240], groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1_232, 3_024], groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1_392, 3_712], groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1_392, 3_712], groups_width=232 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1_968, 4_920], groups_width=328 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1_056, 2_904, 7_392], groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1_696, 2_544, 5_088], groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2_020, 4_040, 11_110, 28_280], groups_width=1_010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1_392, 3_712], groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1_968, 4_920], groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1_056, 2_904, 7_392], groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1_696, 2_544, 5_088], groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2_020, 4_040, 11_110, 28_280], groups_width=1_010 ), } _UpperCAmelCase : Optional[int] = NameToOurModelFuncMap() _UpperCAmelCase : List[Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(a_: str, a_: Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: _UpperCAmelCase : Dict = torch.hub.load_state_dict_from_url(a_, model_dir=str(a_ ), map_location="cpu" ) _UpperCAmelCase : str = model_func() # check if we have a head, if yes add it _UpperCAmelCase : Tuple = files["classy_state_dict"]["base_model"]["model"] _UpperCAmelCase : List[Any] = model_state_dict["trunk"] model.load_state_dict(a_ ) return model.eval(), model_state_dict["heads"] # pretrained _UpperCAmelCase : Optional[Any] = partial( a_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) _UpperCAmelCase : str = partial( a_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) _UpperCAmelCase : int = partial( a_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch", lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) _UpperCAmelCase : Optional[Any] = partial( a_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch", lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1_010, w_a=1_744, w_a=620.83, w_m=2.52 ) ) ), ) # IN1K finetuned _UpperCAmelCase : Optional[Any] = partial( a_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) _UpperCAmelCase : Tuple = partial( a_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) _UpperCAmelCase : Dict = partial( a_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) _UpperCAmelCase : Dict = partial( a_, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch", lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1_010, w_a=1_744, w_a=620.83, w_m=2.52 ) ) ), ) if model_name: convert_weight_and_push( a_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], a_, a_, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( a_, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], a_, a_, a_, ) return config, expected_shape if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported regnet* architecture,' ' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) __a = parser.parse_args() __a = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
361
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a = datasets.utils.logging.get_logger(__name__) __a = ['names', 'prefix'] __a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __a = ['encoding_errors', 'on_bad_lines'] __a = ['date_format'] @dataclass class A__ ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_00_00 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase : Any = self.delimiter if self.column_names is not None: _UpperCAmelCase : List[Any] = self.column_names @property def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase_ : int = CsvConfig def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : str = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase : Tuple = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): _UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
17
0
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def __UpperCAmelCase ( a_: float, a_: float, a_: float ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(a_, 2 ) - pow(a_, 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(a_, 2 ) - pow(a_, 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(a_, 2 ) + pow(a_, 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
362
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: list[int] ): if not nums: return 0 _UpperCAmelCase : int = nums[0] _UpperCAmelCase : Dict = 0 for num in nums[1:]: _UpperCAmelCase , _UpperCAmelCase : Any = ( max_excluding + num, max(a_, a_ ), ) return max(a_, a_ ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def __UpperCAmelCase ( a_: int ): return 1 / (1 + np.exp(-z )) def __UpperCAmelCase ( a_: Optional[int], a_: int ): return (-y * np.log(a_ ) - (1 - y) * np.log(1 - h )).mean() def __UpperCAmelCase ( a_: Optional[int], a_: int, a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = np.dot(a_, a_ ) return np.sum(y * scores - np.log(1 + np.exp(a_ ) ) ) def __UpperCAmelCase ( a_: List[str], a_: str, a_: Tuple, a_: List[str]=70_000 ): _UpperCAmelCase : int = np.zeros(x.shape[1] ) for iterations in range(a_ ): _UpperCAmelCase : Optional[int] = np.dot(a_, a_ ) _UpperCAmelCase : Any = sigmoid_function(a_ ) _UpperCAmelCase : List[str] = np.dot(x.T, h - y ) / y.size _UpperCAmelCase : List[str] = theta - alpha * gradient # updating the weights _UpperCAmelCase : Optional[Any] = np.dot(a_, a_ ) _UpperCAmelCase : int = sigmoid_function(a_ ) _UpperCAmelCase : Tuple = cost_function(a_, a_ ) if iterations % 100 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __a = datasets.load_iris() __a = iris.data[:, :2] __a = (iris.target != 0) * 1 __a = 0.1 __a = logistic_reg(alpha, x, y, max_iterations=70_000) print('theta: ', theta) # printing the theta i.e our weights vector def __UpperCAmelCase ( a_: List[str] ): return sigmoid_function( np.dot(a_, a_ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((__a) , (__a)) = (x[:, 0].min(), x[:, 0].max()) ((__a) , (__a)) = (x[:, 1].min(), x[:, 1].max()) ((__a) , (__a)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __a = np.c_[xxa.ravel(), xxa.ravel()] __a = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
