code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_UpperCAmelCase : int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(lowerCAmelCase__ )
_UpperCAmelCase : List[str] = -1
_UpperCAmelCase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase__ )
_UpperCAmelCase : List[str] = model.generate(lowerCAmelCase__ , max_new_tokens=1_0 , do_sample=lowerCAmelCase__ )
_UpperCAmelCase : Tuple = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
_UpperCAmelCase : str = TextStreamer(lowerCAmelCase__ )
model.generate(lowerCAmelCase__ , max_new_tokens=1_0 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
_UpperCAmelCase : Dict = cs.out[:-1]
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_UpperCAmelCase : Tuple = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = -1
_UpperCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = model.generate(lowerCAmelCase__ , max_new_tokens=1_0 , do_sample=lowerCAmelCase__ )
_UpperCAmelCase : int = tokenizer.decode(greedy_ids[0] )
_UpperCAmelCase : Tuple = TextIteratorStreamer(lowerCAmelCase__ )
_UpperCAmelCase : Any = {"input_ids": input_ids, "max_new_tokens": 1_0, "do_sample": False, "streamer": streamer}
_UpperCAmelCase : Union[str, Any] = Thread(target=model.generate , kwargs=lowerCAmelCase__ )
thread.start()
_UpperCAmelCase : List[str] = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_UpperCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = -1
_UpperCAmelCase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase__ )
_UpperCAmelCase : Any = model.generate(lowerCAmelCase__ , max_new_tokens=1_0 , do_sample=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = greedy_ids[:, input_ids.shape[1] :]
_UpperCAmelCase : Optional[int] = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
_UpperCAmelCase : List[Any] = TextStreamer(lowerCAmelCase__ , skip_prompt=lowerCAmelCase__ )
model.generate(lowerCAmelCase__ , max_new_tokens=1_0 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__ )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
_UpperCAmelCase : Any = cs.out[:-1]
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained("distilgpt2" )
_UpperCAmelCase : int = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(lowerCAmelCase__ )
_UpperCAmelCase : Any = -1
_UpperCAmelCase : Dict = torch.ones((1, 5) , device=lowerCAmelCase__ ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
_UpperCAmelCase : Union[str, Any] = TextStreamer(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
model.generate(lowerCAmelCase__ , max_new_tokens=1 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__ )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
_UpperCAmelCase : Tuple = cs.out[:-1] # Remove the final "\n"
_UpperCAmelCase : List[Any] = tokenizer(lowerCAmelCase__ , return_tensors="pt" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def _lowerCAmelCase ( self : List[Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
_UpperCAmelCase : List[Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(lowerCAmelCase__ )
_UpperCAmelCase : List[str] = -1
_UpperCAmelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = TextIteratorStreamer(lowerCAmelCase__ , timeout=0.001 )
_UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "max_new_tokens": 1_0, "do_sample": False, "streamer": streamer}
_UpperCAmelCase : str = Thread(target=model.generate , kwargs=lowerCAmelCase__ )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(lowerCAmelCase__ ):
_UpperCAmelCase : Dict = ""
for new_text in streamer:
streamer_text += new_text | 17 | '''simple docstring'''
from importlib import import_module
from .logging import get_logger
__a = get_logger(__name__)
class A__ :
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Any = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith("__" ):
setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
_UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module
class A__ :
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = []
def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = obj
_UpperCAmelCase : int = target
_UpperCAmelCase : Optional[int] = new
_UpperCAmelCase : Any = target.split("." )[0]
_UpperCAmelCase : Optional[int] = {}
_UpperCAmelCase : Dict = attrs or []
def __enter__( self : List[str] ) -> int:
"""simple docstring"""
*_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(lowerCAmelCase__ ) ):
try:
_UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
_UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule)
):
_UpperCAmelCase : Tuple = obj_attr
# patch at top level
setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) )
_UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) )
_UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
# finally set the target attribute
setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
_UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj , lowerCAmelCase__ ) is attr_value:
_UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ )
setattr(self.obj , lowerCAmelCase__ , self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
_UpperCAmelCase : Dict = globals()["__builtins__"][target_attr]
setattr(self.obj , lowerCAmelCase__ , self.new )
else:
raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" )
def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for attr in list(self.original ):
setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
self.__enter__()
self._active_patches.append(self )
def _lowerCAmelCase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__() | 17 | 1 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
__a = logging.get_logger(__name__)
__a = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'}
# See all LED models at https://huggingface.co/models?filter=LED
__a = {
'vocab_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json',
},
'merges_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt',
},
'tokenizer_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json',
},
}
__a = {
'allenai/led-base-16384': 16_384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[Any] = (
list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) )
)
_UpperCAmelCase : List[str] = bs[:]
_UpperCAmelCase : Optional[Any] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(a_ )
cs.append(2**8 + n )
n += 1
_UpperCAmelCase : Dict = [chr(a_ ) for n in cs]
return dict(zip(a_, a_ ) )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = set()
_UpperCAmelCase : List[str] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_UpperCAmelCase : Optional[int] = char
return pairs
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES
UpperCamelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ : Optional[int] = ['''input_ids''', '''attention_mask''']
def __init__( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int="replace" , lowerCAmelCase__ : Optional[int]="<s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : List[str]="</s>" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : List[Any]="<unk>" , lowerCAmelCase__ : int="<pad>" , lowerCAmelCase__ : str="<mask>" , lowerCAmelCase__ : List[Any]=False , **lowerCAmelCase__ : Tuple , ) -> Any:
"""simple docstring"""
_UpperCAmelCase : int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
_UpperCAmelCase : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
_UpperCAmelCase : Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
_UpperCAmelCase : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
_UpperCAmelCase : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
_UpperCAmelCase : Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
_UpperCAmelCase : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , )
with open(lowerCAmelCase__ , encoding="utf-8" ) as vocab_handle:
_UpperCAmelCase : List[str] = json.load(lowerCAmelCase__ )
_UpperCAmelCase : int = {v: k for k, v in self.encoder.items()}
_UpperCAmelCase : Any = errors # how to handle errors in decoding
_UpperCAmelCase : Optional[int] = bytes_to_unicode()
_UpperCAmelCase : Optional[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCAmelCase__ , encoding="utf-8" ) as merges_handle:
_UpperCAmelCase : Optional[int] = merges_handle.read().split("\n" )[1:-1]
_UpperCAmelCase : int = [tuple(merge.split() ) for merge in bpe_merges]
_UpperCAmelCase : Union[str, Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
_UpperCAmelCase : str = {}
_UpperCAmelCase : Union[str, Any] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
_UpperCAmelCase : Any = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def _lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
return len(self.encoder )
def _lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : str ) -> Tuple:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
_UpperCAmelCase : Union[str, Any] = tuple(lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = get_pairs(lowerCAmelCase__ )
if not pairs:
return token
while True:
_UpperCAmelCase : int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
_UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = bigram
_UpperCAmelCase : int = []
_UpperCAmelCase : List[str] = 0
while i < len(lowerCAmelCase__ ):
try:
_UpperCAmelCase : Optional[int] = word.index(lowerCAmelCase__ , lowerCAmelCase__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_UpperCAmelCase : str = j
if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_UpperCAmelCase : int = tuple(lowerCAmelCase__ )
_UpperCAmelCase : Any = new_word
if len(lowerCAmelCase__ ) == 1:
break
else:
_UpperCAmelCase : List[Any] = get_pairs(lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = " ".join(lowerCAmelCase__ )
_UpperCAmelCase : str = word
return word
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : int ) -> int:
"""simple docstring"""
_UpperCAmelCase : List[str] = []
for token in re.findall(self.pat , lowerCAmelCase__ ):
_UpperCAmelCase : List[Any] = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) )
return bpe_tokens
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) )
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.decoder.get(lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : int = "".join(lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_UpperCAmelCase : Any = os.path.join(
lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
_UpperCAmelCase : Any = os.path.join(
lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + "\n" )
_UpperCAmelCase : Dict = 0
with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
" Please check that the tokenizer is not corrupted!" )
_UpperCAmelCase : List[str] = token_index
writer.write(" ".join(lowerCAmelCase__ ) + "\n" )
index += 1
return vocab_file, merge_file
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_UpperCAmelCase : Any = [self.cls_token_id]
_UpperCAmelCase : Dict = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1]
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = [self.sep_token_id]
_UpperCAmelCase : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Any ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Tuple = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()):
_UpperCAmelCase : Any = " " + text
return (text, kwargs)
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[bool] = None , ) -> dict:
"""simple docstring"""
_UpperCAmelCase : Dict = super()._pad(
encoded_inputs=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding_strategy=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , )
# Load from model defaults
if return_attention_mask is None:
_UpperCAmelCase : str = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
_UpperCAmelCase : Tuple = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
_UpperCAmelCase : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(lowerCAmelCase__ )
if needs_to_be_padded:
_UpperCAmelCase : List[Any] = len(lowerCAmelCase__ ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
_UpperCAmelCase : Any = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
_UpperCAmelCase : List[Any] = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs | 17 | '''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
__a = datasets.utils.logging.get_logger(__name__)
__a = ['names', 'prefix']
__a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
__a = ['encoding_errors', 'on_bad_lines']
__a = ['date_format']
@dataclass
class A__ ( datasets.BuilderConfig ):
"""simple docstring"""
UpperCamelCase_ : str = ","
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer"
UpperCamelCase_ : Optional[List[str]] = None
UpperCamelCase_ : Optional[List[str]] = None
UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None
UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None
UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None
UpperCamelCase_ : Optional[list] = None
UpperCamelCase_ : Optional[list] = None
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[Union[int, List[int]]] = None
UpperCamelCase_ : Optional[int] = None
UpperCamelCase_ : Optional[Union[str, List[str]]] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = False
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : str = "."
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : str = '"'
UpperCamelCase_ : int = 0
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = True
UpperCamelCase_ : int = 0
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : int = 1_00_00
UpperCamelCase_ : Optional[datasets.Features] = None
UpperCamelCase_ : Optional[str] = "strict"
UpperCamelCase_ : Literal["error", "warn", "skip"] = "error"
UpperCamelCase_ : Optional[str] = None
def _lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
if self.delimiter is not None:
_UpperCAmelCase : Any = self.delimiter
if self.column_names is not None:
_UpperCAmelCase : List[Any] = self.column_names
@property
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Dict = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class A__ ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
UpperCamelCase_ : int = CsvConfig
def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
_UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCAmelCase__ , (str, list, tuple) ):
_UpperCAmelCase : int = data_files
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : Any = [files]
_UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
_UpperCAmelCase : Optional[Any] = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : str = [files]
_UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) )
return splits
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
_UpperCAmelCase : Tuple = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
_UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
_UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ )
return pa_table
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
_UpperCAmelCase : Optional[Any] = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ):
_UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(lowerCAmelCase__ ):
_UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" )
raise | 17 | 1 |
'''simple docstring'''
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
__a = 500_000
__a , __a = os.path.split(__file__)
__a = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json'))
@get_duration
def __UpperCAmelCase ( a_: datasets.Dataset, **a_: Tuple ):
_UpperCAmelCase : Optional[Any] = dataset.map(**a_ )
@get_duration
def __UpperCAmelCase ( a_: datasets.Dataset, **a_: Any ):
_UpperCAmelCase : Dict = dataset.filter(**a_ )
def __UpperCAmelCase ( ):
_UpperCAmelCase : List[Any] = {"num examples": SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
_UpperCAmelCase : Optional[Any] = datasets.Features({"text": datasets.Value("string" ), "numbers": datasets.Value("float32" )} )
_UpperCAmelCase : Any = generate_example_dataset(
os.path.join(a_, "dataset.arrow" ), a_, num_examples=a_ )
_UpperCAmelCase : Tuple = transformers.AutoTokenizer.from_pretrained("bert-base-cased", use_fast=a_ )
def tokenize(a_: Optional[Any] ):
return tokenizer(examples["text"] )
_UpperCAmelCase : Optional[Any] = map(a_ )
_UpperCAmelCase : List[Any] = map(a_, batched=a_ )
_UpperCAmelCase : Optional[int] = map(a_, function=lambda a_ : None, batched=a_ )
with dataset.formatted_as(type="numpy" ):
_UpperCAmelCase : Dict = map(a_, function=lambda a_ : None, batched=a_ )
with dataset.formatted_as(type="pandas" ):
_UpperCAmelCase : Optional[Any] = map(a_, function=lambda a_ : None, batched=a_ )
with dataset.formatted_as(type="torch", columns="numbers" ):
_UpperCAmelCase : List[Any] = map(a_, function=lambda a_ : None, batched=a_ )
with dataset.formatted_as(type="tensorflow", columns="numbers" ):
_UpperCAmelCase : str = map(a_, function=lambda a_ : None, batched=a_ )
_UpperCAmelCase : str = map(a_, function=a_, batched=a_ )
_UpperCAmelCase : Union[str, Any] = filter(a_ )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(a_, "wb" ) as f:
f.write(json.dumps(a_ ).encode("utf-8" ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter() | 17 | '''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( a_: list[int] ):
if not nums:
return 0
_UpperCAmelCase : int = nums[0]
_UpperCAmelCase : Dict = 0
for num in nums[1:]:
_UpperCAmelCase , _UpperCAmelCase : Any = (
max_excluding + num,
max(a_, a_ ),
)
return max(a_, a_ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 1 |
'''simple docstring'''
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {'vocab_file': 'vocab.json'}
__a = {
'vocab_file': {
'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json',
}
}
__a = {'mgp-str': 27}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : str = VOCAB_FILES_NAMES
UpperCamelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any="[GO]" , lowerCAmelCase__ : int="[GO]" , lowerCAmelCase__ : Optional[Any]="[s]" , lowerCAmelCase__ : int="[GO]" , **lowerCAmelCase__ : List[str] ) -> Any:
"""simple docstring"""
super().__init__(
unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
with open(lowerCAmelCase__ , encoding="utf-8" ) as vocab_handle:
_UpperCAmelCase : Tuple = json.load(lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = {v: k for k, v in self.vocab.items()}
@property
def _lowerCAmelCase ( self : List[str] ) -> List[str]:
"""simple docstring"""
return len(self.vocab )
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Union[str, Any] ) -> Any:
"""simple docstring"""
_UpperCAmelCase : List[Any] = []
for s in text:
char_tokens.extend(lowerCAmelCase__ )
return char_tokens
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : int ) -> List[str]:
"""simple docstring"""
return self.vocab.get(lowerCAmelCase__ , self.vocab.get(self.unk_token ) )
def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] ) -> List[str]:
"""simple docstring"""
return self.decoder.get(lowerCAmelCase__ )
def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(lowerCAmelCase__ ):
logger.error("Vocabulary path ({}) should be a directory".format(lowerCAmelCase__ ) )
return
_UpperCAmelCase : Union[str, Any] = os.path.join(
lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + "\n" )
return (vocab_file,) | 17 | '''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a = logging.get_logger(__name__)
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if key.startswith("module.encoder" ):
_UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" )
if key.startswith("module.decoder" ):
_UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )]
_UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" )
if "norm" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )]
_UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" )
if "layer_norm1" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" )
if "layer_norm2" in key:
_UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
_UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )]
_UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" )
if "attn.q" in key:
_UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" )
if "attn.proj" in key:
_UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" )
if "attn" in key:
_UpperCAmelCase : Dict = key.replace("attn", "attention.self" )
if "fc1" in key:
_UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" )
if "fc2" in key:
_UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" )
if "linear_pred" in key:
_UpperCAmelCase : Any = key.replace("linear_pred", "classifier" )
if "linear_fuse" in key:
_UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" )
_UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )]
_UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" )
if "bot_conv" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" )
if "skip_conv1" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" )
if "skip_conv2" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" )
if "fusion1" in key:
_UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" )
if "fusion2" in key:
_UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" )
if "fusion3" in key:
_UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" )
if "fusion" in key and "conv" in key:
_UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" )
if key.startswith("module.last_layer_depth" ):
_UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" )
_UpperCAmelCase : int = value
return new_state_dict
def __UpperCAmelCase ( a_: str, a_: List[Any] ):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" )
_UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
_UpperCAmelCase : Optional[int] = kv_weight[
: config.hidden_sizes[i], :
]
_UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]]
_UpperCAmelCase : Optional[int] = kv_weight[
config.hidden_sizes[i] :, :
]
_UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :]
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw )
return image
@torch.no_grad()
def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ):
_UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
_UpperCAmelCase : Dict = GLPNImageProcessor()
# prepare image
_UpperCAmelCase : List[Any] = prepare_img()
_UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values
logger.info("Converting model..." )
# load original state dict
_UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) )
# rename keys
_UpperCAmelCase : List[str] = rename_keys(a_ )
# key and value matrices need special treatment
read_in_k_v(a_, a_ )
# create HuggingFace model and load state dict
_UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ )
model.load_state_dict(a_ )
model.eval()
# forward pass
_UpperCAmelCase : Dict = model(a_ )
_UpperCAmelCase : List[str] = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
_UpperCAmelCase : Optional[Any] = torch.tensor(
[[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] )
elif "kitti" in model_name:
_UpperCAmelCase : Tuple = torch.tensor(
[[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] )
else:
raise ValueError(f"""Unknown model name: {model_name}""" )
_UpperCAmelCase : Dict = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 )
print("Looks ok!" )
# finally, push to hub if required
if push_to_hub:
logger.info("Pushing model and image processor to the hub..." )
model.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, )
image_processor.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path',
default=None,
type=str,
help='Path to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.'
)
parser.add_argument(
'--model_name',
default='glpn-kitti',
type=str,
help='Name of the model in case you\'re pushing to the hub.',
)
__a = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name) | 17 | 1 |
'''simple docstring'''
# using dfs for finding eulerian path traversal
def __UpperCAmelCase ( a_: Optional[Any], a_: Union[str, Any], a_: Union[str, Any], a_: Optional[int]=None ):
_UpperCAmelCase : List[Any] = (path or []) + [u]
for v in graph[u]:
if visited_edge[u][v] is False:
_UpperCAmelCase , _UpperCAmelCase : Any = True, True
_UpperCAmelCase : Dict = dfs(a_, a_, a_, a_ )
return path
def __UpperCAmelCase ( a_: Optional[Any], a_: Dict ):
_UpperCAmelCase : List[str] = 0
_UpperCAmelCase : Optional[int] = -1
for i in range(a_ ):
if i not in graph.keys():
continue
if len(graph[i] ) % 2 == 1:
odd_degree_nodes += 1
_UpperCAmelCase : Any = i
if odd_degree_nodes == 0:
return 1, odd_node
if odd_degree_nodes == 2:
return 2, odd_node
return 3, odd_node
def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int] ):
_UpperCAmelCase : List[Any] = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )]
_UpperCAmelCase , _UpperCAmelCase : Tuple = check_circuit_or_path(a_, a_ )
if check == 3:
print("graph is not Eulerian" )
print("no path" )
return
_UpperCAmelCase : Any = 1
if check == 2:
_UpperCAmelCase : int = odd_node
print("graph has a Euler path" )
if check == 1:
print("graph has a Euler cycle" )
_UpperCAmelCase : Any = dfs(a_, a_, a_ )
print(a_ )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Union[str, Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]}
_UpperCAmelCase : Optional[Any] = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]}
_UpperCAmelCase : Union[str, Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]}
_UpperCAmelCase : Dict = {1: [2, 3], 2: [1, 3], 3: [1, 2]}
_UpperCAmelCase : Tuple = {
1: [],
2: []
# all degree is zero
}
_UpperCAmelCase : str = 10
check_euler(a_, a_ )
check_euler(a_, a_ )
check_euler(a_, a_ )
check_euler(a_, a_ )
check_euler(a_, a_ )
if __name__ == "__main__":
main() | 17 | '''simple docstring'''
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[Any] = 10
_UpperCAmelCase : int = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string" ) ),
"labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ),
"answers": datasets.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
"id": datasets.Value("int64" ),
} )
_UpperCAmelCase : List[str] = datasets.Dataset.from_dict(
{
"tokens": [["foo"] * 5] * n,
"labels": [[1] * 5] * n,
"answers": [{"answer_start": [97], "text": ["1976"]}] * 10,
"id": list(range(a_ ) ),
}, features=a_, )
return dataset
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" )
dataset.map(cache_file_name=a_ )
return filename
# FILE_CONTENT + files
__a = '\\n Text data.\n Second line of data.'
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt"
_UpperCAmelCase : Tuple = FILE_CONTENT
with open(a_, "w" ) as f:
f.write(a_ )
return filename
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2"
_UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" )
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import gzip
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" )
_UpperCAmelCase : Any = bytes(a_, "utf-8" )
with gzip.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
if datasets.config.LZ4_AVAILABLE:
import lza.frame
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4"
_UpperCAmelCase : str = bytes(a_, "utf-8" )
with lza.frame.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Any ):
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z"
with pyazr.SevenZipFile(a_, "w" ) as archive:
archive.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: List[str] ):
import tarfile
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
import lzma
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz"
_UpperCAmelCase : List[str] = bytes(a_, "utf-8" )
with lzma.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: Tuple ):
import zipfile
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst"
_UpperCAmelCase : int = bytes(a_, "utf-8" )
with zstd.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
_UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml"
_UpperCAmelCase : Tuple = textwrap.dedent(
"\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" )
with open(a_, "w" ) as f:
f.write(a_ )
return filename
__a = [
{'col_1': '0', 'col_2': 0, 'col_3': 0.0},
{'col_1': '1', 'col_2': 1, 'col_3': 1.0},
{'col_1': '2', 'col_2': 2, 'col_3': 2.0},
{'col_1': '3', 'col_2': 3, 'col_3': 3.0},
]
__a = [
{'col_1': '4', 'col_2': 4, 'col_3': 4.0},
{'col_1': '5', 'col_2': 5, 'col_3': 5.0},
]
__a = {
'col_1': ['0', '1', '2', '3'],
'col_2': [0, 1, 2, 3],
'col_3': [0.0, 1.0, 2.0, 3.0],
}
__a = [
{'col_3': 0.0, 'col_1': '0', 'col_2': 0},
{'col_3': 1.0, 'col_1': '1', 'col_2': 1},
]
__a = [
{'col_1': 's0', 'col_2': 0, 'col_3': 0.0},
{'col_1': 's1', 'col_2': 1, 'col_3': 1.0},
{'col_1': 's2', 'col_2': 2, 'col_3': 2.0},
{'col_1': 's3', 'col_2': 3, 'col_3': 3.0},
]
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : str = datasets.Dataset.from_dict(a_ )
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" )
dataset.map(cache_file_name=a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" )
with contextlib.closing(sqlitea.connect(a_ ) ) as con:
_UpperCAmelCase : List[Any] = con.cursor()
cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" )
for item in DATA:
cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str, a_: str ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2"
with open(a_, "rb" ) as f:
_UpperCAmelCase : Any = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ):
_UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) )
f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ):
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" )
_UpperCAmelCase : Dict = pa.schema(
{
"col_1": pa.string(),
"col_2": pa.intaa(),
"col_3": pa.floataa(),
} )
with open(a_, "wb" ) as f:
_UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ )
_UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ )
writer.write_table(a_ )
writer.close()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : str = {"data": DATA}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_312:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_STR:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ):
import gzip
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ):
import gzip
_UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ):
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : List[str] = ["0", "1", "2", "3"]
_UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Dict = ["0", "1", "2", "3"]
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = ["0", "1", "2", "3"]
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc"
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename("unsupported.ext" ) )
f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] )
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" )
with open(a_, "w", encoding="utf-8" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_image_rgb.jpg" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_audio_44100.wav" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Optional[Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" )
(data_dir / "subdir").mkdir()
with open(data_dir / "subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / "subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden file
with open(data_dir / "subdir" / ".test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / ".subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / ".subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
return data_dir | 17 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( a_: str ):
_UpperCAmelCase : str = []
_UpperCAmelCase : List[str] = []
_UpperCAmelCase : Union[str, Any] = {
"^": 3,
"*": 2,
"/": 2,
"%": 2,
"+": 1,
"-": 1,
} # Priority of each operator
_UpperCAmelCase : List[str] = len(a_ ) if (len(a_ ) > 7) else 7
# Print table header for output
print(
"Symbol".center(8 ), "Stack".center(a_ ), "Postfix".center(a_ ), sep=" | ", )
print("-" * (print_width * 3 + 7) )
for x in infix:
if x.isalpha() or x.isdigit():
post_fix.append(a_ ) # if x is Alphabet / Digit, add it to Postfix
elif x == "(":
stack.append(a_ ) # if x is "(" push to Stack
elif x == ")": # if x is ")" pop stack until "(" is encountered
while stack[-1] != "(":
post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix
stack.pop()
else:
if len(a_ ) == 0:
stack.append(a_ ) # If stack is empty, push x to stack
else: # while priority of x is not > priority of element in the stack
while len(a_ ) > 0 and priority[x] <= priority[stack[-1]]:
post_fix.append(stack.pop() ) # pop stack & add to Postfix
stack.append(a_ ) # push x to stack
print(
x.center(8 ), ("".join(a_ )).ljust(a_ ), ("".join(a_ )).ljust(a_ ), sep=" | ", ) # Output in tabular format
while len(a_ ) > 0: # while stack is not empty
post_fix.append(stack.pop() ) # pop stack & add to Postfix
print(
" ".center(8 ), ("".join(a_ )).ljust(a_ ), ("".join(a_ )).ljust(a_ ), sep=" | ", ) # Output in tabular format
return "".join(a_ ) # return Postfix as str
def __UpperCAmelCase ( a_: Optional[int] ):
_UpperCAmelCase : List[str] = list(infix[::-1] ) # reverse the infix equation
for i in range(len(a_ ) ):
if infix[i] == "(":
_UpperCAmelCase : Dict = ")" # change "(" to ")"
elif infix[i] == ")":
_UpperCAmelCase : Dict = "(" # change ")" to "("
return (infix_2_postfix("".join(a_ ) ))[
::-1
] # call infix_2_postfix on Infix, return reverse of Postfix
if __name__ == "__main__":
__a = input('\nEnter an Infix Equation = ') # Input an Infix equation
__a = ''.join(Infix.split()) # Remove spaces from the input
print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)') | 17 | '''simple docstring'''
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = BarthezTokenizer
UpperCamelCase_ : List[Any] = BarthezTokenizerFast
UpperCamelCase_ : Optional[int] = True
UpperCamelCase_ : Optional[int] = True
def _lowerCAmelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
super().setUp()
_UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer
def _lowerCAmelCase ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = "<pad>"
_UpperCAmelCase : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 )
@require_torch
def _lowerCAmelCase ( self : Any ) -> int:
"""simple docstring"""
_UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."]
_UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2]
_UpperCAmelCase : int = self.tokenizer(
lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
_UpperCAmelCase : str = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
_UpperCAmelCase : Optional[int] = self.get_tokenizer()
_UpperCAmelCase : Optional[int] = self.get_rust_tokenizer()
_UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé."
_UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer()
_UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
_UpperCAmelCase : Tuple = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , ) | 17 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( a_: int, a_: int ):
return int(input_a == input_a == 0 )
def __UpperCAmelCase ( ):
print("Truth Table of NOR Gate:" )
print("| Input 1 | Input 2 | Output |" )
print(f"""| 0 | 0 | {nor_gate(0, 0 )} |""" )
print(f"""| 0 | 1 | {nor_gate(0, 1 )} |""" )
print(f"""| 1 | 0 | {nor_gate(1, 0 )} |""" )
print(f"""| 1 | 1 | {nor_gate(1, 1 )} |""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main() | 17 | '''simple docstring'''
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
__a = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class A__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0}
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : Tuple = batch_size
_UpperCAmelCase : str = num_channels
_UpperCAmelCase : Optional[Any] = image_size
_UpperCAmelCase : Dict = min_resolution
_UpperCAmelCase : str = max_resolution
_UpperCAmelCase : List[Any] = size
_UpperCAmelCase : Union[str, Any] = do_normalize
_UpperCAmelCase : Optional[Any] = do_convert_rgb
_UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6]
_UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6}
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def _lowerCAmelCase ( self : Any ) -> str:
"""simple docstring"""
_UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
_UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self )
@property
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image()
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
_UpperCAmelCase : str = 2_0_4_8
_UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) )
def _lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : Union[str, Any] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
_UpperCAmelCase : str = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(lowerCAmelCase__ ):
_UpperCAmelCase : str = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
_UpperCAmelCase : Any = "Hello"
_UpperCAmelCase : Optional[int] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : List[Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
_UpperCAmelCase : Any = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : int = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Union[str, Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : int ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 )
_UpperCAmelCase : List[Any] = 3
@property
def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : str = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Any = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Tuple = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) | 17 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( a_: str, a_: str ):
def get_matched_characters(a_: str, a_: str ) -> str:
_UpperCAmelCase : List[Any] = []
_UpperCAmelCase : List[str] = min(len(_stra ), len(_stra ) ) // 2
for i, l in enumerate(_stra ):
_UpperCAmelCase : Optional[Any] = int(max(0, i - limit ) )
_UpperCAmelCase : List[Any] = int(min(i + limit + 1, len(_stra ) ) )
if l in _stra[left:right]:
matched.append(a_ )
_UpperCAmelCase : str = f"""{_stra[0:_stra.index(a_ )]} {_stra[_stra.index(a_ ) + 1:]}"""
return "".join(a_ )
# matching characters
_UpperCAmelCase : Optional[int] = get_matched_characters(a_, a_ )
_UpperCAmelCase : Dict = get_matched_characters(a_, a_ )
_UpperCAmelCase : List[str] = len(a_ )
# transposition
_UpperCAmelCase : List[Any] = (
len([(ca, ca) for ca, ca in zip(a_, a_ ) if ca != ca] ) // 2
)
if not match_count:
_UpperCAmelCase : List[Any] = 0.0
else:
_UpperCAmelCase : Optional[Any] = (
1
/ 3
* (
match_count / len(a_ )
+ match_count / len(a_ )
+ (match_count - transpositions) / match_count
)
)
# common prefix up to 4 characters
_UpperCAmelCase : List[Any] = 0
for ca, ca in zip(stra[:4], stra[:4] ):
if ca == ca:
prefix_len += 1
else:
break
return jaro + 0.1 * prefix_len * (1 - jaro)
if __name__ == "__main__":
import doctest
doctest.testmod()
print(jaro_winkler('hello', 'world')) | 17 | '''simple docstring'''
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Tuple = '''time_series_transformer'''
UpperCamelCase_ : Optional[Any] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = prediction_length
_UpperCAmelCase : Optional[Any] = context_length or prediction_length
_UpperCAmelCase : Optional[Any] = distribution_output
_UpperCAmelCase : Union[str, Any] = loss
_UpperCAmelCase : Dict = input_size
_UpperCAmelCase : int = num_time_features
_UpperCAmelCase : Any = lags_sequence
_UpperCAmelCase : Dict = scaling
_UpperCAmelCase : Tuple = num_dynamic_real_features
_UpperCAmelCase : Dict = num_static_real_features
_UpperCAmelCase : Union[str, Any] = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : Optional[int] = cardinality
else:
_UpperCAmelCase : Optional[Any] = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : List[Any] = embedding_dimension
else:
_UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
_UpperCAmelCase : str = num_parallel_samples
# Transformer architecture configuration
_UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features
_UpperCAmelCase : str = d_model
_UpperCAmelCase : Optional[Any] = encoder_attention_heads
_UpperCAmelCase : Dict = decoder_attention_heads
_UpperCAmelCase : List[Any] = encoder_ffn_dim
_UpperCAmelCase : str = decoder_ffn_dim
_UpperCAmelCase : Dict = encoder_layers
_UpperCAmelCase : str = decoder_layers
_UpperCAmelCase : Any = dropout
_UpperCAmelCase : str = attention_dropout
_UpperCAmelCase : List[Any] = activation_dropout
_UpperCAmelCase : Dict = encoder_layerdrop
_UpperCAmelCase : Any = decoder_layerdrop
_UpperCAmelCase : Optional[Any] = activation_function
_UpperCAmelCase : Tuple = init_std
_UpperCAmelCase : List[str] = use_cache
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def _lowerCAmelCase ( self : str ) -> int:
"""simple docstring"""
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
) | 17 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( a_: int, a_: int ):
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
_UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) )
return "0b" + "".join(
str(int(char_a == "1" and char_b == "1" ) )
for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | '''simple docstring'''
import baseaa
def __UpperCAmelCase ( a_: str ):
return baseaa.baaencode(string.encode("utf-8" ) )
def __UpperCAmelCase ( a_: bytes ):
return baseaa.baadecode(a_ ).decode("utf-8" )
if __name__ == "__main__":
__a = 'Hello World!'
__a = baseaa_encode(test)
print(encoded)
__a = baseaa_decode(encoded)
print(decoded) | 17 | 1 |
'''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def __UpperCAmelCase ( a_: str ):
for param in module.parameters():
_UpperCAmelCase : Any = False
def __UpperCAmelCase ( ):
_UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_UpperCAmelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : int = plt.imshow(a_ )
fig.axes.get_xaxis().set_visible(a_ )
fig.axes.get_yaxis().set_visible(a_ )
plt.show()
def __UpperCAmelCase ( ):
_UpperCAmelCase : Dict = datetime.now()
_UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" )
return timestamp | 17 | '''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class A__ :
"""simple docstring"""
UpperCamelCase_ : Any = XGLMConfig
UpperCamelCase_ : Union[str, Any] = {}
UpperCamelCase_ : Dict = '''gelu'''
def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : str = batch_size
_UpperCAmelCase : str = seq_length
_UpperCAmelCase : int = is_training
_UpperCAmelCase : List[Any] = use_input_mask
_UpperCAmelCase : Optional[int] = use_labels
_UpperCAmelCase : str = vocab_size
_UpperCAmelCase : int = d_model
_UpperCAmelCase : Tuple = num_hidden_layers
_UpperCAmelCase : Tuple = num_attention_heads
_UpperCAmelCase : Tuple = ffn_dim
_UpperCAmelCase : Any = activation_function
_UpperCAmelCase : Union[str, Any] = activation_dropout
_UpperCAmelCase : Union[str, Any] = attention_dropout
_UpperCAmelCase : Any = max_position_embeddings
_UpperCAmelCase : int = initializer_range
_UpperCAmelCase : Any = None
_UpperCAmelCase : int = 0
_UpperCAmelCase : Union[str, Any] = 2
_UpperCAmelCase : Tuple = 1
def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : int = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_UpperCAmelCase : Any = None
if self.use_input_mask:
_UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : Optional[Any] = self.get_config()
_UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , )
def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
_UpperCAmelCase : Optional[int] = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else ()
UpperCamelCase_ : Tuple = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
UpperCamelCase_ : Dict = False
UpperCamelCase_ : List[Any] = False
UpperCamelCase_ : Tuple = False
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Dict = TFXGLMModelTester(self )
_UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 )
def _lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowerCAmelCase ( self : Union[str, Any] ) -> int:
"""simple docstring"""
super().test_resize_token_embeddings()
@require_tf
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1]
# fmt: on
_UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
_UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" )
_UpperCAmelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
_UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] )
_UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[int] = "left"
# use different length sentences to test batching
_UpperCAmelCase : Tuple = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
_UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = inputs["input_ids"]
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 )
_UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids
_UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] ) | 17 | 1 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Tuple ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase__ ).to(lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("google/mt5-small" )
_UpperCAmelCase : Union[str, Any] = tokenizer("Hello there" , return_tensors="pt" ).input_ids
_UpperCAmelCase : Dict = tokenizer("Hi I am" , return_tensors="pt" ).input_ids
_UpperCAmelCase : Dict = model(input_ids.to(lowerCAmelCase__ ) , labels=labels.to(lowerCAmelCase__ ) ).loss
_UpperCAmelCase : Any = -(labels.shape[-1] * loss.item())
_UpperCAmelCase : Optional[Any] = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 ) | 17 | '''simple docstring'''
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"files", [
["full:README.md", "dataset_infos.json"],
["empty:README.md", "dataset_infos.json"],
["dataset_infos.json"],
["full:README.md"],
], )
def __UpperCAmelCase ( a_: Tuple, a_: Any ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" )
if "full:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("---\ndataset_info:\n dataset_size: 42\n---" )
if "empty:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f:
f.write("{\"default\": {\"dataset_size\": 42}}" )
_UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
"dataset_info", [
DatasetInfo(),
DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ),
], )
def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ):
_UpperCAmelCase : Tuple = str(a_ )
dataset_info.write_to_directory(a_ )
_UpperCAmelCase : Any = DatasetInfo.from_directory(a_ )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(a_, "dataset_info.json" ) )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = DatasetInfo(
description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, )
_UpperCAmelCase : Tuple = dataset_info._to_yaml_dict()
assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) )
_UpperCAmelCase : List[Any] = yaml.safe_dump(a_ )
_UpperCAmelCase : Optional[int] = yaml.safe_load(a_ )
assert dataset_info_yaml_dict == reloaded
def __UpperCAmelCase ( ):
_UpperCAmelCase : str = DatasetInfo()
_UpperCAmelCase : List[str] = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"dataset_infos_dict", [
DatasetInfosDict(),
DatasetInfosDict({"default": DatasetInfo()} ),
DatasetInfosDict({"my_config_name": DatasetInfo()} ),
DatasetInfosDict(
{
"default": DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, )
} ),
DatasetInfosDict(
{
"v1": DatasetInfo(dataset_size=42 ),
"v2": DatasetInfo(dataset_size=1_337 ),
} ),
], )
def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ):
_UpperCAmelCase : Union[str, Any] = str(a_ )
dataset_infos_dict.write_to_directory(a_ )
_UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
_UpperCAmelCase : Optional[int] = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
_UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(a_, "README.md" ) ) | 17 | 1 |
'''simple docstring'''
import math
def __UpperCAmelCase ( a_: int ):
assert isinstance(a_, a_ ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
_UpperCAmelCase : Optional[int] = range(3, int(math.sqrt(a_ ) + 1 ), 2 )
return not any(not number % i for i in odd_numbers )
def __UpperCAmelCase ( a_: List[str], a_: Any=1, **a_: Any ):
_UpperCAmelCase : str = factor * value
_UpperCAmelCase : int = value
while not is_prime(a_ ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1, **a_ )
return value | 17 | '''simple docstring'''
from math import factorial
def __UpperCAmelCase ( a_: int = 100 ):
return sum(map(a_, str(factorial(a_ ) ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip()))) | 17 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
__a = {
'google/tapas-base-finetuned-sqa': (
'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'
),
'google/tapas-base-finetuned-wtq': (
'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'
),
'google/tapas-base-finetuned-wikisql-supervised': (
'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'
),
'google/tapas-base-finetuned-tabfact': (
'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'
),
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = '''tapas'''
def __init__( self : Tuple , lowerCAmelCase__ : int=3_0_5_2_2 , lowerCAmelCase__ : Any=7_6_8 , lowerCAmelCase__ : str=1_2 , lowerCAmelCase__ : Optional[Any]=1_2 , lowerCAmelCase__ : Union[str, Any]=3_0_7_2 , lowerCAmelCase__ : Any="gelu" , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : str=1_0_2_4 , lowerCAmelCase__ : int=[3, 2_5_6, 2_5_6, 2, 2_5_6, 2_5_6, 1_0] , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=1e-12 , lowerCAmelCase__ : str=0 , lowerCAmelCase__ : Any=10.0 , lowerCAmelCase__ : Optional[int]=0 , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=1.0 , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : List[str]=1.0 , lowerCAmelCase__ : str=1.0 , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : List[str]=False , lowerCAmelCase__ : int="ratio" , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : List[str]=6_4 , lowerCAmelCase__ : Tuple=3_2 , lowerCAmelCase__ : List[str]=False , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=False , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Tuple=None , **lowerCAmelCase__ : Dict , ) -> Tuple:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
_UpperCAmelCase : List[str] = vocab_size
_UpperCAmelCase : int = hidden_size
_UpperCAmelCase : Optional[Any] = num_hidden_layers
_UpperCAmelCase : Any = num_attention_heads
_UpperCAmelCase : Optional[Any] = hidden_act
_UpperCAmelCase : Union[str, Any] = intermediate_size
_UpperCAmelCase : List[str] = hidden_dropout_prob
_UpperCAmelCase : Dict = attention_probs_dropout_prob
_UpperCAmelCase : Dict = max_position_embeddings
_UpperCAmelCase : List[Any] = type_vocab_sizes
_UpperCAmelCase : Tuple = initializer_range
_UpperCAmelCase : Union[str, Any] = layer_norm_eps
# Fine-tuning task hyperparameters
_UpperCAmelCase : Union[str, Any] = positive_label_weight
_UpperCAmelCase : Dict = num_aggregation_labels
_UpperCAmelCase : List[Any] = aggregation_loss_weight
_UpperCAmelCase : Any = use_answer_as_supervision
_UpperCAmelCase : Tuple = answer_loss_importance
_UpperCAmelCase : str = use_normalized_answer_loss
_UpperCAmelCase : Tuple = huber_loss_delta
_UpperCAmelCase : str = temperature
_UpperCAmelCase : List[Any] = aggregation_temperature
_UpperCAmelCase : List[Any] = use_gumbel_for_cells
_UpperCAmelCase : List[Any] = use_gumbel_for_aggregation
_UpperCAmelCase : Dict = average_approximation_function
_UpperCAmelCase : str = cell_selection_preference
_UpperCAmelCase : Dict = answer_loss_cutoff
_UpperCAmelCase : Optional[Any] = max_num_rows
_UpperCAmelCase : str = max_num_columns
_UpperCAmelCase : List[Any] = average_logits_per_cell
_UpperCAmelCase : Optional[Any] = select_one_column
_UpperCAmelCase : int = allow_empty_column_selection
_UpperCAmelCase : Any = init_cell_selection_weights_to_zero
_UpperCAmelCase : Any = reset_position_index_per_cell
_UpperCAmelCase : int = disable_per_token_loss
# Aggregation hyperparameters
_UpperCAmelCase : Any = aggregation_labels
_UpperCAmelCase : Union[str, Any] = no_aggregation_label_index
if isinstance(self.aggregation_labels , lowerCAmelCase__ ):
_UpperCAmelCase : List[str] = {int(lowerCAmelCase__ ): v for k, v in aggregation_labels.items()} | 17 | '''simple docstring'''
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
__a = (3, 9, -11, 0, 7, 5, 1, -1)
__a = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : int
UpperCamelCase_ : Node | None
class A__ :
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None:
"""simple docstring"""
_UpperCAmelCase : Node | None = None
for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ):
_UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head )
def __iter__( self : int ) -> Iterator[int]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.head
while node:
yield node.data
_UpperCAmelCase : List[str] = node.next_node
def __len__( self : Any ) -> int:
"""simple docstring"""
return sum(1 for _ in self )
def __str__( self : Union[str, Any] ) -> str:
"""simple docstring"""
return " -> ".join([str(lowerCAmelCase__ ) for node in self] )
def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ):
return SortedLinkedList(list(a_ ) + list(a_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
__a = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even))) | 17 | 1 |
'''simple docstring'''
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
ImageTextPipelineOutput,
UniDiffuserPipeline,
)
else:
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel, UTransformeraDModel
from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline | 17 | '''simple docstring'''
def __UpperCAmelCase ( a_: str ):
if not all(char in "01" for char in bin_string ):
raise ValueError("Non-binary value was passed to the function" )
if not bin_string:
raise ValueError("Empty string was passed to the function" )
_UpperCAmelCase : Optional[Any] = ""
while len(a_ ) % 3 != 0:
_UpperCAmelCase : List[Any] = "0" + bin_string
_UpperCAmelCase : Dict = [
bin_string[index : index + 3]
for index in range(len(a_ ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
_UpperCAmelCase : Optional[Any] = 0
for index, val in enumerate(a_ ):
oct_val += int(2 ** (2 - index) * int(a_ ) )
oct_string += str(a_ )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod() | 17 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Any = tempfile.mkdtemp()
_UpperCAmelCase : str = BlipImageProcessor()
_UpperCAmelCase : Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
_UpperCAmelCase : Any = BlipProcessor(lowerCAmelCase__ , lowerCAmelCase__ )
processor.save_pretrained(self.tmpdirname )
def _lowerCAmelCase ( self : List[Any] , **lowerCAmelCase__ : Tuple ) -> Union[str, Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).tokenizer
def _lowerCAmelCase ( self : str , **lowerCAmelCase__ : List[str] ) -> List[Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).image_processor
def _lowerCAmelCase ( self : Any ) -> Tuple:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def _lowerCAmelCase ( self : str ) -> str:
"""simple docstring"""
_UpperCAmelCase : str = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
_UpperCAmelCase : List[str] = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_UpperCAmelCase : List[str] = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_UpperCAmelCase : Optional[int] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
_UpperCAmelCase : Optional[int] = self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0 )
_UpperCAmelCase : List[str] = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCAmelCase__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Dict = self.get_image_processor()
_UpperCAmelCase : Union[str, Any] = self.get_tokenizer()
_UpperCAmelCase : str = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ )
_UpperCAmelCase : int = self.prepare_image_inputs()
_UpperCAmelCase : Optional[Any] = image_processor(lowerCAmelCase__ , return_tensors="np" )
_UpperCAmelCase : Optional[Any] = processor(images=lowerCAmelCase__ , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _lowerCAmelCase ( self : int ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.get_image_processor()
_UpperCAmelCase : Union[str, Any] = self.get_tokenizer()
_UpperCAmelCase : List[str] = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = "lower newer"
_UpperCAmelCase : Optional[Any] = processor(text=lowerCAmelCase__ )
_UpperCAmelCase : Tuple = tokenizer(lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
_UpperCAmelCase : str = self.get_image_processor()
_UpperCAmelCase : Optional[Any] = self.get_tokenizer()
_UpperCAmelCase : Optional[int] = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ )
_UpperCAmelCase : str = "lower newer"
_UpperCAmelCase : List[str] = self.prepare_image_inputs()
_UpperCAmelCase : Optional[int] = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(lowerCAmelCase__ ):
processor()
def _lowerCAmelCase ( self : Tuple ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.get_image_processor()
_UpperCAmelCase : int = self.get_tokenizer()
_UpperCAmelCase : Tuple = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_UpperCAmelCase : str = processor.batch_decode(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = tokenizer.batch_decode(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Dict ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Dict = self.get_image_processor()
_UpperCAmelCase : Tuple = self.get_tokenizer()
_UpperCAmelCase : List[str] = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = "lower newer"
_UpperCAmelCase : Optional[Any] = self.prepare_image_inputs()
_UpperCAmelCase : Optional[Any] = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) | 17 | '''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def __UpperCAmelCase ( a_: str ):
for param in module.parameters():
_UpperCAmelCase : Any = False
def __UpperCAmelCase ( ):
_UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_UpperCAmelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : int = plt.imshow(a_ )
fig.axes.get_xaxis().set_visible(a_ )
fig.axes.get_yaxis().set_visible(a_ )
plt.show()
def __UpperCAmelCase ( ):
_UpperCAmelCase : Dict = datetime.now()
_UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" )
return timestamp | 17 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__a = {
'configuration_groupvit': [
'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'GroupViTConfig',
'GroupViTOnnxConfig',
'GroupViTTextConfig',
'GroupViTVisionConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GroupViTModel',
'GroupViTPreTrainedModel',
'GroupViTTextModel',
'GroupViTVisionModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFGroupViTModel',
'TFGroupViTPreTrainedModel',
'TFGroupViTTextModel',
'TFGroupViTVisionModel',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 17 | '''simple docstring'''
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[int] = (EulerDiscreteScheduler,)
UpperCamelCase_ : Tuple = 10
def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = {
"num_train_timesteps": 1_1_0_0,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**lowerCAmelCase__ )
return config
def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Any ) -> List[str]:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] ) -> List[str]:
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.scheduler_classes[0]
_UpperCAmelCase : int = self.get_scheduler_config()
_UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
_UpperCAmelCase : int = torch.manual_seed(0 )
_UpperCAmelCase : Any = self.dummy_model()
_UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma
_UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
_UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = output.prev_sample
_UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Any = self.scheduler_classes[0]
_UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" )
_UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
_UpperCAmelCase : str = torch.manual_seed(0 )
_UpperCAmelCase : Optional[Any] = self.dummy_model()
_UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
_UpperCAmelCase : Tuple = sample.to(lowerCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
_UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = output.prev_sample
_UpperCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 0.0002 ) < 1e-2
assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3
def _lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.scheduler_classes[0]
_UpperCAmelCase : List[Any] = self.get_scheduler_config()
_UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
_UpperCAmelCase : str = self.dummy_model()
_UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_UpperCAmelCase : str = sample.to(lowerCAmelCase__ )
for t in scheduler.timesteps:
_UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : int = output.prev_sample
_UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.scheduler_classes[0]
_UpperCAmelCase : int = self.get_scheduler_config()
_UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
_UpperCAmelCase : List[str] = self.dummy_model()
_UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_UpperCAmelCase : Optional[int] = sample.to(lowerCAmelCase__ )
for t in scheduler.timesteps:
_UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = output.prev_sample
_UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2
assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3 | 17 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def __UpperCAmelCase ( a_: Tuple, a_: Union[str, Any], a_: List[str] ):
# Construct model
if openai_config_file == "":
_UpperCAmelCase : Optional[int] = OpenAIGPTConfig()
else:
_UpperCAmelCase : List[Any] = OpenAIGPTConfig.from_json_file(a_ )
_UpperCAmelCase : Dict = OpenAIGPTModel(a_ )
# Load weights from numpy
load_tf_weights_in_openai_gpt(a_, a_, a_ )
# Save pytorch-model
_UpperCAmelCase : Any = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
_UpperCAmelCase : Optional[Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME
print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" )
torch.save(model.state_dict(), a_ )
print(f"""Save configuration file to {pytorch_config_dump_path}""" )
with open(a_, "w", encoding="utf-8" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--openai_checkpoint_folder_path',
default=None,
type=str,
required=True,
help='Path to the TensorFlow checkpoint path.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--openai_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained OpenAI model. \n'
'This specifies the model architecture.'
),
)
__a = parser.parse_args()
convert_openai_checkpoint_to_pytorch(
args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path
) | 17 | '''simple docstring'''
def __UpperCAmelCase ( a_: int, a_: int ):
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
_UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) )
return "0b" + "".join(
str(int(char_a == "1" and char_b == "1" ) )
for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class A__ :
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str]=1_3 , lowerCAmelCase__ : str=3_2 , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : Optional[int]=4 , lowerCAmelCase__ : Optional[int]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase__ : str=[2, 2, 3, 2] , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[Any]=3_7 , lowerCAmelCase__ : Optional[int]="gelu" , lowerCAmelCase__ : int=1_0 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : str=["stage2", "stage3", "stage4"] , lowerCAmelCase__ : List[Any]=[2, 3, 4] , lowerCAmelCase__ : Union[str, Any]=None , ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = parent
_UpperCAmelCase : Tuple = batch_size
_UpperCAmelCase : Any = image_size
_UpperCAmelCase : Dict = num_channels
_UpperCAmelCase : Union[str, Any] = num_stages
_UpperCAmelCase : List[str] = hidden_sizes
_UpperCAmelCase : Tuple = depths
_UpperCAmelCase : List[str] = is_training
_UpperCAmelCase : Dict = use_labels
_UpperCAmelCase : Optional[Any] = intermediate_size
_UpperCAmelCase : Any = hidden_act
_UpperCAmelCase : Optional[int] = num_labels
_UpperCAmelCase : Any = initializer_range
_UpperCAmelCase : Optional[int] = out_features
_UpperCAmelCase : Optional[Any] = out_indices
_UpperCAmelCase : Any = scope
def _lowerCAmelCase ( self : Any ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase : List[Any] = None
if self.use_labels:
_UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_labels )
_UpperCAmelCase : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = ConvNextVaModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Any = model(lowerCAmelCase__ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = ConvNextVaForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : str = model(lowerCAmelCase__ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_UpperCAmelCase : Dict = None
_UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _lowerCAmelCase ( self : Any ) -> int:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = config_and_inputs
_UpperCAmelCase : Union[str, Any] = {"pixel_values": pixel_values}
return config, inputs_dict
def _lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
_UpperCAmelCase : Dict = self.prepare_config_and_inputs()
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = config_and_inputs
_UpperCAmelCase : str = {"pixel_values": pixel_values, "labels": labels}
return config, inputs_dict
@require_torch
class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
UpperCamelCase_ : List[Any] = (
{'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
UpperCamelCase_ : Optional[Any] = False
UpperCamelCase_ : List[str] = False
UpperCamelCase_ : List[Any] = False
UpperCamelCase_ : Optional[Any] = False
UpperCamelCase_ : Union[str, Any] = False
def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = ConvNextVaModelTester(self )
_UpperCAmelCase : Tuple = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=3_7 )
def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowerCAmelCase ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
return
@unittest.skip(reason="ConvNextV2 does not use inputs_embeds" )
def _lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
pass
@unittest.skip(reason="ConvNextV2 does not support input and output embeddings" )
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
pass
@unittest.skip(reason="ConvNextV2 does not use feedforward chunking" )
def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
pass
def _lowerCAmelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
_UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_with_labels()
_UpperCAmelCase : Dict = True
if model_class.__name__ in [
*get_values(lowerCAmelCase__ ),
*get_values(lowerCAmelCase__ ),
]:
continue
_UpperCAmelCase : List[Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.train()
_UpperCAmelCase : int = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase__ ).loss
loss.backward()
def _lowerCAmelCase ( self : Tuple ) -> List[str]:
"""simple docstring"""
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
_UpperCAmelCase , _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels()
_UpperCAmelCase : Union[str, Any] = False
_UpperCAmelCase : Optional[Any] = True
if (
model_class.__name__
in [*get_values(lowerCAmelCase__ ), *get_values(lowerCAmelCase__ )]
or not model_class.supports_gradient_checkpointing
):
continue
_UpperCAmelCase : Union[str, Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.gradient_checkpointing_enable()
model.train()
_UpperCAmelCase : Any = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ )
_UpperCAmelCase : str = model(**lowerCAmelCase__ ).loss
loss.backward()
def _lowerCAmelCase ( self : Any ) -> Any:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase : Union[str, Any] = model_class(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase : Dict = [*signature.parameters.keys()]
_UpperCAmelCase : Optional[Any] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
def check_hidden_states_output(lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] ):
_UpperCAmelCase : Tuple = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
_UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
_UpperCAmelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_UpperCAmelCase : List[str] = self.model_tester.num_stages
self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_UpperCAmelCase , _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase : Dict = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_UpperCAmelCase : List[Any] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase : Dict = ConvNextVaModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class A__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None
@slow
def _lowerCAmelCase ( self : Any ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Dict = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(lowerCAmelCase__ )
_UpperCAmelCase : str = self.default_image_processor
_UpperCAmelCase : List[str] = prepare_img()
_UpperCAmelCase : int = preprocessor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
_UpperCAmelCase : List[Any] = model(**lowerCAmelCase__ )
# verify the logits
_UpperCAmelCase : List[Any] = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = torch.tensor([0.9996, 0.1966, -0.4386] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) | 17 | '''simple docstring'''
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def __UpperCAmelCase ( a_: int ):
# A local function to see if a dot lands in the circle.
def is_in_circle(a_: float, a_: float ) -> bool:
_UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
_UpperCAmelCase : str = mean(
int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) )
for _ in range(a_ ) )
# The ratio of the area for circle to square is pi/4.
_UpperCAmelCase : Optional[int] = proportion * 4
print(f"""The estimated value of pi is {pi_estimate}""" )
print(f"""The numpy value of pi is {pi}""" )
print(f"""The total error is {abs(pi - pi_estimate )}""" )
def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ):
return mean(
function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value)
def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ):
def identity_function(a_: float ) -> float:
return x
_UpperCAmelCase : Union[str, Any] = area_under_curve_estimator(
a_, a_, a_, a_ )
_UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2
print("******************" )
print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {expected_value}""" )
print(f"""Total error is {abs(estimated_value - expected_value )}""" )
print("******************" )
def __UpperCAmelCase ( a_: int ):
def function_to_integrate(a_: float ) -> float:
return sqrt(4.0 - x * x )
_UpperCAmelCase : List[str] = area_under_curve_estimator(
a_, a_, 0.0, 2.0 )
print("******************" )
print("Estimating pi using area_under_curve_estimator" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {pi}""" )
print(f"""Total error is {abs(estimated_value - pi )}""" )
print("******************" )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 1 |
'''simple docstring'''
import os
import unittest
from transformers import FunnelTokenizer, FunnelTokenizerFast
from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[str] = FunnelTokenizer
UpperCamelCase_ : int = FunnelTokenizerFast
UpperCamelCase_ : List[Any] = True
UpperCamelCase_ : int = True
def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
super().setUp()
_UpperCAmelCase : List[str] = [
"<unk>",
"<cls>",
"<sep>",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
_UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def _lowerCAmelCase ( self : Tuple , **lowerCAmelCase__ : Tuple ) -> Optional[int]:
"""simple docstring"""
return FunnelTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _lowerCAmelCase ( self : str , **lowerCAmelCase__ : Any ) -> Optional[int]:
"""simple docstring"""
return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Dict = "UNwant\u00E9d,running"
_UpperCAmelCase : Tuple = "unwanted, running"
return input_text, output_text
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : int = self.tokenizer_class(self.vocab_file )
_UpperCAmelCase : Optional[Any] = tokenizer.tokenize("UNwant\u00E9d,running" )
self.assertListEqual(lowerCAmelCase__ , ["un", "##want", "##ed", ",", "runn", "##ing"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [7, 4, 5, 1_0, 8, 9] )
def _lowerCAmelCase ( self : Dict ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = self.get_tokenizers(do_lower_case=lowerCAmelCase__ )
for tokenizer in tokenizers:
_UpperCAmelCase : Optional[Any] = tokenizer("UNwant\u00E9d,running" )
_UpperCAmelCase : List[Any] = len(inputs["input_ids"] ) - 1
self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len )
_UpperCAmelCase : Union[str, Any] = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" )
self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len ) | 17 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__a = {
'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'],
'processing_layoutlmv2': ['LayoutLMv2Processor'],
'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['LayoutLMv2TokenizerFast']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['LayoutLMv2FeatureExtractor']
__a = ['LayoutLMv2ImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv2ForQuestionAnswering',
'LayoutLMv2ForSequenceClassification',
'LayoutLMv2ForTokenClassification',
'LayoutLMv2Layer',
'LayoutLMv2Model',
'LayoutLMv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 17 | 1 |
'''simple docstring'''
# Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def __UpperCAmelCase ( a_: int ):
return 1 / (1 + np.exp(-z ))
def __UpperCAmelCase ( a_: Optional[int], a_: int ):
return (-y * np.log(a_ ) - (1 - y) * np.log(1 - h )).mean()
def __UpperCAmelCase ( a_: Optional[int], a_: int, a_: Optional[Any] ):
_UpperCAmelCase : Optional[int] = np.dot(a_, a_ )
return np.sum(y * scores - np.log(1 + np.exp(a_ ) ) )
def __UpperCAmelCase ( a_: List[str], a_: str, a_: Tuple, a_: List[str]=70_000 ):
_UpperCAmelCase : int = np.zeros(x.shape[1] )
for iterations in range(a_ ):
_UpperCAmelCase : Optional[int] = np.dot(a_, a_ )
_UpperCAmelCase : Any = sigmoid_function(a_ )
_UpperCAmelCase : List[str] = np.dot(x.T, h - y ) / y.size
_UpperCAmelCase : List[str] = theta - alpha * gradient # updating the weights
_UpperCAmelCase : Optional[Any] = np.dot(a_, a_ )
_UpperCAmelCase : int = sigmoid_function(a_ )
_UpperCAmelCase : Tuple = cost_function(a_, a_ )
if iterations % 100 == 0:
print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
__a = datasets.load_iris()
__a = iris.data[:, :2]
__a = (iris.target != 0) * 1
__a = 0.1
__a = logistic_reg(alpha, x, y, max_iterations=70_000)
print('theta: ', theta) # printing the theta i.e our weights vector
def __UpperCAmelCase ( a_: List[str] ):
return sigmoid_function(
np.dot(a_, a_ ) ) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0')
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1')
((__a) , (__a)) = (x[:, 0].min(), x[:, 0].max())
((__a) , (__a)) = (x[:, 1].min(), x[:, 1].max())
((__a) , (__a)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
__a = np.c_[xxa.ravel(), xxa.ravel()]
__a = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black')
plt.legend()
plt.show() | 17 | '''simple docstring'''
def __UpperCAmelCase ( a_: int, a_: int ):
if not isinstance(a_, a_ ):
raise ValueError("iterations must be defined as integers" )
if not isinstance(a_, a_ ) or not number >= 1:
raise ValueError(
"starting number must be\n and integer and be more than 0" )
if not iterations >= 1:
raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" )
_UpperCAmelCase : List[str] = ""
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(a_ )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = '''realm'''
def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int]=3_0_5_2_2 , lowerCAmelCase__ : Tuple=7_6_8 , lowerCAmelCase__ : Optional[int]=1_2_8 , lowerCAmelCase__ : List[str]=1_2 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : List[str]=8 , lowerCAmelCase__ : str=3_0_7_2 , lowerCAmelCase__ : str="gelu_new" , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : List[Any]=0.02 , lowerCAmelCase__ : str=1e-12 , lowerCAmelCase__ : Union[str, Any]=2_5_6 , lowerCAmelCase__ : str=1_0 , lowerCAmelCase__ : Dict=1e-3 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : int=3_2_0 , lowerCAmelCase__ : List[str]=1_3_3_5_3_7_1_8 , lowerCAmelCase__ : List[str]=5_0_0_0 , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : Dict=0 , lowerCAmelCase__ : Dict=2 , **lowerCAmelCase__ : Union[str, Any] , ) -> str:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
# Common config
_UpperCAmelCase : Optional[Any] = vocab_size
_UpperCAmelCase : Dict = max_position_embeddings
_UpperCAmelCase : Tuple = hidden_size
_UpperCAmelCase : Union[str, Any] = retriever_proj_size
_UpperCAmelCase : Tuple = num_hidden_layers
_UpperCAmelCase : Optional[Any] = num_attention_heads
_UpperCAmelCase : Any = num_candidates
_UpperCAmelCase : str = intermediate_size
_UpperCAmelCase : List[str] = hidden_act
_UpperCAmelCase : Tuple = hidden_dropout_prob
_UpperCAmelCase : int = attention_probs_dropout_prob
_UpperCAmelCase : Any = initializer_range
_UpperCAmelCase : List[Any] = type_vocab_size
_UpperCAmelCase : List[str] = layer_norm_eps
# Reader config
_UpperCAmelCase : List[str] = span_hidden_size
_UpperCAmelCase : Optional[Any] = max_span_width
_UpperCAmelCase : Optional[Any] = reader_layer_norm_eps
_UpperCAmelCase : int = reader_beam_size
_UpperCAmelCase : Optional[int] = reader_seq_len
# Retrieval config
_UpperCAmelCase : Dict = num_block_records
_UpperCAmelCase : Any = searcher_beam_size | 17 | '''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
__a = logging.getLogger(__name__)
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : str = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , )
UpperCamelCase_ : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. If passed, sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={
'''help''': (
'''Whether to pad all samples to the maximum sentence length. '''
'''If False, will pad the samples dynamically when batching to the maximum length in the batch. More '''
'''efficient on GPU but very bad for TPU.'''
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def _lowerCAmelCase ( self : Any ) -> Any:
"""simple docstring"""
if self.train_file is not None:
_UpperCAmelCase : List[Any] = self.train_file.split("." )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
_UpperCAmelCase : List[str] = self.validation_file.split("." )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : PreTrainedTokenizerBase
UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True
UpperCamelCase_ : Optional[int] = None
UpperCamelCase_ : Optional[int] = None
def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels"
_UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features]
_UpperCAmelCase : str = len(lowerCAmelCase__ )
_UpperCAmelCase : int = len(features[0]["input_ids"] )
_UpperCAmelCase : str = [
[{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features
]
_UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) )
_UpperCAmelCase : Any = self.tokenizer.pad(
lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , )
# Un-flatten
_UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()}
# Add back labels
_UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa )
return batch
def __UpperCAmelCase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_swag", a_, a_ )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_UpperCAmelCase : Optional[int] = training_args.get_process_log_level()
logger.setLevel(a_ )
datasets.utils.logging.set_verbosity(a_ )
transformers.utils.logging.set_verbosity(a_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
_UpperCAmelCase : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
_UpperCAmelCase : Union[str, Any] = {}
if data_args.train_file is not None:
_UpperCAmelCase : str = data_args.train_file
if data_args.validation_file is not None:
_UpperCAmelCase : Optional[Any] = data_args.validation_file
_UpperCAmelCase : Dict = data_args.train_file.split("." )[-1]
_UpperCAmelCase : Optional[int] = load_dataset(
a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
else:
# Downloading and loading the swag dataset from the hub.
_UpperCAmelCase : Dict = load_dataset(
"swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCAmelCase : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
_UpperCAmelCase : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
_UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
_UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )]
_UpperCAmelCase : List[Any] = "sent1"
_UpperCAmelCase : Optional[int] = "sent2"
if data_args.max_seq_length is None:
_UpperCAmelCase : List[str] = tokenizer.model_max_length
if max_seq_length > 1_024:
logger.warning(
"The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
" override this default with `--block_size xxx`." )
_UpperCAmelCase : Dict = 1_024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
_UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(a_: Union[str, Any] ):
_UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]]
_UpperCAmelCase : Tuple = examples[question_header_name]
_UpperCAmelCase : Optional[Any] = [
[f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ )
]
# Flatten out
_UpperCAmelCase : List[str] = list(chain(*a_ ) )
_UpperCAmelCase : Dict = list(chain(*a_ ) )
# Tokenize
_UpperCAmelCase : List[Any] = tokenizer(
a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset" )
_UpperCAmelCase : int = raw_datasets["train"]
if data_args.max_train_samples is not None:
_UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples )
_UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) )
with training_args.main_process_first(desc="train dataset map pre-processing" ):
_UpperCAmelCase : Union[str, Any] = train_dataset.map(
a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset" )
_UpperCAmelCase : Dict = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
_UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples )
_UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) )
with training_args.main_process_first(desc="validation dataset map pre-processing" ):
_UpperCAmelCase : Optional[int] = eval_dataset.map(
a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, )
# Data collator
_UpperCAmelCase : Tuple = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(a_: Tuple ):
_UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions
_UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
_UpperCAmelCase : Any = Trainer(
model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, )
# Training
if training_args.do_train:
_UpperCAmelCase : Optional[Any] = None
if training_args.resume_from_checkpoint is not None:
_UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_UpperCAmelCase : List[str] = last_checkpoint
_UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ )
trainer.save_model() # Saves the tokenizer too for easy upload
_UpperCAmelCase : str = train_result.metrics
_UpperCAmelCase : List[str] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ )
)
_UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) )
trainer.log_metrics("train", a_ )
trainer.save_metrics("train", a_ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
_UpperCAmelCase : List[Any] = trainer.evaluate()
_UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ )
_UpperCAmelCase : Tuple = min(a_, len(a_ ) )
trainer.log_metrics("eval", a_ )
trainer.save_metrics("eval", a_ )
_UpperCAmelCase : int = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "multiple-choice",
"dataset_tags": "swag",
"dataset_args": "regular",
"dataset": "SWAG",
"language": "en",
}
if training_args.push_to_hub:
trainer.push_to_hub(**a_ )
else:
trainer.create_model_card(**a_ )
def __UpperCAmelCase ( a_: int ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main() | 17 | 1 |
'''simple docstring'''
from copy import deepcopy
from typing import Optional, Union
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_tf_available, is_torch_available
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[Any] = ['''image_processor''']
UpperCamelCase_ : int = '''SamImageProcessor'''
def __init__( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Optional[int]:
"""simple docstring"""
super().__init__(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = self.image_processor
_UpperCAmelCase : Any = -1_0
_UpperCAmelCase : Dict = self.image_processor.size["longest_edge"]
def __call__( self : Any , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase__ : List[str] , ) -> BatchEncoding:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.image_processor(
lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , )
# pop arguments that are not used in the foward but used nevertheless
_UpperCAmelCase : Optional[int] = encoding_image_processor["original_sizes"]
if hasattr(lowerCAmelCase__ , "numpy" ): # Checks if Torch or TF tensor
_UpperCAmelCase : List[Any] = original_sizes.numpy()
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self._check_and_preprocess_points(
input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , input_boxes=lowerCAmelCase__ , )
_UpperCAmelCase : Union[str, Any] = self._normalize_and_convert(
lowerCAmelCase__ , lowerCAmelCase__ , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , input_boxes=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , )
return encoding_image_processor
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Union[str, Any]="pt" , ) -> Union[str, Any]:
"""simple docstring"""
if input_points is not None:
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
_UpperCAmelCase : str = [
self._normalize_coordinates(self.target_size , lowerCAmelCase__ , original_sizes[0] ) for point in input_points
]
else:
_UpperCAmelCase : Tuple = [
self._normalize_coordinates(self.target_size , lowerCAmelCase__ , lowerCAmelCase__ )
for point, original_size in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
# check that all arrays have the same shape
if not all(point.shape == input_points[0].shape for point in input_points ):
if input_labels is not None:
_UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self._pad_points_and_labels(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = np.array(lowerCAmelCase__ )
if input_labels is not None:
_UpperCAmelCase : Union[str, Any] = np.array(lowerCAmelCase__ )
if input_boxes is not None:
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
_UpperCAmelCase : Dict = [
self._normalize_coordinates(self.target_size , lowerCAmelCase__ , original_sizes[0] , is_bounding_box=lowerCAmelCase__ )
for box in input_boxes
]
else:
_UpperCAmelCase : Dict = [
self._normalize_coordinates(self.target_size , lowerCAmelCase__ , lowerCAmelCase__ , is_bounding_box=lowerCAmelCase__ )
for box, original_size in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
_UpperCAmelCase : Tuple = np.array(lowerCAmelCase__ )
if input_boxes is not None:
if return_tensors == "pt":
_UpperCAmelCase : Optional[int] = torch.from_numpy(lowerCAmelCase__ )
# boxes batch size of 1 by default
_UpperCAmelCase : int = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes
elif return_tensors == "tf":
_UpperCAmelCase : Optional[int] = tf.convert_to_tensor(lowerCAmelCase__ )
# boxes batch size of 1 by default
_UpperCAmelCase : Union[str, Any] = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes
encoding_image_processor.update({"input_boxes": input_boxes} )
if input_points is not None:
if return_tensors == "pt":
_UpperCAmelCase : Optional[Any] = torch.from_numpy(lowerCAmelCase__ )
# point batch size of 1 by default
_UpperCAmelCase : str = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points
elif return_tensors == "tf":
_UpperCAmelCase : Optional[int] = tf.convert_to_tensor(lowerCAmelCase__ )
# point batch size of 1 by default
_UpperCAmelCase : int = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_points.shape ) != 4 else input_points
encoding_image_processor.update({"input_points": input_points} )
if input_labels is not None:
if return_tensors == "pt":
_UpperCAmelCase : Dict = torch.from_numpy(lowerCAmelCase__ )
# point batch size of 1 by default
_UpperCAmelCase : List[str] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels
elif return_tensors == "tf":
_UpperCAmelCase : Any = tf.convert_to_tensor(lowerCAmelCase__ )
# point batch size of 1 by default
_UpperCAmelCase : Optional[Any] = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_labels.shape ) != 3 else input_labels
encoding_image_processor.update({"input_labels": input_labels} )
return encoding_image_processor
def _lowerCAmelCase ( self : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = max([point.shape[0] for point in input_points] )
_UpperCAmelCase : List[str] = []
for i, point in enumerate(lowerCAmelCase__ ):
if point.shape[0] != expected_nb_points:
_UpperCAmelCase : Any = np.concatenate(
[point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 )
_UpperCAmelCase : Dict = np.append(input_labels[i] , [self.point_pad_value] )
processed_input_points.append(lowerCAmelCase__ )
_UpperCAmelCase : List[str] = processed_input_points
return input_points, input_labels
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=False ) -> np.ndarray:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase : List[Any] = original_size
_UpperCAmelCase , _UpperCAmelCase : int = self.image_processor._get_preprocess_shape(lowerCAmelCase__ , longest_edge=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = deepcopy(lowerCAmelCase__ ).astype(lowerCAmelCase__ )
if is_bounding_box:
_UpperCAmelCase : List[Any] = coords.reshape(-1 , 2 , 2 )
_UpperCAmelCase : Optional[Any] = coords[..., 0] * (new_w / old_w)
_UpperCAmelCase : List[str] = coords[..., 1] * (new_h / old_h)
if is_bounding_box:
_UpperCAmelCase : Any = coords.reshape(-1 , 4 )
return coords
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : List[str]=None , ) -> List[str]:
"""simple docstring"""
if input_points is not None:
if hasattr(lowerCAmelCase__ , "numpy" ): # Checks for TF or Torch tensor
_UpperCAmelCase : Tuple = input_points.numpy().tolist()
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(input_points[0] , lowerCAmelCase__ ):
raise ValueError("Input points must be a list of list of floating points." )
_UpperCAmelCase : List[Any] = [np.array(lowerCAmelCase__ ) for input_point in input_points]
else:
_UpperCAmelCase : Union[str, Any] = None
if input_labels is not None:
if hasattr(lowerCAmelCase__ , "numpy" ):
_UpperCAmelCase : Dict = input_labels.numpy().tolist()
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(input_labels[0] , lowerCAmelCase__ ):
raise ValueError("Input labels must be a list of list integers." )
_UpperCAmelCase : str = [np.array(lowerCAmelCase__ ) for label in input_labels]
else:
_UpperCAmelCase : str = None
if input_boxes is not None:
if hasattr(lowerCAmelCase__ , "numpy" ):
_UpperCAmelCase : Union[str, Any] = input_boxes.numpy().tolist()
if (
not isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
or not isinstance(input_boxes[0] , lowerCAmelCase__ )
or not isinstance(input_boxes[0][0] , lowerCAmelCase__ )
):
raise ValueError("Input boxes must be a list of list of list of floating points." )
_UpperCAmelCase : List[str] = [np.array(lowerCAmelCase__ ).astype(np.floataa ) for box in input_boxes]
else:
_UpperCAmelCase : str = None
return input_points, input_labels, input_boxes
@property
def _lowerCAmelCase ( self : Any ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Any = self.image_processor.model_input_names
return list(dict.fromkeys(lowerCAmelCase__ ) )
def _lowerCAmelCase ( self : str , *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : Any ) -> List[str]:
"""simple docstring"""
return self.image_processor.post_process_masks(*lowerCAmelCase__ , **lowerCAmelCase__ ) | 17 | '''simple docstring'''
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class A__ ( pl.LightningModule ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str:
"""simple docstring"""
super().__init__()
_UpperCAmelCase : List[str] = model
_UpperCAmelCase : Dict = 2
_UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels )
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
pass
def __UpperCAmelCase ( a_: str, a_: str, a_: str ):
# load longformer model from model identifier
_UpperCAmelCase : int = LongformerModel.from_pretrained(a_ )
_UpperCAmelCase : Any = LightningModel(a_ )
_UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) )
lightning_model.load_state_dict(ckpt["state_dict"] )
# init longformer question answering model
_UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ )
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() )
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() )
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(a_ )
print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--longformer_model',
default=None,
type=str,
required=True,
help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.',
)
parser.add_argument(
'--longformer_question_answering_ckpt_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch Lightning Checkpoint.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__a = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
) | 17 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__a = {
'configuration_bridgetower': [
'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'BridgeTowerConfig',
'BridgeTowerTextConfig',
'BridgeTowerVisionConfig',
],
'processing_bridgetower': ['BridgeTowerProcessor'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['BridgeTowerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST',
'BridgeTowerForContrastiveLearning',
'BridgeTowerForImageAndTextRetrieval',
'BridgeTowerForMaskedLM',
'BridgeTowerModel',
'BridgeTowerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_bridgetower import (
BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP,
BridgeTowerConfig,
BridgeTowerTextConfig,
BridgeTowerVisionConfig,
)
from .processing_bridgetower import BridgeTowerProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_bridgetower import BridgeTowerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bridgetower import (
BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST,
BridgeTowerForContrastiveLearning,
BridgeTowerForImageAndTextRetrieval,
BridgeTowerForMaskedLM,
BridgeTowerModel,
BridgeTowerPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure) | 17 | '''simple docstring'''
from importlib import import_module
from .logging import get_logger
__a = get_logger(__name__)
class A__ :
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Any = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith("__" ):
setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
_UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module
class A__ :
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = []
def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = obj
_UpperCAmelCase : int = target
_UpperCAmelCase : Optional[int] = new
_UpperCAmelCase : Any = target.split("." )[0]
_UpperCAmelCase : Optional[int] = {}
_UpperCAmelCase : Dict = attrs or []
def __enter__( self : List[str] ) -> int:
"""simple docstring"""
*_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(lowerCAmelCase__ ) ):
try:
_UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
_UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule)
):
_UpperCAmelCase : Tuple = obj_attr
# patch at top level
setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) )
_UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) )
_UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
# finally set the target attribute
setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
_UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj , lowerCAmelCase__ ) is attr_value:
_UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ )
setattr(self.obj , lowerCAmelCase__ , self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
_UpperCAmelCase : Dict = globals()["__builtins__"][target_attr]
setattr(self.obj , lowerCAmelCase__ , self.new )
else:
raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" )
def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for attr in list(self.original ):
setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
self.__enter__()
self._active_patches.append(self )
def _lowerCAmelCase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__() | 17 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class A__ :
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : str , ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = parent
_UpperCAmelCase : Any = 1_3
_UpperCAmelCase : Union[str, Any] = 7
_UpperCAmelCase : Union[str, Any] = True
_UpperCAmelCase : Any = True
_UpperCAmelCase : Union[str, Any] = False
_UpperCAmelCase : Union[str, Any] = True
_UpperCAmelCase : Union[str, Any] = 9_9
_UpperCAmelCase : Optional[int] = 3_2
_UpperCAmelCase : List[str] = 2
_UpperCAmelCase : int = 4
_UpperCAmelCase : str = 3_7
_UpperCAmelCase : List[Any] = "gelu"
_UpperCAmelCase : List[str] = 0.1
_UpperCAmelCase : int = 0.1
_UpperCAmelCase : Any = 5_1_2
_UpperCAmelCase : str = 1_6
_UpperCAmelCase : Any = 2
_UpperCAmelCase : List[str] = 0.02
_UpperCAmelCase : List[Any] = 3
_UpperCAmelCase : List[str] = 4
_UpperCAmelCase : Optional[int] = None
def _lowerCAmelCase ( self : Any ) -> int:
"""simple docstring"""
_UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase : Union[str, Any] = None
if self.use_input_mask:
_UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : List[Any] = None
_UpperCAmelCase : Tuple = None
_UpperCAmelCase : Union[str, Any] = None
if self.use_labels:
_UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
_UpperCAmelCase : List[Any] = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : List[Any] = TFDistilBertModel(config=lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask}
_UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ )
_UpperCAmelCase : str = [input_ids, input_mask]
_UpperCAmelCase : Tuple = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Dict = TFDistilBertForMaskedLM(config=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask}
_UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any ) -> str:
"""simple docstring"""
_UpperCAmelCase : Tuple = TFDistilBertForQuestionAnswering(config=lowerCAmelCase__ )
_UpperCAmelCase : Any = {
"input_ids": input_ids,
"attention_mask": input_mask,
}
_UpperCAmelCase : int = model(lowerCAmelCase__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : int = self.num_labels
_UpperCAmelCase : List[str] = TFDistilBertForSequenceClassification(lowerCAmelCase__ )
_UpperCAmelCase : str = {"input_ids": input_ids, "attention_mask": input_mask}
_UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : str = self.num_choices
_UpperCAmelCase : Union[str, Any] = TFDistilBertForMultipleChoice(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) )
_UpperCAmelCase : List[Any] = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) )
_UpperCAmelCase : Optional[int] = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
}
_UpperCAmelCase : List[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.num_labels
_UpperCAmelCase : Any = TFDistilBertForTokenClassification(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask}
_UpperCAmelCase : List[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) : Tuple = config_and_inputs
_UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[int] = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
UpperCamelCase_ : Dict = (
{
'''feature-extraction''': TFDistilBertModel,
'''fill-mask''': TFDistilBertForMaskedLM,
'''question-answering''': TFDistilBertForQuestionAnswering,
'''text-classification''': TFDistilBertForSequenceClassification,
'''token-classification''': TFDistilBertForTokenClassification,
'''zero-shot''': TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCamelCase_ : Any = False
UpperCamelCase_ : Union[str, Any] = False
def _lowerCAmelCase ( self : str ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Dict = TFDistilBertModelTester(self )
_UpperCAmelCase : int = ConfigTester(self , config_class=lowerCAmelCase__ , dim=3_7 )
def _lowerCAmelCase ( self : Optional[int] ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
_UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Any ) -> str:
"""simple docstring"""
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
_UpperCAmelCase : Union[str, Any] = TFDistilBertModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@require_tf
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : List[str] ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : List[Any] = TFDistilBertModel.from_pretrained("distilbert-base-uncased" )
_UpperCAmelCase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] )
_UpperCAmelCase : Optional[int] = model(lowerCAmelCase__ )[0]
_UpperCAmelCase : int = [1, 6, 7_6_8]
self.assertEqual(output.shape , lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tf.constant(
[
[
[0.1926_1885, -0.1373_2955, 0.411_9799],
[0.2215_0156, -0.0742_2661, 0.3903_7204],
[0.2275_6018, -0.089_6414, 0.370_1467],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) | 17 | '''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
__a = datasets.utils.logging.get_logger(__name__)
__a = ['names', 'prefix']
__a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
__a = ['encoding_errors', 'on_bad_lines']
__a = ['date_format']
@dataclass
class A__ ( datasets.BuilderConfig ):
"""simple docstring"""
UpperCamelCase_ : str = ","
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer"
UpperCamelCase_ : Optional[List[str]] = None
UpperCamelCase_ : Optional[List[str]] = None
UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None
UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None
UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None
UpperCamelCase_ : Optional[list] = None
UpperCamelCase_ : Optional[list] = None
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[Union[int, List[int]]] = None
UpperCamelCase_ : Optional[int] = None
UpperCamelCase_ : Optional[Union[str, List[str]]] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = False
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : str = "."