363
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): _UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" ) if key.startswith("module.decoder" ): _UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] _UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )] _UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" ) if "attn.q" in key: _UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Dict = key.replace("attn", "attention.self" ) if "fc1" in key: _UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" ) if "fc2" in key: _UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Any = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" ) _UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: _UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" ) if "skip_conv1" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" ) if "skip_conv2" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" ) if "fusion1" in key: _UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" ) if "fusion2" in key: _UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" ) if "fusion3" in key: _UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" ) if "fusion" in key and "conv" in key: _UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): _UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" ) _UpperCAmelCase : int = value return new_state_dict def __UpperCAmelCase ( a_: str, a_: List[Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ): _UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _UpperCAmelCase : Dict = GLPNImageProcessor() # prepare image _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) ) # rename keys _UpperCAmelCase : List[str] = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict _UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _UpperCAmelCase : Dict = model(a_ ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _UpperCAmelCase : Optional[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _UpperCAmelCase : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) _UpperCAmelCase : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
17
0
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class A__ : """simple docstring""" @property def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" return self.get_dummy_input() @property def _lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(F"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : Optional[int]=False , ) -> List[str]: """simple docstring""" _UpperCAmelCase : Tuple = 4 _UpperCAmelCase : List[str] = 3_2 _UpperCAmelCase : Dict = (3_2, 3_2) _UpperCAmelCase : List[str] = torch.manual_seed(0 ) _UpperCAmelCase : Any = torch.device(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = (batch_size, num_channels) + sizes _UpperCAmelCase : int = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = {"hidden_states": hidden_states} if include_temb: _UpperCAmelCase : List[str] = 1_2_8 _UpperCAmelCase : int = randn_tensor((batch_size, temb_channels) , generator=lowerCAmelCase__ , device=lowerCAmelCase__ ) if include_res_hidden_states_tuple: _UpperCAmelCase : List[Any] = torch.manual_seed(1 ) _UpperCAmelCase : int = (randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ ),) if include_encoder_hidden_states: _UpperCAmelCase : List[Any] = floats_tensor((batch_size, 3_2, 3_2) ).to(lowerCAmelCase__ ) if include_skip_sample: _UpperCAmelCase : Any = randn_tensor(((batch_size, 3) + sizes) , generator=lowerCAmelCase__ , device=lowerCAmelCase__ ) return dummy_input def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = { "in_channels": 3_2, "out_channels": 3_2, "temb_channels": 1_2_8, } if self.block_type == "up": _UpperCAmelCase : Any = 3_2 if self.block_type == "mid": init_dict.pop("out_channels" ) _UpperCAmelCase : Optional[int] = self.dummy_input return init_dict, inputs_dict def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[str] = self.prepare_init_args_and_inputs_for_common() _UpperCAmelCase : str = self.block_class(**lowerCAmelCase__ ) unet_block.to(lowerCAmelCase__ ) unet_block.eval() with torch.no_grad(): _UpperCAmelCase : List[str] = unet_block(**lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : List[str] = output[0] self.assertEqual(output.shape , self.output_shape ) _UpperCAmelCase : List[str] = output[0, -1, -3:, -3:] _UpperCAmelCase : Optional[Any] = torch.tensor(lowerCAmelCase__ ).to(lowerCAmelCase__ ) assert torch_all_close(output_slice.flatten() , lowerCAmelCase__ , atol=5e-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def _lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" _UpperCAmelCase : Tuple = self.prepare_init_args_and_inputs_for_common() _UpperCAmelCase : Optional[int] = self.block_class(**lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() _UpperCAmelCase : Optional[int] = model(**lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Dict = output[0] _UpperCAmelCase : Tuple = torch.device(lowerCAmelCase__ ) _UpperCAmelCase : Dict = randn_tensor(output.shape , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.nn.functional.mse_loss(lowerCAmelCase__ , lowerCAmelCase__ ) loss.backward()
364