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : str = '"'
UpperCamelCase_ : int = 0
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = True
UpperCamelCase_ : int = 0
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : int = 1_00_00
UpperCamelCase_ : Optional[datasets.Features] = None
UpperCamelCase_ : Optional[str] = "strict"
UpperCamelCase_ : Literal["error", "warn", "skip"] = "error"
UpperCamelCase_ : Optional[str] = None
def _lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
if self.delimiter is not None:
_UpperCAmelCase : Any = self.delimiter
if self.column_names is not None:
_UpperCAmelCase : List[Any] = self.column_names
@property
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Dict = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class A__ ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
UpperCamelCase_ : int = CsvConfig
def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
_UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCAmelCase__ , (str, list, tuple) ):
_UpperCAmelCase : int = data_files
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : Any = [files]
_UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
_UpperCAmelCase : Optional[Any] = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : str = [files]
_UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) )
return splits
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
_UpperCAmelCase : Tuple = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
_UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
_UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ )
return pa_table
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
_UpperCAmelCase : Optional[Any] = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ):
_UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(lowerCAmelCase__ ):
_UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" )
raise | 17 | 1 |
'''simple docstring'''
import json
import multiprocessing
import os
import re
from collections import defaultdict
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import HumanEvalArguments
from datasets import load_dataset, load_metric
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList
__a = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif']
class A__ ( UpperCamelCase ):
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : List[Any]=1 ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : List[str] = tokenizer
_UpperCAmelCase : Dict = dataset
_UpperCAmelCase : Optional[Any] = len(lowerCAmelCase__ ) if n_tasks is None else n_tasks
_UpperCAmelCase : Dict = n_copies
def __iter__( self : Dict ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Dict = []
for task in range(self.n_tasks ):
# without strip, the model generate commented codes ...
prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() )
_UpperCAmelCase : List[Any] = self.tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt" )
for task in range(self.n_tasks ):
for _ in range(self.n_copies ):
yield {
"ids": outputs.input_ids[task],
"task_id": task,
"input_len": outputs.attention_mask[task].sum(),
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = start_length
_UpperCAmelCase : Tuple = eof_strings
_UpperCAmelCase : Any = tokenizer
def __call__( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , **lowerCAmelCase__ : int ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] )
_UpperCAmelCase : str = []
for decoded_generation in decoded_generations:
done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) )
return all(lowerCAmelCase__ )
def __UpperCAmelCase ( a_: int ):
_UpperCAmelCase : List[str] = re.split("(%s)" % "|".join(a_ ), a_ )
# last string should be ""
return "".join(string_list[:-2] )
def __UpperCAmelCase ( a_: Optional[Any], a_: int, a_: str, a_: Optional[Any], a_: Dict, a_: Union[str, Any]=20, **a_: Tuple ):
_UpperCAmelCase : List[Any] = defaultdict(a_ ) # dict of list of generated tokens
for step, batch in tqdm(enumerate(a_ ) ):
with torch.no_grad():
_UpperCAmelCase : Any = batch["ids"].shape[-1]
_UpperCAmelCase : Optional[int] = accelerator.unwrap_model(a_ ).generate(
input_ids=batch["ids"][:, : batch["input_len"]], num_return_sequences=a_, **a_ )
# each task is generated batch_size times
_UpperCAmelCase : Union[str, Any] = batch["task_id"].repeat(a_ )
_UpperCAmelCase : List[str] = accelerator.pad_across_processes(
a_, dim=1, pad_index=tokenizer.pad_token_id )
_UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) )
_UpperCAmelCase : Any = generated_tokens.cpu().numpy()
_UpperCAmelCase : Any = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(a_, a_ ):
gen_token_dict[task].append(a_ )
_UpperCAmelCase : Tuple = [[] for _ in range(a_ )]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
_UpperCAmelCase : List[str] = tokenizer.decode(a_, skip_special_tokens=a_, clean_up_tokenization_spaces=a_ )
code_gens[task].append(remove_last_block(a_ ) )
return code_gens
def __UpperCAmelCase ( ):
# Setup configuration
_UpperCAmelCase : Union[str, Any] = HfArgumentParser(a_ )
_UpperCAmelCase : Optional[Any] = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
_UpperCAmelCase : Dict = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
_UpperCAmelCase : List[str] = "false"
if args.num_workers is None:
_UpperCAmelCase : Any = multiprocessing.cpu_count()
# Use dataset load to feed to accelerate
_UpperCAmelCase : Tuple = Accelerator()
set_seed(args.seed, device_specific=a_ )
# Load model and tokenizer
_UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt )
_UpperCAmelCase : Dict = tokenizer.eos_token
_UpperCAmelCase : Dict = AutoModelForCausalLM.from_pretrained(args.model_ckpt )
# Generation settings
_UpperCAmelCase : List[str] = {
"do_sample": args.do_sample,
"temperature": args.temperature,
"max_new_tokens": args.max_new_tokens,
"top_p": args.top_p,
"top_k": args.top_k,
"stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0, a_, a_ )] ),
}
# Load evaluation dataset and metric
_UpperCAmelCase : int = load_dataset("openai_humaneval" )
_UpperCAmelCase : List[Any] = load_metric("code_eval" )
_UpperCAmelCase : Tuple = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] )
_UpperCAmelCase : Optional[Any] = args.n_samples // args.batch_size
_UpperCAmelCase : Any = TokenizedDataset(a_, human_eval["test"], n_copies=a_, n_tasks=a_ )
# do not confuse args.batch_size, which is actually the num_return_sequences
_UpperCAmelCase : Any = DataLoader(a_, batch_size=1 )
# Run a quick test to see if code evaluation is enabled
try:
_UpperCAmelCase : Optional[Any] = code_eval_metric.compute(references=[""], predictions=[[""]] )
except ValueError as exception:
print(
"Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`"
" flag to enable code evaluation." )
raise exception
_UpperCAmelCase , _UpperCAmelCase : List[Any] = accelerator.prepare(a_, a_ )
_UpperCAmelCase : int = complete_code(
a_, a_, a_, a_, n_tasks=a_, batch_size=args.batch_size, **a_, )
if accelerator.is_main_process:
_UpperCAmelCase : List[str] = []
for task in tqdm(range(a_ ) ):
_UpperCAmelCase : Union[str, Any] = human_eval["test"][task]["test"]
_UpperCAmelCase : Tuple = f"""check({human_eval['test'][task]['entry_point']})"""
references.append("\n" + test_func + "\n" + entry_point )
# Evaluate completions with "code_eval" metric
_UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = code_eval_metric.compute(
references=a_, predictions=a_, num_workers=args.num_workers )
print(f"""Results: {pass_at_k}""" )
# Save results to json file
with open(args.output_file, "w" ) as fp:
json.dump(a_, a_ )
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main() | 17 | '''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( a_: list[int] ):
if not nums:
return 0
_UpperCAmelCase : int = nums[0]
_UpperCAmelCase : Dict = 0
for num in nums[1:]:
_UpperCAmelCase , _UpperCAmelCase : Any = (
max_excluding + num,
max(a_, a_ ),
)
return max(a_, a_ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( a_: int ):
if not isinstance(a_, a_ ):
raise ValueError("Input must be an integer" )
if input_num <= 0:
raise ValueError("Input must be positive" )
return sum(
divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | '''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a = logging.get_logger(__name__)
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if key.startswith("module.encoder" ):
_UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" )
if key.startswith("module.decoder" ):
_UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )]
_UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" )
if "norm" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )]
_UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" )
if "layer_norm1" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" )
if "layer_norm2" in key:
_UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
_UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )]
_UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" )
if "attn.q" in key:
_UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" )
if "attn.proj" in key:
_UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" )
if "attn" in key:
_UpperCAmelCase : Dict = key.replace("attn", "attention.self" )
if "fc1" in key:
_UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" )
if "fc2" in key:
_UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" )
if "linear_pred" in key:
_UpperCAmelCase : Any = key.replace("linear_pred", "classifier" )
if "linear_fuse" in key:
_UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" )
_UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )]
_UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" )
if "bot_conv" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" )
if "skip_conv1" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" )
if "skip_conv2" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" )
if "fusion1" in key:
_UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" )
if "fusion2" in key:
_UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" )
if "fusion3" in key:
_UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" )
if "fusion" in key and "conv" in key:
_UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" )
if key.startswith("module.last_layer_depth" ):
_UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" )
_UpperCAmelCase : int = value
return new_state_dict
def __UpperCAmelCase ( a_: str, a_: List[Any] ):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" )
_UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
_UpperCAmelCase : Optional[int] = kv_weight[
: config.hidden_sizes[i], :
]
_UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]]
_UpperCAmelCase : Optional[int] = kv_weight[
config.hidden_sizes[i] :, :
]
_UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :]
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw )
return image
@torch.no_grad()
def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ):
_UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
_UpperCAmelCase : Dict = GLPNImageProcessor()
# prepare image
_UpperCAmelCase : List[Any] = prepare_img()
_UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values
logger.info("Converting model..." )
# load original state dict
_UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) )
# rename keys
_UpperCAmelCase : List[str] = rename_keys(a_ )
# key and value matrices need special treatment
read_in_k_v(a_, a_ )
# create HuggingFace model and load state dict
_UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ )
model.load_state_dict(a_ )
model.eval()
# forward pass
_UpperCAmelCase : Dict = model(a_ )
_UpperCAmelCase : List[str] = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
_UpperCAmelCase : Optional[Any] = torch.tensor(
[[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] )
elif "kitti" in model_name:
_UpperCAmelCase : Tuple = torch.tensor(
[[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] )
else:
raise ValueError(f"""Unknown model name: {model_name}""" )
_UpperCAmelCase : Dict = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 )
print("Looks ok!" )
# finally, push to hub if required
if push_to_hub:
logger.info("Pushing model and image processor to the hub..." )
model.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, )
image_processor.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path',
default=None,
type=str,
help='Path to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.'
)
parser.add_argument(
'--model_name',
default='glpn-kitti',
type=str,
help='Name of the model in case you\'re pushing to the hub.',
)
__a = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name) | 17 | 1 |
'''simple docstring'''
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
__a = logging.get_logger(__name__)
__a = {'vocab_file': 'spiece.model'}
__a = {
'vocab_file': {
'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model',
'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model',
}
}
__a = {
'xlnet-base-cased': None,
'xlnet-large-cased': None,
}
# Segments (not really needed)
__a = 0
__a = 1
__a = 2
__a = 3
__a = 4
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[Any] = VOCAB_FILES_NAMES
UpperCamelCase_ : Tuple = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ : List[str] = '''left'''
def __init__( self : List[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : Dict="</s>" , lowerCAmelCase__ : int="<unk>" , lowerCAmelCase__ : List[str]="<sep>" , lowerCAmelCase__ : Union[str, Any]="<pad>" , lowerCAmelCase__ : Tuple="<cls>" , lowerCAmelCase__ : Optional[int]="<mask>" , lowerCAmelCase__ : Optional[int]=["<eop>", "<eod>"] , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : List[Any] , ) -> None:
"""simple docstring"""
_UpperCAmelCase : int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
_UpperCAmelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , )
_UpperCAmelCase : Union[str, Any] = 3
_UpperCAmelCase : Union[str, Any] = do_lower_case
_UpperCAmelCase : List[str] = remove_space
_UpperCAmelCase : Optional[int] = keep_accents
_UpperCAmelCase : Union[str, Any] = vocab_file
_UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCAmelCase__ )
@property
def _lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
return len(self.sp_model )
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
_UpperCAmelCase : int = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Tuple = self.__dict__.copy()
_UpperCAmelCase : Optional[Any] = None
return state
def __setstate__( self : str , lowerCAmelCase__ : Dict ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Tuple = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
_UpperCAmelCase : Any = {}
_UpperCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : int ) -> List[str]:
"""simple docstring"""
if self.remove_space:
_UpperCAmelCase : Optional[Any] = " ".join(inputs.strip().split() )
else:
_UpperCAmelCase : Optional[int] = inputs
_UpperCAmelCase : Optional[Any] = outputs.replace("``" , "\"" ).replace("''" , "\"" )
if not self.keep_accents:
_UpperCAmelCase : Dict = unicodedata.normalize("NFKD" , lowerCAmelCase__ )
_UpperCAmelCase : str = "".join([c for c in outputs if not unicodedata.combining(lowerCAmelCase__ )] )
if self.do_lower_case:
_UpperCAmelCase : Optional[int] = outputs.lower()
return outputs
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : str ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.preprocess_text(lowerCAmelCase__ )
_UpperCAmelCase : int = self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = []
for piece in pieces:
if len(lowerCAmelCase__ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit():
_UpperCAmelCase : int = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCAmelCase__ , "" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_UpperCAmelCase : Dict = cur_pieces[1:]
else:
_UpperCAmelCase : Dict = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(lowerCAmelCase__ )
else:
new_pieces.append(lowerCAmelCase__ )
return new_pieces
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Dict ) -> int:
"""simple docstring"""
return self.sp_model.PieceToId(lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : str ) -> str:
"""simple docstring"""
return self.sp_model.IdToPiece(lowerCAmelCase__ )
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : List[Any] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = "".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , " " ).strip()
return out_string
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : Optional[int] , ) -> str:
"""simple docstring"""
_UpperCAmelCase : Dict = kwargs.pop("use_source_tokenizer" , lowerCAmelCase__ )
_UpperCAmelCase : Tuple = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_UpperCAmelCase : Optional[Any] = []
_UpperCAmelCase : List[str] = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
_UpperCAmelCase : List[str] = []
sub_texts.append(lowerCAmelCase__ )
else:
current_sub_text.append(lowerCAmelCase__ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
_UpperCAmelCase : Optional[int] = "".join(lowerCAmelCase__ )
_UpperCAmelCase : Any = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_UpperCAmelCase : Union[str, Any] = self.clean_up_tokenization(lowerCAmelCase__ )
return clean_text
else:
return text
def _lowerCAmelCase ( self : str , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
_UpperCAmelCase : str = [self.sep_token_id]
_UpperCAmelCase : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is not None:
return ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1]
return ([0] * len(lowerCAmelCase__ )) + [1, 1]
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = [self.sep_token_id]
_UpperCAmelCase : Tuple = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_UpperCAmelCase : Dict = os.path.join(
lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase__ , "wb" ) as fi:
_UpperCAmelCase : str = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase__ )
return (out_vocab_file,) | 17 | '''simple docstring'''
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[Any] = 10
_UpperCAmelCase : int = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string" ) ),
"labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ),
"answers": datasets.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
"id": datasets.Value("int64" ),
} )
_UpperCAmelCase : List[str] = datasets.Dataset.from_dict(
{
"tokens": [["foo"] * 5] * n,
"labels": [[1] * 5] * n,
"answers": [{"answer_start": [97], "text": ["1976"]}] * 10,
"id": list(range(a_ ) ),
}, features=a_, )
return dataset
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" )
dataset.map(cache_file_name=a_ )
return filename
# FILE_CONTENT + files
__a = '\\n Text data.\n Second line of data.'
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt"
_UpperCAmelCase : Tuple = FILE_CONTENT
with open(a_, "w" ) as f:
f.write(a_ )
return filename
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2"
_UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" )
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import gzip
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" )
_UpperCAmelCase : Any = bytes(a_, "utf-8" )
with gzip.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
if datasets.config.LZ4_AVAILABLE:
import lza.frame
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4"
_UpperCAmelCase : str = bytes(a_, "utf-8" )
with lza.frame.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Any ):
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z"
with pyazr.SevenZipFile(a_, "w" ) as archive:
archive.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: List[str] ):
import tarfile
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
import lzma
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz"
_UpperCAmelCase : List[str] = bytes(a_, "utf-8" )
with lzma.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: Tuple ):
import zipfile
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst"
_UpperCAmelCase : int = bytes(a_, "utf-8" )
with zstd.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
_UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml"
_UpperCAmelCase : Tuple = textwrap.dedent(
"\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" )
with open(a_, "w" ) as f:
f.write(a_ )
return filename
__a = [
{'col_1': '0', 'col_2': 0, 'col_3': 0.0},
{'col_1': '1', 'col_2': 1, 'col_3': 1.0},
{'col_1': '2', 'col_2': 2, 'col_3': 2.0},
{'col_1': '3', 'col_2': 3, 'col_3': 3.0},
]
__a = [
{'col_1': '4', 'col_2': 4, 'col_3': 4.0},
{'col_1': '5', 'col_2': 5, 'col_3': 5.0},
]
__a = {
'col_1': ['0', '1', '2', '3'],
'col_2': [0, 1, 2, 3],
'col_3': [0.0, 1.0, 2.0, 3.0],
}
__a = [
{'col_3': 0.0, 'col_1': '0', 'col_2': 0},
{'col_3': 1.0, 'col_1': '1', 'col_2': 1},
]
__a = [
{'col_1': 's0', 'col_2': 0, 'col_3': 0.0},
{'col_1': 's1', 'col_2': 1, 'col_3': 1.0},
{'col_1': 's2', 'col_2': 2, 'col_3': 2.0},
{'col_1': 's3', 'col_2': 3, 'col_3': 3.0},
]
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : str = datasets.Dataset.from_dict(a_ )
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" )
dataset.map(cache_file_name=a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" )
with contextlib.closing(sqlitea.connect(a_ ) ) as con:
_UpperCAmelCase : List[Any] = con.cursor()
cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" )
for item in DATA:
cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str, a_: str ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2"
with open(a_, "rb" ) as f:
_UpperCAmelCase : Any = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ):
_UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) )
f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ):
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" )
_UpperCAmelCase : Dict = pa.schema(
{
"col_1": pa.string(),
"col_2": pa.intaa(),
"col_3": pa.floataa(),
} )
with open(a_, "wb" ) as f:
_UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ )
_UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ )
writer.write_table(a_ )
writer.close()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : str = {"data": DATA}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_312:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_STR:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ):
import gzip
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ):
import gzip
_UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ):
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : List[str] = ["0", "1", "2", "3"]
_UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Dict = ["0", "1", "2", "3"]
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = ["0", "1", "2", "3"]
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc"
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename("unsupported.ext" ) )
f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] )
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" )
with open(a_, "w", encoding="utf-8" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_image_rgb.jpg" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_audio_44100.wav" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Optional[Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" )
(data_dir / "subdir").mkdir()
with open(data_dir / "subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / "subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden file
with open(data_dir / "subdir" / ".test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / ".subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / ".subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
return data_dir | 17 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
__a = logging.get_logger(__name__)
class A__ ( UpperCamelCase ):
"""simple docstring"""
def __init__( self : str , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : Any ) -> None:
"""simple docstring"""
warnings.warn(
"The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use SegformerImageProcessor instead." , lowerCAmelCase__ , )
super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) | 17 | '''simple docstring'''
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = BarthezTokenizer
UpperCamelCase_ : List[Any] = BarthezTokenizerFast
UpperCamelCase_ : Optional[int] = True
UpperCamelCase_ : Optional[int] = True
def _lowerCAmelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
super().setUp()
_UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer
def _lowerCAmelCase ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = "<pad>"
_UpperCAmelCase : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 )
@require_torch
def _lowerCAmelCase ( self : Any ) -> int:
"""simple docstring"""
_UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."]
_UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2]
_UpperCAmelCase : int = self.tokenizer(
lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
_UpperCAmelCase : str = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
_UpperCAmelCase : Optional[int] = self.get_tokenizer()
_UpperCAmelCase : Optional[int] = self.get_rust_tokenizer()
_UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé."
_UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer()
_UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
_UpperCAmelCase : Tuple = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , ) | 17 | 1 |
'''simple docstring'''
import os
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen, xsplitext
from ..table import array_cast
from ..utils.py_utils import no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
from .features import FeatureType
__a , __a , __a = False, False, False
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : Optional[int] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[str] = None
# Automatically constructed
UpperCamelCase_ : ClassVar[str] = "dict"
UpperCamelCase_ : ClassVar[Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} )
UpperCamelCase_ : str = field(default='''Audio''' , init=UpperCamelCase , repr=UpperCamelCase )
def __call__( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
return self.pa_type
def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Union[str, bytes, dict] ) -> dict:
"""simple docstring"""
try:
import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files.
except ImportError as err:
raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
return {"bytes": None, "path": value}
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
return {"bytes": value, "path": None}
elif "array" in value:
# convert the audio array to wav bytes
_UpperCAmelCase : Tuple = BytesIO()
sf.write(lowerCAmelCase__ , value["array"] , value["sampling_rate"] , format="wav" )
return {"bytes": buffer.getvalue(), "path": None}
elif value.get("path" ) is not None and os.path.isfile(value["path"] ):
# we set "bytes": None to not duplicate the data if they're already available locally
if value["path"].endswith("pcm" ):
# "PCM" only has raw audio bytes
if value.get("sampling_rate" ) is None:
# At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate
raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" )
if value.get("bytes" ):
# If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!)
_UpperCAmelCase : Optional[Any] = np.frombuffer(value["bytes"] , dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7
else:
_UpperCAmelCase : Optional[int] = np.memmap(value["path"] , dtype="h" , mode="r" ).astype(np.floataa ) / 3_2_7_6_7
_UpperCAmelCase : Any = BytesIO(bytes() )
sf.write(lowerCAmelCase__ , lowerCAmelCase__ , value["sampling_rate"] , format="wav" )
return {"bytes": buffer.getvalue(), "path": None}
else:
return {"bytes": None, "path": value.get("path" )}
elif value.get("bytes" ) is not None or value.get("path" ) is not None:
# store the audio bytes, and path is used to infer the audio format using the file extension
return {"bytes": value.get("bytes" ), "path": value.get("path" )}
else:
raise ValueError(
F"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" )
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : dict , lowerCAmelCase__ : Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict:
"""simple docstring"""
if not self.decode:
raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." )
_UpperCAmelCase , _UpperCAmelCase : Optional[int] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None)
if path is None and file is None:
raise ValueError(F"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" )
try:
import librosa
import soundfile as sf
except ImportError as err:
raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err
_UpperCAmelCase : Optional[Any] = xsplitext(lowerCAmelCase__ )[1][1:].lower() if path is not None else None
if not config.IS_OPUS_SUPPORTED and audio_format == "opus":
raise RuntimeError(
"Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, "
"You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " )
elif not config.IS_MP3_SUPPORTED and audio_format == "mp3":
raise RuntimeError(
"Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, "
"You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " )
if file is None:
_UpperCAmelCase : Optional[int] = token_per_repo_id or {}
_UpperCAmelCase : str = path.split("::" )[-1]
try:
_UpperCAmelCase : List[str] = string_to_dict(lowerCAmelCase__ , config.HUB_DATASETS_URL )["repo_id"]
_UpperCAmelCase : Any = token_per_repo_id[repo_id]
except (ValueError, KeyError):
_UpperCAmelCase : List[Any] = None
with xopen(lowerCAmelCase__ , "rb" , use_auth_token=lowerCAmelCase__ ) as f:
_UpperCAmelCase , _UpperCAmelCase : Optional[int] = sf.read(lowerCAmelCase__ )
else:
_UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = sf.read(lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = array.T
if self.mono:
_UpperCAmelCase : List[Any] = librosa.to_mono(lowerCAmelCase__ )
if self.sampling_rate and self.sampling_rate != sampling_rate:
_UpperCAmelCase : Optional[int] = librosa.resample(lowerCAmelCase__ , orig_sr=lowerCAmelCase__ , target_sr=self.sampling_rate )
_UpperCAmelCase : str = self.sampling_rate
return {"path": path, "array": array, "sampling_rate": sampling_rate}
def _lowerCAmelCase ( self : Tuple ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
"""simple docstring"""
from .features import Value
if self.decode:
raise ValueError("Cannot flatten a decoded Audio feature." )
return {
"bytes": Value("binary" ),
"path": Value("string" ),
}
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray:
"""simple docstring"""
if pa.types.is_string(storage.type ):
_UpperCAmelCase : Dict = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.binary() )
_UpperCAmelCase : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
_UpperCAmelCase : str = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() )
_UpperCAmelCase : Optional[Any] = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ):
_UpperCAmelCase : List[str] = pa.array([Audio().encode_example(lowerCAmelCase__ ) if x is not None else None for x in storage.to_pylist()] )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("bytes" ) >= 0:
_UpperCAmelCase : Union[str, Any] = storage.field("bytes" )
else:
_UpperCAmelCase : Tuple = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.binary() )
if storage.type.get_field_index("path" ) >= 0:
_UpperCAmelCase : Union[str, Any] = storage.field("path" )
else:
_UpperCAmelCase : Any = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() )
_UpperCAmelCase : int = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() )
return array_cast(lowerCAmelCase__ , self.pa_type )
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : pa.StructArray ) -> pa.StructArray:
"""simple docstring"""
@no_op_if_value_is_null
def path_to_bytes(lowerCAmelCase__ : Optional[Any] ):
with xopen(lowerCAmelCase__ , "rb" ) as f:
_UpperCAmelCase : Optional[int] = f.read()
return bytes_
_UpperCAmelCase : List[Any] = pa.array(
[
(path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
_UpperCAmelCase : Any = pa.array(
[os.path.basename(lowerCAmelCase__ ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , )
_UpperCAmelCase : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() )
return array_cast(lowerCAmelCase__ , self.pa_type ) | 17 | '''simple docstring'''
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
__a = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class A__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0}
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : Tuple = batch_size
_UpperCAmelCase : str = num_channels
_UpperCAmelCase : Optional[Any] = image_size
_UpperCAmelCase : Dict = min_resolution
_UpperCAmelCase : str = max_resolution
_UpperCAmelCase : List[Any] = size
_UpperCAmelCase : Union[str, Any] = do_normalize
_UpperCAmelCase : Optional[Any] = do_convert_rgb
_UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6]
_UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6}
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def _lowerCAmelCase ( self : Any ) -> str:
"""simple docstring"""
_UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
_UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self )
@property
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image()
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
_UpperCAmelCase : str = 2_0_4_8
_UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) )
def _lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : Union[str, Any] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
_UpperCAmelCase : str = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(lowerCAmelCase__ ):
_UpperCAmelCase : str = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
_UpperCAmelCase : Any = "Hello"
_UpperCAmelCase : Optional[int] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : List[Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
_UpperCAmelCase : Any = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : int = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Union[str, Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : int ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 )
_UpperCAmelCase : List[Any] = 3
@property
def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : str = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Any = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Tuple = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) | 17 | 1 |
'''simple docstring'''
import pickle
import numpy as np
from matplotlib import pyplot as plt
class A__ :
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str]=0.2 , lowerCAmelCase__ : str=0.2 ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = bp_numa
_UpperCAmelCase : Any = bp_numa
_UpperCAmelCase : Union[str, Any] = bp_numa
_UpperCAmelCase : str = conva_get[:2]
_UpperCAmelCase : Union[str, Any] = conva_get[2]
_UpperCAmelCase : Dict = size_pa
_UpperCAmelCase : List[Any] = rate_w
_UpperCAmelCase : Dict = rate_t
_UpperCAmelCase : List[Any] = [
np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
_UpperCAmelCase : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
_UpperCAmelCase : Optional[int] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
_UpperCAmelCase : Any = -2 * np.random.rand(self.conva[1] ) + 1
_UpperCAmelCase : Optional[Any] = -2 * np.random.rand(self.num_bpa ) + 1
_UpperCAmelCase : Optional[int] = -2 * np.random.rand(self.num_bpa ) + 1
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : str ) -> int:
"""simple docstring"""
_UpperCAmelCase : Tuple = {
"num_bp1": self.num_bpa,
"num_bp2": self.num_bpa,
"num_bp3": self.num_bpa,
"conv1": self.conva,
"step_conv1": self.step_conva,
"size_pooling1": self.size_poolinga,
"rate_weight": self.rate_weight,
"rate_thre": self.rate_thre,
"w_conv1": self.w_conva,
"wkj": self.wkj,
"vji": self.vji,
"thre_conv1": self.thre_conva,
"thre_bp2": self.thre_bpa,
"thre_bp3": self.thre_bpa,
}
with open(lowerCAmelCase__ , "wb" ) as f:
pickle.dump(lowerCAmelCase__ , lowerCAmelCase__ )
print(F"""Model saved: {save_path}""" )
@classmethod
def _lowerCAmelCase ( cls : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
with open(lowerCAmelCase__ , "rb" ) as f:
_UpperCAmelCase : int = pickle.load(lowerCAmelCase__ ) # noqa: S301
_UpperCAmelCase : int = model_dic.get("conv1" )
conv_get.append(model_dic.get("step_conv1" ) )
_UpperCAmelCase : List[str] = model_dic.get("size_pooling1" )
_UpperCAmelCase : List[Any] = model_dic.get("num_bp1" )
_UpperCAmelCase : Optional[Any] = model_dic.get("num_bp2" )
_UpperCAmelCase : List[str] = model_dic.get("num_bp3" )
_UpperCAmelCase : Tuple = model_dic.get("rate_weight" )
_UpperCAmelCase : str = model_dic.get("rate_thre" )
# create model instance
_UpperCAmelCase : Tuple = CNN(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# modify model parameter
_UpperCAmelCase : List[Any] = model_dic.get("w_conv1" )
_UpperCAmelCase : int = model_dic.get("wkj" )
_UpperCAmelCase : Dict = model_dic.get("vji" )
_UpperCAmelCase : int = model_dic.get("thre_conv1" )
_UpperCAmelCase : Any = model_dic.get("thre_bp2" )
_UpperCAmelCase : Optional[int] = model_dic.get("thre_bp3" )
return conv_ins
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : List[str] ) -> Optional[int]:
"""simple docstring"""
return 1 / (1 + np.exp(-1 * x ))
def _lowerCAmelCase ( self : str , lowerCAmelCase__ : List[Any] ) -> int:
"""simple docstring"""
return round(lowerCAmelCase__ , 3 )
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Any = convs[0]
_UpperCAmelCase : str = convs[1]
_UpperCAmelCase : Optional[int] = np.shape(lowerCAmelCase__ )[0]
# get the data slice of original image data, data_focus
_UpperCAmelCase : Tuple = []
for i_focus in range(0 , size_data - size_conv + 1 , lowerCAmelCase__ ):
for j_focus in range(0 , size_data - size_conv + 1 , lowerCAmelCase__ ):
_UpperCAmelCase : Tuple = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(lowerCAmelCase__ )
# calculate the feature map of every single kernel, and saved as list of matrix
_UpperCAmelCase : List[Any] = []
_UpperCAmelCase : List[Any] = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(lowerCAmelCase__ ):
_UpperCAmelCase : List[Any] = []
for i_focus in range(len(lowerCAmelCase__ ) ):
_UpperCAmelCase : Tuple = (
np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(lowerCAmelCase__ ) )
_UpperCAmelCase : List[str] = np.asmatrix(lowerCAmelCase__ ).reshape(
lowerCAmelCase__ , lowerCAmelCase__ )
data_featuremap.append(lowerCAmelCase__ )
# expanding the data slice to One dimenssion
_UpperCAmelCase : Optional[int] = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(lowerCAmelCase__ ) )
_UpperCAmelCase : Tuple = np.asarray(lowerCAmelCase__ )
return focus_list, data_featuremap
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple="average_pool" ) -> str:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = len(featuremaps[0] )
_UpperCAmelCase : Optional[Any] = int(size_map / size_pooling )
_UpperCAmelCase : List[str] = []
for i_map in range(len(lowerCAmelCase__ ) ):
_UpperCAmelCase : int = featuremaps[i_map]
_UpperCAmelCase : Union[str, Any] = []
for i_focus in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ):
for j_focus in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : Any = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(lowerCAmelCase__ ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(lowerCAmelCase__ ) )
_UpperCAmelCase : str = np.asmatrix(lowerCAmelCase__ ).reshape(lowerCAmelCase__ , lowerCAmelCase__ )
featuremap_pooled.append(lowerCAmelCase__ )
return featuremap_pooled
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = []
for i in range(len(lowerCAmelCase__ ) ):
_UpperCAmelCase : Dict = np.shape(data[i] )
_UpperCAmelCase : Optional[int] = data[i].reshape(1 , shapes[0] * shapes[1] )
_UpperCAmelCase : Dict = data_listed.getA().tolist()[0]
data_expanded.extend(lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = np.asarray(lowerCAmelCase__ )
return data_expanded
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : str ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Dict = np.asarray(lowerCAmelCase__ )
_UpperCAmelCase : Any = np.shape(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = data_mat.reshape(1 , shapes[0] * shapes[1] )
return data_expanded
def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = []
_UpperCAmelCase : Optional[Any] = 0
for i_map in range(lowerCAmelCase__ ):
_UpperCAmelCase : List[str] = np.ones((size_map, size_map) )
for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ):
for j in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : Optional[Any] = pd_pool[
i_pool
]
_UpperCAmelCase : Tuple = i_pool + 1
_UpperCAmelCase : Union[str, Any] = np.multiply(
lowerCAmelCase__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) )
pd_all.append(lowerCAmelCase__ )
return pd_all
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int]=bool ) -> str:
"""simple docstring"""
print("----------------------Start Training-------------------------" )
print((" - - Shape: Train_Data ", np.shape(lowerCAmelCase__ )) )
print((" - - Shape: Teach_Data ", np.shape(lowerCAmelCase__ )) )
_UpperCAmelCase : str = 0
_UpperCAmelCase : List[Any] = []
_UpperCAmelCase : Tuple = 1_0_0_0_0
while rp < n_repeat and mse >= error_accuracy:
_UpperCAmelCase : List[str] = 0
print(F"""-------------Learning Time {rp}--------------""" )
for p in range(len(lowerCAmelCase__ ) ):
# print('------------Learning Image: %d--------------'%p)
_UpperCAmelCase : Optional[int] = np.asmatrix(datas_train[p] )
_UpperCAmelCase : Tuple = np.asarray(datas_teach[p] )
_UpperCAmelCase , _UpperCAmelCase : Tuple = self.convolute(
lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_UpperCAmelCase : Optional[Any] = self.pooling(lowerCAmelCase__ , self.size_poolinga )
_UpperCAmelCase : List[Any] = np.shape(lowerCAmelCase__ )
_UpperCAmelCase : Any = self._expand(lowerCAmelCase__ )
_UpperCAmelCase : str = data_bp_input
_UpperCAmelCase : Union[str, Any] = np.dot(lowerCAmelCase__ , self.vji.T ) - self.thre_bpa
_UpperCAmelCase : str = self.sig(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = np.dot(lowerCAmelCase__ , self.wkj.T ) - self.thre_bpa
_UpperCAmelCase : List[Any] = self.sig(lowerCAmelCase__ )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
_UpperCAmelCase : Optional[Any] = np.multiply(
(data_teach - bp_outa) , np.multiply(lowerCAmelCase__ , (1 - bp_outa) ) )
_UpperCAmelCase : int = np.multiply(
np.dot(lowerCAmelCase__ , self.wkj ) , np.multiply(lowerCAmelCase__ , (1 - bp_outa) ) )
_UpperCAmelCase : List[Any] = np.dot(lowerCAmelCase__ , self.vji )
_UpperCAmelCase : List[str] = pd_i_all / (self.size_poolinga * self.size_poolinga)
_UpperCAmelCase : Optional[int] = pd_conva_pooled.T.getA().tolist()
_UpperCAmelCase : Optional[Any] = self._calculate_gradient_from_pool(
lowerCAmelCase__ , lowerCAmelCase__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , )
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
_UpperCAmelCase : str = self._expand_mat(pd_conva_all[k_conv] )
_UpperCAmelCase : Tuple = self.rate_weight * np.dot(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
_UpperCAmelCase : Dict = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
_UpperCAmelCase : int = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
_UpperCAmelCase : Optional[int] = self.vji + pd_j_all.T * bp_outa * self.rate_weight
_UpperCAmelCase : Dict = self.thre_bpa - pd_k_all * self.rate_thre
_UpperCAmelCase : Union[str, Any] = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
_UpperCAmelCase : Tuple = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
_UpperCAmelCase : Optional[int] = rp + 1
_UpperCAmelCase : Optional[int] = error_count / patterns
all_mse.append(lowerCAmelCase__ )
def draw_error():
_UpperCAmelCase : Tuple = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(lowerCAmelCase__ , "+-" )
plt.plot(lowerCAmelCase__ , "r--" )
plt.xlabel("Learning Times" )
plt.ylabel("All_mse" )
plt.grid(lowerCAmelCase__ , alpha=0.5 )
plt.show()
print("------------------Training Complished---------------------" )
print((" - - Training epoch: ", rp, F""" - - Mse: {mse:.6f}""") )
if draw_e:
draw_error()
return mse
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : int = []
print("-------------------Start Testing-------------------------" )
print((" - - Shape: Test_Data ", np.shape(lowerCAmelCase__ )) )
for p in range(len(lowerCAmelCase__ ) ):
_UpperCAmelCase : int = np.asmatrix(datas_test[p] )
_UpperCAmelCase , _UpperCAmelCase : Dict = self.convolute(
lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_UpperCAmelCase : Union[str, Any] = self.pooling(lowerCAmelCase__ , self.size_poolinga )
_UpperCAmelCase : List[Any] = self._expand(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = data_bp_input
_UpperCAmelCase : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa
_UpperCAmelCase : int = self.sig(lowerCAmelCase__ )
_UpperCAmelCase : Dict = bp_outa * self.wkj.T - self.thre_bpa
_UpperCAmelCase : List[str] = self.sig(lowerCAmelCase__ )
produce_out.extend(bp_outa.getA().tolist() )
_UpperCAmelCase : List[str] = [list(map(self.do_round , lowerCAmelCase__ ) ) for each in produce_out]
return np.asarray(lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Dict ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Any = np.asmatrix(lowerCAmelCase__ )
_UpperCAmelCase , _UpperCAmelCase : Tuple = self.convolute(
lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_UpperCAmelCase : Tuple = self.pooling(lowerCAmelCase__ , self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass | 17 | '''simple docstring'''
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Tuple = '''time_series_transformer'''
UpperCamelCase_ : Optional[Any] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = prediction_length
_UpperCAmelCase : Optional[Any] = context_length or prediction_length
_UpperCAmelCase : Optional[Any] = distribution_output
_UpperCAmelCase : Union[str, Any] = loss
_UpperCAmelCase : Dict = input_size
_UpperCAmelCase : int = num_time_features
_UpperCAmelCase : Any = lags_sequence
_UpperCAmelCase : Dict = scaling
_UpperCAmelCase : Tuple = num_dynamic_real_features
_UpperCAmelCase : Dict = num_static_real_features
_UpperCAmelCase : Union[str, Any] = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : Optional[int] = cardinality
else:
_UpperCAmelCase : Optional[Any] = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : List[Any] = embedding_dimension
else:
_UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
_UpperCAmelCase : str = num_parallel_samples
# Transformer architecture configuration
_UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features
_UpperCAmelCase : str = d_model
_UpperCAmelCase : Optional[Any] = encoder_attention_heads
_UpperCAmelCase : Dict = decoder_attention_heads
_UpperCAmelCase : List[Any] = encoder_ffn_dim
_UpperCAmelCase : str = decoder_ffn_dim
_UpperCAmelCase : Dict = encoder_layers
_UpperCAmelCase : str = decoder_layers
_UpperCAmelCase : Any = dropout
_UpperCAmelCase : str = attention_dropout
_UpperCAmelCase : List[Any] = activation_dropout
_UpperCAmelCase : Dict = encoder_layerdrop
_UpperCAmelCase : Any = decoder_layerdrop
_UpperCAmelCase : Optional[Any] = activation_function
_UpperCAmelCase : Tuple = init_std
_UpperCAmelCase : List[str] = use_cache
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def _lowerCAmelCase ( self : str ) -> int:
"""simple docstring"""
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
) | 17 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
__a = logging.get_logger(__name__)
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = ['''pixel_values''']
def __init__( self : Tuple , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ : str , ) -> None:
"""simple docstring"""
super().__init__(**lowerCAmelCase__ )
_UpperCAmelCase : Tuple = size if size is not None else {"shortest_edge": 2_5_6}
_UpperCAmelCase : List[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4}
_UpperCAmelCase : Dict = get_size_dict(lowerCAmelCase__ , param_name="crop_size" )
_UpperCAmelCase : Tuple = do_resize
_UpperCAmelCase : Optional[int] = size
_UpperCAmelCase : List[Any] = resample
_UpperCAmelCase : str = do_center_crop
_UpperCAmelCase : List[Any] = crop_size
_UpperCAmelCase : Dict = do_rescale
_UpperCAmelCase : Union[str, Any] = rescale_factor
_UpperCAmelCase : Any = do_normalize
_UpperCAmelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_UpperCAmelCase : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowerCAmelCase ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
if "shortest_edge" not in size:
raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
_UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(lowerCAmelCase__ , size=size["shortest_edge"] , default_to_square=lowerCAmelCase__ )
return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Union[str, Any] , ) -> np.ndarray:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = get_size_dict(lowerCAmelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" )
return center_crop(lowerCAmelCase__ , size=(size["height"], size["width"]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Union[str, Any] ) -> np.ndarray:
"""simple docstring"""
return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : int , ) -> np.ndarray:
"""simple docstring"""
return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ : List[Any] , ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize
_UpperCAmelCase : Any = size if size is not None else self.size
_UpperCAmelCase : Dict = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
_UpperCAmelCase : Dict = resample if resample is not None else self.resample
_UpperCAmelCase : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCAmelCase : Dict = crop_size if crop_size is not None else self.crop_size
_UpperCAmelCase : Union[str, Any] = get_size_dict(lowerCAmelCase__ , param_name="crop_size" )
_UpperCAmelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
_UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCAmelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize
_UpperCAmelCase : str = image_mean if image_mean is not None else self.image_mean
_UpperCAmelCase : List[Any] = image_std if image_std is not None else self.image_std
_UpperCAmelCase : int = make_list_of_images(lowerCAmelCase__ )
if not valid_images(lowerCAmelCase__ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
_UpperCAmelCase : List[Any] = [to_numpy_array(lowerCAmelCase__ ) for image in images]
if do_resize:
_UpperCAmelCase : int = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images]
if do_center_crop:
_UpperCAmelCase : Optional[int] = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images]
if do_rescale:
_UpperCAmelCase : str = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images]
if do_normalize:
_UpperCAmelCase : Optional[Any] = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images]
_UpperCAmelCase : Optional[int] = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images]
_UpperCAmelCase : List[str] = {"pixel_values": images}
return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Tuple] = None ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Any = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits" )
if is_torch_tensor(lowerCAmelCase__ ):
_UpperCAmelCase : List[str] = target_sizes.numpy()
_UpperCAmelCase : Any = []
for idx in range(len(lowerCAmelCase__ ) ):
_UpperCAmelCase : Tuple = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowerCAmelCase__ )
else:
_UpperCAmelCase : Dict = logits.argmax(dim=1 )
_UpperCAmelCase : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation | 17 | '''simple docstring'''
import baseaa
def __UpperCAmelCase ( a_: str ):
return baseaa.baaencode(string.encode("utf-8" ) )
def __UpperCAmelCase ( a_: bytes ):
return baseaa.baadecode(a_ ).decode("utf-8" )
if __name__ == "__main__":
__a = 'Hello World!'
__a = baseaa_encode(test)
print(encoded)
__a = baseaa_decode(encoded)
print(decoded) | 17 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json',
'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json',
'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json',
'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json',
'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json',
'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json',
'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json',
'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json',
'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json',
'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json',
'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json',
'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json',
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : str = '''codegen'''
UpperCamelCase_ : str = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : List[Any] , lowerCAmelCase__ : int=5_0_4_0_0 , lowerCAmelCase__ : Union[str, Any]=2_0_4_8 , lowerCAmelCase__ : List[Any]=2_0_4_8 , lowerCAmelCase__ : List[Any]=4_0_9_6 , lowerCAmelCase__ : List[str]=2_8 , lowerCAmelCase__ : Optional[int]=1_6 , lowerCAmelCase__ : Any=6_4 , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Union[str, Any]="gelu_new" , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : Optional[int]=1e-5 , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : List[Any]=5_0_2_5_6 , lowerCAmelCase__ : str=5_0_2_5_6 , lowerCAmelCase__ : List[Any]=False , **lowerCAmelCase__ : Dict , ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = vocab_size
_UpperCAmelCase : str = n_ctx
_UpperCAmelCase : Optional[int] = n_positions
_UpperCAmelCase : int = n_embd
_UpperCAmelCase : Tuple = n_layer
_UpperCAmelCase : Dict = n_head
_UpperCAmelCase : Optional[int] = n_inner
_UpperCAmelCase : Dict = rotary_dim
_UpperCAmelCase : List[str] = activation_function
_UpperCAmelCase : int = resid_pdrop
_UpperCAmelCase : Dict = embd_pdrop
_UpperCAmelCase : Dict = attn_pdrop
_UpperCAmelCase : Optional[Any] = layer_norm_epsilon
_UpperCAmelCase : List[Any] = initializer_range
_UpperCAmelCase : Optional[Any] = use_cache
_UpperCAmelCase : Tuple = bos_token_id
_UpperCAmelCase : Dict = eos_token_id
super().__init__(
bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , tie_word_embeddings=lowerCAmelCase__ , **lowerCAmelCase__ )
class A__ ( UpperCamelCase ):
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : PretrainedConfig , lowerCAmelCase__ : str = "default" , lowerCAmelCase__ : List[PatchingSpec] = None , lowerCAmelCase__ : bool = False , ) -> int:
"""simple docstring"""
super().__init__(lowerCAmelCase__ , task=lowerCAmelCase__ , patching_specs=lowerCAmelCase__ , use_past=lowerCAmelCase__ )
if not getattr(self._config , "pad_token_id" , lowerCAmelCase__ ):
# TODO: how to do that better?
_UpperCAmelCase : Optional[int] = 0
@property
def _lowerCAmelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} )
if self.use_past:
self.fill_with_past_key_values_(lowerCAmelCase__ , direction="inputs" )
_UpperCAmelCase : int = {0: "batch", 1: "past_sequence + sequence"}
else:
_UpperCAmelCase : int = {0: "batch", 1: "sequence"}
return common_inputs
@property
def _lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
return self._config.n_layer
@property
def _lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
return self._config.n_head
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Any = super(lowerCAmelCase__ , self ).generate_dummy_inputs(
lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ )
# We need to order the input in the way they appears in the forward()
_UpperCAmelCase : str = OrderedDict({"input_ids": common_inputs["input_ids"]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
_UpperCAmelCase , _UpperCAmelCase : Optional[int] = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
_UpperCAmelCase : str = seqlen + 2
_UpperCAmelCase : Dict = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
_UpperCAmelCase : str = [
(torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(self.num_layers )
]
_UpperCAmelCase : Tuple = common_inputs["attention_mask"]
if self.use_past:
_UpperCAmelCase : Optional[int] = ordered_inputs["attention_mask"].dtype
_UpperCAmelCase : Any = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__ )] , dim=1 )
return ordered_inputs
@property
def _lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
return 1_3 | 17 | '''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class A__ :
"""simple docstring"""
UpperCamelCase_ : Any = XGLMConfig
UpperCamelCase_ : Union[str, Any] = {}
UpperCamelCase_ : Dict = '''gelu'''
def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : str = batch_size
_UpperCAmelCase : str = seq_length
_UpperCAmelCase : int = is_training
_UpperCAmelCase : List[Any] = use_input_mask
_UpperCAmelCase : Optional[int] = use_labels
_UpperCAmelCase : str = vocab_size
_UpperCAmelCase : int = d_model
_UpperCAmelCase : Tuple = num_hidden_layers
_UpperCAmelCase : Tuple = num_attention_heads
_UpperCAmelCase : Tuple = ffn_dim
_UpperCAmelCase : Any = activation_function
_UpperCAmelCase : Union[str, Any] = activation_dropout
_UpperCAmelCase : Union[str, Any] = attention_dropout
_UpperCAmelCase : Any = max_position_embeddings
_UpperCAmelCase : int = initializer_range
_UpperCAmelCase : Any = None
_UpperCAmelCase : int = 0
_UpperCAmelCase : Union[str, Any] = 2
_UpperCAmelCase : Tuple = 1
def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : int = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_UpperCAmelCase : Any = None
if self.use_input_mask:
_UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : Optional[Any] = self.get_config()
_UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , )
def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
_UpperCAmelCase : Optional[int] = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else ()
UpperCamelCase_ : Tuple = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
UpperCamelCase_ : Dict = False
UpperCamelCase_ : List[Any] = False
UpperCamelCase_ : Tuple = False
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Dict = TFXGLMModelTester(self )
_UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 )
def _lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowerCAmelCase ( self : Union[str, Any] ) -> int:
"""simple docstring"""
super().test_resize_token_embeddings()
@require_tf
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1]
# fmt: on
_UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
_UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" )
_UpperCAmelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
_UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] )
_UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[int] = "left"
# use different length sentences to test batching
_UpperCAmelCase : Tuple = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
_UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = inputs["input_ids"]
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 )
_UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids
_UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] ) | 17 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json',
# See all GLPN models at https://huggingface.co/models?filter=glpn
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = '''glpn'''
def __init__( self : Optional[int] , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Union[str, Any]=4 , lowerCAmelCase__ : Tuple=[2, 2, 2, 2] , lowerCAmelCase__ : List[Any]=[8, 4, 2, 1] , lowerCAmelCase__ : Optional[int]=[3_2, 6_4, 1_6_0, 2_5_6] , lowerCAmelCase__ : Tuple=[7, 3, 3, 3] , lowerCAmelCase__ : Optional[int]=[4, 2, 2, 2] , lowerCAmelCase__ : Optional[int]=[1, 2, 5, 8] , lowerCAmelCase__ : List[str]=[4, 4, 4, 4] , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Any=0.0 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : Union[str, Any]=1e-6 , lowerCAmelCase__ : Tuple=6_4 , lowerCAmelCase__ : Union[str, Any]=1_0 , lowerCAmelCase__ : Tuple=-1 , **lowerCAmelCase__ : Optional[Any] , ) -> Tuple:
"""simple docstring"""
super().__init__(**lowerCAmelCase__ )
_UpperCAmelCase : Dict = num_channels
_UpperCAmelCase : str = num_encoder_blocks
_UpperCAmelCase : Tuple = depths
_UpperCAmelCase : int = sr_ratios
_UpperCAmelCase : Union[str, Any] = hidden_sizes
_UpperCAmelCase : List[Any] = patch_sizes
_UpperCAmelCase : Dict = strides
_UpperCAmelCase : List[str] = mlp_ratios
_UpperCAmelCase : int = num_attention_heads
_UpperCAmelCase : List[str] = hidden_act
_UpperCAmelCase : Dict = hidden_dropout_prob
_UpperCAmelCase : Dict = attention_probs_dropout_prob
_UpperCAmelCase : int = initializer_range
_UpperCAmelCase : List[Any] = drop_path_rate
_UpperCAmelCase : List[str] = layer_norm_eps
_UpperCAmelCase : Any = decoder_hidden_size
_UpperCAmelCase : Optional[int] = max_depth
_UpperCAmelCase : List[Any] = head_in_index | 17 | '''simple docstring'''
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"files", [
["full:README.md", "dataset_infos.json"],
["empty:README.md", "dataset_infos.json"],
["dataset_infos.json"],
["full:README.md"],
], )
def __UpperCAmelCase ( a_: Tuple, a_: Any ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" )
if "full:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("---\ndataset_info:\n dataset_size: 42\n---" )
if "empty:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f:
f.write("{\"default\": {\"dataset_size\": 42}}" )
_UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
"dataset_info", [
DatasetInfo(),
DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ),
], )
def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ):
_UpperCAmelCase : Tuple = str(a_ )
dataset_info.write_to_directory(a_ )
_UpperCAmelCase : Any = DatasetInfo.from_directory(a_ )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(a_, "dataset_info.json" ) )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = DatasetInfo(
description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, )
_UpperCAmelCase : Tuple = dataset_info._to_yaml_dict()
assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) )
_UpperCAmelCase : List[Any] = yaml.safe_dump(a_ )
_UpperCAmelCase : Optional[int] = yaml.safe_load(a_ )
assert dataset_info_yaml_dict == reloaded
def __UpperCAmelCase ( ):
_UpperCAmelCase : str = DatasetInfo()
_UpperCAmelCase : List[str] = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"dataset_infos_dict", [
DatasetInfosDict(),
DatasetInfosDict({"default": DatasetInfo()} ),
DatasetInfosDict({"my_config_name": DatasetInfo()} ),
DatasetInfosDict(
{
"default": DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, )
} ),
DatasetInfosDict(
{
"v1": DatasetInfo(dataset_size=42 ),
"v2": DatasetInfo(dataset_size=1_337 ),
} ),
], )
def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ):
_UpperCAmelCase : Union[str, Any] = str(a_ )
dataset_infos_dict.write_to_directory(a_ )
_UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
_UpperCAmelCase : Optional[int] = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
_UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(a_, "README.md" ) ) | 17 | 1 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class A__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int=1_0_0 , lowerCAmelCase__ : Any=1_3 , lowerCAmelCase__ : Union[str, Any]=3_0 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : int=3_2 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Tuple=3_7 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Optional[int]=1_0 , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : List[Any]=3 , ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : str = parent
_UpperCAmelCase : List[Any] = vocab_size
_UpperCAmelCase : Optional[int] = batch_size
_UpperCAmelCase : List[Any] = image_size
_UpperCAmelCase : int = patch_size
_UpperCAmelCase : str = num_channels
_UpperCAmelCase : str = is_training
_UpperCAmelCase : Union[str, Any] = use_labels
_UpperCAmelCase : Optional[Any] = hidden_size
_UpperCAmelCase : List[Any] = num_hidden_layers
_UpperCAmelCase : List[Any] = num_attention_heads
_UpperCAmelCase : List[str] = intermediate_size
_UpperCAmelCase : Tuple = hidden_act
_UpperCAmelCase : Union[str, Any] = hidden_dropout_prob
_UpperCAmelCase : str = attention_probs_dropout_prob
_UpperCAmelCase : Any = type_sequence_label_size
_UpperCAmelCase : str = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_UpperCAmelCase : int = (image_size // patch_size) ** 2
_UpperCAmelCase : Dict = num_patches + 1
def _lowerCAmelCase ( self : int ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase : List[str] = None
if self.use_labels:
_UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase : str = BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , )
return config, pixel_values, labels
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = FlaxBeitModel(config=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = FlaxBeitForMaskedImageModeling(config=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.type_sequence_label_size
_UpperCAmelCase : Union[str, Any] = FlaxBeitForImageClassification(config=lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_UpperCAmelCase : str = 1
_UpperCAmelCase : str = FlaxBeitForImageClassification(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ )
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) : Union[str, Any] = config_and_inputs
_UpperCAmelCase : str = {"pixel_values": pixel_values}
return config, inputs_dict
@require_flax
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Any = (
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def _lowerCAmelCase ( self : Any ) -> None:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = FlaxBeitModelTester(self )
_UpperCAmelCase : str = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=3_7 )
def _lowerCAmelCase ( self : Tuple ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : List[Any] ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase : List[str] = model_class(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase : Optional[int] = [*signature.parameters.keys()]
_UpperCAmelCase : List[str] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_UpperCAmelCase : Optional[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = model_class(lowerCAmelCase__ )
@jax.jit
def model_jitted(lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Optional[int] ):
return model(pixel_values=lowerCAmelCase__ , **lowerCAmelCase__ )
with self.subTest("JIT Enabled" ):
_UpperCAmelCase : Any = model_jitted(**lowerCAmelCase__ ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
_UpperCAmelCase : int = model_jitted(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) )
for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
self.assertEqual(jitted_output.shape , output.shape )
def _lowerCAmelCase ( self : Optional[int] ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : str ) -> Any:
"""simple docstring"""
for model_class_name in self.all_model_classes:
_UpperCAmelCase : Any = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" )
_UpperCAmelCase : List[Any] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) )
self.assertIsNotNone(lowerCAmelCase__ )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_vision
@require_flax
class A__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None
@slow
def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : str = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" )
_UpperCAmelCase : Dict = self.default_image_processor
_UpperCAmelCase : str = prepare_img()
_UpperCAmelCase : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="np" ).pixel_values
# prepare bool_masked_pos
_UpperCAmelCase : Optional[int] = np.ones((1, 1_9_6) , dtype=lowerCAmelCase__ )
# forward pass
_UpperCAmelCase : Optional[int] = model(pixel_values=lowerCAmelCase__ , bool_masked_pos=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = outputs.logits
# verify the logits
_UpperCAmelCase : Dict = (1, 1_9_6, 8_1_9_2)
self.assertEqual(logits.shape , lowerCAmelCase__ )
_UpperCAmelCase : Dict = np.array(
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] )
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , lowerCAmelCase__ , atol=1e-2 ) )
@slow
def _lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_UpperCAmelCase : int = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" )
_UpperCAmelCase : str = self.default_image_processor
_UpperCAmelCase : str = prepare_img()
_UpperCAmelCase : List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="np" )
# forward pass
_UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase__ )
_UpperCAmelCase : Tuple = outputs.logits
# verify the logits
_UpperCAmelCase : str = (1, 1_0_0_0)
self.assertEqual(logits.shape , lowerCAmelCase__ )
_UpperCAmelCase : Dict = np.array([-1.2385, -1.0987, -1.0108] )
self.assertTrue(np.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
_UpperCAmelCase : List[Any] = 2_8_1
self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Dict = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" )
_UpperCAmelCase : List[str] = self.default_image_processor
_UpperCAmelCase : Optional[int] = prepare_img()
_UpperCAmelCase : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="np" )
# forward pass
_UpperCAmelCase : Optional[int] = model(**lowerCAmelCase__ )
_UpperCAmelCase : List[str] = outputs.logits
# verify the logits
_UpperCAmelCase : str = (1, 2_1_8_4_1)
self.assertEqual(logits.shape , lowerCAmelCase__ )
_UpperCAmelCase : int = np.array([1.6881, -0.2787, 0.5901] )
self.assertTrue(np.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
_UpperCAmelCase : int = 2_3_9_6
self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase__ ) | 17 | '''simple docstring'''
from math import factorial
def __UpperCAmelCase ( a_: int = 100 ):
return sum(map(a_, str(factorial(a_ ) ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip()))) | 17 | 1 |
'''simple docstring'''
import cmath
import math
def __UpperCAmelCase ( a_: float, a_: float, a_: float, a_: float ):
_UpperCAmelCase : Optional[int] = math.radians(a_ )
_UpperCAmelCase : Union[str, Any] = math.radians(a_ )
# Convert voltage and current to rectangular form
_UpperCAmelCase : Optional[Any] = cmath.rect(a_, a_ )
_UpperCAmelCase : Optional[int] = cmath.rect(a_, a_ )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | '''simple docstring'''
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
__a = (3, 9, -11, 0, 7, 5, 1, -1)
__a = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : int
UpperCamelCase_ : Node | None
class A__ :
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None:
"""simple docstring"""
_UpperCAmelCase : Node | None = None
for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ):
_UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head )
def __iter__( self : int ) -> Iterator[int]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.head
while node:
yield node.data
_UpperCAmelCase : List[str] = node.next_node
def __len__( self : Any ) -> int:
"""simple docstring"""
return sum(1 for _ in self )
def __str__( self : Union[str, Any] ) -> str:
"""simple docstring"""
return " -> ".join([str(lowerCAmelCase__ ) for node in self] )
def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ):
return SortedLinkedList(list(a_ ) + list(a_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
__a = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even))) | 17 | 1 |
'''simple docstring'''
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"files", [
["full:README.md", "dataset_infos.json"],
["empty:README.md", "dataset_infos.json"],
["dataset_infos.json"],
["full:README.md"],
], )
def __UpperCAmelCase ( a_: Tuple, a_: Any ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" )
if "full:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("---\ndataset_info:\n dataset_size: 42\n---" )
if "empty:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f:
f.write("{\"default\": {\"dataset_size\": 42}}" )
_UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
"dataset_info", [
DatasetInfo(),
DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ),
], )
def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ):
_UpperCAmelCase : Tuple = str(a_ )
dataset_info.write_to_directory(a_ )
_UpperCAmelCase : Any = DatasetInfo.from_directory(a_ )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(a_, "dataset_info.json" ) )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = DatasetInfo(
description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, )
_UpperCAmelCase : Tuple = dataset_info._to_yaml_dict()
assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) )
_UpperCAmelCase : List[Any] = yaml.safe_dump(a_ )
_UpperCAmelCase : Optional[int] = yaml.safe_load(a_ )
assert dataset_info_yaml_dict == reloaded
def __UpperCAmelCase ( ):
_UpperCAmelCase : str = DatasetInfo()
_UpperCAmelCase : List[str] = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"dataset_infos_dict", [
DatasetInfosDict(),
DatasetInfosDict({"default": DatasetInfo()} ),
DatasetInfosDict({"my_config_name": DatasetInfo()} ),
DatasetInfosDict(
{
"default": DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, )
} ),
DatasetInfosDict(
{
"v1": DatasetInfo(dataset_size=42 ),
"v2": DatasetInfo(dataset_size=1_337 ),
} ),
], )
def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ):
_UpperCAmelCase : Union[str, Any] = str(a_ )
dataset_infos_dict.write_to_directory(a_ )
_UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
_UpperCAmelCase : Optional[int] = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
_UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(a_, "README.md" ) ) | 17 | '''simple docstring'''
def __UpperCAmelCase ( a_: str ):
if not all(char in "01" for char in bin_string ):
raise ValueError("Non-binary value was passed to the function" )
if not bin_string:
raise ValueError("Empty string was passed to the function" )
_UpperCAmelCase : Optional[Any] = ""
while len(a_ ) % 3 != 0:
_UpperCAmelCase : List[Any] = "0" + bin_string
_UpperCAmelCase : Dict = [
bin_string[index : index + 3]
for index in range(len(a_ ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
_UpperCAmelCase : Optional[Any] = 0
for index, val in enumerate(a_ ):
oct_val += int(2 ** (2 - index) * int(a_ ) )
oct_string += str(a_ )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod() | 17 | 1 |
'''simple docstring'''
import logging
import os
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
from tqdm import auto as tqdm_lib
__a = {
'debug': logging.DEBUG,
'info': logging.INFO,
'warning': logging.WARNING,
'error': logging.ERROR,
'critical': logging.CRITICAL,
}
__a = logging.WARNING
def __UpperCAmelCase ( ):
_UpperCAmelCase : Tuple = os.getenv("DATASETS_VERBOSITY", a_ )
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """
f"""has to be one of: { ', '.join(log_levels.keys() ) }""" )
return _default_log_level
def __UpperCAmelCase ( ):
return __name__.split("." )[0]
def __UpperCAmelCase ( ):
return logging.getLogger(_get_library_name() )
def __UpperCAmelCase ( ):
# Apply our default configuration to the library root logger.
_UpperCAmelCase : Tuple = _get_library_root_logger()
library_root_logger.setLevel(_get_default_logging_level() )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Tuple = _get_library_root_logger()
library_root_logger.setLevel(logging.NOTSET )
def __UpperCAmelCase ( a_: Optional[str] = None ):
if name is None:
_UpperCAmelCase : List[Any] = _get_library_name()
return logging.getLogger(a_ )
def __UpperCAmelCase ( ):
return _get_library_root_logger().getEffectiveLevel()
def __UpperCAmelCase ( a_: int ):
_get_library_root_logger().setLevel(a_ )
def __UpperCAmelCase ( ):
return set_verbosity(a_ )
def __UpperCAmelCase ( ):
return set_verbosity(a_ )
def __UpperCAmelCase ( ):
return set_verbosity(a_ )
def __UpperCAmelCase ( ):
return set_verbosity(a_ )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Union[str, Any] = False
def __UpperCAmelCase ( ):
_UpperCAmelCase : Any = True
# Configure the library root logger at the module level (singleton-like)
_configure_library_root_logger()
class A__ :
"""simple docstring"""
def __init__( self : int , *lowerCAmelCase__ : str , **lowerCAmelCase__ : List[str] ) -> Optional[int]: # pylint: disable=unused-argument
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = args[0] if args else None
def __iter__( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
return iter(self._iterator )
def __getattr__( self : int , lowerCAmelCase__ : int ) -> str:
"""simple docstring"""
def empty_fn(*lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : List[Any] ): # pylint: disable=unused-argument
return
return empty_fn
def __enter__( self : Union[str, Any] ) -> str:
"""simple docstring"""
return self
def __exit__( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str ) -> Union[str, Any]:
"""simple docstring"""
return
__a = True
class A__ :
"""simple docstring"""
def __call__( self : str , *lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : List[Any] ) -> List[str]:
"""simple docstring"""
if _tqdm_active and not disable:
return tqdm_lib.tqdm(*lowerCAmelCase__ , **lowerCAmelCase__ )
else:
return EmptyTqdm(*lowerCAmelCase__ , **lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[Any] , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Dict = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*lowerCAmelCase__ , **lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
__a = _tqdm_cls()
def __UpperCAmelCase ( ):
global _tqdm_active
return bool(_tqdm_active )
def __UpperCAmelCase ( ):
global _tqdm_active
_UpperCAmelCase : Dict = True
def __UpperCAmelCase ( ):
global _tqdm_active
_UpperCAmelCase : List[Any] = False | 17 | '''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def __UpperCAmelCase ( a_: str ):
for param in module.parameters():
_UpperCAmelCase : Any = False
def __UpperCAmelCase ( ):
_UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_UpperCAmelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : int = plt.imshow(a_ )
fig.axes.get_xaxis().set_visible(a_ )
fig.axes.get_yaxis().set_visible(a_ )
plt.show()
def __UpperCAmelCase ( ):
_UpperCAmelCase : Dict = datetime.now()
_UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" )
return timestamp | 17 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_big_bird import BigBirdTokenizer
else:
__a = None
__a = logging.get_logger(__name__)
__a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
__a = {
'vocab_file': {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model',
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'
),
},
'tokenizer_file': {
'google/bigbird-roberta-base': (
'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json'
),
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json'
),
},
}
__a = {
'google/bigbird-roberta-base': 4_096,
'google/bigbird-roberta-large': 4_096,
'google/bigbird-base-trivia-itc': 4_096,
}
__a = '▁'
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : List[str] = VOCAB_FILES_NAMES
UpperCamelCase_ : Any = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ : Dict = BigBirdTokenizer
UpperCamelCase_ : Tuple = ['''input_ids''', '''attention_mask''']
UpperCamelCase_ : List[int] = []
def __init__( self : Optional[int] , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Optional[int]="<unk>" , lowerCAmelCase__ : List[Any]="<s>" , lowerCAmelCase__ : Any="</s>" , lowerCAmelCase__ : Tuple="<pad>" , lowerCAmelCase__ : Tuple="[SEP]" , lowerCAmelCase__ : Optional[int]="[MASK]" , lowerCAmelCase__ : Tuple="[CLS]" , **lowerCAmelCase__ : int , ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
_UpperCAmelCase : Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
_UpperCAmelCase : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
_UpperCAmelCase : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
_UpperCAmelCase : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
_UpperCAmelCase : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
_UpperCAmelCase : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
_UpperCAmelCase : List[str] = vocab_file
_UpperCAmelCase : Dict = False if not self.vocab_file else True
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = [self.sep_token_id]
_UpperCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model." )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = [self.sep_token_id]
_UpperCAmelCase : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
_UpperCAmelCase : List[Any] = os.path.join(
lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ):
copyfile(self.vocab_file , lowerCAmelCase__ )
return (out_vocab_file,) | 17 | '''simple docstring'''
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[int] = (EulerDiscreteScheduler,)
UpperCamelCase_ : Tuple = 10
def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = {
"num_train_timesteps": 1_1_0_0,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**lowerCAmelCase__ )
return config
def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Any ) -> List[str]:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] ) -> List[str]:
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.scheduler_classes[0]
_UpperCAmelCase : int = self.get_scheduler_config()
_UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
_UpperCAmelCase : int = torch.manual_seed(0 )
_UpperCAmelCase : Any = self.dummy_model()
_UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma
_UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
_UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = output.prev_sample
_UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Any = self.scheduler_classes[0]
_UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" )
_UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
_UpperCAmelCase : str = torch.manual_seed(0 )
_UpperCAmelCase : Optional[Any] = self.dummy_model()
_UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
_UpperCAmelCase : Tuple = sample.to(lowerCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
_UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = output.prev_sample
_UpperCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 0.0002 ) < 1e-2
assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3
def _lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.scheduler_classes[0]
_UpperCAmelCase : List[Any] = self.get_scheduler_config()
_UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
_UpperCAmelCase : str = self.dummy_model()
_UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_UpperCAmelCase : str = sample.to(lowerCAmelCase__ )
for t in scheduler.timesteps:
_UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : int = output.prev_sample
_UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.scheduler_classes[0]
_UpperCAmelCase : int = self.get_scheduler_config()
_UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
_UpperCAmelCase : List[str] = self.dummy_model()
_UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_UpperCAmelCase : Optional[int] = sample.to(lowerCAmelCase__ )
for t in scheduler.timesteps:
_UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = output.prev_sample
_UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2
assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3 | 17 | 1 |
'''simple docstring'''
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , )
@pytest.mark.usefixtures('''sm_env''' )
@parameterized_class(
[
{
'''framework''': '''pytorch''',
'''script''': '''run_glue_model_parallelism.py''',
'''model_name_or_path''': '''roberta-large''',
'''instance_type''': '''ml.p3dn.24xlarge''',
'''results''': {'''train_runtime''': 16_00, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2},
},
{
'''framework''': '''pytorch''',
'''script''': '''run_glue.py''',
'''model_name_or_path''': '''roberta-large''',
'''instance_type''': '''ml.p3dn.24xlarge''',
'''results''': {'''train_runtime''': 16_00, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2},
},
] )
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=lowerCAmelCase__ , )
assert hasattr(self , "env" )
def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Optional[Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = {
"enabled": True,
"processes_per_host": 8,
}
_UpperCAmelCase : Any = {
"enabled": True,
"parameters": {
"microbatches": 4,
"placement_strategy": "spread",
"pipeline": "interleaved",
"optimize": "speed",
"partitions": 4,
"ddp": True,
},
}
_UpperCAmelCase : Optional[int] = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options}
_UpperCAmelCase : Optional[int] = "trainer" if self.script == "run_glue.py" else "smtrainer"
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=lowerCAmelCase__ , instance_type=self.instance_type , debugger_hook_config=lowerCAmelCase__ , hyperparameters={
**self.env.hyperparameters,
"model_name_or_path": self.model_name_or_path,
"max_steps": 5_0_0,
} , metric_definitions=self.env.metric_definitions , distribution=lowerCAmelCase__ , py_version="py36" , )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
TrainingJobAnalytics(lowerCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : int ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Tuple = self.create_estimator(lowerCAmelCase__ )
# run training
estimator.fit()
# result dataframe
_UpperCAmelCase : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
_UpperCAmelCase : int = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] )
_UpperCAmelCase : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
_UpperCAmelCase : Union[str, Any] = (
Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 9_9_9_9_9_9 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy )
assert all(t <= self.results["eval_loss"] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , lowerCAmelCase__ ) | 17 | '''simple docstring'''
def __UpperCAmelCase ( a_: int, a_: int ):
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
_UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) )
return "0b" + "".join(
str(int(char_a == "1" and char_b == "1" ) )
for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 1 |
'''simple docstring'''
import importlib
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
import transformers.models.auto
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.bert.configuration_bert import BertConfig
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
__a = get_tests_dir('fixtures/dummy-config.json')
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : int ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : List[str] = 0
def _lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
self.assertIsNotNone(transformers.models.auto.__spec__ )
self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) )
def _lowerCAmelCase ( self : List[Any] ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Tuple = AutoConfig.from_pretrained(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Union[str, Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = AutoConfig.for_model("roberta" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
# This model name contains bert and roberta, but roberta ends up being picked.
_UpperCAmelCase : Optional[int] = os.path.join(lowerCAmelCase__ , "fake-roberta" )
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
with open(os.path.join(lowerCAmelCase__ , "config.json" ) , "w" ) as f:
f.write(json.dumps({} ) )
_UpperCAmelCase : Tuple = AutoConfig.from_pretrained(lowerCAmelCase__ )
self.assertEqual(type(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] ) -> Any:
"""simple docstring"""
try:
AutoConfig.register("custom" , lowerCAmelCase__ )
# Wrong model type will raise an error
with self.assertRaises(lowerCAmelCase__ ):
AutoConfig.register("model" , lowerCAmelCase__ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(lowerCAmelCase__ ):
AutoConfig.register("bert" , lowerCAmelCase__ )
# Now that the config is registered, it can be used as any other config with the auto-API
_UpperCAmelCase : Any = CustomConfig()
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowerCAmelCase__ )
_UpperCAmelCase : Any = AutoConfig.from_pretrained(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
def _lowerCAmelCase ( self : int ) -> str:
"""simple docstring"""
with self.assertRaisesRegex(
lowerCAmelCase__ , "bert-base is not a local folder and is not a valid model identifier" ):
_UpperCAmelCase : str = AutoConfig.from_pretrained("bert-base" )
def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
with self.assertRaisesRegex(
lowerCAmelCase__ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
_UpperCAmelCase : Tuple = AutoConfig.from_pretrained(lowerCAmelCase__ , revision="aaaaaa" )
def _lowerCAmelCase ( self : Any ) -> Tuple:
"""simple docstring"""
with self.assertRaisesRegex(
lowerCAmelCase__ , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ):
_UpperCAmelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" )
def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
with self.assertRaises(lowerCAmelCase__ ):
_UpperCAmelCase : str = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(lowerCAmelCase__ ):
_UpperCAmelCase : Tuple = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ )
self.assertEqual(config.__class__.__name__ , "NewModelConfig" )
# Test config can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowerCAmelCase__ )
_UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowerCAmelCase__ , trust_remote_code=lowerCAmelCase__ )
self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig" )
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = '''new-model'''
try:
AutoConfig.register("new-model" , lowerCAmelCase__ )
# If remote code is not set, the default is to use local
_UpperCAmelCase : str = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" )
self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" )
# If remote code is disabled, we load the local one.
_UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ )
self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" )
# If remote is enabled, we load from the Hub
_UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ )
self.assertEqual(config.__class__.__name__ , "NewModelConfig" )
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"] | 17 | '''simple docstring'''
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def __UpperCAmelCase ( a_: int ):
# A local function to see if a dot lands in the circle.
def is_in_circle(a_: float, a_: float ) -> bool:
_UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
_UpperCAmelCase : str = mean(
int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) )
for _ in range(a_ ) )
# The ratio of the area for circle to square is pi/4.
_UpperCAmelCase : Optional[int] = proportion * 4
print(f"""The estimated value of pi is {pi_estimate}""" )
print(f"""The numpy value of pi is {pi}""" )
print(f"""The total error is {abs(pi - pi_estimate )}""" )
def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ):
return mean(
function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value)
def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ):
def identity_function(a_: float ) -> float:
return x
_UpperCAmelCase : Union[str, Any] = area_under_curve_estimator(
a_, a_, a_, a_ )
_UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2
print("******************" )
print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {expected_value}""" )
print(f"""Total error is {abs(estimated_value - expected_value )}""" )
print("******************" )
def __UpperCAmelCase ( a_: int ):
def function_to_integrate(a_: float ) -> float:
return sqrt(4.0 - x * x )
_UpperCAmelCase : List[str] = area_under_curve_estimator(
a_, a_, 0.0, 2.0 )
print("******************" )
print("Estimating pi using area_under_curve_estimator" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {pi}""" )
print(f"""Total error is {abs(estimated_value - pi )}""" )
print("******************" )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json',
'YituTech/conv-bert-medium-small': (
'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json'
),
'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json',
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = '''convbert'''
def __init__( self : Optional[int] , lowerCAmelCase__ : str=3_0_5_2_2 , lowerCAmelCase__ : str=7_6_8 , lowerCAmelCase__ : Tuple=1_2 , lowerCAmelCase__ : Dict=1_2 , lowerCAmelCase__ : Tuple=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Optional[Any]=5_1_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Tuple=1e-12 , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : Optional[int]=0 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : int=7_6_8 , lowerCAmelCase__ : Union[str, Any]=2 , lowerCAmelCase__ : Union[str, Any]=9 , lowerCAmelCase__ : Optional[int]=1 , lowerCAmelCase__ : Optional[int]=None , **lowerCAmelCase__ : Optional[int] , ) -> List[Any]:
"""simple docstring"""
super().__init__(
pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , )
_UpperCAmelCase : Tuple = vocab_size
_UpperCAmelCase : List[str] = hidden_size
_UpperCAmelCase : Any = num_hidden_layers
_UpperCAmelCase : Tuple = num_attention_heads
_UpperCAmelCase : List[Any] = intermediate_size
_UpperCAmelCase : List[str] = hidden_act
_UpperCAmelCase : Union[str, Any] = hidden_dropout_prob
_UpperCAmelCase : List[str] = attention_probs_dropout_prob
_UpperCAmelCase : Tuple = max_position_embeddings
_UpperCAmelCase : List[str] = type_vocab_size
_UpperCAmelCase : Dict = initializer_range
_UpperCAmelCase : Optional[int] = layer_norm_eps
_UpperCAmelCase : Any = embedding_size
_UpperCAmelCase : Tuple = head_ratio
_UpperCAmelCase : int = conv_kernel_size
_UpperCAmelCase : List[str] = num_groups
_UpperCAmelCase : Any = classifier_dropout
class A__ ( UpperCamelCase ):
"""simple docstring"""
@property
def _lowerCAmelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_UpperCAmelCase : Tuple = {0: "batch", 1: "choice", 2: "sequence"}
else:
_UpperCAmelCase : str = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
] ) | 17 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__a = {
'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'],
'processing_layoutlmv2': ['LayoutLMv2Processor'],
'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['LayoutLMv2TokenizerFast']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['LayoutLMv2FeatureExtractor']
__a = ['LayoutLMv2ImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv2ForQuestionAnswering',
'LayoutLMv2ForSequenceClassification',
'LayoutLMv2ForTokenClassification',
'LayoutLMv2Layer',
'LayoutLMv2Model',
'LayoutLMv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 17 | 1 |
'''simple docstring'''
from numpy import exp, pi, sqrt
def __UpperCAmelCase ( a_: Tuple, a_: float = 0.0, a_: float = 1.0 ):
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | '''simple docstring'''
def __UpperCAmelCase ( a_: int, a_: int ):
if not isinstance(a_, a_ ):
raise ValueError("iterations must be defined as integers" )
if not isinstance(a_, a_ ) or not number >= 1:
raise ValueError(
"starting number must be\n and integer and be more than 0" )
if not iterations >= 1:
raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" )
_UpperCAmelCase : List[str] = ""
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(a_ )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 1 |
'''simple docstring'''
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Dict ) -> Optional[int]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
_UpperCAmelCase : List[Any] = FlaxDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ )
_UpperCAmelCase : str = [t[-1] for t in os.walk(os.path.join(lowerCAmelCase__ , os.listdir(lowerCAmelCase__ )[0] , "snapshots" ) )]
_UpperCAmelCase : int = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith(".bin" ) for f in files )
@slow
@require_flax
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase : int = FlaxStableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowerCAmelCase__ )
_UpperCAmelCase : str = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
_UpperCAmelCase : Any = jax.random.PRNGKey(0 )
_UpperCAmelCase : Tuple = 4
_UpperCAmelCase : Tuple = jax.device_count()
_UpperCAmelCase : Optional[int] = num_samples * [prompt]
_UpperCAmelCase : List[str] = pipeline.prepare_inputs(lowerCAmelCase__ )
# shard inputs and rng
_UpperCAmelCase : Any = replicate(lowerCAmelCase__ )
_UpperCAmelCase : Dict = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = shard(lowerCAmelCase__ )
_UpperCAmelCase : str = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images
assert images.shape == (num_samples, 1, 6_4, 6_4, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.151_4745 ) < 1e-3
assert np.abs(np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 4_9947.875 ) < 5e-1
_UpperCAmelCase : int = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) )
assert len(lowerCAmelCase__ ) == num_samples
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowerCAmelCase__ )
_UpperCAmelCase : int = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
_UpperCAmelCase : List[str] = jax.random.PRNGKey(0 )
_UpperCAmelCase : Any = 5_0
_UpperCAmelCase : List[str] = jax.device_count()
_UpperCAmelCase : Tuple = num_samples * [prompt]
_UpperCAmelCase : Tuple = pipeline.prepare_inputs(lowerCAmelCase__ )
# shard inputs and rng
_UpperCAmelCase : Any = replicate(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = shard(lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images
assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0565_2401) ) < 1e-3
assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 238_3808.2) ) < 5e-1
def _lowerCAmelCase ( self : str ) -> Dict:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
_UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 )
_UpperCAmelCase : Any = 5_0
_UpperCAmelCase : Tuple = jax.device_count()
_UpperCAmelCase : str = num_samples * [prompt]
_UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(lowerCAmelCase__ )
# shard inputs and rng
_UpperCAmelCase : List[str] = replicate(lowerCAmelCase__ )
_UpperCAmelCase : Dict = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = shard(lowerCAmelCase__ )
_UpperCAmelCase : Any = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images
assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3
assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 237_3516.75) ) < 5e-1
def _lowerCAmelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa )
_UpperCAmelCase : List[str] = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
_UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 )
_UpperCAmelCase : int = 5_0
_UpperCAmelCase : Dict = jax.device_count()
_UpperCAmelCase : Dict = num_samples * [prompt]
_UpperCAmelCase : str = pipeline.prepare_inputs(lowerCAmelCase__ )
# shard inputs and rng
_UpperCAmelCase : Optional[int] = replicate(lowerCAmelCase__ )
_UpperCAmelCase : List[str] = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = shard(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images
assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3
assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 237_3516.75) ) < 5e-1
def _lowerCAmelCase ( self : Dict ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Dict = FlaxDDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , )
_UpperCAmelCase , _UpperCAmelCase : int = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , )
_UpperCAmelCase : Any = scheduler.create_state()
_UpperCAmelCase : Tuple = scheduler_state
_UpperCAmelCase : str = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
_UpperCAmelCase : Tuple = jax.random.PRNGKey(0 )
_UpperCAmelCase : Union[str, Any] = 5_0
_UpperCAmelCase : Optional[Any] = jax.device_count()
_UpperCAmelCase : int = num_samples * [prompt]
_UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(lowerCAmelCase__ )
# shard inputs and rng
_UpperCAmelCase : List[str] = replicate(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = shard(lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images
assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4504_3945) ) < 1e-3
assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 234_7693.5) ) < 5e-1
def _lowerCAmelCase ( self : List[Any] ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
_UpperCAmelCase : List[str] = jax.device_count()
_UpperCAmelCase : Optional[Any] = num_samples * [prompt]
_UpperCAmelCase : int = jax.random.split(jax.random.PRNGKey(0 ) , lowerCAmelCase__ )
_UpperCAmelCase , _UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase__ , )
_UpperCAmelCase : List[Any] = replicate(lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(lowerCAmelCase__ )
_UpperCAmelCase : Dict = shard(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images
assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3)
_UpperCAmelCase : Optional[Any] = images[2, 0, 2_5_6, 1_0:1_7, 1]
# With memory efficient attention
_UpperCAmelCase , _UpperCAmelCase : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase__ , use_memory_efficient_attention=lowerCAmelCase__ , )
_UpperCAmelCase : str = replicate(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = pipeline.prepare_inputs(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = shard(lowerCAmelCase__ )
_UpperCAmelCase : int = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images
assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3)
_UpperCAmelCase : str = images[2, 0, 2_5_6, 1_0:1_7, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice ).max() < 1e-2 | 17 | '''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
__a = logging.getLogger(__name__)
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : str = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , )
UpperCamelCase_ : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. If passed, sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={
'''help''': (
'''Whether to pad all samples to the maximum sentence length. '''
'''If False, will pad the samples dynamically when batching to the maximum length in the batch. More '''
'''efficient on GPU but very bad for TPU.'''