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : int = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _UpperCAmelCase : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(a_ ) ), }, features=a_, ) return dataset @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=a_ ) return filename # FILE_CONTENT + files __a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt" _UpperCAmelCase : Tuple = FILE_CONTENT with open(a_, "w" ) as f: f.write(a_ ) return filename @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" ) with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import gzip _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _UpperCAmelCase : Any = bytes(a_, "utf-8" ) with gzip.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _UpperCAmelCase : str = bytes(a_, "utf-8" ) with lza.frame.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Any ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(a_, "w" ) as archive: archive.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: List[str] ): import tarfile _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): import lzma _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _UpperCAmelCase : List[str] = bytes(a_, "utf-8" ) with lzma.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: Tuple ): import zipfile _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _UpperCAmelCase : int = bytes(a_, "utf-8" ) with zstd.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml" _UpperCAmelCase : Tuple = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(a_, "w" ) as f: f.write(a_ ) return filename __a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : str = datasets.Dataset.from_dict(a_ ) _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(a_ ) ) as con: _UpperCAmelCase : List[Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str, a_: str ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(a_, "rb" ) as f: _UpperCAmelCase : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ): _UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) ) f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ): _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _UpperCAmelCase : Dict = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(a_, "wb" ) as f: _UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ ) _UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ ) writer.write_table(a_ ) writer.close() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : str = {"data": DATA} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(a_, "w" ) as f: for item in DATA_312: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(a_, "w" ) as f: for item in DATA_STR: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ): import gzip _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ): import gzip _UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ): _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : List[str] = ["0", "1", "2", "3"] _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Dict = ["0", "1", "2", "3"] _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = ["0", "1", "2", "3"] _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename("unsupported.ext" ) ) f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) return data_dir
17
0
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __a = get_tests_dir('fixtures/test_sentencepiece.model') __a = {'target_lang': 'fi', 'source_lang': 'en'} __a = '>>zh<<' __a = 'Helsinki-NLP/' if is_torch_available(): __a = 'pt' elif is_tf_available(): __a = 'tf' else: __a = 'jax' @require_sentencepiece class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[str] = MarianTokenizer UpperCamelCase_ : str = False UpperCamelCase_ : Union[str, Any] = True def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" super().setUp() _UpperCAmelCase : Dict = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _UpperCAmelCase : Union[str, Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) _UpperCAmelCase : int = Path(self.tmpdirname ) save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["vocab"] ) save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["source_spm"] ) copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["target_spm"] ) _UpperCAmelCase : Optional[int] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self : Any , **lowerCAmelCase__ : Optional[int] ) -> MarianTokenizer: """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : List[str] ) -> List[Any]: """simple docstring""" return ( "This is a test", "This is a test", ) def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Any = "</s>" _UpperCAmelCase : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" _UpperCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(lowerCAmelCase__ ) , 9 ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def _lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : List[str] = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""" ) _UpperCAmelCase : int = en_de_tokenizer(["I am a small frog"] , return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0] self.assertListEqual(lowerCAmelCase__ , batch.input_ids[0] ) _UpperCAmelCase : Optional[int] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowerCAmelCase__ ) _UpperCAmelCase : Any = [x.name for x in Path(lowerCAmelCase__ ).glob("*" )] self.assertIn("source.spm" , lowerCAmelCase__ ) MarianTokenizer.from_pretrained(lowerCAmelCase__ ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.get_tokenizer() _UpperCAmelCase : Any = tok( ["I am a small frog" * 1_0_0_0, "I am a small frog"] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2) ) def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = self.get_tokenizer() _UpperCAmelCase : Optional[int] = tok(["I am a tiny frog", "I am a small frog"] , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0) ) @slow def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = {"input_ids": [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="Helsinki-NLP/opus-mt-en-de" , revision="1a8c2263da11e68e50938f97e10cd57820bd504c" , decode_kwargs={"use_source_tokenizer": True} , ) def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" ) _UpperCAmelCase : Dict = "Tämä on testi" _UpperCAmelCase : Union[str, Any] = "This is a test" _UpperCAmelCase : Dict = [7_6, 7, 2_0_4_7, 2] _UpperCAmelCase : Tuple = [6_9, 1_2, 1_1, 9_4_0, 2] _UpperCAmelCase : Optional[Any] = tokenizer(lowerCAmelCase__ ).input_ids self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = tokenizer(text_target=lowerCAmelCase__ ).input_ids self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
365
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = BarthezTokenizer UpperCamelCase_ : List[Any] = BarthezTokenizerFast UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : Optional[int] = True def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" super().setUp() _UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = "<pad>" _UpperCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] _UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] _UpperCAmelCase : int = self.tokenizer( lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() _UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé." _UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase : Tuple = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , )
17
0
'''simple docstring''' __a = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __UpperCAmelCase ( a_: Dict, a_: Optional[int], a_: Any, a_: Optional[Any] ): # Return True if there is node that has not iterated. _UpperCAmelCase : List[str] = [False] * len(a_ ) _UpperCAmelCase : List[Any] = [s] _UpperCAmelCase : List[str] = True while queue: _UpperCAmelCase : Dict = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(a_ ) _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : Union[str, Any] = u return visited[t] def __UpperCAmelCase ( a_: str, a_: List[Any], a_: List[Any] ): _UpperCAmelCase : List[Any] = [-1] * (len(a_ )) _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : Dict = [] _UpperCAmelCase : List[Any] = [i[:] for i in graph] # Record original cut, copy. while bfs(a_, a_, a_, a_ ): _UpperCAmelCase : int = float("Inf" ) _UpperCAmelCase : List[str] = sink while s != source: # Find the minimum value in select path _UpperCAmelCase : List[str] = min(a_, graph[parent[s]][s] ) _UpperCAmelCase : Optional[Any] = parent[s] max_flow += path_flow _UpperCAmelCase : List[str] = sink while v != source: _UpperCAmelCase : Tuple = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _UpperCAmelCase : str = parent[v] for i in range(len(a_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
366
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0} _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : str = max_resolution _UpperCAmelCase : List[Any] = size _UpperCAmelCase : Union[str, Any] = do_normalize _UpperCAmelCase : Optional[Any] = do_convert_rgb _UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] _UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image() _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : str = 2_0_4_8 _UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Union[str, Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _UpperCAmelCase : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches _UpperCAmelCase : Any = "Hello" _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : List[Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) _UpperCAmelCase : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Union[str, Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCAmelCase : List[Any] = 3 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Tuple = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
17
0
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __a = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : List[Any]=1 ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[str] = tokenizer _UpperCAmelCase : Dict = dataset _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase__ ) if n_tasks is None else n_tasks _UpperCAmelCase : Dict = n_copies def __iter__( self : Dict ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) _UpperCAmelCase : List[Any] = self.tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[Any] = start_length _UpperCAmelCase : Tuple = eof_strings _UpperCAmelCase : Any = tokenizer def __call__( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , **lowerCAmelCase__ : int ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _UpperCAmelCase : str = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCAmelCase__ ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : List[str] = re.split("(%s)" % "|".join(a_ ), a_ ) # last string should be "" return "".join(string_list[:-2] ) def __UpperCAmelCase ( a_: Optional[Any], a_: int, a_: str, a_: Optional[Any], a_: Dict, a_: Union[str, Any]=20, **a_: Tuple ): _UpperCAmelCase : List[Any] = defaultdict(a_ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(a_ ) ): with torch.no_grad(): _UpperCAmelCase : Any = batch["ids"].shape[-1] _UpperCAmelCase : Optional[int] = accelerator.unwrap_model(a_ ).generate( input_ids=batch["ids"][:, : batch["input_len"]], num_return_sequences=a_, **a_ ) # each task is generated batch_size times _UpperCAmelCase : Union[str, Any] = batch["task_id"].repeat(a_ ) _UpperCAmelCase : List[str] = accelerator.pad_across_processes( a_, dim=1, pad_index=tokenizer.pad_token_id ) _UpperCAmelCase : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) _UpperCAmelCase : Any = generated_tokens.cpu().numpy() _UpperCAmelCase : Any = generated_tasks.cpu().numpy() for task, generated_tokens in zip(a_, a_ ): gen_token_dict[task].append(a_ ) _UpperCAmelCase : Tuple = [[] for _ in range(a_ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _UpperCAmelCase : List[str] = tokenizer.decode(a_, skip_special_tokens=a_, clean_up_tokenization_spaces=a_ ) code_gens[task].append(remove_last_block(a_ ) ) return code_gens def __UpperCAmelCase ( ): # Setup configuration _UpperCAmelCase : Union[str, Any] = HfArgumentParser(a_ ) _UpperCAmelCase : Optional[Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _UpperCAmelCase : Dict = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _UpperCAmelCase : List[str] = "false" if args.num_workers is None: _UpperCAmelCase : Any = multiprocessing.cpu_count() # Use dataset load to feed to accelerate _UpperCAmelCase : Tuple = Accelerator() set_seed(args.seed, device_specific=a_ ) # Load model and tokenizer _UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase : Dict = tokenizer.eos_token _UpperCAmelCase : Dict = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _UpperCAmelCase : List[str] = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0, a_, a_ )] ), } # Load evaluation dataset and metric _UpperCAmelCase : int = load_dataset("openai_humaneval" ) _UpperCAmelCase : List[Any] = load_metric("code_eval" ) _UpperCAmelCase : Tuple = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) _UpperCAmelCase : Optional[Any] = args.n_samples // args.batch_size _UpperCAmelCase : Any = TokenizedDataset(a_, human_eval["test"], n_copies=a_, n_tasks=a_ ) # do not confuse args.batch_size, which is actually the num_return_sequences _UpperCAmelCase : Any = DataLoader(a_, batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _UpperCAmelCase : Optional[Any] = code_eval_metric.compute(references=[""], predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception _UpperCAmelCase : List[Any] = accelerator.prepare(a_, a_ ) _UpperCAmelCase : int = complete_code( a_, a_, a_, a_, n_tasks=a_, batch_size=args.batch_size, **a_, ) if accelerator.is_main_process: _UpperCAmelCase : List[str] = [] for task in tqdm(range(a_ ) ): _UpperCAmelCase : Union[str, Any] = human_eval["test"][task]["test"] _UpperCAmelCase : Tuple = f"""check({human_eval['test'][task]['entry_point']})""" references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric _UpperCAmelCase : Union[str, Any] = code_eval_metric.compute( references=a_, predictions=a_, num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file, "w" ) as fp: json.dump(a_, a_ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
367
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''time_series_transformer''' UpperCamelCase_ : Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = prediction_length _UpperCAmelCase : Optional[Any] = context_length or prediction_length _UpperCAmelCase : Optional[Any] = distribution_output _UpperCAmelCase : Union[str, Any] = loss _UpperCAmelCase : Dict = input_size _UpperCAmelCase : int = num_time_features _UpperCAmelCase : Any = lags_sequence _UpperCAmelCase : Dict = scaling _UpperCAmelCase : Tuple = num_dynamic_real_features _UpperCAmelCase : Dict = num_static_real_features _UpperCAmelCase : Union[str, Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Optional[int] = cardinality else: _UpperCAmelCase : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : List[Any] = embedding_dimension else: _UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : str = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features _UpperCAmelCase : str = d_model _UpperCAmelCase : Optional[Any] = encoder_attention_heads _UpperCAmelCase : Dict = decoder_attention_heads _UpperCAmelCase : List[Any] = encoder_ffn_dim _UpperCAmelCase : str = decoder_ffn_dim _UpperCAmelCase : Dict = encoder_layers _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : Any = dropout _UpperCAmelCase : str = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : Dict = encoder_layerdrop _UpperCAmelCase : Any = decoder_layerdrop _UpperCAmelCase : Optional[Any] = activation_function _UpperCAmelCase : Tuple = init_std _UpperCAmelCase : List[str] = use_cache super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __a = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
368
'''simple docstring''' import baseaa def __UpperCAmelCase ( a_: str ): return baseaa.baaencode(string.encode("utf-8" ) ) def __UpperCAmelCase ( a_: bytes ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": __a = 'Hello World!' __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
17
0
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( a_: Tuple, a_: Any=(), a_: int=None, a_: Dict="no", a_: Dict="29500" ): _UpperCAmelCase : int = False _UpperCAmelCase : Any = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): _UpperCAmelCase : Union[str, Any] = True elif "IPython" in sys.modules: _UpperCAmelCase : List[Any] = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: _UpperCAmelCase : List[Any] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME", a_ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: _UpperCAmelCase : Union[str, Any] = 8 _UpperCAmelCase : Tuple = PrepareForLaunch(a_, distributed_type="TPU" ) print(f"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(a_, args=a_, nprocs=a_, start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*a_ ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=a_, master_addr="127.0.01", master_port=a_, mixed_precision=a_ ): _UpperCAmelCase : str = PrepareForLaunch(a_, distributed_type="MULTI_GPU" ) print(f"""Launching training on {num_processes} GPUs.""" ) try: start_processes(a_, args=a_, nprocs=a_, start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): _UpperCAmelCase : Any = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*a_ ) def __UpperCAmelCase ( a_: Tuple, a_: List[Any]=(), a_: Dict=2 ): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=a_, master_addr="127.0.01", master_port="29500", accelerate_mixed_precision="no", accelerate_debug_rdv_file=tmp_file.name, accelerate_use_cpu="yes", ): _UpperCAmelCase : List[Any] = PrepareForLaunch(a_, debug=a_ ) start_processes(a_, args=a_, nprocs=a_, start_method="fork" )