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def _lowerCAmelCase ( self : Any ) -> Any:
"""simple docstring"""
if self.train_file is not None:
_UpperCAmelCase : List[Any] = self.train_file.split("." )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
_UpperCAmelCase : List[str] = self.validation_file.split("." )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : PreTrainedTokenizerBase
UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True
UpperCamelCase_ : Optional[int] = None
UpperCamelCase_ : Optional[int] = None
def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels"
_UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features]
_UpperCAmelCase : str = len(lowerCAmelCase__ )
_UpperCAmelCase : int = len(features[0]["input_ids"] )
_UpperCAmelCase : str = [
[{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features
]
_UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) )
_UpperCAmelCase : Any = self.tokenizer.pad(
lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , )
# Un-flatten
_UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()}
# Add back labels
_UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa )
return batch
def __UpperCAmelCase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_swag", a_, a_ )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_UpperCAmelCase : Optional[int] = training_args.get_process_log_level()
logger.setLevel(a_ )
datasets.utils.logging.set_verbosity(a_ )
transformers.utils.logging.set_verbosity(a_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
_UpperCAmelCase : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
_UpperCAmelCase : Union[str, Any] = {}
if data_args.train_file is not None:
_UpperCAmelCase : str = data_args.train_file
if data_args.validation_file is not None:
_UpperCAmelCase : Optional[Any] = data_args.validation_file
_UpperCAmelCase : Dict = data_args.train_file.split("." )[-1]
_UpperCAmelCase : Optional[int] = load_dataset(
a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
else:
# Downloading and loading the swag dataset from the hub.
_UpperCAmelCase : Dict = load_dataset(
"swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCAmelCase : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
_UpperCAmelCase : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
_UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
_UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )]
_UpperCAmelCase : List[Any] = "sent1"
_UpperCAmelCase : Optional[int] = "sent2"
if data_args.max_seq_length is None:
_UpperCAmelCase : List[str] = tokenizer.model_max_length
if max_seq_length > 1_024:
logger.warning(
"The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
" override this default with `--block_size xxx`." )
_UpperCAmelCase : Dict = 1_024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
_UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(a_: Union[str, Any] ):
_UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]]
_UpperCAmelCase : Tuple = examples[question_header_name]
_UpperCAmelCase : Optional[Any] = [
[f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ )
]
# Flatten out
_UpperCAmelCase : List[str] = list(chain(*a_ ) )
_UpperCAmelCase : Dict = list(chain(*a_ ) )
# Tokenize
_UpperCAmelCase : List[Any] = tokenizer(
a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset" )
_UpperCAmelCase : int = raw_datasets["train"]
if data_args.max_train_samples is not None:
_UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples )
_UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) )
with training_args.main_process_first(desc="train dataset map pre-processing" ):
_UpperCAmelCase : Union[str, Any] = train_dataset.map(
a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset" )
_UpperCAmelCase : Dict = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
_UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples )
_UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) )
with training_args.main_process_first(desc="validation dataset map pre-processing" ):
_UpperCAmelCase : Optional[int] = eval_dataset.map(
a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, )
# Data collator
_UpperCAmelCase : Tuple = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(a_: Tuple ):
_UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions
_UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
_UpperCAmelCase : Any = Trainer(
model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, )
# Training
if training_args.do_train:
_UpperCAmelCase : Optional[Any] = None
if training_args.resume_from_checkpoint is not None:
_UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_UpperCAmelCase : List[str] = last_checkpoint
_UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ )
trainer.save_model() # Saves the tokenizer too for easy upload
_UpperCAmelCase : str = train_result.metrics
_UpperCAmelCase : List[str] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ )
)
_UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) )
trainer.log_metrics("train", a_ )
trainer.save_metrics("train", a_ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
_UpperCAmelCase : List[Any] = trainer.evaluate()
_UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ )
_UpperCAmelCase : Tuple = min(a_, len(a_ ) )
trainer.log_metrics("eval", a_ )
trainer.save_metrics("eval", a_ )
_UpperCAmelCase : int = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "multiple-choice",
"dataset_tags": "swag",
"dataset_args": "regular",
"dataset": "SWAG",
"language": "en",
}
if training_args.push_to_hub:
trainer.push_to_hub(**a_ )
else:
trainer.create_model_card(**a_ )
def __UpperCAmelCase ( a_: int ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main() | 17 | 1 |
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class A__ :
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=8 , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=9_9 , lowerCAmelCase__ : Any=1_6 , lowerCAmelCase__ : Union[str, Any]=5 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : List[str]=3_6 , lowerCAmelCase__ : Tuple="gelu" , lowerCAmelCase__ : Any=0.0 , lowerCAmelCase__ : List[str]=0.0 , lowerCAmelCase__ : Union[str, Any]=5_1_2 , lowerCAmelCase__ : Optional[Any]=1_6 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : int=None , ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : str = parent
_UpperCAmelCase : Union[str, Any] = batch_size
_UpperCAmelCase : Optional[int] = seq_length
_UpperCAmelCase : List[str] = is_training
_UpperCAmelCase : List[str] = use_input_mask
_UpperCAmelCase : Any = use_token_type_ids
_UpperCAmelCase : List[Any] = use_labels
_UpperCAmelCase : Union[str, Any] = vocab_size
_UpperCAmelCase : int = hidden_size
_UpperCAmelCase : Union[str, Any] = num_hidden_layers
_UpperCAmelCase : Optional[Any] = num_attention_heads
_UpperCAmelCase : Any = intermediate_size
_UpperCAmelCase : Optional[int] = hidden_act
_UpperCAmelCase : List[str] = hidden_dropout_prob
_UpperCAmelCase : int = attention_probs_dropout_prob
_UpperCAmelCase : Any = max_position_embeddings
_UpperCAmelCase : Tuple = type_vocab_size
_UpperCAmelCase : List[str] = type_sequence_label_size
_UpperCAmelCase : Any = initializer_range
_UpperCAmelCase : Any = num_labels
_UpperCAmelCase : List[Any] = num_choices
_UpperCAmelCase : Tuple = scope
def _lowerCAmelCase ( self : str ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase : List[Any] = None
if self.use_input_mask:
_UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : Any = None
if self.use_token_type_ids:
_UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCAmelCase : List[str] = None
_UpperCAmelCase : int = None
_UpperCAmelCase : str = None
if self.use_labels:
_UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices )
_UpperCAmelCase : Any = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , )
def _lowerCAmelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.get_config()
_UpperCAmelCase : Optional[int] = 3_0_0
return config
def _lowerCAmelCase ( self : List[str] ) -> str:
"""simple docstring"""
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) : List[str] = self.prepare_config_and_inputs()
_UpperCAmelCase : Union[str, Any] = True
_UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ) -> Any:
"""simple docstring"""
_UpperCAmelCase : int = MraModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : List[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = True
_UpperCAmelCase : Optional[Any] = MraModel(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Tuple = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , )
_UpperCAmelCase : Dict = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , )
_UpperCAmelCase : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : str = MraForMaskedLM(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Tuple = MraForQuestionAnswering(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Optional[Any] = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : int = self.num_labels
_UpperCAmelCase : Dict = MraForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str ) -> str:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.num_labels
_UpperCAmelCase : List[str] = MraForTokenClassification(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : str = self.num_choices
_UpperCAmelCase : Optional[Any] = MraForMultipleChoice(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCAmelCase : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCAmelCase : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCAmelCase : str = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _lowerCAmelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) : Union[str, Any] = config_and_inputs
_UpperCAmelCase : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[Any] = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
UpperCamelCase_ : Any = False
UpperCamelCase_ : Tuple = False
UpperCamelCase_ : str = False
UpperCamelCase_ : str = False
UpperCamelCase_ : Union[str, Any] = ()
def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : List[Any] = MraModelTester(self )
_UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 )
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_UpperCAmelCase : int = type
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Dict ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Any ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase : Union[str, Any] = MraModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@unittest.skip(reason="MRA does not output attentions" )
def _lowerCAmelCase ( self : Tuple ) -> List[Any]:
"""simple docstring"""
return
@require_torch
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : str = MraModel.from_pretrained("uw-madison/mra-base-512-4" )
_UpperCAmelCase : Optional[Any] = torch.arange(2_5_6 ).unsqueeze(0 )
with torch.no_grad():
_UpperCAmelCase : Tuple = model(lowerCAmelCase__ )[0]
_UpperCAmelCase : Union[str, Any] = torch.Size((1, 2_5_6, 7_6_8) )
self.assertEqual(output.shape , lowerCAmelCase__ )
_UpperCAmelCase : str = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) )
@slow
def _lowerCAmelCase ( self : Optional[Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" )
_UpperCAmelCase : Any = torch.arange(2_5_6 ).unsqueeze(0 )
with torch.no_grad():
_UpperCAmelCase : str = model(lowerCAmelCase__ )[0]
_UpperCAmelCase : Union[str, Any] = 5_0_2_6_5
_UpperCAmelCase : Any = torch.Size((1, 2_5_6, vocab_size) )
self.assertEqual(output.shape , lowerCAmelCase__ )
_UpperCAmelCase : Dict = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) )
@slow
def _lowerCAmelCase ( self : Any ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Tuple = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" )
_UpperCAmelCase : Dict = torch.arange(4_0_9_6 ).unsqueeze(0 )
with torch.no_grad():
_UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ )[0]
_UpperCAmelCase : Dict = 5_0_2_6_5
_UpperCAmelCase : List[str] = torch.Size((1, 4_0_9_6, vocab_size) )
self.assertEqual(output.shape , lowerCAmelCase__ )
_UpperCAmelCase : int = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) | 17 | '''simple docstring'''
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class A__ ( pl.LightningModule ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str:
"""simple docstring"""
super().__init__()
_UpperCAmelCase : List[str] = model
_UpperCAmelCase : Dict = 2
_UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels )
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
pass
def __UpperCAmelCase ( a_: str, a_: str, a_: str ):
# load longformer model from model identifier
_UpperCAmelCase : int = LongformerModel.from_pretrained(a_ )
_UpperCAmelCase : Any = LightningModel(a_ )
_UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) )
lightning_model.load_state_dict(ckpt["state_dict"] )
# init longformer question answering model
_UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ )
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() )
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() )
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(a_ )
print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--longformer_model',
default=None,
type=str,
required=True,
help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.',
)
parser.add_argument(
'--longformer_question_answering_ckpt_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch Lightning Checkpoint.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__a = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
) | 17 | 1 |
'''simple docstring'''
import cva
import numpy as np
class A__ :
"""simple docstring"""
def __init__( self : str , lowerCAmelCase__ : float , lowerCAmelCase__ : int ) -> List[str]:
"""simple docstring"""
if k in (0.04, 0.06):
_UpperCAmelCase : Optional[Any] = k
_UpperCAmelCase : str = window_size
else:
raise ValueError("invalid k value" )
def __str__( self : Dict ) -> str:
"""simple docstring"""
return str(self.k )
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : str ) -> tuple[cva.Mat, list[list[int]]]:
"""simple docstring"""
_UpperCAmelCase : str = cva.imread(lowerCAmelCase__ , 0 )
_UpperCAmelCase , _UpperCAmelCase : str = img.shape
_UpperCAmelCase : list[list[int]] = []
_UpperCAmelCase : int = img.copy()
_UpperCAmelCase : Dict = cva.cvtColor(lowerCAmelCase__ , cva.COLOR_GRAY2RGB )
_UpperCAmelCase , _UpperCAmelCase : Dict = np.gradient(lowerCAmelCase__ )
_UpperCAmelCase : List[str] = dx**2
_UpperCAmelCase : Any = dy**2
_UpperCAmelCase : Optional[Any] = dx * dy
_UpperCAmelCase : Dict = 0.04
_UpperCAmelCase : Optional[int] = self.window_size // 2
for y in range(lowerCAmelCase__ , h - offset ):
for x in range(lowerCAmelCase__ , w - offset ):
_UpperCAmelCase : str = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
_UpperCAmelCase : Optional[Any] = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
_UpperCAmelCase : List[str] = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
_UpperCAmelCase : str = (wxx * wyy) - (wxy**2)
_UpperCAmelCase : List[str] = wxx + wyy
_UpperCAmelCase : Any = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 2_5_5 )
return color_img, corner_list
if __name__ == "__main__":
__a = HarrisCorner(0.0_4, 3)
__a , __a = edge_detect.detect('path_to_image')
cva.imwrite('detect.png', color_img) | 17 | '''simple docstring'''
from importlib import import_module
from .logging import get_logger
__a = get_logger(__name__)
class A__ :
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Any = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith("__" ):
setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
_UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module
class A__ :
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = []
def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = obj
_UpperCAmelCase : int = target
_UpperCAmelCase : Optional[int] = new
_UpperCAmelCase : Any = target.split("." )[0]
_UpperCAmelCase : Optional[int] = {}
_UpperCAmelCase : Dict = attrs or []
def __enter__( self : List[str] ) -> int:
"""simple docstring"""
*_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(lowerCAmelCase__ ) ):
try:
_UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
_UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule)
):
_UpperCAmelCase : Tuple = obj_attr
# patch at top level
setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) )
_UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) )
_UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
# finally set the target attribute
setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
_UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj , lowerCAmelCase__ ) is attr_value:
_UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ )
setattr(self.obj , lowerCAmelCase__ , self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
_UpperCAmelCase : Dict = globals()["__builtins__"][target_attr]
setattr(self.obj , lowerCAmelCase__ , self.new )
else:
raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" )
def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for attr in list(self.original ):
setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
self.__enter__()
self._active_patches.append(self )
def _lowerCAmelCase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__() | 17 | 1 |
'''simple docstring'''
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
__a = logging.getLogger()
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("-f" )
_UpperCAmelCase : Optional[int] = parser.parse_args()
return args.f
class A__ ( UpperCamelCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : int ) -> None:
"""simple docstring"""
_UpperCAmelCase : Dict = logging.StreamHandler(sys.stdout )
logger.addHandler(lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : List[Any] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , "run_glue_deebert.py" )
with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ):
_UpperCAmelCase : Optional[int] = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(lowerCAmelCase__ , 0.666 )
@slow
@require_torch_non_multi_gpu
def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : int = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split()
self.run_and_check(lowerCAmelCase__ )
_UpperCAmelCase : str = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(lowerCAmelCase__ )
_UpperCAmelCase : List[str] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(lowerCAmelCase__ ) | 17 | '''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
__a = datasets.utils.logging.get_logger(__name__)
__a = ['names', 'prefix']
__a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
__a = ['encoding_errors', 'on_bad_lines']
__a = ['date_format']
@dataclass
class A__ ( datasets.BuilderConfig ):
"""simple docstring"""
UpperCamelCase_ : str = ","
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer"
UpperCamelCase_ : Optional[List[str]] = None
UpperCamelCase_ : Optional[List[str]] = None
UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None
UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None
UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None
UpperCamelCase_ : Optional[list] = None
UpperCamelCase_ : Optional[list] = None
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[Union[int, List[int]]] = None
UpperCamelCase_ : Optional[int] = None
UpperCamelCase_ : Optional[Union[str, List[str]]] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = False
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : str = "."
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : str = '"'
UpperCamelCase_ : int = 0
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = True
UpperCamelCase_ : int = 0
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : int = 1_00_00
UpperCamelCase_ : Optional[datasets.Features] = None
UpperCamelCase_ : Optional[str] = "strict"
UpperCamelCase_ : Literal["error", "warn", "skip"] = "error"
UpperCamelCase_ : Optional[str] = None
def _lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
if self.delimiter is not None:
_UpperCAmelCase : Any = self.delimiter
if self.column_names is not None:
_UpperCAmelCase : List[Any] = self.column_names
@property
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Dict = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class A__ ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
UpperCamelCase_ : int = CsvConfig
def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
_UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCAmelCase__ , (str, list, tuple) ):
_UpperCAmelCase : int = data_files
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : Any = [files]
_UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
_UpperCAmelCase : Optional[Any] = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : str = [files]
_UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) )
return splits
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
_UpperCAmelCase : Tuple = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
_UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
_UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ )
return pa_table
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
_UpperCAmelCase : Optional[Any] = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ):
_UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(lowerCAmelCase__ ):
_UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" )
raise | 17 | 1 |
'''simple docstring'''
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
__a = logging.getLogger()
@unittest.skip('''Temporarily disable the doc tests.''' )
@require_torch
@require_tf
@slow
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Path , lowerCAmelCase__ : Union[str, None] = None , lowerCAmelCase__ : Union[List[str], None] = None , lowerCAmelCase__ : Union[str, List[str], None] = None , lowerCAmelCase__ : bool = True , ) -> str:
"""simple docstring"""
_UpperCAmelCase : str = [file for file in os.listdir(lowerCAmelCase__ ) if os.path.isfile(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) )]
if identifier is not None:
_UpperCAmelCase : Dict = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
for n_ in n_identifier:
_UpperCAmelCase : int = [file for file in files if n_ not in file]
else:
_UpperCAmelCase : str = [file for file in files if n_identifier not in file]
_UpperCAmelCase : int = ignore_files or []
ignore_files.append("__init__.py" )
_UpperCAmelCase : Any = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("Testing" , lowerCAmelCase__ )
if only_modules:
_UpperCAmelCase : Optional[Any] = file.split("." )[0]
try:
_UpperCAmelCase : List[str] = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Dict = doctest.DocTestSuite(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = unittest.TextTestRunner().run(lowerCAmelCase__ )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(F"""{module_identifier} is not a module.""" )
else:
_UpperCAmelCase : Union[str, Any] = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def _lowerCAmelCase ( self : int ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = Path("src/transformers" )
_UpperCAmelCase : Union[str, Any] = "modeling"
_UpperCAmelCase : List[Any] = [
"modeling_ctrl.py",
"modeling_tf_ctrl.py",
]
self.analyze_directory(lowerCAmelCase__ , identifier=lowerCAmelCase__ , ignore_files=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Dict = Path("src/transformers" )
_UpperCAmelCase : Optional[Any] = "tokenization"
self.analyze_directory(lowerCAmelCase__ , identifier=lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Any = Path("src/transformers" )
_UpperCAmelCase : int = "configuration"
self.analyze_directory(lowerCAmelCase__ , identifier=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : int = Path("src/transformers" )
_UpperCAmelCase : List[str] = ["configuration", "modeling", "tokenization"]
self.analyze_directory(lowerCAmelCase__ , n_identifier=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = Path("docs/source" )
_UpperCAmelCase : Any = ["favicon.ico"]
self.analyze_directory(lowerCAmelCase__ , ignore_files=lowerCAmelCase__ , only_modules=lowerCAmelCase__ ) | 17 | '''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( a_: list[int] ):
if not nums:
return 0
_UpperCAmelCase : int = nums[0]
_UpperCAmelCase : Dict = 0
for num in nums[1:]:
_UpperCAmelCase , _UpperCAmelCase : Any = (
max_excluding + num,
max(a_, a_ ),
)
return max(a_, a_ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 1 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__a = logging.get_logger(__name__)
def __UpperCAmelCase ( a_: List[str], a_: Any=False ):
_UpperCAmelCase : Optional[int] = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith("head" ):
_UpperCAmelCase : List[str] = "segformer.encoder." + key
if key.startswith("backbone" ):
_UpperCAmelCase : int = key.replace("backbone", "segformer.encoder" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_UpperCAmelCase : List[Any] = key[key.find("patch_embed" ) + len("patch_embed" )]
_UpperCAmelCase : int = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" )
if "norm" in key:
_UpperCAmelCase : str = key.replace("norm", "layer_norm" )
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_UpperCAmelCase : Dict = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )]
_UpperCAmelCase : Optional[int] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" )
if "layer_norm1" in key:
_UpperCAmelCase : Tuple = key.replace("layer_norm1", "layer_norm_1" )
if "layer_norm2" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("layer_norm2", "layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
_UpperCAmelCase : Union[str, Any] = key[key.find("block" ) + len("block" )]
_UpperCAmelCase : Union[str, Any] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" )
if "attn.q" in key:
_UpperCAmelCase : List[Any] = key.replace("attn.q", "attention.self.query" )
if "attn.proj" in key:
_UpperCAmelCase : str = key.replace("attn.proj", "attention.output.dense" )
if "attn" in key:
_UpperCAmelCase : List[str] = key.replace("attn", "attention.self" )
if "fc1" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("fc1", "dense1" )
if "fc2" in key:
_UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" )
if "linear_pred" in key:
_UpperCAmelCase : int = key.replace("linear_pred", "classifier" )
if "linear_fuse" in key:
_UpperCAmelCase : List[Any] = key.replace("linear_fuse.conv", "linear_fuse" )
_UpperCAmelCase : str = key.replace("linear_fuse.bn", "batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_UpperCAmelCase : Any = key[key.find("linear_c" ) + len("linear_c" )]
_UpperCAmelCase : Union[str, Any] = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" )
if key.startswith("head" ):
_UpperCAmelCase : Union[str, Any] = key.replace("head", "classifier" )
_UpperCAmelCase : int = value
return new_state_dict
def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any] ):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_UpperCAmelCase : Optional[Any] = state_dict.pop(f"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" )
_UpperCAmelCase : Optional[int] = state_dict.pop(f"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
_UpperCAmelCase : int = kv_weight[
: config.hidden_sizes[i], :
]
_UpperCAmelCase : int = kv_bias[: config.hidden_sizes[i]]
_UpperCAmelCase : Tuple = kv_weight[
config.hidden_sizes[i] :, :
]
_UpperCAmelCase : Optional[int] = kv_bias[
config.hidden_sizes[i] :
]
def __UpperCAmelCase ( ):
_UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg"
_UpperCAmelCase : Optional[int] = Image.open(requests.get(a_, stream=a_ ).raw )
return image
@torch.no_grad()
def __UpperCAmelCase ( a_: Tuple, a_: Dict, a_: List[str] ):
_UpperCAmelCase : Optional[Any] = SegformerConfig()
_UpperCAmelCase : Tuple = False
# set attributes based on model_name
_UpperCAmelCase : Optional[int] = "huggingface/label-files"
if "segformer" in model_name:
_UpperCAmelCase : List[Any] = model_name[len("segformer." ) : len("segformer." ) + 2]
if "ade" in model_name:
_UpperCAmelCase : Union[str, Any] = 150
_UpperCAmelCase : List[str] = "ade20k-id2label.json"
_UpperCAmelCase : Any = (1, 150, 128, 128)
elif "city" in model_name:
_UpperCAmelCase : Any = 19
_UpperCAmelCase : Optional[int] = "cityscapes-id2label.json"
_UpperCAmelCase : Tuple = (1, 19, 128, 128)
else:
raise ValueError(f"""Model {model_name} not supported""" )
elif "mit" in model_name:
_UpperCAmelCase : Dict = True
_UpperCAmelCase : str = model_name[4:6]
_UpperCAmelCase : str = 1_000
_UpperCAmelCase : List[str] = "imagenet-1k-id2label.json"
_UpperCAmelCase : int = (1, 1_000)
else:
raise ValueError(f"""Model {model_name} not supported""" )
# set config attributes
_UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(a_, a_, repo_type="dataset" ), "r" ) )
_UpperCAmelCase : List[str] = {int(a_ ): v for k, v in idalabel.items()}
_UpperCAmelCase : str = idalabel
_UpperCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
_UpperCAmelCase : Union[str, Any] = [64, 128, 320, 512]
_UpperCAmelCase : List[str] = 256
elif size == "b2":
_UpperCAmelCase : List[Any] = [64, 128, 320, 512]
_UpperCAmelCase : Union[str, Any] = 768
_UpperCAmelCase : int = [3, 4, 6, 3]
elif size == "b3":
_UpperCAmelCase : Optional[int] = [64, 128, 320, 512]
_UpperCAmelCase : str = 768
_UpperCAmelCase : Tuple = [3, 4, 18, 3]
elif size == "b4":
_UpperCAmelCase : Dict = [64, 128, 320, 512]
_UpperCAmelCase : str = 768
_UpperCAmelCase : int = [3, 8, 27, 3]
elif size == "b5":
_UpperCAmelCase : Tuple = [64, 128, 320, 512]
_UpperCAmelCase : Dict = 768
_UpperCAmelCase : Optional[int] = [3, 6, 40, 3]
else:
raise ValueError(f"""Size {size} not supported""" )
# load image processor (only resize + normalize)
_UpperCAmelCase : Union[str, Any] = SegformerImageProcessor(
image_scale=(512, 512), keep_ratio=a_, align=a_, do_random_crop=a_ )
# prepare image
_UpperCAmelCase : Optional[Any] = prepare_img()
_UpperCAmelCase : str = image_processor(images=a_, return_tensors="pt" ).pixel_values
logger.info(f"""Converting model {model_name}...""" )
# load original state dict
if encoder_only:
_UpperCAmelCase : Tuple = torch.load(a_, map_location=torch.device("cpu" ) )
else:
_UpperCAmelCase : Optional[Any] = torch.load(a_, map_location=torch.device("cpu" ) )["state_dict"]
# rename keys
_UpperCAmelCase : str = rename_keys(a_, encoder_only=a_ )
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(a_, a_ )
# create HuggingFace model and load state dict
if encoder_only:
_UpperCAmelCase : int = False
_UpperCAmelCase : Dict = SegformerForImageClassification(a_ )
else:
_UpperCAmelCase : Optional[int] = SegformerForSemanticSegmentation(a_ )
model.load_state_dict(a_ )
model.eval()
# forward pass
_UpperCAmelCase : Optional[Any] = model(a_ )
_UpperCAmelCase : int = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
_UpperCAmelCase : Optional[Any] = torch.tensor(
[
[[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]],
[[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]],
[[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]],
] )
elif model_name == "segformer.b1.512x512.ade.160k":
_UpperCAmelCase : Tuple = torch.tensor(
[
[[-7.58_20, -8.72_31, -8.32_15], [-8.06_00, -10.35_29, -10.03_04], [-7.52_08, -9.41_03, -9.62_39]],
[[-12.69_18, -13.89_94, -13.71_37], [-13.31_96, -15.75_23, -15.47_89], [-12.93_43, -14.87_57, -14.96_89]],
[[-11.19_11, -11.94_21, -11.32_43], [-11.33_42, -13.68_39, -13.35_81], [-10.39_09, -12.18_32, -12.48_58]],
] )
elif model_name == "segformer.b2.512x512.ade.160k":
_UpperCAmelCase : int = torch.tensor(
[
[[-11.81_73, -14.38_50, -16.31_28], [-14.56_48, -16.58_04, -18.65_68], [-14.72_23, -15.73_87, -18.42_18]],
[[-15.72_90, -17.91_71, -19.44_23], [-18.31_05, -19.94_48, -21.46_61], [-17.92_96, -18.64_97, -20.79_10]],
[[-15.07_83, -17.03_36, -18.27_89], [-16.87_71, -18.68_70, -20.16_12], [-16.24_54, -17.14_26, -19.50_55]],
] )
elif model_name == "segformer.b3.512x512.ade.160k":
_UpperCAmelCase : Union[str, Any] = torch.tensor(
[
[[-9.08_78, -10.20_81, -10.18_91], [-9.31_44, -10.79_41, -10.98_43], [-9.22_94, -10.38_55, -10.57_04]],
[[-12.23_16, -13.90_68, -13.61_02], [-12.91_61, -14.37_02, -14.32_35], [-12.52_33, -13.71_74, -13.79_32]],
[[-14.62_75, -15.24_90, -14.97_27], [-14.34_00, -15.96_87, -16.28_27], [-14.14_84, -15.40_33, -15.89_37]],
] )
elif model_name == "segformer.b4.512x512.ade.160k":
_UpperCAmelCase : int = torch.tensor(
[
[[-12.31_44, -13.24_47, -14.08_02], [-13.36_14, -14.58_16, -15.61_17], [-13.33_40, -14.44_33, -16.22_19]],
[[-19.27_81, -20.41_28, -20.75_06], [-20.61_53, -21.65_66, -22.09_98], [-19.98_00, -21.04_30, -22.14_94]],
[[-18.87_39, -19.78_04, -21.18_34], [-20.12_33, -21.67_65, -23.29_44], [-20.03_15, -21.26_41, -23.69_44]],
] )
elif model_name == "segformer.b5.640x640.ade.160k":
_UpperCAmelCase : List[Any] = torch.tensor(
[
[[-9.55_24, -12.08_35, -11.73_48], [-10.52_29, -13.64_46, -14.56_62], [-9.58_42, -12.88_51, -13.94_14]],
[[-15.34_32, -17.53_23, -17.08_18], [-16.33_30, -18.92_55, -19.21_01], [-15.13_40, -17.78_48, -18.39_71]],
[[-12.60_72, -14.94_86, -14.66_31], [-13.76_29, -17.09_07, -17.77_45], [-12.78_99, -16.16_95, -17.16_71]],
] )
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
_UpperCAmelCase : Optional[int] = torch.tensor(
[
[[-11.92_95, -13.40_57, -14.81_06], [-13.34_31, -14.81_79, -15.37_81], [-14.28_36, -15.59_42, -16.15_88]],
[[-11.49_06, -12.80_67, -13.65_64], [-13.11_89, -14.05_00, -14.15_43], [-13.87_48, -14.51_36, -14.87_89]],
[[0.53_74, 0.10_67, -0.47_42], [0.11_41, -0.22_55, -0.70_99], [-0.30_00, -0.59_24, -1.31_05]],
] )
elif model_name == "segformer.b0.512x1024.city.160k":
_UpperCAmelCase : Any = torch.tensor(
[
[[-7.82_17, -9.87_67, -10.17_17], [-9.44_38, -10.90_58, -11.40_47], [-9.79_39, -12.34_95, -12.10_79]],
[[-7.15_14, -9.53_36, -10.08_60], [-9.77_76, -11.68_22, -11.84_39], [-10.14_11, -12.76_55, -12.89_72]],
[[0.30_21, 0.08_05, -0.23_10], [-0.03_28, -0.16_05, -0.27_14], [-0.14_08, -0.54_77, -0.69_76]],
] )
elif model_name == "segformer.b0.640x1280.city.160k":
_UpperCAmelCase : List[str] = torch.tensor(
[
[
[-1.1_3_7_2e0_1, -1.2_7_8_7e0_1, -1.3_4_7_7e0_1],
[-1.2_5_3_6e0_1, -1.4_1_9_4e0_1, -1.4_4_0_9e0_1],
[-1.3_2_1_7e0_1, -1.4_8_8_8e0_1, -1.5_3_2_7e0_1],
],
[
[-1.4_7_9_1e0_1, -1.7_1_2_2e0_1, -1.8_2_7_7e0_1],
[-1.7_1_6_3e0_1, -1.9_1_9_2e0_1, -1.9_5_3_3e0_1],
[-1.7_8_9_7e0_1, -1.9_9_9_1e0_1, -2.0_3_1_5e0_1],
],
[
[7.6_7_2_3e-0_1, 4.1_9_2_1e-0_1, -7.7_8_7_8e-0_2],
[4.7_7_7_2e-0_1, 9.5_5_5_7e-0_3, -2.8_0_8_2e-0_1],
[3.6_0_3_2e-0_1, -2.4_8_2_6e-0_1, -5.1_1_6_8e-0_1],
],
] )
elif model_name == "segformer.b0.768x768.city.160k":
_UpperCAmelCase : str = torch.tensor(
[
[[-9.49_59, -11.30_87, -11.74_79], [-11.00_25, -12.65_40, -12.33_19], [-11.40_64, -13.04_87, -12.99_05]],
[[-9.89_05, -11.30_84, -12.08_54], [-11.17_26, -12.76_98, -12.95_83], [-11.59_85, -13.32_78, -14.17_74]],
[[0.22_13, 0.01_92, -0.24_66], [-0.17_31, -0.42_13, -0.48_74], [-0.31_26, -0.65_41, -1.13_89]],
] )
elif model_name == "segformer.b1.1024x1024.city.160k":
_UpperCAmelCase : Dict = torch.tensor(
[
[[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]],
[[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]],
[[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]],
] )
elif model_name == "segformer.b2.1024x1024.city.160k":
_UpperCAmelCase : Union[str, Any] = torch.tensor(
[
[[-16.09_76, -16.48_56, -17.39_62], [-16.62_34, -19.03_42, -19.76_85], [-16.09_00, -18.06_61, -19.11_80]],
[[-18.47_50, -18.84_88, -19.50_74], [-19.40_30, -22.15_70, -22.59_77], [-19.11_91, -20.84_86, -22.37_83]],
[[-4.51_78, -5.50_37, -6.51_09], [-5.08_84, -7.21_74, -8.03_34], [-4.41_56, -5.81_17, -7.29_70]],
] )
elif model_name == "segformer.b3.1024x1024.city.160k":
_UpperCAmelCase : int = torch.tensor(
[
[[-14.20_81, -14.47_32, -14.19_77], [-14.58_67, -16.44_23, -16.63_56], [-13.44_41, -14.96_85, -16.86_96]],
[[-14.45_76, -14.70_73, -15.04_51], [-15.08_16, -17.62_37, -17.98_73], [-14.42_13, -16.01_99, -18.59_92]],
[[-4.73_49, -4.95_88, -5.09_66], [-4.32_10, -6.93_25, -7.25_91], [-3.43_12, -4.74_84, -7.19_17]],
] )
elif model_name == "segformer.b4.1024x1024.city.160k":
_UpperCAmelCase : List[Any] = torch.tensor(
[
[[-11.77_37, -11.95_26, -11.32_73], [-13.66_92, -14.45_74, -13.88_78], [-13.89_37, -14.69_24, -15.93_45]],
[[-14.67_06, -14.53_30, -14.13_06], [-16.15_02, -16.81_80, -16.42_69], [-16.83_38, -17.89_39, -20.17_46]],
[[1.04_91, 0.82_89, 1.03_10], [1.10_44, 0.52_19, 0.80_55], [1.08_99, 0.69_26, 0.55_90]],
] )
elif model_name == "segformer.b5.1024x1024.city.160k":
_UpperCAmelCase : List[str] = torch.tensor(
[
[[-12.56_41, -13.47_77, -13.06_84], [-13.95_87, -15.89_83, -16.65_57], [-13.31_09, -15.73_50, -16.31_41]],
[[-14.70_74, -15.43_52, -14.59_44], [-16.63_53, -18.16_63, -18.61_20], [-15.17_02, -18.03_29, -18.15_47]],
[[-1.79_90, -2.09_51, -1.77_84], [-2.63_97, -3.82_45, -3.96_86], [-1.52_64, -2.81_26, -2.93_16]],
] )
else:
_UpperCAmelCase : List[Any] = logits.argmax(-1 ).item()
print("Predicted class:", model.config.idalabel[predicted_class_idx] )
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3], a_, atol=1e-2 )
# finally, save model and image processor
logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(a_ ).mkdir(exist_ok=a_ )
model.save_pretrained(a_ )
image_processor.save_pretrained(a_ )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='segformer.b0.512x512.ade.160k',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
__a = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path) | 17 | '''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a = logging.get_logger(__name__)
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if key.startswith("module.encoder" ):
_UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" )
if key.startswith("module.decoder" ):
_UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )]
_UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" )
if "norm" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )]
_UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" )
if "layer_norm1" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" )
if "layer_norm2" in key:
_UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
_UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )]
_UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" )
if "attn.q" in key:
_UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" )
if "attn.proj" in key:
_UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" )
if "attn" in key:
_UpperCAmelCase : Dict = key.replace("attn", "attention.self" )
if "fc1" in key:
_UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" )
if "fc2" in key:
_UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" )
if "linear_pred" in key:
_UpperCAmelCase : Any = key.replace("linear_pred", "classifier" )
if "linear_fuse" in key:
_UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" )
_UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )]
_UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" )
if "bot_conv" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" )
if "skip_conv1" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" )
if "skip_conv2" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" )
if "fusion1" in key:
_UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" )
if "fusion2" in key:
_UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" )
if "fusion3" in key:
_UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" )
if "fusion" in key and "conv" in key:
_UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" )
if key.startswith("module.last_layer_depth" ):
_UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" )
_UpperCAmelCase : int = value
return new_state_dict
def __UpperCAmelCase ( a_: str, a_: List[Any] ):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" )
_UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
_UpperCAmelCase : Optional[int] = kv_weight[
: config.hidden_sizes[i], :
]
_UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]]
_UpperCAmelCase : Optional[int] = kv_weight[
config.hidden_sizes[i] :, :
]
_UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :]
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw )
return image
@torch.no_grad()
def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ):
_UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
_UpperCAmelCase : Dict = GLPNImageProcessor()
# prepare image
_UpperCAmelCase : List[Any] = prepare_img()
_UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values
logger.info("Converting model..." )
# load original state dict
_UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) )
# rename keys
_UpperCAmelCase : List[str] = rename_keys(a_ )
# key and value matrices need special treatment
read_in_k_v(a_, a_ )
# create HuggingFace model and load state dict
_UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ )
model.load_state_dict(a_ )
model.eval()
# forward pass
_UpperCAmelCase : Dict = model(a_ )
_UpperCAmelCase : List[str] = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
_UpperCAmelCase : Optional[Any] = torch.tensor(
[[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] )
elif "kitti" in model_name:
_UpperCAmelCase : Tuple = torch.tensor(
[[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] )
else:
raise ValueError(f"""Unknown model name: {model_name}""" )
_UpperCAmelCase : Dict = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 )
print("Looks ok!" )
# finally, push to hub if required
if push_to_hub:
logger.info("Pushing model and image processor to the hub..." )
model.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, )
image_processor.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path',
default=None,
type=str,
help='Path to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.'