369
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" UpperCamelCase_ : Any = XGLMConfig UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Dict = '''gelu''' def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : str = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : int = d_model _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Tuple = ffn_dim _UpperCAmelCase : Any = activation_function _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Any = None _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Tuple = 1 def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _UpperCAmelCase : Any = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[Any] = self.get_config() _UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : Dict = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Tuple = False def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = TFXGLMModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on _UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) _UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" ) _UpperCAmelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): _UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) _UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[int] = "left" # use different length sentences to test batching _UpperCAmelCase : Tuple = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = inputs["input_ids"] _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 ) _UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
17
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : int = KandinskyVaaImgaImgPipeline UpperCamelCase_ : List[str] = ['''image_embeds''', '''negative_image_embeds''', '''image'''] UpperCamelCase_ : Tuple = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] UpperCamelCase_ : str = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCamelCase_ : Any = False @property def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" return 3_2 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return 3_2 @property def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" return self.time_input_dim @property def _lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" return self.time_input_dim * 4 @property def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" return 1_0_0 @property def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : Dict = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } _UpperCAmelCase : Dict = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def _lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.dummy_unet _UpperCAmelCase : str = self.dummy_movq _UpperCAmelCase : Optional[int] = { "num_train_timesteps": 1_0_0_0, "beta_schedule": "linear", "beta_start": 0.0_0085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } _UpperCAmelCase : Union[str, Any] = DDIMScheduler(**lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any]=0 ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCAmelCase__ ) # create init_image _UpperCAmelCase : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : Dict = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) if str(lowerCAmelCase__ ).startswith("mps" ): _UpperCAmelCase : int = torch.manual_seed(lowerCAmelCase__ ) else: _UpperCAmelCase : int = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 1_0, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[str] = "cpu" _UpperCAmelCase : List[Any] = self.get_dummy_components() _UpperCAmelCase : Optional[int] = self.pipeline_class(**lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : int = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) _UpperCAmelCase : Any = output.images _UpperCAmelCase : str = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0] _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _UpperCAmelCase : List[str] = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) _UpperCAmelCase : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) _UpperCAmelCase : List[str] = "A red cartoon frog, 4k" _UpperCAmelCase : str = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) _UpperCAmelCase : List[Any] = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) _UpperCAmelCase : Optional[Any] = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() _UpperCAmelCase : Dict = pipeline( image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type="np" , ) _UpperCAmelCase : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
370