)
parser.add_argument(
'--model_name',
default='glpn-kitti',
type=str,
help='Name of the model in case you\'re pushing to the hub.',
)
__a = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name) | 17 | 1 |
'''simple docstring'''
import os
import unittest
from huggingface_hub.utils import are_progress_bars_disabled
import transformers.models.bart.tokenization_bart
from transformers import logging
from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context
from transformers.utils.logging import disable_progress_bar, enable_progress_bar
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
_UpperCAmelCase : Dict = logging.get_logger()
# the current default level is logging.WARNING
_UpperCAmelCase : Dict = logging.get_verbosity()
logging.set_verbosity_error()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_warning()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_info()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_debug()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
# restore to the original level
logging.set_verbosity(lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[Any] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Any = logging.get_verbosity()
_UpperCAmelCase : str = logging.get_logger("transformers.models.bart.tokenization_bart" )
_UpperCAmelCase : str = "Testing 1, 2, 3"
# should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`)
if level_origin <= logging.WARNING:
with CaptureLogger(lowerCAmelCase__ ) as cl:
logger.warning(lowerCAmelCase__ )
self.assertEqual(cl.out , msg + "\n" )
# this is setting the level for all of `transformers.*` loggers
logging.set_verbosity_error()
# should not be able to log warnings
with CaptureLogger(lowerCAmelCase__ ) as cl:
logger.warning(lowerCAmelCase__ )
self.assertEqual(cl.out , "" )
# should be able to log warnings again
logging.set_verbosity_warning()
with CaptureLogger(lowerCAmelCase__ ) as cl:
logger.warning(lowerCAmelCase__ )
self.assertEqual(cl.out , msg + "\n" )
# restore to the original level
logging.set_verbosity(lowerCAmelCase__ )
@mockenv(TRANSFORMERS_VERBOSITY="error" )
def _lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
transformers.utils.logging._reset_library_root_logger()
# this action activates the env var
_UpperCAmelCase : Tuple = logging.get_logger("transformers.models.bart.tokenization_bart" )
_UpperCAmelCase : Union[str, Any] = os.getenv("TRANSFORMERS_VERBOSITY" , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = logging.log_levels[env_level_str]
_UpperCAmelCase : Optional[int] = logging.get_verbosity()
self.assertEqual(
lowerCAmelCase__ , lowerCAmelCase__ , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , )
# restore to the original level
_UpperCAmelCase : Optional[Any] = ""
transformers.utils.logging._reset_library_root_logger()
@mockenv(TRANSFORMERS_VERBOSITY="super-error" )
def _lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
transformers.utils.logging._reset_library_root_logger()
_UpperCAmelCase : Tuple = logging.logging.getLogger()
with CaptureLogger(lowerCAmelCase__ ) as cl:
# this action activates the env var
logging.get_logger("transformers.models.bart.tokenization_bart" )
self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error" , cl.out )
# no need to restore as nothing was changed
def _lowerCAmelCase ( self : str ) -> Optional[int]:
"""simple docstring"""
transformers.utils.logging._reset_library_root_logger()
_UpperCAmelCase : int = logging.get_logger("transformers.models.bart.tokenization_bart" )
_UpperCAmelCase : Optional[Any] = "Testing 1, 2, 3"
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1" ):
# nothing should be logged as env var disables this method
with CaptureLogger(lowerCAmelCase__ ) as cl:
logger.warning_advice(lowerCAmelCase__ )
self.assertEqual(cl.out , "" )
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="" ):
# should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset
with CaptureLogger(lowerCAmelCase__ ) as cl:
logger.warning_advice(lowerCAmelCase__ )
self.assertEqual(cl.out , msg + "\n" )
def __UpperCAmelCase ( ):
disable_progress_bar()
assert are_progress_bars_disabled()
enable_progress_bar()
assert not are_progress_bars_disabled() | 17 | '''simple docstring'''
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[Any] = 10
_UpperCAmelCase : int = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string" ) ),
"labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ),
"answers": datasets.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
"id": datasets.Value("int64" ),
} )
_UpperCAmelCase : List[str] = datasets.Dataset.from_dict(
{
"tokens": [["foo"] * 5] * n,
"labels": [[1] * 5] * n,
"answers": [{"answer_start": [97], "text": ["1976"]}] * 10,
"id": list(range(a_ ) ),
}, features=a_, )
return dataset
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" )
dataset.map(cache_file_name=a_ )
return filename
# FILE_CONTENT + files
__a = '\\n Text data.\n Second line of data.'
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt"
_UpperCAmelCase : Tuple = FILE_CONTENT
with open(a_, "w" ) as f:
f.write(a_ )
return filename
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2"
_UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" )
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import gzip
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" )
_UpperCAmelCase : Any = bytes(a_, "utf-8" )
with gzip.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
if datasets.config.LZ4_AVAILABLE:
import lza.frame
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4"
_UpperCAmelCase : str = bytes(a_, "utf-8" )
with lza.frame.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Any ):
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z"
with pyazr.SevenZipFile(a_, "w" ) as archive:
archive.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: List[str] ):
import tarfile
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
import lzma
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz"
_UpperCAmelCase : List[str] = bytes(a_, "utf-8" )
with lzma.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: Tuple ):
import zipfile
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst"
_UpperCAmelCase : int = bytes(a_, "utf-8" )
with zstd.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
_UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml"
_UpperCAmelCase : Tuple = textwrap.dedent(
"\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" )
with open(a_, "w" ) as f:
f.write(a_ )
return filename
__a = [
{'col_1': '0', 'col_2': 0, 'col_3': 0.0},
{'col_1': '1', 'col_2': 1, 'col_3': 1.0},
{'col_1': '2', 'col_2': 2, 'col_3': 2.0},
{'col_1': '3', 'col_2': 3, 'col_3': 3.0},
]
__a = [
{'col_1': '4', 'col_2': 4, 'col_3': 4.0},
{'col_1': '5', 'col_2': 5, 'col_3': 5.0},
]
__a = {
'col_1': ['0', '1', '2', '3'],
'col_2': [0, 1, 2, 3],
'col_3': [0.0, 1.0, 2.0, 3.0],
}
__a = [
{'col_3': 0.0, 'col_1': '0', 'col_2': 0},
{'col_3': 1.0, 'col_1': '1', 'col_2': 1},
]
__a = [
{'col_1': 's0', 'col_2': 0, 'col_3': 0.0},
{'col_1': 's1', 'col_2': 1, 'col_3': 1.0},
{'col_1': 's2', 'col_2': 2, 'col_3': 2.0},
{'col_1': 's3', 'col_2': 3, 'col_3': 3.0},
]
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : str = datasets.Dataset.from_dict(a_ )
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" )
dataset.map(cache_file_name=a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" )
with contextlib.closing(sqlitea.connect(a_ ) ) as con:
_UpperCAmelCase : List[Any] = con.cursor()
cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" )
for item in DATA:
cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str, a_: str ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2"
with open(a_, "rb" ) as f:
_UpperCAmelCase : Any = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ):
_UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) )
f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ):
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" )
_UpperCAmelCase : Dict = pa.schema(
{
"col_1": pa.string(),
"col_2": pa.intaa(),
"col_3": pa.floataa(),
} )
with open(a_, "wb" ) as f:
_UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ )
_UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ )
writer.write_table(a_ )
writer.close()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : str = {"data": DATA}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_312:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_STR:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ):
import gzip
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ):
import gzip
_UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ):
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : List[str] = ["0", "1", "2", "3"]
_UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Dict = ["0", "1", "2", "3"]
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = ["0", "1", "2", "3"]
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc"
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename("unsupported.ext" ) )
f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] )
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" )
with open(a_, "w", encoding="utf-8" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_image_rgb.jpg" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_audio_44100.wav" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Optional[Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" )
(data_dir / "subdir").mkdir()
with open(data_dir / "subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / "subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden file
with open(data_dir / "subdir" / ".test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / ".subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / ".subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
return data_dir | 17 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json',
'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json',
'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json',
'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json',
'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json',
'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json',
'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json',
'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json',
'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json',
'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json',
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[Any] = '''rwkv'''
UpperCamelCase_ : Tuple = {'''max_position_embeddings''': '''context_length'''}
def __init__( self : Union[str, Any] , lowerCAmelCase__ : List[str]=5_0_2_7_7 , lowerCAmelCase__ : Optional[int]=1_0_2_4 , lowerCAmelCase__ : Any=4_0_9_6 , lowerCAmelCase__ : Dict=3_2 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Dict=1e-5 , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : List[str]=0 , lowerCAmelCase__ : int=6 , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : List[str]=True , **lowerCAmelCase__ : int , ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Dict = vocab_size
_UpperCAmelCase : Optional[int] = context_length
_UpperCAmelCase : str = hidden_size
_UpperCAmelCase : Dict = num_hidden_layers
_UpperCAmelCase : Union[str, Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size
_UpperCAmelCase : str = intermediate_size if intermediate_size is not None else 4 * hidden_size
_UpperCAmelCase : Union[str, Any] = layer_norm_epsilon
_UpperCAmelCase : str = rescale_every
_UpperCAmelCase : Optional[Any] = use_cache
_UpperCAmelCase : List[str] = bos_token_id
_UpperCAmelCase : Union[str, Any] = eos_token_id
super().__init__(
tie_word_embeddings=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) | 17 | '''simple docstring'''
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = BarthezTokenizer
UpperCamelCase_ : List[Any] = BarthezTokenizerFast
UpperCamelCase_ : Optional[int] = True
UpperCamelCase_ : Optional[int] = True
def _lowerCAmelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
super().setUp()
_UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer
def _lowerCAmelCase ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = "<pad>"
_UpperCAmelCase : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 )
@require_torch
def _lowerCAmelCase ( self : Any ) -> int:
"""simple docstring"""
_UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."]
_UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2]
_UpperCAmelCase : int = self.tokenizer(
lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
_UpperCAmelCase : str = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
_UpperCAmelCase : Optional[int] = self.get_tokenizer()
_UpperCAmelCase : Optional[int] = self.get_rust_tokenizer()
_UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé."
_UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer()
_UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
_UpperCAmelCase : Tuple = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , ) | 17 | 1 |
'''simple docstring'''
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class A__ ( ctypes.Structure ):
"""simple docstring"""
UpperCamelCase_ : str = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)]
def __UpperCAmelCase ( ):
if os.name == "nt":
_UpperCAmelCase : Dict = CursorInfo()
_UpperCAmelCase : Union[str, Any] = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(a_, ctypes.byref(a_ ) )
_UpperCAmelCase : str = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(a_, ctypes.byref(a_ ) )
elif os.name == "posix":
sys.stdout.write("\033[?25l" )
sys.stdout.flush()
def __UpperCAmelCase ( ):
if os.name == "nt":
_UpperCAmelCase : Tuple = CursorInfo()
_UpperCAmelCase : Union[str, Any] = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(a_, ctypes.byref(a_ ) )
_UpperCAmelCase : int = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(a_, ctypes.byref(a_ ) )
elif os.name == "posix":
sys.stdout.write("\033[?25h" )
sys.stdout.flush()
@contextmanager
def __UpperCAmelCase ( ):
try:
hide_cursor()
yield
finally:
show_cursor() | 17 | '''simple docstring'''
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
__a = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class A__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0}
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : Tuple = batch_size
_UpperCAmelCase : str = num_channels
_UpperCAmelCase : Optional[Any] = image_size
_UpperCAmelCase : Dict = min_resolution
_UpperCAmelCase : str = max_resolution
_UpperCAmelCase : List[Any] = size
_UpperCAmelCase : Union[str, Any] = do_normalize
_UpperCAmelCase : Optional[Any] = do_convert_rgb
_UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6]
_UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6}
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def _lowerCAmelCase ( self : Any ) -> str:
"""simple docstring"""
_UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
_UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self )
@property
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image()
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
_UpperCAmelCase : str = 2_0_4_8
_UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) )
def _lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : Union[str, Any] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
_UpperCAmelCase : str = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(lowerCAmelCase__ ):
_UpperCAmelCase : str = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
_UpperCAmelCase : Any = "Hello"
_UpperCAmelCase : Optional[int] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : List[Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
_UpperCAmelCase : Any = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : int = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Union[str, Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : int ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 )
_UpperCAmelCase : List[Any] = 3
@property
def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : str = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Any = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Tuple = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) | 17 | 1 |
'''simple docstring'''
import pytest
__a = '__dummy_dataset1__'
__a = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n'
@pytest.fixture
def __UpperCAmelCase ( ):
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def __UpperCAmelCase ( ):
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: str ):
_UpperCAmelCase : int = dataset_loading_script_name
_UpperCAmelCase : Optional[Any] = tmp_path / "datasets" / script_name
script_dir.mkdir(parents=a_ )
_UpperCAmelCase : int = script_dir / f"""{script_name}.py"""
with open(a_, "w" ) as f:
f.write(a_ )
return str(a_ ) | 17 | '''simple docstring'''
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Tuple = '''time_series_transformer'''
UpperCamelCase_ : Optional[Any] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = prediction_length
_UpperCAmelCase : Optional[Any] = context_length or prediction_length
_UpperCAmelCase : Optional[Any] = distribution_output
_UpperCAmelCase : Union[str, Any] = loss
_UpperCAmelCase : Dict = input_size
_UpperCAmelCase : int = num_time_features
_UpperCAmelCase : Any = lags_sequence
_UpperCAmelCase : Dict = scaling
_UpperCAmelCase : Tuple = num_dynamic_real_features
_UpperCAmelCase : Dict = num_static_real_features
_UpperCAmelCase : Union[str, Any] = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : Optional[int] = cardinality
else:
_UpperCAmelCase : Optional[Any] = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : List[Any] = embedding_dimension
else:
_UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
_UpperCAmelCase : str = num_parallel_samples
# Transformer architecture configuration
_UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features
_UpperCAmelCase : str = d_model
_UpperCAmelCase : Optional[Any] = encoder_attention_heads
_UpperCAmelCase : Dict = decoder_attention_heads
_UpperCAmelCase : List[Any] = encoder_ffn_dim
_UpperCAmelCase : str = decoder_ffn_dim
_UpperCAmelCase : Dict = encoder_layers
_UpperCAmelCase : str = decoder_layers
_UpperCAmelCase : Any = dropout
_UpperCAmelCase : str = attention_dropout
_UpperCAmelCase : List[Any] = activation_dropout
_UpperCAmelCase : Dict = encoder_layerdrop
_UpperCAmelCase : Any = decoder_layerdrop
_UpperCAmelCase : Optional[Any] = activation_function
_UpperCAmelCase : Tuple = init_std
_UpperCAmelCase : List[str] = use_cache
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def _lowerCAmelCase ( self : str ) -> int:
"""simple docstring"""
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
) | 17 | 1 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
__a = logging.getLogger(__name__)
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : str = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , )
UpperCamelCase_ : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. If passed, sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={
'''help''': (
'''Whether to pad all samples to the maximum sentence length. '''
'''If False, will pad the samples dynamically when batching to the maximum length in the batch. More '''
'''efficient on GPU but very bad for TPU.'''
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def _lowerCAmelCase ( self : Any ) -> Any:
"""simple docstring"""
if self.train_file is not None:
_UpperCAmelCase : List[Any] = self.train_file.split("." )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
_UpperCAmelCase : List[str] = self.validation_file.split("." )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : PreTrainedTokenizerBase
UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True
UpperCamelCase_ : Optional[int] = None
UpperCamelCase_ : Optional[int] = None
def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels"
_UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features]
_UpperCAmelCase : str = len(lowerCAmelCase__ )
_UpperCAmelCase : int = len(features[0]["input_ids"] )
_UpperCAmelCase : str = [
[{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features
]
_UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) )
_UpperCAmelCase : Any = self.tokenizer.pad(
lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , )
# Un-flatten
_UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()}
# Add back labels
_UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa )
return batch
def __UpperCAmelCase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_swag", a_, a_ )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_UpperCAmelCase : Optional[int] = training_args.get_process_log_level()
logger.setLevel(a_ )
datasets.utils.logging.set_verbosity(a_ )
transformers.utils.logging.set_verbosity(a_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
_UpperCAmelCase : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
_UpperCAmelCase : Union[str, Any] = {}
if data_args.train_file is not None:
_UpperCAmelCase : str = data_args.train_file
if data_args.validation_file is not None:
_UpperCAmelCase : Optional[Any] = data_args.validation_file
_UpperCAmelCase : Dict = data_args.train_file.split("." )[-1]
_UpperCAmelCase : Optional[int] = load_dataset(
a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
else:
# Downloading and loading the swag dataset from the hub.
_UpperCAmelCase : Dict = load_dataset(
"swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCAmelCase : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
_UpperCAmelCase : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
_UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
_UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )]
_UpperCAmelCase : List[Any] = "sent1"
_UpperCAmelCase : Optional[int] = "sent2"
if data_args.max_seq_length is None:
_UpperCAmelCase : List[str] = tokenizer.model_max_length
if max_seq_length > 1_024:
logger.warning(
"The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
" override this default with `--block_size xxx`." )
_UpperCAmelCase : Dict = 1_024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
_UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(a_: Union[str, Any] ):
_UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]]
_UpperCAmelCase : Tuple = examples[question_header_name]
_UpperCAmelCase : Optional[Any] = [
[f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ )
]
# Flatten out
_UpperCAmelCase : List[str] = list(chain(*a_ ) )
_UpperCAmelCase : Dict = list(chain(*a_ ) )
# Tokenize
_UpperCAmelCase : List[Any] = tokenizer(
a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset" )
_UpperCAmelCase : int = raw_datasets["train"]
if data_args.max_train_samples is not None:
_UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples )
_UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) )
with training_args.main_process_first(desc="train dataset map pre-processing" ):
_UpperCAmelCase : Union[str, Any] = train_dataset.map(
a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset" )
_UpperCAmelCase : Dict = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
_UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples )
_UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) )
with training_args.main_process_first(desc="validation dataset map pre-processing" ):
_UpperCAmelCase : Optional[int] = eval_dataset.map(
a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, )
# Data collator
_UpperCAmelCase : Tuple = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(a_: Tuple ):
_UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions
_UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
_UpperCAmelCase : Any = Trainer(
model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, )
# Training
if training_args.do_train:
_UpperCAmelCase : Optional[Any] = None
if training_args.resume_from_checkpoint is not None:
_UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_UpperCAmelCase : List[str] = last_checkpoint
_UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ )
trainer.save_model() # Saves the tokenizer too for easy upload
_UpperCAmelCase : str = train_result.metrics
_UpperCAmelCase : List[str] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ )
)
_UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) )
trainer.log_metrics("train", a_ )
trainer.save_metrics("train", a_ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
_UpperCAmelCase : List[Any] = trainer.evaluate()
_UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ )
_UpperCAmelCase : Tuple = min(a_, len(a_ ) )
trainer.log_metrics("eval", a_ )
trainer.save_metrics("eval", a_ )
_UpperCAmelCase : int = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "multiple-choice",
"dataset_tags": "swag",
"dataset_args": "regular",
"dataset": "SWAG",
"language": "en",
}
if training_args.push_to_hub:
trainer.push_to_hub(**a_ )
else:
trainer.create_model_card(**a_ )
def __UpperCAmelCase ( a_: int ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main() | 17 | '''simple docstring'''
import baseaa
def __UpperCAmelCase ( a_: str ):
return baseaa.baaencode(string.encode("utf-8" ) )
def __UpperCAmelCase ( a_: bytes ):
return baseaa.baadecode(a_ ).decode("utf-8" )
if __name__ == "__main__":
__a = 'Hello World!'
__a = baseaa_encode(test)
print(encoded)
__a = baseaa_decode(encoded)
print(decoded) | 17 | 1 |
'''simple docstring'''
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
__a = _symbol_database.Default()
__a = _descriptor_pool.Default().AddSerializedFile(
b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
)
__a = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
__a = None
__a = b'H\003'
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
__a = 45
__a = 1_581
__a = 1_517
__a = 1_570
__a = 1_584
__a = 1_793
__a = 1_795
__a = 1_916
__a = 1_864
__a = 1_905
__a = 1_919
__a = 2_429
__a = 2_208
__a = 2_418
__a = 2_323
__a = 2_407
# @@protoc_insertion_point(module_scope) | 17 | '''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class A__ :
"""simple docstring"""
UpperCamelCase_ : Any = XGLMConfig
UpperCamelCase_ : Union[str, Any] = {}
UpperCamelCase_ : Dict = '''gelu'''
def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : str = batch_size
_UpperCAmelCase : str = seq_length
_UpperCAmelCase : int = is_training
_UpperCAmelCase : List[Any] = use_input_mask
_UpperCAmelCase : Optional[int] = use_labels
_UpperCAmelCase : str = vocab_size
_UpperCAmelCase : int = d_model
_UpperCAmelCase : Tuple = num_hidden_layers
_UpperCAmelCase : Tuple = num_attention_heads
_UpperCAmelCase : Tuple = ffn_dim
_UpperCAmelCase : Any = activation_function
_UpperCAmelCase : Union[str, Any] = activation_dropout
_UpperCAmelCase : Union[str, Any] = attention_dropout
_UpperCAmelCase : Any = max_position_embeddings
_UpperCAmelCase : int = initializer_range
_UpperCAmelCase : Any = None
_UpperCAmelCase : int = 0
_UpperCAmelCase : Union[str, Any] = 2
_UpperCAmelCase : Tuple = 1
def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : int = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_UpperCAmelCase : Any = None
if self.use_input_mask:
_UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : Optional[Any] = self.get_config()
_UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , )
def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
_UpperCAmelCase : Optional[int] = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else ()
UpperCamelCase_ : Tuple = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
UpperCamelCase_ : Dict = False
UpperCamelCase_ : List[Any] = False
UpperCamelCase_ : Tuple = False
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Dict = TFXGLMModelTester(self )
_UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 )
def _lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowerCAmelCase ( self : Union[str, Any] ) -> int:
"""simple docstring"""
super().test_resize_token_embeddings()
@require_tf
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1]
# fmt: on
_UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
_UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" )
_UpperCAmelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
_UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] )
_UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[int] = "left"
# use different length sentences to test batching
_UpperCAmelCase : Tuple = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
_UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = inputs["input_ids"]
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 )
_UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids
_UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] ) | 17 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__a = {
'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'],
'tokenization_deberta': ['DebertaTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['DebertaTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'DebertaForMaskedLM',
'DebertaForQuestionAnswering',
'DebertaForSequenceClassification',
'DebertaForTokenClassification',
'DebertaModel',
'DebertaPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFDebertaForMaskedLM',
'TFDebertaForQuestionAnswering',
'TFDebertaForSequenceClassification',
'TFDebertaForTokenClassification',
'TFDebertaModel',
'TFDebertaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig
from .tokenization_deberta import DebertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_deberta_fast import DebertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deberta import (
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
DebertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deberta import (
TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDebertaForMaskedLM,
TFDebertaForQuestionAnswering,
TFDebertaForSequenceClassification,
TFDebertaForTokenClassification,
TFDebertaModel,
TFDebertaPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 17 | '''simple docstring'''
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"files", [
["full:README.md", "dataset_infos.json"],
["empty:README.md", "dataset_infos.json"],
["dataset_infos.json"],
["full:README.md"],
], )
def __UpperCAmelCase ( a_: Tuple, a_: Any ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" )
if "full:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("---\ndataset_info:\n dataset_size: 42\n---" )
if "empty:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f:
f.write("{\"default\": {\"dataset_size\": 42}}" )
_UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
"dataset_info", [
DatasetInfo(),
DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ),
], )
def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ):
_UpperCAmelCase : Tuple = str(a_ )
dataset_info.write_to_directory(a_ )
_UpperCAmelCase : Any = DatasetInfo.from_directory(a_ )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(a_, "dataset_info.json" ) )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = DatasetInfo(
description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, )
_UpperCAmelCase : Tuple = dataset_info._to_yaml_dict()
assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) )
_UpperCAmelCase : List[Any] = yaml.safe_dump(a_ )
_UpperCAmelCase : Optional[int] = yaml.safe_load(a_ )
assert dataset_info_yaml_dict == reloaded
def __UpperCAmelCase ( ):
_UpperCAmelCase : str = DatasetInfo()
_UpperCAmelCase : List[str] = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"dataset_infos_dict", [
DatasetInfosDict(),
DatasetInfosDict({"default": DatasetInfo()} ),
DatasetInfosDict({"my_config_name": DatasetInfo()} ),
DatasetInfosDict(
{
"default": DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, )
} ),
DatasetInfosDict(
{
"v1": DatasetInfo(dataset_size=42 ),
"v2": DatasetInfo(dataset_size=1_337 ),
} ),
], )
def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ):
_UpperCAmelCase : Union[str, Any] = str(a_ )
dataset_infos_dict.write_to_directory(a_ )
_UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
_UpperCAmelCase : Optional[int] = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
_UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(a_, "README.md" ) ) | 17 | 1 |
'''simple docstring'''
import inspect
import unittest
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : List[str] ) -> List[str]:
"""simple docstring"""
try:
import diffusers # noqa: F401
except ImportError:
assert False
def _lowerCAmelCase ( self : Dict ) -> Dict:
"""simple docstring"""
import diffusers
from diffusers.dependency_versions_table import deps
_UpperCAmelCase : int = inspect.getmembers(lowerCAmelCase__ , inspect.isclass )
for cls_name, cls_module in all_classes:
if "dummy_" in cls_module.__module__:
for backend in cls_module._backends:
if backend == "k_diffusion":
_UpperCAmelCase : Union[str, Any] = "k-diffusion"
elif backend == "invisible_watermark":
_UpperCAmelCase : Tuple = "invisible-watermark"
assert backend in deps, F"""{backend} is not in the deps table!""" | 17 | '''simple docstring'''
from math import factorial
def __UpperCAmelCase ( a_: int = 100 ):
return sum(map(a_, str(factorial(a_ ) ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip()))) | 17 | 1 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : List[str] = ['''image_processor''', '''tokenizer''']
UpperCamelCase_ : Tuple = '''ViltImageProcessor'''
UpperCamelCase_ : Tuple = ('''BertTokenizer''', '''BertTokenizerFast''')
def __init__( self : List[str] , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Dict=None , **lowerCAmelCase__ : List[str] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[str] = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , lowerCAmelCase__ , )
_UpperCAmelCase : Tuple = kwargs.pop("feature_extractor" )
_UpperCAmelCase : str = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Any = self.image_processor
def __call__( self : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase__ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase__ : Any , ) -> BatchEncoding:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.tokenizer(
text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , )
# add pixel_values + pixel_mask
_UpperCAmelCase : Dict = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ )
encoding.update(lowerCAmelCase__ )
return encoding
def _lowerCAmelCase ( self : Optional[int] , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Any ) -> Optional[int]:
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ )
def _lowerCAmelCase ( self : int , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Tuple ) -> List[str]:
"""simple docstring"""
return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def _lowerCAmelCase ( self : Union[str, Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.tokenizer.model_input_names
_UpperCAmelCase : List[Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def _lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCAmelCase__ , )
return self.image_processor_class
@property
def _lowerCAmelCase ( self : Any ) -> int:
"""simple docstring"""
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCAmelCase__ , )
return self.image_processor | 17 | '''simple docstring'''
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
__a = (3, 9, -11, 0, 7, 5, 1, -1)
__a = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : int
UpperCamelCase_ : Node | None
class A__ :
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None:
"""simple docstring"""
_UpperCAmelCase : Node | None = None
for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ):
_UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head )
def __iter__( self : int ) -> Iterator[int]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.head
while node:
yield node.data
_UpperCAmelCase : List[str] = node.next_node
def __len__( self : Any ) -> int:
"""simple docstring"""
return sum(1 for _ in self )
def __str__( self : Union[str, Any] ) -> str:
"""simple docstring"""
return " -> ".join([str(lowerCAmelCase__ ) for node in self] )
def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ):
return SortedLinkedList(list(a_ ) + list(a_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
__a = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even))) | 17 | 1 |
'''simple docstring'''
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class A__ ( unittest.TestCase , UpperCamelCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = load_tool("text-classification" )
self.tool.setup()
_UpperCAmelCase : Any = load_tool("text-classification" , remote=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.tool("That's quite cool" , ["positive", "negative"] )
self.assertEqual(lowerCAmelCase__ , "positive" )
def _lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.remote_tool("That's quite cool" , ["positive", "negative"] )
self.assertEqual(lowerCAmelCase__ , "positive" )
def _lowerCAmelCase ( self : str ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.tool(text="That's quite cool" , labels=["positive", "negative"] )
self.assertEqual(lowerCAmelCase__ , "positive" )
def _lowerCAmelCase ( self : List[Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] )
self.assertEqual(lowerCAmelCase__ , "positive" ) | 17 | '''simple docstring'''
def __UpperCAmelCase ( a_: str ):
if not all(char in "01" for char in bin_string ):
raise ValueError("Non-binary value was passed to the function" )
if not bin_string:
raise ValueError("Empty string was passed to the function" )
_UpperCAmelCase : Optional[Any] = ""
while len(a_ ) % 3 != 0:
_UpperCAmelCase : List[Any] = "0" + bin_string
_UpperCAmelCase : Dict = [
bin_string[index : index + 3]
for index in range(len(a_ ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
_UpperCAmelCase : Optional[Any] = 0
for index, val in enumerate(a_ ):
oct_val += int(2 ** (2 - index) * int(a_ ) )
oct_string += str(a_ )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod() | 17 | 1 |
'''simple docstring'''
import io
import math
from typing import Dict, Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
get_image_size,
infer_channel_dimension_format,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_vision_available, logging
from ...utils.import_utils import requires_backends
if is_vision_available():
import textwrap
from PIL import Image, ImageDraw, ImageFont
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
__a = False
__a = logging.get_logger(__name__)
__a = 'ybelkada/fonts'
def __UpperCAmelCase ( ):
if is_torch_available() and not is_torch_greater_or_equal_than_1_11:
raise ImportError(
f"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """
"Pix2StructImageProcessor. Please upgrade torch." )
def __UpperCAmelCase ( a_: Any, a_: Optional[Any], a_: Optional[Any] ):
requires_backends(a_, ["torch"] )
_check_torch_version()
_UpperCAmelCase : Tuple = image_tensor.unsqueeze(0 )
_UpperCAmelCase : str = torch.nn.functional.unfold(a_, (patch_height, patch_width), stride=(patch_height, patch_width) )
_UpperCAmelCase : Optional[Any] = patches.reshape(image_tensor.size(0 ), image_tensor.size(1 ), a_, a_, -1 )
_UpperCAmelCase : Optional[int] = patches.permute(0, 4, 2, 3, 1 ).reshape(
image_tensor.size(2 ) // patch_height, image_tensor.size(3 ) // patch_width, image_tensor.size(1 ) * patch_height * patch_width, )
return patches.unsqueeze(0 )
def __UpperCAmelCase ( a_: str, a_: int = 36, a_: str = "black", a_: str = "white", a_: int = 5, a_: int = 5, a_: int = 5, a_: int = 5, a_: Optional[bytes] = None, a_: Optional[str] = None, ):
requires_backends(a_, "vision" )
# Add new lines so that each line is no more than 80 characters.
_UpperCAmelCase : Union[str, Any] = textwrap.TextWrapper(width=80 )
_UpperCAmelCase : Optional[int] = wrapper.wrap(text=a_ )
_UpperCAmelCase : Optional[int] = "\n".join(a_ )
if font_bytes is not None and font_path is None:
_UpperCAmelCase : List[str] = io.BytesIO(a_ )
elif font_path is not None:
_UpperCAmelCase : str = font_path
else:
_UpperCAmelCase : Union[str, Any] = hf_hub_download(a_, "Arial.TTF" )
_UpperCAmelCase : Any = ImageFont.truetype(a_, encoding="UTF-8", size=a_ )
# Use a temporary canvas to determine the width and height in pixels when
# rendering the text.
_UpperCAmelCase : Dict = ImageDraw.Draw(Image.new("RGB", (1, 1), a_ ) )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = temp_draw.textbbox((0, 0), a_, a_ )
# Create the actual image with a bit of padding around the text.
_UpperCAmelCase : Any = text_width + left_padding + right_padding
_UpperCAmelCase : Dict = text_height + top_padding + bottom_padding
_UpperCAmelCase : List[Any] = Image.new("RGB", (image_width, image_height), a_ )
_UpperCAmelCase : List[Any] = ImageDraw.Draw(a_ )
draw.text(xy=(left_padding, top_padding), text=a_, fill=a_, font=a_ )
return image
def __UpperCAmelCase ( a_: np.ndarray, a_: str, **a_: Tuple ):
requires_backends(a_, "vision" )
# Convert to PIL image if necessary
_UpperCAmelCase : Optional[Any] = to_pil_image(a_ )
_UpperCAmelCase : Optional[Any] = render_text(a_, **a_ )
_UpperCAmelCase : int = max(header_image.width, image.width )
_UpperCAmelCase : List[str] = int(image.height * (new_width / image.width) )
_UpperCAmelCase : Optional[int] = int(header_image.height * (new_width / header_image.width) )
_UpperCAmelCase : Any = Image.new("RGB", (new_width, new_height + new_header_height), "white" )
new_image.paste(header_image.resize((new_width, new_header_height) ), (0, 0) )
new_image.paste(image.resize((new_width, new_height) ), (0, new_header_height) )
# Convert back to the original framework if necessary
_UpperCAmelCase : Optional[Any] = to_numpy_array(a_ )
if infer_channel_dimension_format(a_ ) == ChannelDimension.LAST:
_UpperCAmelCase : Union[str, Any] = to_channel_dimension_format(a_, ChannelDimension.LAST )
return new_image
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[int] = ['''flattened_patches''']
def __init__( self : Optional[int] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : int = 2_0_4_8 , lowerCAmelCase__ : bool = False , **lowerCAmelCase__ : Union[str, Any] , ) -> None:
"""simple docstring"""
super().__init__(**lowerCAmelCase__ )
_UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6}
_UpperCAmelCase : List[str] = do_normalize
_UpperCAmelCase : List[str] = do_convert_rgb
_UpperCAmelCase : List[Any] = max_patches
_UpperCAmelCase : Any = is_vqa
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : int , lowerCAmelCase__ : dict , **lowerCAmelCase__ : Union[str, Any] ) -> np.ndarray:
"""simple docstring"""
requires_backends(self.extract_flattened_patches , "torch" )
_check_torch_version()
# convert to torch
_UpperCAmelCase : Dict = to_channel_dimension_format(lowerCAmelCase__ , ChannelDimension.FIRST )
_UpperCAmelCase : Any = torch.from_numpy(lowerCAmelCase__ )
_UpperCAmelCase , _UpperCAmelCase : str = patch_size["height"], patch_size["width"]
_UpperCAmelCase , _UpperCAmelCase : Optional[int] = get_image_size(lowerCAmelCase__ )
# maximize scale s.t.
_UpperCAmelCase : Any = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) )
_UpperCAmelCase : Dict = max(min(math.floor(scale * image_height / patch_height ) , lowerCAmelCase__ ) , 1 )
_UpperCAmelCase : Union[str, Any] = max(min(math.floor(scale * image_width / patch_width ) , lowerCAmelCase__ ) , 1 )
_UpperCAmelCase : Optional[Any] = max(num_feasible_rows * patch_height , 1 )
_UpperCAmelCase : Tuple = max(num_feasible_cols * patch_width , 1 )
_UpperCAmelCase : Tuple = torch.nn.functional.interpolate(
image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=lowerCAmelCase__ , antialias=lowerCAmelCase__ , ).squeeze(0 )
# [1, rows, columns, patch_height * patch_width * image_channels]
_UpperCAmelCase : Optional[Any] = torch_extract_patches(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = patches.shape
_UpperCAmelCase : Optional[Any] = patches_shape[1]
_UpperCAmelCase : List[Any] = patches_shape[2]
_UpperCAmelCase : Optional[int] = patches_shape[3]
# [rows * columns, patch_height * patch_width * image_channels]
_UpperCAmelCase : List[Any] = patches.reshape([rows * columns, depth] )
# [rows * columns, 1]
_UpperCAmelCase : List[str] = torch.arange(lowerCAmelCase__ ).reshape([rows, 1] ).repeat(1 , lowerCAmelCase__ ).reshape([rows * columns, 1] )
_UpperCAmelCase : List[str] = torch.arange(lowerCAmelCase__ ).reshape([1, columns] ).repeat(lowerCAmelCase__ , 1 ).reshape([rows * columns, 1] )
# Offset by 1 so the ids do not contain zeros, which represent padding.
row_ids += 1
col_ids += 1
# Prepare additional patch features.
# [rows * columns, 1]
_UpperCAmelCase : str = row_ids.to(torch.floataa )
_UpperCAmelCase : Tuple = col_ids.to(torch.floataa )
# [rows * columns, 2 + patch_height * patch_width * image_channels]
_UpperCAmelCase : Tuple = torch.cat([row_ids, col_ids, patches] , -1 )
# [max_patches, 2 + patch_height * patch_width * image_channels]
_UpperCAmelCase : Dict = torch.nn.functional.pad(lowerCAmelCase__ , [0, 0, 0, max_patches - (rows * columns)] ).float()
_UpperCAmelCase : Optional[int] = to_numpy_array(lowerCAmelCase__ )
return result
def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Dict ) -> np.ndarray:
"""simple docstring"""
if image.dtype == np.uinta:
_UpperCAmelCase : str = image.astype(np.floataa )
# take mean across the whole `image`
_UpperCAmelCase : Tuple = np.mean(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = np.std(lowerCAmelCase__ )
_UpperCAmelCase : int = max(lowerCAmelCase__ , 1.0 / math.sqrt(np.prod(image.shape ) ) )
return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , **lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase__ : Optional[Any] , ) -> ImageInput:
"""simple docstring"""
_UpperCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize
_UpperCAmelCase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_UpperCAmelCase : Optional[Any] = patch_size if patch_size is not None else self.patch_size
_UpperCAmelCase : Optional[Any] = max_patches if max_patches is not None else self.max_patches
_UpperCAmelCase : Tuple = self.is_vqa
if kwargs.get("data_format" , lowerCAmelCase__ ) is not None:
raise ValueError("data_format is not an accepted input as the outputs are " )
_UpperCAmelCase : Any = make_list_of_images(lowerCAmelCase__ )
if not valid_images(lowerCAmelCase__ ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_UpperCAmelCase : Tuple = [convert_to_rgb(lowerCAmelCase__ ) for image in images]
# All transformations expect numpy arrays.
_UpperCAmelCase : List[Any] = [to_numpy_array(lowerCAmelCase__ ) for image in images]
if is_vqa:
if header_text is None:
raise ValueError("A header text must be provided for VQA models." )
_UpperCAmelCase : List[Any] = kwargs.pop("font_bytes" , lowerCAmelCase__ )
_UpperCAmelCase : List[str] = kwargs.pop("font_path" , lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : Union[str, Any] = [header_text] * len(lowerCAmelCase__ )
_UpperCAmelCase : Any = [
render_header(lowerCAmelCase__ , header_text[i] , font_bytes=lowerCAmelCase__ , font_path=lowerCAmelCase__ )
for i, image in enumerate(lowerCAmelCase__ )
]
if do_normalize:
_UpperCAmelCase : Optional[Any] = [self.normalize(image=lowerCAmelCase__ ) for image in images]
# convert to torch tensor and permute
_UpperCAmelCase : Optional[int] = [
self.extract_flattened_patches(image=lowerCAmelCase__ , max_patches=lowerCAmelCase__ , patch_size=lowerCAmelCase__ )
for image in images
]
# create attention mask in numpy
_UpperCAmelCase : Optional[int] = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images]
_UpperCAmelCase : Optional[Any] = BatchFeature(
data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=lowerCAmelCase__ )
return encoded_outputs | 17 | '''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def __UpperCAmelCase ( a_: str ):
for param in module.parameters():
_UpperCAmelCase : Any = False
def __UpperCAmelCase ( ):
_UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_UpperCAmelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : int = plt.imshow(a_ )
fig.axes.get_xaxis().set_visible(a_ )
fig.axes.get_yaxis().set_visible(a_ )
plt.show()
def __UpperCAmelCase ( ):
_UpperCAmelCase : Dict = datetime.now()
_UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" )
return timestamp | 17 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( ):
return [list(range(1_000 - i, -1_000 - i, -1 ) ) for i in range(1_000 )]
__a = generate_large_matrix()
__a = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def __UpperCAmelCase ( a_: list[list[int]] ):
assert all(row == sorted(a_, reverse=a_ ) for row in grid )
assert all(list(a_ ) == sorted(a_, reverse=a_ ) for col in zip(*a_ ) )
def __UpperCAmelCase ( a_: list[int] ):
_UpperCAmelCase : Optional[Any] = 0
_UpperCAmelCase : str = len(a_ ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
_UpperCAmelCase : List[str] = (left + right) // 2
_UpperCAmelCase : Tuple = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
_UpperCAmelCase : Dict = mid + 1
else:
_UpperCAmelCase : Optional[Any] = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(a_ )
def __UpperCAmelCase ( a_: list[list[int]] ):
_UpperCAmelCase : str = 0
_UpperCAmelCase : int = len(grid[0] )
for i in range(len(a_ ) ):
_UpperCAmelCase : Dict = find_negative_index(grid[i][:bound] )
total += bound
return (len(a_ ) * len(grid[0] )) - total
def __UpperCAmelCase ( a_: list[list[int]] ):
return len([number for row in grid for number in row if number < 0] )
def __UpperCAmelCase ( a_: list[list[int]] ):
_UpperCAmelCase : Union[str, Any] = 0
for row in grid:
for i, number in enumerate(a_ ):
if number < 0:
total += len(a_ ) - i
break
return total
def __UpperCAmelCase ( ):
from timeit import timeit
print("Running benchmarks" )
_UpperCAmelCase : Optional[Any] = (
"from __main__ import count_negatives_binary_search, "
"count_negatives_brute_force, count_negatives_brute_force_with_break, grid"
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
_UpperCAmelCase : List[Any] = timeit(f"""{func}(grid=grid)""", setup=a_, number=500 )
print(f"""{func}() took {time:0.4f} seconds""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark() | 17 | '''simple docstring'''
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[int] = (EulerDiscreteScheduler,)
UpperCamelCase_ : Tuple = 10
def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = {
"num_train_timesteps": 1_1_0_0,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**lowerCAmelCase__ )
return config
def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Any ) -> List[str]:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] ) -> List[str]:
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.scheduler_classes[0]
_UpperCAmelCase : int = self.get_scheduler_config()
_UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
_UpperCAmelCase : int = torch.manual_seed(0 )
_UpperCAmelCase : Any = self.dummy_model()
_UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma
_UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
_UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = output.prev_sample
_UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Any = self.scheduler_classes[0]
_UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" )
_UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
_UpperCAmelCase : str = torch.manual_seed(0 )
_UpperCAmelCase : Optional[Any] = self.dummy_model()
_UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
_UpperCAmelCase : Tuple = sample.to(lowerCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
_UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = output.prev_sample
_UpperCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 0.0002 ) < 1e-2
assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3
def _lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.scheduler_classes[0]
_UpperCAmelCase : List[Any] = self.get_scheduler_config()
_UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
_UpperCAmelCase : str = self.dummy_model()
_UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_UpperCAmelCase : str = sample.to(lowerCAmelCase__ )
for t in scheduler.timesteps:
_UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : int = output.prev_sample
_UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.scheduler_classes[0]
_UpperCAmelCase : int = self.get_scheduler_config()
_UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
_UpperCAmelCase : List[str] = self.dummy_model()
_UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_UpperCAmelCase : Optional[int] = sample.to(lowerCAmelCase__ )
for t in scheduler.timesteps:
_UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = output.prev_sample
_UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2
assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3 | 17 | 1 |
'''simple docstring'''
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Any ) -> int:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = 1
_UpperCAmelCase : List[Any] = 3
_UpperCAmelCase : Dict = (3_2, 3_2)
_UpperCAmelCase : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ )
return image
@property
def _lowerCAmelCase ( self : Dict ) -> List[str]:
"""simple docstring"""
torch.manual_seed(0 )
_UpperCAmelCase : Dict = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , )
return model
@property
def _lowerCAmelCase ( self : str ) -> List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
_UpperCAmelCase : int = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
return model
@property
def _lowerCAmelCase ( self : int ) -> Optional[int]:
"""simple docstring"""
torch.manual_seed(0 )
_UpperCAmelCase : Any = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
return CLIPTextModel(lowerCAmelCase__ )
@property
def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
def extract(*lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : Dict ):
class A__ :
"""simple docstring"""
def __init__( self : Optional[Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Dict = torch.ones([0] )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : int ) -> Union[str, Any]:
"""simple docstring"""
self.pixel_values.to(lowerCAmelCase__ )
return self
return Out()
return extract
def _lowerCAmelCase ( self : List[Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator
_UpperCAmelCase : Tuple = self.dummy_cond_unet
_UpperCAmelCase : Dict = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , )
_UpperCAmelCase : Dict = self.dummy_vae
_UpperCAmelCase : Optional[int] = self.dummy_text_encoder
_UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# make sure here that pndm scheduler skips prk
_UpperCAmelCase : str = StableDiffusionPipeline(
unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , )
_UpperCAmelCase : Optional[int] = sd_pipe.to(lowerCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : str = "A painting of a squirrel eating a burger"
_UpperCAmelCase : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 )
_UpperCAmelCase : Any = sd_pipe([prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" )
_UpperCAmelCase : List[Any] = output.images
_UpperCAmelCase : Optional[Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 )
_UpperCAmelCase : Dict = sd_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=lowerCAmelCase__ , )[0]
_UpperCAmelCase : Dict = image[0, -3:, -3:, -1]
_UpperCAmelCase : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
_UpperCAmelCase : Dict = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator
_UpperCAmelCase : Dict = self.dummy_cond_unet
_UpperCAmelCase : List[str] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ )
_UpperCAmelCase : str = self.dummy_vae
_UpperCAmelCase : Tuple = self.dummy_text_encoder
_UpperCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# make sure here that pndm scheduler skips prk
_UpperCAmelCase : Optional[Any] = StableDiffusionPipeline(
unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , )
_UpperCAmelCase : Any = sd_pipe.to(lowerCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = "A painting of a squirrel eating a burger"
_UpperCAmelCase : Union[str, Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 )
_UpperCAmelCase : str = sd_pipe([prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" )
_UpperCAmelCase : str = output.images
_UpperCAmelCase : Union[str, Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 )
_UpperCAmelCase : List[str] = sd_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=lowerCAmelCase__ , )[0]
_UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1]
_UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
_UpperCAmelCase : List[Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Dict = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=lowerCAmelCase__ )
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
assert isinstance(pipe.scheduler , lowerCAmelCase__ )
assert pipe.safety_checker is None
_UpperCAmelCase : str = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(lowerCAmelCase__ )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
_UpperCAmelCase : str = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def _lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.dummy_cond_unet
_UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = self.dummy_vae
_UpperCAmelCase : Any = self.dummy_text_encoder
_UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# put models in fp16
_UpperCAmelCase : Any = unet.half()
_UpperCAmelCase : Optional[Any] = vae.half()
_UpperCAmelCase : Any = bert.half()
# make sure here that pndm scheduler skips prk
_UpperCAmelCase : str = StableDiffusionPipeline(
unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , )
_UpperCAmelCase : Optional[Any] = sd_pipe.to(lowerCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = "A painting of a squirrel eating a burger"
_UpperCAmelCase : Optional[int] = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images
assert image.shape == (1, 6_4, 6_4, 3)
@nightly
@require_torch_gpu
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Tuple ) -> Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCAmelCase ( self : List[Any] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=lowerCAmelCase__ )
_UpperCAmelCase : int = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
_UpperCAmelCase : List[Any] = sd_pipe.to(lowerCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = (
"portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"
" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"
" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"
" children from bahnhof zoo, detailed "
)
_UpperCAmelCase : Tuple = 4_0_0_3_6_6_0_3_4_6
_UpperCAmelCase : Union[str, Any] = 7
# without safety guidance (sld_guidance_scale = 0)
_UpperCAmelCase : Optional[int] = torch.manual_seed(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = sd_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , )
_UpperCAmelCase : int = output.images
_UpperCAmelCase : str = image[0, -3:, -3:, -1]
_UpperCAmelCase : List[Any] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
# without safety guidance (strong configuration)
_UpperCAmelCase : int = torch.manual_seed(lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = sd_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
_UpperCAmelCase : int = output.images
_UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1]
_UpperCAmelCase : List[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _lowerCAmelCase ( self : str ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=lowerCAmelCase__ )
_UpperCAmelCase : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
_UpperCAmelCase : Optional[int] = sd_pipe.to(lowerCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = "padme amidala taking a bath artwork, safe for work, no nudity"
_UpperCAmelCase : str = 2_7_3_4_9_7_1_7_5_5
_UpperCAmelCase : Any = 7
_UpperCAmelCase : Dict = torch.manual_seed(lowerCAmelCase__ )
_UpperCAmelCase : Any = sd_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , )
_UpperCAmelCase : Dict = output.images
_UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1]
_UpperCAmelCase : Optional[Any] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
_UpperCAmelCase : List[str] = torch.manual_seed(lowerCAmelCase__ )
_UpperCAmelCase : Dict = sd_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
_UpperCAmelCase : Optional[int] = output.images
_UpperCAmelCase : str = image[0, -3:, -3:, -1]
_UpperCAmelCase : Any = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443]
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : int = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" )
_UpperCAmelCase : str = sd_pipe.to(lowerCAmelCase__ )
sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCAmelCase : int = (
"the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."
" leyendecker"
)
_UpperCAmelCase : List[str] = 1_0_4_4_3_5_5_2_3_4
_UpperCAmelCase : Tuple = 1_2
_UpperCAmelCase : Tuple = torch.manual_seed(lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = sd_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , )
_UpperCAmelCase : Tuple = output.images
_UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1]
_UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7
_UpperCAmelCase : Any = torch.manual_seed(lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = sd_pipe(
[prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
_UpperCAmelCase : List[Any] = output.images
_UpperCAmelCase : int = image[0, -3:, -3:, -1]
_UpperCAmelCase : Optional[int] = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] )
assert image.shape == (1, 5_1_2, 5_1_2, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 | 17 | '''simple docstring'''
def __UpperCAmelCase ( a_: int, a_: int ):
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
_UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) )
return "0b" + "".join(
str(int(char_a == "1" and char_b == "1" ) )
for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 1 |
'''simple docstring'''
import importlib
import inspect
import json
import os
import re
import shutil
import sys
from pathlib import Path
from typing import Dict, Optional, Union
from urllib import request
from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info
from packaging import version
from .. import __version__
from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging
__a = (
'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py'
)
__a = logging.get_logger(__name__) # pylint: disable=invalid-name
def __UpperCAmelCase ( ):
_UpperCAmelCase : str = "https://pypi.org/pypi/diffusers/json"
_UpperCAmelCase : List[str] = json.loads(request.urlopen(a_ ).read() )["releases"].keys()
return sorted(a_, key=lambda a_ : version.Version(a_ ) )
def __UpperCAmelCase ( ):
# This function has already been executed if HF_MODULES_CACHE already is in the Python path.
if HF_MODULES_CACHE in sys.path:
return
sys.path.append(a_ )
os.makedirs(a_, exist_ok=a_ )
_UpperCAmelCase : List[str] = Path(a_ ) / "__init__.py"
if not init_path.exists():
init_path.touch()
def __UpperCAmelCase ( a_: Union[str, os.PathLike] ):
init_hf_modules()
_UpperCAmelCase : Tuple = Path(a_ ) / name
# If the parent module does not exist yet, recursively create it.
if not dynamic_module_path.parent.exists():
create_dynamic_module(dynamic_module_path.parent )
os.makedirs(a_, exist_ok=a_ )
_UpperCAmelCase : Any = dynamic_module_path / "__init__.py"
if not init_path.exists():
init_path.touch()
def __UpperCAmelCase ( a_: Union[str, Any] ):
with open(a_, "r", encoding="utf-8" ) as f:
_UpperCAmelCase : int = f.read()
# Imports of the form `import .xxx`
_UpperCAmelCase : List[Any] = re.findall("^\s*import\s+\.(\S+)\s*$", a_, flags=re.MULTILINE )
# Imports of the form `from .xxx import yyy`
relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import", a_, flags=re.MULTILINE )
# Unique-ify
return list(set(a_ ) )
def __UpperCAmelCase ( a_: Dict ):
_UpperCAmelCase : List[Any] = False
_UpperCAmelCase : int = [module_file]
_UpperCAmelCase : int = []
# Let's recurse through all relative imports
while not no_change:
_UpperCAmelCase : str = []
for f in files_to_check:
new_imports.extend(get_relative_imports(a_ ) )
_UpperCAmelCase : Union[str, Any] = Path(a_ ).parent
_UpperCAmelCase : Optional[int] = [str(module_path / m ) for m in new_imports]
_UpperCAmelCase : Union[str, Any] = [f for f in new_import_files if f not in all_relative_imports]
_UpperCAmelCase : List[Any] = [f"""{f}.py""" for f in new_import_files]
_UpperCAmelCase : Optional[Any] = len(a_ ) == 0
all_relative_imports.extend(a_ )
return all_relative_imports
def __UpperCAmelCase ( a_: Tuple ):
with open(a_, "r", encoding="utf-8" ) as f:
_UpperCAmelCase : List[Any] = f.read()
# Imports of the form `import xxx`
_UpperCAmelCase : List[Any] = re.findall("^\s*import\s+(\S+)\s*$", a_, flags=re.MULTILINE )
# Imports of the form `from xxx import yyy`
imports += re.findall("^\s*from\s+(\S+)\s+import", a_, flags=re.MULTILINE )
# Only keep the top-level module
_UpperCAmelCase : Union[str, Any] = [imp.split("." )[0] for imp in imports if not imp.startswith("." )]
# Unique-ify and test we got them all
_UpperCAmelCase : List[str] = list(set(a_ ) )
_UpperCAmelCase : List[str] = []
for imp in imports:
try:
importlib.import_module(a_ )
except ImportError:
missing_packages.append(a_ )
if len(a_ ) > 0:
raise ImportError(
"This modeling file requires the following packages that were not found in your environment: "
f"""{', '.join(a_ )}. Run `pip install {' '.join(a_ )}`""" )
return get_relative_imports(a_ )
def __UpperCAmelCase ( a_: int, a_: Optional[Any] ):
_UpperCAmelCase : Tuple = module_path.replace(os.path.sep, "." )
_UpperCAmelCase : Union[str, Any] = importlib.import_module(a_ )
if class_name is None:
return find_pipeline_class(a_ )
return getattr(a_, a_ )
def __UpperCAmelCase ( a_: Tuple ):
from ..pipelines import DiffusionPipeline
_UpperCAmelCase : Union[str, Any] = dict(inspect.getmembers(a_, inspect.isclass ) )
_UpperCAmelCase : str = None
for cls_name, cls in cls_members.items():
if (
cls_name != DiffusionPipeline.__name__
and issubclass(cls, a_ )
and cls.__module__.split("." )[0] != "diffusers"
):
if pipeline_class is not None:
raise ValueError(
f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:"""
f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in"""
f""" {loaded_module}.""" )
_UpperCAmelCase : Optional[int] = cls
return pipeline_class
def __UpperCAmelCase ( a_: Union[str, os.PathLike], a_: str, a_: Optional[Union[str, os.PathLike]] = None, a_: bool = False, a_: bool = False, a_: Optional[Dict[str, str]] = None, a_: Optional[Union[bool, str]] = None, a_: Optional[str] = None, a_: bool = False, ):
_UpperCAmelCase : Dict = str(a_ )
_UpperCAmelCase : str = os.path.join(a_, a_ )
if os.path.isfile(a_ ):
_UpperCAmelCase : List[Any] = module_file_or_url
_UpperCAmelCase : Optional[int] = "local"
elif pretrained_model_name_or_path.count("/" ) == 0:
_UpperCAmelCase : Dict = get_diffusers_versions()
# cut ".dev0"
_UpperCAmelCase : Dict = "v" + ".".join(__version__.split("." )[:3] )
# retrieve github version that matches
if revision is None:
_UpperCAmelCase : Optional[int] = latest_version if latest_version[1:] in available_versions else "main"
logger.info(f"""Defaulting to latest_version: {revision}.""" )
elif revision in available_versions:
_UpperCAmelCase : List[Any] = f"""v{revision}"""
elif revision == "main":
_UpperCAmelCase : int = revision
else:
raise ValueError(
f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of"""
f""" {', '.join(available_versions + ['main'] )}.""" )
# community pipeline on GitHub
_UpperCAmelCase : Any = COMMUNITY_PIPELINES_URL.format(revision=a_, pipeline=a_ )
try:
_UpperCAmelCase : Any = cached_download(
a_, cache_dir=a_, force_download=a_, proxies=a_, resume_download=a_, local_files_only=a_, use_auth_token=a_, )
_UpperCAmelCase : Optional[int] = "git"
_UpperCAmelCase : int = pretrained_model_name_or_path + ".py"
except EnvironmentError:
logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" )
raise
else:
try:
# Load from URL or cache if already cached
_UpperCAmelCase : str = hf_hub_download(
a_, a_, cache_dir=a_, force_download=a_, proxies=a_, resume_download=a_, local_files_only=a_, use_auth_token=a_, )
_UpperCAmelCase : List[Any] = os.path.join("local", "--".join(pretrained_model_name_or_path.split("/" ) ) )
except EnvironmentError:
logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" )
raise
# Check we have all the requirements in our environment
_UpperCAmelCase : Any = check_imports(a_ )
# Now we move the module inside our cached dynamic modules.
_UpperCAmelCase : Union[str, Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
create_dynamic_module(a_ )
_UpperCAmelCase : Union[str, Any] = Path(a_ ) / full_submodule
if submodule == "local" or submodule == "git":
# We always copy local files (we could hash the file to see if there was a change, and give them the name of
# that hash, to only copy when there is a modification but it seems overkill for now).
# The only reason we do the copy is to avoid putting too many folders in sys.path.
shutil.copy(a_, submodule_path / module_file )
for module_needed in modules_needed:
_UpperCAmelCase : Tuple = f"""{module_needed}.py"""
shutil.copy(os.path.join(a_, a_ ), submodule_path / module_needed )
else:
# Get the commit hash
# TODO: we will get this info in the etag soon, so retrieve it from there and not here.
if isinstance(a_, a_ ):
_UpperCAmelCase : str = use_auth_token
elif use_auth_token is True:
_UpperCAmelCase : str = HfFolder.get_token()
else:
_UpperCAmelCase : List[str] = None
_UpperCAmelCase : Union[str, Any] = model_info(a_, revision=a_, token=a_ ).sha
# The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the
# benefit of versioning.
_UpperCAmelCase : List[str] = submodule_path / commit_hash
_UpperCAmelCase : List[Any] = full_submodule + os.path.sep + commit_hash
create_dynamic_module(a_ )
if not (submodule_path / module_file).exists():
shutil.copy(a_, submodule_path / module_file )
# Make sure we also have every file with relative
for module_needed in modules_needed:
if not (submodule_path / module_needed).exists():
get_cached_module_file(
a_, f"""{module_needed}.py""", cache_dir=a_, force_download=a_, resume_download=a_, proxies=a_, use_auth_token=a_, revision=a_, local_files_only=a_, )
return os.path.join(a_, a_ )
def __UpperCAmelCase ( a_: Union[str, os.PathLike], a_: str, a_: Optional[str] = None, a_: Optional[Union[str, os.PathLike]] = None, a_: bool = False, a_: bool = False, a_: Optional[Dict[str, str]] = None, a_: Optional[Union[bool, str]] = None, a_: Optional[str] = None, a_: bool = False, **a_: Dict, ):
_UpperCAmelCase : Tuple = get_cached_module_file(
a_, a_, cache_dir=a_, force_download=a_, resume_download=a_, proxies=a_, use_auth_token=a_, revision=a_, local_files_only=a_, )
return get_class_in_module(a_, final_module.replace(".py", "" ) ) | 17 | '''simple docstring'''
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def __UpperCAmelCase ( a_: int ):
# A local function to see if a dot lands in the circle.
def is_in_circle(a_: float, a_: float ) -> bool:
_UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
_UpperCAmelCase : str = mean(
int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) )
for _ in range(a_ ) )
# The ratio of the area for circle to square is pi/4.
_UpperCAmelCase : Optional[int] = proportion * 4
print(f"""The estimated value of pi is {pi_estimate}""" )
print(f"""The numpy value of pi is {pi}""" )
print(f"""The total error is {abs(pi - pi_estimate )}""" )
def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ):
return mean(
function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value)
def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ):
def identity_function(a_: float ) -> float:
return x
_UpperCAmelCase : Union[str, Any] = area_under_curve_estimator(
a_, a_, a_, a_ )
_UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2
print("******************" )
print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {expected_value}""" )
print(f"""Total error is {abs(estimated_value - expected_value )}""" )
print("******************" )
def __UpperCAmelCase ( a_: int ):
def function_to_integrate(a_: float ) -> float:
return sqrt(4.0 - x * x )
_UpperCAmelCase : List[str] = area_under_curve_estimator(
a_, a_, 0.0, 2.0 )
print("******************" )
print("Estimating pi using area_under_curve_estimator" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {pi}""" )
print(f"""Total error is {abs(estimated_value - pi )}""" )
print("******************" )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( a_: int = 1_000 ):
_UpperCAmelCase , _UpperCAmelCase : Dict = 1, 1
_UpperCAmelCase : Dict = 2
while True:
_UpperCAmelCase : Tuple = 0
_UpperCAmelCase : Optional[Any] = fa + fa
_UpperCAmelCase , _UpperCAmelCase : Dict = fa, f
index += 1
for _ in str(a_ ):
i += 1
if i == n:
break
return index
if __name__ == "__main__":
print(solution(int(str(input()).strip()))) | 17 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__a = {
'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'],
'processing_layoutlmv2': ['LayoutLMv2Processor'],
'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['LayoutLMv2TokenizerFast']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['LayoutLMv2FeatureExtractor']
__a = ['LayoutLMv2ImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv2ForQuestionAnswering',
'LayoutLMv2ForSequenceClassification',
'LayoutLMv2ForTokenClassification',
'LayoutLMv2Layer',
'LayoutLMv2Model',
'LayoutLMv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 17 | 1 |
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a = logging.get_logger(__name__)
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if key.startswith("module.encoder" ):
_UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" )
if key.startswith("module.decoder" ):
_UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )]
_UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" )
if "norm" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )]
_UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" )
if "layer_norm1" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" )
if "layer_norm2" in key:
_UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
_UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )]
_UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" )
if "attn.q" in key:
_UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" )
if "attn.proj" in key:
_UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" )
if "attn" in key:
_UpperCAmelCase : Dict = key.replace("attn", "attention.self" )
if "fc1" in key:
_UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" )
if "fc2" in key:
_UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" )
if "linear_pred" in key:
_UpperCAmelCase : Any = key.replace("linear_pred", "classifier" )
if "linear_fuse" in key:
_UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" )
_UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )]
_UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" )
if "bot_conv" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" )
if "skip_conv1" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" )
if "skip_conv2" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" )
if "fusion1" in key:
_UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" )
if "fusion2" in key:
_UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" )
if "fusion3" in key:
_UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" )
if "fusion" in key and "conv" in key:
_UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" )
if key.startswith("module.last_layer_depth" ):
_UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" )
_UpperCAmelCase : int = value
return new_state_dict
def __UpperCAmelCase ( a_: str, a_: List[Any] ):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" )
_UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
_UpperCAmelCase : Optional[int] = kv_weight[
: config.hidden_sizes[i], :
]
_UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]]
_UpperCAmelCase : Optional[int] = kv_weight[
config.hidden_sizes[i] :, :
]
_UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :]
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw )
return image
@torch.no_grad()
def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ):
_UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
_UpperCAmelCase : Dict = GLPNImageProcessor()
# prepare image
_UpperCAmelCase : List[Any] = prepare_img()
_UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values
logger.info("Converting model..." )
# load original state dict
_UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) )
# rename keys
_UpperCAmelCase : List[str] = rename_keys(a_ )
# key and value matrices need special treatment
read_in_k_v(a_, a_ )
# create HuggingFace model and load state dict
_UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ )
model.load_state_dict(a_ )
model.eval()
# forward pass
_UpperCAmelCase : Dict = model(a_ )
_UpperCAmelCase : List[str] = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
_UpperCAmelCase : Optional[Any] = torch.tensor(
[[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] )
elif "kitti" in model_name:
_UpperCAmelCase : Tuple = torch.tensor(
[[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] )
else:
raise ValueError(f"""Unknown model name: {model_name}""" )
_UpperCAmelCase : Dict = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 )
print("Looks ok!" )
# finally, push to hub if required
if push_to_hub:
logger.info("Pushing model and image processor to the hub..." )
model.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, )
image_processor.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path',
default=None,
type=str,
help='Path to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.'
)
parser.add_argument(
'--model_name',
default='glpn-kitti',
type=str,
help='Name of the model in case you\'re pushing to the hub.',
)
__a = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name) | 17 | '''simple docstring'''
def __UpperCAmelCase ( a_: int, a_: int ):
if not isinstance(a_, a_ ):
raise ValueError("iterations must be defined as integers" )
if not isinstance(a_, a_ ) or not number >= 1:
raise ValueError(
"starting number must be\n and integer and be more than 0" )
if not iterations >= 1:
raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" )
_UpperCAmelCase : List[str] = ""
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(a_ )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( a_: Tuple ):
return [
{
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
},
{
0: [6],
1: [9],
2: [4, 5],
3: [4],
4: [2, 3],
5: [2],
6: [0, 7],
7: [6],
8: [],
9: [1],
},
{
0: [4],
1: [6],
2: [],
3: [5, 6, 7],
4: [0, 6],
5: [3, 8, 9],
6: [1, 3, 4, 7],
7: [3, 6, 8, 9],
8: [5, 7],
9: [5, 7],
},
{
0: [1, 3],
1: [0, 2, 4],
2: [1, 3, 4],
3: [0, 2, 4],
4: [1, 2, 3],
},
][index]
def __UpperCAmelCase ( a_: dict[int, list[int]] ):
_UpperCAmelCase : List[Any] = 0
_UpperCAmelCase : Union[str, Any] = len(a_ ) # No of vertices in graph
_UpperCAmelCase : Union[str, Any] = [0] * n
_UpperCAmelCase : str = [False] * n
def dfs(a_: Dict, a_: List[Any], a_: Tuple, a_: Optional[int] ):
_UpperCAmelCase : str = True
_UpperCAmelCase : Optional[int] = id_
id_ += 1
for to in graph[at]:
if to == parent:
pass
elif not visited[to]:
dfs(a_, a_, a_, id_ )
_UpperCAmelCase : Tuple = min(low[at], low[to] )
if id_ <= low[to]:
bridges.append((at, to) if at < to else (to, at) )
else:
# This edge is a back edge and cannot be a bridge
_UpperCAmelCase : Optional[int] = min(low[at], low[to] )
_UpperCAmelCase : list[tuple[int, int]] = []
for i in range(a_ ):
if not visited[i]:
dfs(a_, -1, a_, id_ )
return bridges
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | '''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
__a = logging.getLogger(__name__)
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : str = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , )
UpperCamelCase_ : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. If passed, sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={
'''help''': (
'''Whether to pad all samples to the maximum sentence length. '''
'''If False, will pad the samples dynamically when batching to the maximum length in the batch. More '''
'''efficient on GPU but very bad for TPU.'''
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def _lowerCAmelCase ( self : Any ) -> Any:
"""simple docstring"""
if self.train_file is not None:
_UpperCAmelCase : List[Any] = self.train_file.split("." )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
_UpperCAmelCase : List[str] = self.validation_file.split("." )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : PreTrainedTokenizerBase
UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True
UpperCamelCase_ : Optional[int] = None
UpperCamelCase_ : Optional[int] = None
def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels"
_UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features]
_UpperCAmelCase : str = len(lowerCAmelCase__ )
_UpperCAmelCase : int = len(features[0]["input_ids"] )
_UpperCAmelCase : str = [
[{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features
]
_UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) )
_UpperCAmelCase : Any = self.tokenizer.pad(
lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , )
# Un-flatten
_UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()}
# Add back labels
_UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa )
return batch
def __UpperCAmelCase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_swag", a_, a_ )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_UpperCAmelCase : Optional[int] = training_args.get_process_log_level()
logger.setLevel(a_ )
datasets.utils.logging.set_verbosity(a_ )
transformers.utils.logging.set_verbosity(a_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
_UpperCAmelCase : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
_UpperCAmelCase : Union[str, Any] = {}
if data_args.train_file is not None:
_UpperCAmelCase : str = data_args.train_file
if data_args.validation_file is not None:
_UpperCAmelCase : Optional[Any] = data_args.validation_file
_UpperCAmelCase : Dict = data_args.train_file.split("." )[-1]
_UpperCAmelCase : Optional[int] = load_dataset(
a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
else:
# Downloading and loading the swag dataset from the hub.
_UpperCAmelCase : Dict = load_dataset(
"swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCAmelCase : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
_UpperCAmelCase : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
_UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
_UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )]
_UpperCAmelCase : List[Any] = "sent1"
_UpperCAmelCase : Optional[int] = "sent2"
if data_args.max_seq_length is None:
_UpperCAmelCase : List[str] = tokenizer.model_max_length
if max_seq_length > 1_024:
logger.warning(
"The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
" override this default with `--block_size xxx`." )
_UpperCAmelCase : Dict = 1_024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
_UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(a_: Union[str, Any] ):
_UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]]
_UpperCAmelCase : Tuple = examples[question_header_name]
_UpperCAmelCase : Optional[Any] = [
[f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ )
]
# Flatten out
_UpperCAmelCase : List[str] = list(chain(*a_ ) )
_UpperCAmelCase : Dict = list(chain(*a_ ) )
# Tokenize
_UpperCAmelCase : List[Any] = tokenizer(
a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset" )
_UpperCAmelCase : int = raw_datasets["train"]
if data_args.max_train_samples is not None:
_UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples )
_UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) )
with training_args.main_process_first(desc="train dataset map pre-processing" ):
_UpperCAmelCase : Union[str, Any] = train_dataset.map(
a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset" )
_UpperCAmelCase : Dict = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
_UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples )
_UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) )
with training_args.main_process_first(desc="validation dataset map pre-processing" ):
_UpperCAmelCase : Optional[int] = eval_dataset.map(
a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, )
# Data collator
_UpperCAmelCase : Tuple = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(a_: Tuple ):
_UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions
_UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
_UpperCAmelCase : Any = Trainer(
model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, )
# Training
if training_args.do_train:
_UpperCAmelCase : Optional[Any] = None
if training_args.resume_from_checkpoint is not None:
_UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_UpperCAmelCase : List[str] = last_checkpoint
_UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ )
trainer.save_model() # Saves the tokenizer too for easy upload
_UpperCAmelCase : str = train_result.metrics
_UpperCAmelCase : List[str] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ )
)
_UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) )
trainer.log_metrics("train", a_ )
trainer.save_metrics("train", a_ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
_UpperCAmelCase : List[Any] = trainer.evaluate()
_UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ )
_UpperCAmelCase : Tuple = min(a_, len(a_ ) )
trainer.log_metrics("eval", a_ )
trainer.save_metrics("eval", a_ )
_UpperCAmelCase : int = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "multiple-choice",
"dataset_tags": "swag",
"dataset_args": "regular",
"dataset": "SWAG",
"language": "en",
}
if training_args.push_to_hub:
trainer.push_to_hub(**a_ )
else:
trainer.create_model_card(**a_ )
def __UpperCAmelCase ( a_: int ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main() | 17 | 1 |
'''simple docstring'''
import os
import sys
import unittest
__a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, 'utils'))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__a = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py')
__a = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py')
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : str ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : int = get_test_to_tester_mapping(lowerCAmelCase__ )
_UpperCAmelCase : List[str] = get_test_to_tester_mapping(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = {"BertModelTest": "BertModelTester"}
_UpperCAmelCase : Dict = {
"BlipModelTest": "BlipModelTester",
"BlipTextImageModelTest": "BlipTextImageModelsModelTester",
"BlipTextModelTest": "BlipTextModelTester",
"BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester",
"BlipVQAModelTest": "BlipVQAModelTester",
"BlipVisionModelTest": "BlipVisionModelTester",
}
self.assertEqual(get_test_info.to_json(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(get_test_info.to_json(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : int = get_model_to_test_mapping(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = get_model_to_test_mapping(lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = {
"BertForMaskedLM": ["BertModelTest"],
"BertForMultipleChoice": ["BertModelTest"],
"BertForNextSentencePrediction": ["BertModelTest"],
"BertForPreTraining": ["BertModelTest"],
"BertForQuestionAnswering": ["BertModelTest"],
"BertForSequenceClassification": ["BertModelTest"],
"BertForTokenClassification": ["BertModelTest"],
"BertLMHeadModel": ["BertModelTest"],
"BertModel": ["BertModelTest"],
}
_UpperCAmelCase : int = {
"BlipForConditionalGeneration": ["BlipTextImageModelTest"],
"BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"],
"BlipForQuestionAnswering": ["BlipVQAModelTest"],
"BlipModel": ["BlipModelTest"],
"BlipTextModel": ["BlipTextModelTest"],
"BlipVisionModel": ["BlipVisionModelTest"],
}
self.assertEqual(get_test_info.to_json(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(get_test_info.to_json(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Dict = get_model_to_tester_mapping(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = get_model_to_tester_mapping(lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = {
"BertForMaskedLM": ["BertModelTester"],
"BertForMultipleChoice": ["BertModelTester"],
"BertForNextSentencePrediction": ["BertModelTester"],
"BertForPreTraining": ["BertModelTester"],
"BertForQuestionAnswering": ["BertModelTester"],
"BertForSequenceClassification": ["BertModelTester"],
"BertForTokenClassification": ["BertModelTester"],
"BertLMHeadModel": ["BertModelTester"],
"BertModel": ["BertModelTester"],
}
_UpperCAmelCase : List[Any] = {
"BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"],
"BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"],
"BlipForQuestionAnswering": ["BlipVQAModelTester"],
"BlipModel": ["BlipModelTester"],
"BlipTextModel": ["BlipTextModelTester"],
"BlipVisionModel": ["BlipVisionModelTester"],
}
self.assertEqual(get_test_info.to_json(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(get_test_info.to_json(lowerCAmelCase__ ) , lowerCAmelCase__ ) | 17 | '''simple docstring'''
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class A__ ( pl.LightningModule ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str:
"""simple docstring"""
super().__init__()
_UpperCAmelCase : List[str] = model
_UpperCAmelCase : Dict = 2
_UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels )
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
pass
def __UpperCAmelCase ( a_: str, a_: str, a_: str ):
# load longformer model from model identifier
_UpperCAmelCase : int = LongformerModel.from_pretrained(a_ )
_UpperCAmelCase : Any = LightningModel(a_ )
_UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) )
lightning_model.load_state_dict(ckpt["state_dict"] )
# init longformer question answering model
_UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ )
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() )
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() )
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(a_ )
print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--longformer_model',
default=None,
type=str,
required=True,
help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.',
)
parser.add_argument(
'--longformer_question_answering_ckpt_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch Lightning Checkpoint.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__a = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
) | 17 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class A__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=7 , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : Optional[int]=1_8 , lowerCAmelCase__ : Any=3_0 , lowerCAmelCase__ : Union[str, Any]=4_0_0 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Optional[int]=True , ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = size if size is not None else {"shortest_edge": 2_0}
_UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"height": 1_8, "width": 1_8}
_UpperCAmelCase : Tuple = parent
_UpperCAmelCase : List[Any] = batch_size
_UpperCAmelCase : Optional[int] = num_channels
_UpperCAmelCase : Optional[Any] = image_size
_UpperCAmelCase : Dict = min_resolution
_UpperCAmelCase : List[str] = max_resolution
_UpperCAmelCase : Optional[int] = do_resize
_UpperCAmelCase : Union[str, Any] = size
_UpperCAmelCase : Tuple = do_center_crop
_UpperCAmelCase : Optional[Any] = crop_size
_UpperCAmelCase : Optional[Any] = do_flip_channel_order
def _lowerCAmelCase ( self : Any ) -> Tuple:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[str] = MobileViTImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[str] = MobileViTImageProcessingTester(self )
@property
def _lowerCAmelCase ( self : Tuple ) -> List[Any]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : str ) -> int:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_center_crop" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "center_crop" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_flip_channel_order" ) )
def _lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : int = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 2_0} )
self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8} )
_UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 )
self.assertEqual(image_processor.size , {"shortest_edge": 4_2} )
self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} )
def _lowerCAmelCase ( self : Dict ) -> List[str]:
"""simple docstring"""
pass
def _lowerCAmelCase ( self : Any ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
_UpperCAmelCase : str = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
_UpperCAmelCase : List[Any] = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def _lowerCAmelCase ( self : str ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
_UpperCAmelCase : Any = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , ) | 17 | '''simple docstring'''
from importlib import import_module
from .logging import get_logger
__a = get_logger(__name__)
class A__ :
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Any = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith("__" ):
setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
_UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module
class A__ :
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = []
def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = obj
_UpperCAmelCase : int = target
_UpperCAmelCase : Optional[int] = new
_UpperCAmelCase : Any = target.split("." )[0]
_UpperCAmelCase : Optional[int] = {}
_UpperCAmelCase : Dict = attrs or []
def __enter__( self : List[str] ) -> int:
"""simple docstring"""
*_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(lowerCAmelCase__ ) ):
try:
_UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
_UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule)
):
_UpperCAmelCase : Tuple = obj_attr
# patch at top level
setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) )
_UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) )
_UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
# finally set the target attribute
setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
_UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj , lowerCAmelCase__ ) is attr_value:
_UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ )
setattr(self.obj , lowerCAmelCase__ , self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
_UpperCAmelCase : Dict = globals()["__builtins__"][target_attr]
setattr(self.obj , lowerCAmelCase__ , self.new )
else:
raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" )
def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for attr in list(self.original ):
setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
self.__enter__()
self._active_patches.append(self )
def _lowerCAmelCase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__() | 17 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( a_: int, a_: int ):
return int((input_a, input_a).count(1 ) != 0 )
def __UpperCAmelCase ( ):
assert or_gate(0, 0 ) == 0
assert or_gate(0, 1 ) == 1
assert or_gate(1, 0 ) == 1
assert or_gate(1, 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1)) | 17 | '''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
__a = datasets.utils.logging.get_logger(__name__)
__a = ['names', 'prefix']
__a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
__a = ['encoding_errors', 'on_bad_lines']
__a = ['date_format']
@dataclass
class A__ ( datasets.BuilderConfig ):
"""simple docstring"""
UpperCamelCase_ : str = ","
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer"
UpperCamelCase_ : Optional[List[str]] = None
UpperCamelCase_ : Optional[List[str]] = None
UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None
UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None
UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None
UpperCamelCase_ : Optional[list] = None
UpperCamelCase_ : Optional[list] = None
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[Union[int, List[int]]] = None
UpperCamelCase_ : Optional[int] = None
UpperCamelCase_ : Optional[Union[str, List[str]]] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = False
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : str = "."