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def __UpperCAmelCase ( a_: Tuple, a_: Any ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ), ], ) def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ): _UpperCAmelCase : Tuple = str(a_ ) dataset_info.write_to_directory(a_ ) _UpperCAmelCase : Any = DatasetInfo.from_directory(a_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a_, "dataset_info.json" ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, ) _UpperCAmelCase : Tuple = dataset_info._to_yaml_dict() assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) _UpperCAmelCase : List[Any] = yaml.safe_dump(a_ ) _UpperCAmelCase : Optional[int] = yaml.safe_load(a_ ) assert dataset_info_yaml_dict == reloaded def __UpperCAmelCase ( ): _UpperCAmelCase : str = DatasetInfo() _UpperCAmelCase : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1_337 ), } ), ], ) def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ): _UpperCAmelCase : Union[str, Any] = str(a_ ) dataset_infos_dict.write_to_directory(a_ ) _UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a_, "README.md" ) )
17
0
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0} _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : str = max_resolution _UpperCAmelCase : List[Any] = size _UpperCAmelCase : Union[str, Any] = do_normalize _UpperCAmelCase : Optional[Any] = do_convert_rgb _UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] _UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image() _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : str = 2_0_4_8 _UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Union[str, Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _UpperCAmelCase : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches _UpperCAmelCase : Any = "Hello" _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : List[Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) _UpperCAmelCase : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Union[str, Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCAmelCase : List[Any] = 3 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Tuple = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
371
'''simple docstring''' from math import factorial def __UpperCAmelCase ( a_: int = 100 ): return sum(map(a_, str(factorial(a_ ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
17
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json', } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = '''nllb-moe''' UpperCamelCase_ : Union[str, Any] = ['''past_key_values'''] UpperCamelCase_ : Union[str, Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Any , lowerCAmelCase__ : Union[str, Any]=1_2_8_1_1_2 , lowerCAmelCase__ : List[str]=1_0_2_4 , lowerCAmelCase__ : Optional[int]=1_2 , lowerCAmelCase__ : Tuple=4_0_9_6 , lowerCAmelCase__ : Union[str, Any]=1_6 , lowerCAmelCase__ : Dict=1_2 , lowerCAmelCase__ : Any=4_0_9_6 , lowerCAmelCase__ : Any=1_6 , lowerCAmelCase__ : List[Any]=0.05 , lowerCAmelCase__ : List[str]=0.05 , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : List[str]="relu" , lowerCAmelCase__ : Any=1_0_2_4 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=0.0 , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Dict="float32" , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : Union[str, Any]=1_2_8 , lowerCAmelCase__ : Dict=6_4 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : str=0.001 , lowerCAmelCase__ : Union[str, Any]=0.001 , lowerCAmelCase__ : Union[str, Any]="all" , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : str=False , lowerCAmelCase__ : List[str]=1.0 , lowerCAmelCase__ : Any=0.2 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Any=0 , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : str=False , **lowerCAmelCase__ : int , ) -> int: """simple docstring""" _UpperCAmelCase : Tuple = vocab_size _UpperCAmelCase : Tuple = max_position_embeddings _UpperCAmelCase : Union[str, Any] = d_model _UpperCAmelCase : str = encoder_ffn_dim _UpperCAmelCase : Tuple = encoder_layers _UpperCAmelCase : Tuple = encoder_attention_heads _UpperCAmelCase : List[str] = decoder_ffn_dim _UpperCAmelCase : List[str] = decoder_layers _UpperCAmelCase : Optional[int] = decoder_attention_heads _UpperCAmelCase : int = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : Any = activation_dropout _UpperCAmelCase : Union[str, Any] = activation_function _UpperCAmelCase : str = init_std _UpperCAmelCase : Union[str, Any] = encoder_layerdrop _UpperCAmelCase : List[Any] = decoder_layerdrop _UpperCAmelCase : int = use_cache _UpperCAmelCase : str = encoder_layers _UpperCAmelCase : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : List[Any] = router_z_loss_coef _UpperCAmelCase : Optional[int] = router_aux_loss_coef _UpperCAmelCase : int = decoder_sparse_step _UpperCAmelCase : Optional[Any] = encoder_sparse_step _UpperCAmelCase : List[Any] = num_experts _UpperCAmelCase : Optional[int] = expert_capacity _UpperCAmelCase : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) _UpperCAmelCase : int = router_dtype _UpperCAmelCase : int = router_ignore_padding_tokens _UpperCAmelCase : Union[str, Any] = batch_prioritized_routing _UpperCAmelCase : Optional[int] = second_expert_policy _UpperCAmelCase : Union[str, Any] = normalize_router_prob_before_dropping _UpperCAmelCase : int = moe_eval_capacity_token_fraction _UpperCAmelCase : List[str] = moe_token_dropout _UpperCAmelCase : List[Any] = output_router_logits super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , )
350
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __a = (3, 9, -11, 0, 7, 5, 1, -1) __a = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : int UpperCamelCase_ : Node | None class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None: """simple docstring""" _UpperCAmelCase : Node | None = None for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ): _UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" _UpperCAmelCase : List[Any] = self.head while node: yield node.data _UpperCAmelCase : List[str] = node.next_node def __len__( self : Any ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return " -> ".join([str(lowerCAmelCase__ ) for node in self] ) def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ): return SortedLinkedList(list(a_ ) + list(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() __a = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
17
0
'''simple docstring''' class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : str = "" , lowerCAmelCase__ : bool = False ) -> None: """simple docstring""" _UpperCAmelCase : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word _UpperCAmelCase : Union[str, Any] = is_leaf _UpperCAmelCase : Any = prefix def _lowerCAmelCase ( self : int , lowerCAmelCase__ : str ) -> tuple[str, str, str]: """simple docstring""" _UpperCAmelCase : Optional[int] = 0 for q, w in zip(self.prefix , lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : list[str] ) -> None: """simple docstring""" for word in words: self.insert(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : str ) -> None: """simple docstring""" if self.prefix == word: _UpperCAmelCase : Optional[int] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _UpperCAmelCase : Dict = RadixNode(prefix=lowerCAmelCase__ , is_leaf=lowerCAmelCase__ ) else: _UpperCAmelCase : Dict = self.nodes[word[0]] _UpperCAmelCase : Optional[int] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _UpperCAmelCase : Optional[Any] = remaining_prefix _UpperCAmelCase : Optional[Any] = self.nodes[matching_string[0]] _UpperCAmelCase : Optional[Any] = RadixNode(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = aux_node if remaining_word == "": _UpperCAmelCase : Optional[Any] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : str ) -> bool: """simple docstring""" _UpperCAmelCase : int = self.nodes.get(word[0] , lowerCAmelCase__ ) if not incoming_node: return False else: _UpperCAmelCase : Dict = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : str ) -> bool: """simple docstring""" _UpperCAmelCase : Optional[int] = self.nodes.get(word[0] , lowerCAmelCase__ ) if not incoming_node: return False else: _UpperCAmelCase : Dict = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: _UpperCAmelCase : Optional[int] = list(self.nodes.values() )[0] _UpperCAmelCase : Union[str, Any] = merging_node.is_leaf self.prefix += merging_node.prefix _UpperCAmelCase : Any = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: _UpperCAmelCase : int = False # If there is 1 edge, we merge it with its child else: _UpperCAmelCase : str = list(incoming_node.nodes.values() )[0] _UpperCAmelCase : str = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _UpperCAmelCase : Optional[int] = merging_node.nodes return True def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : int = 0 ) -> None: """simple docstring""" if self.prefix != "": print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __UpperCAmelCase ( ): _UpperCAmelCase : List[Any] = "banana bananas bandana band apple all beast".split() _UpperCAmelCase : Union[str, Any] = RadixNode() root.insert_many(a_ ) assert all(root.find(a_ ) for word in words ) assert not root.find("bandanas" ) assert not root.find("apps" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def __UpperCAmelCase ( ): assert test_trie() def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = RadixNode() _UpperCAmelCase : Union[str, Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(a_ ) print("Words:", a_ ) print("Tree:" ) root.print_tree() if __name__ == "__main__": main()
351
'''simple docstring''' def __UpperCAmelCase ( a_: str ): if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) _UpperCAmelCase : Optional[Any] = "" while len(a_ ) % 3 != 0: _UpperCAmelCase : List[Any] = "0" + bin_string _UpperCAmelCase : Dict = [ bin_string[index : index + 3] for index in range(len(a_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _UpperCAmelCase : Optional[Any] = 0 for index, val in enumerate(a_ ): oct_val += int(2 ** (2 - index) * int(a_ ) ) oct_string += str(a_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
17
0
'''simple docstring''' from ... import PretrainedConfig __a = { 'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json', } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Dict = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP UpperCamelCase_ : Optional[Any] = '''nezha''' def __init__( self : Any , lowerCAmelCase__ : Optional[int]=2_1_1_2_8 , lowerCAmelCase__ : List[Any]=7_6_8 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : str=1_2 , lowerCAmelCase__ : int=3_0_7_2 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Dict=6_4 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : Any=1e-12 , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Union[str, Any]=0 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : Optional[int]=True , **lowerCAmelCase__ : List[Any] , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : int = vocab_size _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : int = num_attention_heads _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = max_position_embeddings _UpperCAmelCase : Tuple = max_relative_position _UpperCAmelCase : Optional[Any] = type_vocab_size _UpperCAmelCase : int = initializer_range _UpperCAmelCase : List[Any] = layer_norm_eps _UpperCAmelCase : int = classifier_dropout _UpperCAmelCase : Any = use_cache
352
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCAmelCase ( a_: str ): for param in module.parameters(): _UpperCAmelCase : Any = False def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : int = plt.imshow(a_ ) fig.axes.get_xaxis().set_visible(a_ ) fig.axes.get_yaxis().set_visible(a_ ) plt.show() def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = datetime.now() _UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" ) return timestamp
17
0