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : str = '"'
UpperCamelCase_ : int = 0
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = True
UpperCamelCase_ : int = 0
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : int = 1_00_00
UpperCamelCase_ : Optional[datasets.Features] = None
UpperCamelCase_ : Optional[str] = "strict"
UpperCamelCase_ : Literal["error", "warn", "skip"] = "error"
UpperCamelCase_ : Optional[str] = None
def _lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
if self.delimiter is not None:
_UpperCAmelCase : Any = self.delimiter
if self.column_names is not None:
_UpperCAmelCase : List[Any] = self.column_names
@property
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Dict = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class A__ ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
UpperCamelCase_ : int = CsvConfig
def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
_UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCAmelCase__ , (str, list, tuple) ):
_UpperCAmelCase : int = data_files
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : Any = [files]
_UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
_UpperCAmelCase : Optional[Any] = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : str = [files]
_UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) )
return splits
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
_UpperCAmelCase : Tuple = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
_UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
_UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ )
return pa_table
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
_UpperCAmelCase : Optional[Any] = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ):
_UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(lowerCAmelCase__ ):
_UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" )
raise | 17 | 1 |
'''simple docstring'''
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import BatchEncoding, MarianTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available
if is_sentencepiece_available():
from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
__a = get_tests_dir('fixtures/test_sentencepiece.model')
__a = {'target_lang': 'fi', 'source_lang': 'en'}
__a = '>>zh<<'
__a = 'Helsinki-NLP/'
if is_torch_available():
__a = 'pt'
elif is_tf_available():
__a = 'tf'
else:
__a = 'jax'
@require_sentencepiece
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[str] = MarianTokenizer
UpperCamelCase_ : str = False
UpperCamelCase_ : Union[str, Any] = True
def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
super().setUp()
_UpperCAmelCase : Dict = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"]
_UpperCAmelCase : Union[str, Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
_UpperCAmelCase : int = Path(self.tmpdirname )
save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["vocab"] )
save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] )
if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists():
copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["source_spm"] )
copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["target_spm"] )
_UpperCAmelCase : Optional[int] = MarianTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def _lowerCAmelCase ( self : Any , **lowerCAmelCase__ : Optional[int] ) -> MarianTokenizer:
"""simple docstring"""
return MarianTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : List[str] ) -> List[Any]:
"""simple docstring"""
return (
"This is a test",
"This is a test",
)
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Any = "</s>"
_UpperCAmelCase : int = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "</s>" )
self.assertEqual(vocab_keys[1] , "<unk>" )
self.assertEqual(vocab_keys[-1] , "<pad>" )
self.assertEqual(len(lowerCAmelCase__ ) , 9 )
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 9 )
def _lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""" )
_UpperCAmelCase : int = en_de_tokenizer(["I am a small frog"] , return_tensors=lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Dict = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0]
self.assertListEqual(lowerCAmelCase__ , batch.input_ids[0] )
_UpperCAmelCase : Optional[int] = tempfile.mkdtemp()
en_de_tokenizer.save_pretrained(lowerCAmelCase__ )
_UpperCAmelCase : Any = [x.name for x in Path(lowerCAmelCase__ ).glob("*" )]
self.assertIn("source.spm" , lowerCAmelCase__ )
MarianTokenizer.from_pretrained(lowerCAmelCase__ )
def _lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.get_tokenizer()
_UpperCAmelCase : Any = tok(
["I am a small frog" * 1_0_0_0, "I am a small frog"] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(batch.input_ids.shape , (2, 5_1_2) )
def _lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.get_tokenizer()
_UpperCAmelCase : Optional[int] = tok(["I am a tiny frog", "I am a small frog"] , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0) )
@slow
def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : str = {"input_ids": [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name="Helsinki-NLP/opus-mt-en-de" , revision="1a8c2263da11e68e50938f97e10cd57820bd504c" , decode_kwargs={"use_source_tokenizer": True} , )
def _lowerCAmelCase ( self : int ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" )
_UpperCAmelCase : Dict = "Tämä on testi"
_UpperCAmelCase : Union[str, Any] = "This is a test"
_UpperCAmelCase : Dict = [7_6, 7, 2_0_4_7, 2]
_UpperCAmelCase : Tuple = [6_9, 1_2, 1_1, 9_4_0, 2]
_UpperCAmelCase : Optional[Any] = tokenizer(lowerCAmelCase__ ).input_ids
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = tokenizer(text_target=lowerCAmelCase__ ).input_ids
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) | 17 | '''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( a_: list[int] ):
if not nums:
return 0
_UpperCAmelCase : int = nums[0]
_UpperCAmelCase : Dict = 0
for num in nums[1:]:
_UpperCAmelCase , _UpperCAmelCase : Any = (
max_excluding + num,
max(a_, a_ ),
)
return max(a_, a_ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 1 |
'''simple docstring'''
import os
import sys
import tempfile
import torch
from .state import AcceleratorState
from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment
def __UpperCAmelCase ( a_: Tuple, a_: Any=(), a_: int=None, a_: Dict="no", a_: Dict="29500" ):
_UpperCAmelCase : int = False
_UpperCAmelCase : Any = False
if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ):
_UpperCAmelCase : Union[str, Any] = True
elif "IPython" in sys.modules:
_UpperCAmelCase : List[Any] = "google.colab" in str(sys.modules["IPython"].get_ipython() )
try:
_UpperCAmelCase : List[Any] = PrecisionType(mixed_precision.lower() )
except ValueError:
raise ValueError(
f"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" )
if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME", a_ ) is not None):
# TPU launch
import torch_xla.distributed.xla_multiprocessing as xmp
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
"To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside "
"your training function. Restart your notebook and make sure no cells initializes an "
"`Accelerator`." )
if num_processes is None:
_UpperCAmelCase : Union[str, Any] = 8
_UpperCAmelCase : Tuple = PrepareForLaunch(a_, distributed_type="TPU" )
print(f"""Launching a training on {num_processes} TPU cores.""" )
xmp.spawn(a_, args=a_, nprocs=a_, start_method="fork" )
elif in_colab:
# No need for a distributed launch otherwise as it's either CPU or one GPU.
if torch.cuda.is_available():
print("Launching training on one GPU." )
else:
print("Launching training on one CPU." )
function(*a_ )
else:
if num_processes is None:
raise ValueError(
"You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." )
if num_processes > 1:
# Multi-GPU launch
from torch.multiprocessing import start_processes
from torch.multiprocessing.spawn import ProcessRaisedException
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
"To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized "
"inside your training function. Restart your notebook and make sure no cells initializes an "
"`Accelerator`." )
if torch.cuda.is_initialized():
raise ValueError(
"To launch a multi-GPU training from your notebook, you need to avoid running any instruction "
"using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA "
"function." )
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=a_, master_addr="127.0.01", master_port=a_, mixed_precision=a_ ):
_UpperCAmelCase : str = PrepareForLaunch(a_, distributed_type="MULTI_GPU" )
print(f"""Launching training on {num_processes} GPUs.""" )
try:
start_processes(a_, args=a_, nprocs=a_, start_method="fork" )
except ProcessRaisedException as e:
if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]:
raise RuntimeError(
"CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. "
"This likely stems from an outside import causing issues once the `notebook_launcher()` is called. "
"Please review your imports and test them when running the `notebook_launcher()` to identify "
"which one is problematic." ) from e
else:
# No need for a distributed launch otherwise as it's either CPU, GPU or MPS.
if is_mps_available():
_UpperCAmelCase : Any = "1"
print("Launching training on MPS." )
elif torch.cuda.is_available():
print("Launching training on one GPU." )
else:
print("Launching training on CPU." )
function(*a_ )
def __UpperCAmelCase ( a_: Tuple, a_: List[Any]=(), a_: Dict=2 ):
from torch.multiprocessing import start_processes
with tempfile.NamedTemporaryFile() as tmp_file:
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=a_, master_addr="127.0.01", master_port="29500", accelerate_mixed_precision="no", accelerate_debug_rdv_file=tmp_file.name, accelerate_use_cpu="yes", ):
_UpperCAmelCase : List[Any] = PrepareForLaunch(a_, debug=a_ )
start_processes(a_, args=a_, nprocs=a_, start_method="fork" ) | 17 | '''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a = logging.get_logger(__name__)
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if key.startswith("module.encoder" ):
_UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" )
if key.startswith("module.decoder" ):
_UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )]
_UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" )
if "norm" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )]
_UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" )
if "layer_norm1" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" )
if "layer_norm2" in key:
_UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
_UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )]
_UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" )
if "attn.q" in key:
_UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" )
if "attn.proj" in key:
_UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" )
if "attn" in key:
_UpperCAmelCase : Dict = key.replace("attn", "attention.self" )
if "fc1" in key:
_UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" )
if "fc2" in key:
_UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" )
if "linear_pred" in key:
_UpperCAmelCase : Any = key.replace("linear_pred", "classifier" )
if "linear_fuse" in key:
_UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" )
_UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )]
_UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" )
if "bot_conv" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" )
if "skip_conv1" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" )
if "skip_conv2" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" )
if "fusion1" in key:
_UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" )
if "fusion2" in key:
_UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" )
if "fusion3" in key:
_UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" )
if "fusion" in key and "conv" in key:
_UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" )
if key.startswith("module.last_layer_depth" ):
_UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" )
_UpperCAmelCase : int = value
return new_state_dict
def __UpperCAmelCase ( a_: str, a_: List[Any] ):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" )
_UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
_UpperCAmelCase : Optional[int] = kv_weight[
: config.hidden_sizes[i], :
]
_UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]]
_UpperCAmelCase : Optional[int] = kv_weight[
config.hidden_sizes[i] :, :
]
_UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :]
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw )
return image
@torch.no_grad()
def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ):
_UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
_UpperCAmelCase : Dict = GLPNImageProcessor()
# prepare image
_UpperCAmelCase : List[Any] = prepare_img()
_UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values
logger.info("Converting model..." )
# load original state dict
_UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) )
# rename keys
_UpperCAmelCase : List[str] = rename_keys(a_ )
# key and value matrices need special treatment
read_in_k_v(a_, a_ )
# create HuggingFace model and load state dict
_UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ )
model.load_state_dict(a_ )
model.eval()
# forward pass
_UpperCAmelCase : Dict = model(a_ )
_UpperCAmelCase : List[str] = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
_UpperCAmelCase : Optional[Any] = torch.tensor(
[[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] )
elif "kitti" in model_name:
_UpperCAmelCase : Tuple = torch.tensor(
[[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] )
else:
raise ValueError(f"""Unknown model name: {model_name}""" )
_UpperCAmelCase : Dict = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 )
print("Looks ok!" )
# finally, push to hub if required
if push_to_hub:
logger.info("Pushing model and image processor to the hub..." )
model.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, )
image_processor.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path',
default=None,
type=str,
help='Path to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.'
)
parser.add_argument(
'--model_name',
default='glpn-kitti',
type=str,
help='Name of the model in case you\'re pushing to the hub.',
)
__a = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name) | 17 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__a = {
'configuration_jukebox': [
'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP',
'JukeboxConfig',
'JukeboxPriorConfig',
'JukeboxVQVAEConfig',
],
'tokenization_jukebox': ['JukeboxTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST',
'JukeboxModel',
'JukeboxPreTrainedModel',
'JukeboxVQVAE',
'JukeboxPrior',
]
if TYPE_CHECKING:
from .configuration_jukebox import (
JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP,
JukeboxConfig,
JukeboxPriorConfig,
JukeboxVQVAEConfig,
)
from .tokenization_jukebox import JukeboxTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_jukebox import (
JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST,
JukeboxModel,
JukeboxPreTrainedModel,
JukeboxPrior,
JukeboxVQVAE,
)
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 17 | '''simple docstring'''
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[Any] = 10
_UpperCAmelCase : int = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string" ) ),
"labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ),
"answers": datasets.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
"id": datasets.Value("int64" ),
} )
_UpperCAmelCase : List[str] = datasets.Dataset.from_dict(
{
"tokens": [["foo"] * 5] * n,
"labels": [[1] * 5] * n,
"answers": [{"answer_start": [97], "text": ["1976"]}] * 10,
"id": list(range(a_ ) ),
}, features=a_, )
return dataset
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" )
dataset.map(cache_file_name=a_ )
return filename
# FILE_CONTENT + files
__a = '\\n Text data.\n Second line of data.'
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt"
_UpperCAmelCase : Tuple = FILE_CONTENT
with open(a_, "w" ) as f:
f.write(a_ )
return filename
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2"
_UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" )
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import gzip
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" )
_UpperCAmelCase : Any = bytes(a_, "utf-8" )
with gzip.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
if datasets.config.LZ4_AVAILABLE:
import lza.frame
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4"
_UpperCAmelCase : str = bytes(a_, "utf-8" )
with lza.frame.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Any ):
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z"
with pyazr.SevenZipFile(a_, "w" ) as archive:
archive.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: List[str] ):
import tarfile
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
import lzma
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz"
_UpperCAmelCase : List[str] = bytes(a_, "utf-8" )
with lzma.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: Tuple ):
import zipfile
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst"
_UpperCAmelCase : int = bytes(a_, "utf-8" )
with zstd.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
_UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml"
_UpperCAmelCase : Tuple = textwrap.dedent(
"\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" )
with open(a_, "w" ) as f:
f.write(a_ )
return filename
__a = [
{'col_1': '0', 'col_2': 0, 'col_3': 0.0},
{'col_1': '1', 'col_2': 1, 'col_3': 1.0},
{'col_1': '2', 'col_2': 2, 'col_3': 2.0},
{'col_1': '3', 'col_2': 3, 'col_3': 3.0},
]
__a = [
{'col_1': '4', 'col_2': 4, 'col_3': 4.0},
{'col_1': '5', 'col_2': 5, 'col_3': 5.0},
]
__a = {
'col_1': ['0', '1', '2', '3'],
'col_2': [0, 1, 2, 3],
'col_3': [0.0, 1.0, 2.0, 3.0],
}
__a = [
{'col_3': 0.0, 'col_1': '0', 'col_2': 0},
{'col_3': 1.0, 'col_1': '1', 'col_2': 1},
]
__a = [
{'col_1': 's0', 'col_2': 0, 'col_3': 0.0},
{'col_1': 's1', 'col_2': 1, 'col_3': 1.0},
{'col_1': 's2', 'col_2': 2, 'col_3': 2.0},
{'col_1': 's3', 'col_2': 3, 'col_3': 3.0},
]
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : str = datasets.Dataset.from_dict(a_ )
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" )
dataset.map(cache_file_name=a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" )
with contextlib.closing(sqlitea.connect(a_ ) ) as con:
_UpperCAmelCase : List[Any] = con.cursor()
cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" )
for item in DATA:
cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str, a_: str ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2"
with open(a_, "rb" ) as f:
_UpperCAmelCase : Any = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ):
_UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) )
f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ):
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" )
_UpperCAmelCase : Dict = pa.schema(
{
"col_1": pa.string(),
"col_2": pa.intaa(),
"col_3": pa.floataa(),
} )
with open(a_, "wb" ) as f:
_UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ )
_UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ )
writer.write_table(a_ )
writer.close()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : str = {"data": DATA}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_312:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_STR:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ):
import gzip
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ):
import gzip
_UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ):
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : List[str] = ["0", "1", "2", "3"]
_UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Dict = ["0", "1", "2", "3"]
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = ["0", "1", "2", "3"]
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc"
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename("unsupported.ext" ) )
f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] )
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" )
with open(a_, "w", encoding="utf-8" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_image_rgb.jpg" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_audio_44100.wav" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Optional[Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" )
(data_dir / "subdir").mkdir()
with open(data_dir / "subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / "subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden file
with open(data_dir / "subdir" / ".test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / ".subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / ".subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
return data_dir | 17 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class A__ :
"""simple docstring"""
UpperCamelCase_ : Any = XGLMConfig
UpperCamelCase_ : Union[str, Any] = {}
UpperCamelCase_ : Dict = '''gelu'''
def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : str = batch_size
_UpperCAmelCase : str = seq_length
_UpperCAmelCase : int = is_training
_UpperCAmelCase : List[Any] = use_input_mask
_UpperCAmelCase : Optional[int] = use_labels
_UpperCAmelCase : str = vocab_size
_UpperCAmelCase : int = d_model
_UpperCAmelCase : Tuple = num_hidden_layers
_UpperCAmelCase : Tuple = num_attention_heads
_UpperCAmelCase : Tuple = ffn_dim
_UpperCAmelCase : Any = activation_function
_UpperCAmelCase : Union[str, Any] = activation_dropout
_UpperCAmelCase : Union[str, Any] = attention_dropout
_UpperCAmelCase : Any = max_position_embeddings
_UpperCAmelCase : int = initializer_range
_UpperCAmelCase : Any = None
_UpperCAmelCase : int = 0
_UpperCAmelCase : Union[str, Any] = 2
_UpperCAmelCase : Tuple = 1
def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : int = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_UpperCAmelCase : Any = None
if self.use_input_mask:
_UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : Optional[Any] = self.get_config()
_UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , )
def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
_UpperCAmelCase : Optional[int] = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else ()
UpperCamelCase_ : Tuple = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
UpperCamelCase_ : Dict = False
UpperCamelCase_ : List[Any] = False
UpperCamelCase_ : Tuple = False
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Dict = TFXGLMModelTester(self )
_UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 )
def _lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowerCAmelCase ( self : Union[str, Any] ) -> int:
"""simple docstring"""
super().test_resize_token_embeddings()
@require_tf
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1]
# fmt: on
_UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
_UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" )
_UpperCAmelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
_UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] )
_UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[int] = "left"
# use different length sentences to test batching
_UpperCAmelCase : Tuple = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
_UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = inputs["input_ids"]
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 )
_UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids
_UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] ) | 17 | '''simple docstring'''
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = BarthezTokenizer
UpperCamelCase_ : List[Any] = BarthezTokenizerFast
UpperCamelCase_ : Optional[int] = True
UpperCamelCase_ : Optional[int] = True
def _lowerCAmelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
super().setUp()
_UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer
def _lowerCAmelCase ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = "<pad>"
_UpperCAmelCase : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 )
@require_torch
def _lowerCAmelCase ( self : Any ) -> int:
"""simple docstring"""
_UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."]
_UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2]
_UpperCAmelCase : int = self.tokenizer(
lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
_UpperCAmelCase : str = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
_UpperCAmelCase : Optional[int] = self.get_tokenizer()
_UpperCAmelCase : Optional[int] = self.get_rust_tokenizer()
_UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé."
_UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer()
_UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
_UpperCAmelCase : Tuple = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , ) | 17 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( a_: str ):
_UpperCAmelCase , _UpperCAmelCase : Optional[int] = [], []
while len(a_ ) > 1:
_UpperCAmelCase , _UpperCAmelCase : Dict = min(a_ ), max(a_ )
start.append(a_ )
end.append(a_ )
collection.remove(a_ )
collection.remove(a_ )
end.reverse()
return start + collection + end
if __name__ == "__main__":
__a = input('Enter numbers separated by a comma:\n').strip()
__a = [int(item) for item in user_input.split(',')]
print(*merge_sort(unsorted), sep=',') | 17 | '''simple docstring'''
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
__a = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class A__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0}
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : Tuple = batch_size
_UpperCAmelCase : str = num_channels
_UpperCAmelCase : Optional[Any] = image_size
_UpperCAmelCase : Dict = min_resolution
_UpperCAmelCase : str = max_resolution
_UpperCAmelCase : List[Any] = size
_UpperCAmelCase : Union[str, Any] = do_normalize
_UpperCAmelCase : Optional[Any] = do_convert_rgb
_UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6]
_UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6}
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def _lowerCAmelCase ( self : Any ) -> str:
"""simple docstring"""
_UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
_UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self )
@property
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image()
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
_UpperCAmelCase : str = 2_0_4_8
_UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) )
def _lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : Union[str, Any] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
_UpperCAmelCase : str = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(lowerCAmelCase__ ):
_UpperCAmelCase : str = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
_UpperCAmelCase : Any = "Hello"
_UpperCAmelCase : Optional[int] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : List[Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
_UpperCAmelCase : Any = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : int = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Union[str, Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : int ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 )
_UpperCAmelCase : List[Any] = 3
@property
def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : str = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Any = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Tuple = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) | 17 | 1 |
'''simple docstring'''
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[Any] = 10
_UpperCAmelCase : int = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string" ) ),
"labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ),
"answers": datasets.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
"id": datasets.Value("int64" ),
} )
_UpperCAmelCase : List[str] = datasets.Dataset.from_dict(
{
"tokens": [["foo"] * 5] * n,
"labels": [[1] * 5] * n,
"answers": [{"answer_start": [97], "text": ["1976"]}] * 10,
"id": list(range(a_ ) ),
}, features=a_, )
return dataset
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" )
dataset.map(cache_file_name=a_ )
return filename
# FILE_CONTENT + files
__a = '\\n Text data.\n Second line of data.'
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt"
_UpperCAmelCase : Tuple = FILE_CONTENT
with open(a_, "w" ) as f:
f.write(a_ )
return filename
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2"
_UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" )
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import gzip
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" )
_UpperCAmelCase : Any = bytes(a_, "utf-8" )
with gzip.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
if datasets.config.LZ4_AVAILABLE:
import lza.frame
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4"
_UpperCAmelCase : str = bytes(a_, "utf-8" )
with lza.frame.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Any ):
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z"
with pyazr.SevenZipFile(a_, "w" ) as archive:
archive.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: List[str] ):
import tarfile
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
import lzma
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz"
_UpperCAmelCase : List[str] = bytes(a_, "utf-8" )
with lzma.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: Tuple ):
import zipfile
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst"
_UpperCAmelCase : int = bytes(a_, "utf-8" )
with zstd.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
_UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml"
_UpperCAmelCase : Tuple = textwrap.dedent(
"\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" )
with open(a_, "w" ) as f:
f.write(a_ )
return filename
__a = [
{'col_1': '0', 'col_2': 0, 'col_3': 0.0},
{'col_1': '1', 'col_2': 1, 'col_3': 1.0},
{'col_1': '2', 'col_2': 2, 'col_3': 2.0},
{'col_1': '3', 'col_2': 3, 'col_3': 3.0},
]
__a = [
{'col_1': '4', 'col_2': 4, 'col_3': 4.0},
{'col_1': '5', 'col_2': 5, 'col_3': 5.0},
]
__a = {
'col_1': ['0', '1', '2', '3'],
'col_2': [0, 1, 2, 3],
'col_3': [0.0, 1.0, 2.0, 3.0],
}
__a = [
{'col_3': 0.0, 'col_1': '0', 'col_2': 0},
{'col_3': 1.0, 'col_1': '1', 'col_2': 1},
]
__a = [
{'col_1': 's0', 'col_2': 0, 'col_3': 0.0},
{'col_1': 's1', 'col_2': 1, 'col_3': 1.0},
{'col_1': 's2', 'col_2': 2, 'col_3': 2.0},
{'col_1': 's3', 'col_2': 3, 'col_3': 3.0},
]
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : str = datasets.Dataset.from_dict(a_ )
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" )
dataset.map(cache_file_name=a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" )
with contextlib.closing(sqlitea.connect(a_ ) ) as con:
_UpperCAmelCase : List[Any] = con.cursor()
cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" )
for item in DATA:
cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str, a_: str ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2"
with open(a_, "rb" ) as f:
_UpperCAmelCase : Any = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ):
_UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) )
f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ):
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" )
_UpperCAmelCase : Dict = pa.schema(
{
"col_1": pa.string(),
"col_2": pa.intaa(),
"col_3": pa.floataa(),
} )
with open(a_, "wb" ) as f:
_UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ )
_UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ )
writer.write_table(a_ )
writer.close()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : str = {"data": DATA}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_312:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_STR:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ):
import gzip
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ):
import gzip
_UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ):
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : List[str] = ["0", "1", "2", "3"]
_UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Dict = ["0", "1", "2", "3"]
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = ["0", "1", "2", "3"]
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc"
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename("unsupported.ext" ) )
f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] )
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" )
with open(a_, "w", encoding="utf-8" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_image_rgb.jpg" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_audio_44100.wav" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Optional[Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" )
(data_dir / "subdir").mkdir()
with open(data_dir / "subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / "subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden file
with open(data_dir / "subdir" / ".test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / ".subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / ".subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
return data_dir | 17 | '''simple docstring'''
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Tuple = '''time_series_transformer'''
UpperCamelCase_ : Optional[Any] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = prediction_length
_UpperCAmelCase : Optional[Any] = context_length or prediction_length
_UpperCAmelCase : Optional[Any] = distribution_output
_UpperCAmelCase : Union[str, Any] = loss
_UpperCAmelCase : Dict = input_size
_UpperCAmelCase : int = num_time_features
_UpperCAmelCase : Any = lags_sequence
_UpperCAmelCase : Dict = scaling
_UpperCAmelCase : Tuple = num_dynamic_real_features
_UpperCAmelCase : Dict = num_static_real_features
_UpperCAmelCase : Union[str, Any] = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : Optional[int] = cardinality
else:
_UpperCAmelCase : Optional[Any] = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : List[Any] = embedding_dimension
else:
_UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
_UpperCAmelCase : str = num_parallel_samples
# Transformer architecture configuration
_UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features
_UpperCAmelCase : str = d_model
_UpperCAmelCase : Optional[Any] = encoder_attention_heads
_UpperCAmelCase : Dict = decoder_attention_heads
_UpperCAmelCase : List[Any] = encoder_ffn_dim
_UpperCAmelCase : str = decoder_ffn_dim
_UpperCAmelCase : Dict = encoder_layers
_UpperCAmelCase : str = decoder_layers
_UpperCAmelCase : Any = dropout
_UpperCAmelCase : str = attention_dropout
_UpperCAmelCase : List[Any] = activation_dropout
_UpperCAmelCase : Dict = encoder_layerdrop
_UpperCAmelCase : Any = decoder_layerdrop
_UpperCAmelCase : Optional[Any] = activation_function
_UpperCAmelCase : Tuple = init_std
_UpperCAmelCase : List[str] = use_cache
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def _lowerCAmelCase ( self : str ) -> int:
"""simple docstring"""
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
) | 17 | 1 |
'''simple docstring'''
def __UpperCAmelCase ( a_: list[int] ):
if not numbers:
return 0
if not isinstance(a_, (list, tuple) ) or not all(
isinstance(a_, a_ ) for number in numbers ):
raise ValueError("numbers must be an iterable of integers" )
_UpperCAmelCase : Any = numbers[0]
for i in range(1, len(a_ ) ):
# update the maximum and minimum subarray products
_UpperCAmelCase : int = numbers[i]
if number < 0:
_UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = min_till_now, max_till_now
_UpperCAmelCase : str = max(a_, max_till_now * number )
_UpperCAmelCase : List[str] = min(a_, min_till_now * number )
# update the maximum product found till now
_UpperCAmelCase : int = max(a_, a_ )
return max_prod | 17 | '''simple docstring'''
import baseaa
def __UpperCAmelCase ( a_: str ):
return baseaa.baaencode(string.encode("utf-8" ) )
def __UpperCAmelCase ( a_: bytes ):
return baseaa.baadecode(a_ ).decode("utf-8" )
if __name__ == "__main__":
__a = 'Hello World!'
__a = baseaa_encode(test)
print(encoded)
__a = baseaa_decode(encoded)
print(decoded) | 17 | 1 |
'''simple docstring'''
from math import pi, sqrt
def __UpperCAmelCase ( a_: float ):
if num <= 0:
raise ValueError("math domain error" )
if num > 1_71.5:
raise OverflowError("math range error" )
elif num - int(a_ ) not in (0, 0.5):
raise NotImplementedError("num must be an integer or a half-integer" )
elif num == 0.5:
return sqrt(a_ )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def __UpperCAmelCase ( ):
assert gamma(0.5 ) == sqrt(a_ )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
__a = 1.0
while num:
__a = float(input('Gamma of: '))
print(f'gamma({num}) = {gamma(num)}')
print('\nEnter 0 to exit...') | 17 | '''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class A__ :
"""simple docstring"""
UpperCamelCase_ : Any = XGLMConfig
UpperCamelCase_ : Union[str, Any] = {}
UpperCamelCase_ : Dict = '''gelu'''
def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : str = batch_size
_UpperCAmelCase : str = seq_length
_UpperCAmelCase : int = is_training
_UpperCAmelCase : List[Any] = use_input_mask
_UpperCAmelCase : Optional[int] = use_labels
_UpperCAmelCase : str = vocab_size
_UpperCAmelCase : int = d_model
_UpperCAmelCase : Tuple = num_hidden_layers
_UpperCAmelCase : Tuple = num_attention_heads
_UpperCAmelCase : Tuple = ffn_dim
_UpperCAmelCase : Any = activation_function
_UpperCAmelCase : Union[str, Any] = activation_dropout
_UpperCAmelCase : Union[str, Any] = attention_dropout
_UpperCAmelCase : Any = max_position_embeddings
_UpperCAmelCase : int = initializer_range
_UpperCAmelCase : Any = None
_UpperCAmelCase : int = 0
_UpperCAmelCase : Union[str, Any] = 2
_UpperCAmelCase : Tuple = 1
def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : int = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_UpperCAmelCase : Any = None
if self.use_input_mask:
_UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : Optional[Any] = self.get_config()
_UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , )
def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
_UpperCAmelCase : Optional[int] = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else ()
UpperCamelCase_ : Tuple = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
UpperCamelCase_ : Dict = False
UpperCamelCase_ : List[Any] = False
UpperCamelCase_ : Tuple = False
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Dict = TFXGLMModelTester(self )
_UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 )
def _lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowerCAmelCase ( self : Union[str, Any] ) -> int:
"""simple docstring"""
super().test_resize_token_embeddings()
@require_tf
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1]
# fmt: on
_UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
_UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" )
_UpperCAmelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
_UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] )
_UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[int] = "left"
# use different length sentences to test batching
_UpperCAmelCase : Tuple = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
_UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = inputs["input_ids"]
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 )
_UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids
_UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] ) | 17 | 1 |
'''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( a_: list[list[int]] ):
_UpperCAmelCase : Any = len(a_ )
# We need to create solution object to save path.
_UpperCAmelCase : str = [[0 for _ in range(a_ )] for _ in range(a_ )]
_UpperCAmelCase : Optional[Any] = run_maze(a_, 0, 0, a_ )
if solved:
print("\n".join(str(a_ ) for row in solutions ) )
else:
print("No solution exists!" )
return solved
def __UpperCAmelCase ( a_: list[list[int]], a_: int, a_: int, a_: list[list[int]] ):
_UpperCAmelCase : Optional[int] = len(a_ )
# Final check point.
if i == j == (size - 1):
_UpperCAmelCase : Union[str, Any] = 1
return True
_UpperCAmelCase : int = (not i < 0) and (not j < 0) # Check lower bounds
_UpperCAmelCase : Dict = (i < size) and (j < size) # Check upper bounds
if lower_flag and upper_flag:
# check for already visited and block points.
_UpperCAmelCase : List[Any] = (not solutions[i][j]) and (not maze[i][j])
if block_flag:
# check visited
_UpperCAmelCase : Tuple = 1
# check for directions
if (
run_maze(a_, i + 1, a_, a_ )
or run_maze(a_, a_, j + 1, a_ )
or run_maze(a_, i - 1, a_, a_ )
or run_maze(a_, a_, j - 1, a_ )
):
return True
_UpperCAmelCase : Dict = 0
return False
return False
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | '''simple docstring'''
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"files", [
["full:README.md", "dataset_infos.json"],
["empty:README.md", "dataset_infos.json"],
["dataset_infos.json"],
["full:README.md"],
], )
def __UpperCAmelCase ( a_: Tuple, a_: Any ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" )
if "full:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("---\ndataset_info:\n dataset_size: 42\n---" )
if "empty:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f:
f.write("{\"default\": {\"dataset_size\": 42}}" )
_UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
"dataset_info", [
DatasetInfo(),
DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ),
], )
def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ):
_UpperCAmelCase : Tuple = str(a_ )
dataset_info.write_to_directory(a_ )
_UpperCAmelCase : Any = DatasetInfo.from_directory(a_ )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(a_, "dataset_info.json" ) )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = DatasetInfo(
description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, )
_UpperCAmelCase : Tuple = dataset_info._to_yaml_dict()
assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) )
_UpperCAmelCase : List[Any] = yaml.safe_dump(a_ )
_UpperCAmelCase : Optional[int] = yaml.safe_load(a_ )
assert dataset_info_yaml_dict == reloaded
def __UpperCAmelCase ( ):
_UpperCAmelCase : str = DatasetInfo()
_UpperCAmelCase : List[str] = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"dataset_infos_dict", [
DatasetInfosDict(),
DatasetInfosDict({"default": DatasetInfo()} ),
DatasetInfosDict({"my_config_name": DatasetInfo()} ),
DatasetInfosDict(
{
"default": DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, )
} ),
DatasetInfosDict(
{
"v1": DatasetInfo(dataset_size=42 ),
"v2": DatasetInfo(dataset_size=1_337 ),
} ),
], )
def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ):
_UpperCAmelCase : Union[str, Any] = str(a_ )
dataset_infos_dict.write_to_directory(a_ )
_UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
_UpperCAmelCase : Optional[int] = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
_UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(a_, "README.md" ) ) | 17 | 1 |
'''simple docstring'''
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
__a = '__DUMMY_TRANSFORMERS_USER__'
__a = 'Dummy User'
__a = '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'
__a = 'https://hub-ci.huggingface.co'
__a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}'
__a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}'
__a = Path('~/.huggingface/hub_ci_token').expanduser()
@pytest.fixture
def __UpperCAmelCase ( a_: Optional[int] ):
monkeypatch.setattr(
"huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", a_ )
@pytest.fixture
def __UpperCAmelCase ( a_: List[str] ):
monkeypatch.setattr("datasets.config.HF_ENDPOINT", a_ )
monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", a_ )
@pytest.fixture
def __UpperCAmelCase ( a_: str ):
monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", a_ )
@pytest.fixture
def __UpperCAmelCase ( a_: str, a_: Any ):
HfFolder.save_token(a_ )
yield
HfFolder.delete_token()
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return HfApi(endpoint=a_ )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: HfApi ):
_UpperCAmelCase : Any = HfFolder.get_token()
HfFolder.save_token(a_ )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(a_ )
@pytest.fixture
def __UpperCAmelCase ( a_: List[str] ):
def _cleanup_repo(a_: Dict ):
hf_api.delete_repo(a_, token=a_, repo_type="dataset" )
return _cleanup_repo
@pytest.fixture
def __UpperCAmelCase ( a_: List[Any] ):
@contextmanager
def _temporary_repo(a_: str ):
try:
yield repo_id
finally:
cleanup_repo(a_ )
return _temporary_repo
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: HfApi, a_: List[str], a_: Optional[Any] ):
_UpperCAmelCase : Optional[Any] = f"""repo_txt_data-{int(time.time() * 1_0e3 )}"""
_UpperCAmelCase : Optional[Any] = f"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(a_, token=a_, repo_type="dataset", private=a_ )
hf_api.upload_file(
token=a_, path_or_fileobj=str(a_ ), path_in_repo="data/text_data.txt", repo_id=a_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(a_, token=a_, repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __UpperCAmelCase ( a_: List[str], a_: Dict, a_: Union[str, Any] ):
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: HfApi, a_: Union[str, Any], a_: Optional[int] ):
_UpperCAmelCase : Dict = f"""repo_zipped_txt_data-{int(time.time() * 1_0e3 )}"""
_UpperCAmelCase : int = f"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(a_, token=a_, repo_type="dataset", private=a_ )
hf_api.upload_file(
token=a_, path_or_fileobj=str(a_ ), path_in_repo="data.zip", repo_id=a_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(a_, token=a_, repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __UpperCAmelCase ( a_: int, a_: Optional[Any], a_: Tuple ):
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: HfApi, a_: Optional[Any], a_: Any ):
_UpperCAmelCase : Tuple = f"""repo_zipped_img_data-{int(time.time() * 1_0e3 )}"""
_UpperCAmelCase : Optional[int] = f"""{CI_HUB_USER}/{repo_name}"""
hf_api.create_repo(a_, token=a_, repo_type="dataset", private=a_ )
hf_api.upload_file(
token=a_, path_or_fileobj=str(a_ ), path_in_repo="data.zip", repo_id=a_, repo_type="dataset", )
yield repo_id
try:
hf_api.delete_repo(a_, token=a_, repo_type="dataset" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ):
return hf_private_dataset_repo_zipped_img_data_ | 17 | '''simple docstring'''
from math import factorial
def __UpperCAmelCase ( a_: int = 100 ):
return sum(map(a_, str(factorial(a_ ) ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip()))) | 17 | 1 |
'''simple docstring'''
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def __UpperCAmelCase ( a_: Any, a_: List[Any]=False ):
try:
_UpperCAmelCase : Any = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
_UpperCAmelCase : Tuple = default
else:
# KEY is set, convert it to True or False.
try:
_UpperCAmelCase : List[str] = strtobool(a_ )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f"""If set, {key} must be yes or no.""" )
return _value
__a = parse_flag_from_env('RUN_SLOW', default=False)
def __UpperCAmelCase ( a_: Any ):
return unittest.skip("Test was skipped" )(a_ )
def __UpperCAmelCase ( a_: Dict ):
return unittest.skipUnless(_run_slow_tests, "test is slow" )(a_ )
def __UpperCAmelCase ( a_: Union[str, Any] ):
return unittest.skipUnless(not torch.cuda.is_available(), "test requires only a CPU" )(a_ )
def __UpperCAmelCase ( a_: List[Any] ):
return unittest.skipUnless(torch.cuda.is_available(), "test requires a GPU" )(a_ )
def __UpperCAmelCase ( a_: Any ):
return unittest.skipUnless(is_xpu_available(), "test requires a XPU" )(a_ )
def __UpperCAmelCase ( a_: List[Any] ):
return unittest.skipUnless(is_mps_available(), "test requires a `mps` backend support in `torch`" )(a_ )
def __UpperCAmelCase ( a_: Tuple ):
return unittest.skipUnless(
is_transformers_available() and is_datasets_available(), "test requires the Hugging Face suite" )(a_ )
def __UpperCAmelCase ( a_: Any ):
return unittest.skipUnless(is_bnb_available(), "test requires the bitsandbytes library" )(a_ )
def __UpperCAmelCase ( a_: Dict ):
return unittest.skipUnless(is_tpu_available(), "test requires TPU" )(a_ )
def __UpperCAmelCase ( a_: int ):
return unittest.skipUnless(torch.cuda.device_count() == 1, "test requires a GPU" )(a_ )
def __UpperCAmelCase ( a_: Union[str, Any] ):
return unittest.skipUnless(torch.xpu.device_count() == 1, "test requires a XPU" )(a_ )
def __UpperCAmelCase ( a_: Tuple ):
return unittest.skipUnless(torch.cuda.device_count() > 1, "test requires multiple GPUs" )(a_ )
def __UpperCAmelCase ( a_: Union[str, Any] ):
return unittest.skipUnless(torch.xpu.device_count() > 1, "test requires multiple XPUs" )(a_ )
def __UpperCAmelCase ( a_: Union[str, Any] ):
return unittest.skipUnless(is_safetensors_available(), "test requires safetensors" )(a_ )
def __UpperCAmelCase ( a_: Dict ):
return unittest.skipUnless(is_deepspeed_available(), "test requires DeepSpeed" )(a_ )
def __UpperCAmelCase ( a_: Tuple ):
return unittest.skipUnless(is_torch_version(">=", "1.12.0" ), "test requires torch version >= 1.12.0" )(a_ )
def __UpperCAmelCase ( a_: int=None, a_: Union[str, Any]=None ):
if test_case is None:
return partial(a_, version=a_ )
return unittest.skipUnless(is_torch_version(">=", a_ ), f"""test requires torch version >= {version}""" )(a_ )
def __UpperCAmelCase ( a_: Dict ):
return unittest.skipUnless(is_tensorboard_available(), "test requires Tensorboard" )(a_ )
def __UpperCAmelCase ( a_: int ):
return unittest.skipUnless(is_wandb_available(), "test requires wandb" )(a_ )
def __UpperCAmelCase ( a_: Optional[Any] ):
return unittest.skipUnless(is_comet_ml_available(), "test requires comet_ml" )(a_ )
__a = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def __UpperCAmelCase ( a_: Dict ):
return unittest.skipUnless(
_atleast_one_tracker_available, "test requires at least one tracker to be available and for `comet_ml` to not be installed", )(a_ )
class A__ ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Tuple = True
@classmethod
def _lowerCAmelCase ( cls : str ) -> str:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = tempfile.mkdtemp()
@classmethod
def _lowerCAmelCase ( cls : int ) -> Tuple:
"""simple docstring"""
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob("**/*" ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(lowerCAmelCase__ )
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class A__ ( unittest.TestCase ):
"""simple docstring"""
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Union[mock.Mock, List[mock.Mock]] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Dict = mocks if isinstance(lowerCAmelCase__ , (tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : List[Any] = AcceleratorState()
_UpperCAmelCase : List[Any] = tensor[None].clone().to(state.device )
_UpperCAmelCase : int = gather(a_ ).cpu()
_UpperCAmelCase : List[Any] = tensor[0].cpu()
for i in range(tensors.shape[0] ):
if not torch.equal(tensors[i], a_ ):
return False
return True
class A__ :
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = returncode
_UpperCAmelCase : Optional[int] = stdout
_UpperCAmelCase : str = stderr
async def __UpperCAmelCase ( a_: Union[str, Any], a_: List[Any] ):
while True:
_UpperCAmelCase : List[str] = await stream.readline()
if line:
callback(a_ )
else:
break
async def __UpperCAmelCase ( a_: Optional[Any], a_: Dict=None, a_: Dict=None, a_: List[Any]=None, a_: Optional[Any]=False, a_: Optional[Any]=False ):
if echo:
print("\nRunning: ", " ".join(a_ ) )
_UpperCAmelCase : Union[str, Any] = await asyncio.create_subprocess_exec(
cmd[0], *cmd[1:], stdin=a_, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env=a_, )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
_UpperCAmelCase : List[Any] = []
_UpperCAmelCase : List[str] = []
def tee(a_: Union[str, Any], a_: str, a_: Optional[Any], a_: Union[str, Any]="" ):
_UpperCAmelCase : Any = line.decode("utf-8" ).rstrip()
sink.append(a_ )
if not quiet:
print(a_, a_, file=a_ )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout, lambda a_ : tee(a_, a_, sys.stdout, label="stdout:" ) ) ),
asyncio.create_task(_read_stream(p.stderr, lambda a_ : tee(a_, a_, sys.stderr, label="stderr:" ) ) ),
], timeout=a_, )
return _RunOutput(await p.wait(), a_, a_ )
def __UpperCAmelCase ( a_: Optional[Any], a_: Optional[Any]=None, a_: int=None, a_: Any=180, a_: Optional[int]=False, a_: int=True ):
_UpperCAmelCase : Union[str, Any] = asyncio.get_event_loop()
_UpperCAmelCase : Union[str, Any] = loop.run_until_complete(
_stream_subprocess(a_, env=a_, stdin=a_, timeout=a_, quiet=a_, echo=a_ ) )
_UpperCAmelCase : Tuple = " ".join(a_ )
if result.returncode > 0:
_UpperCAmelCase : Any = "\n".join(result.stderr )
raise RuntimeError(
f"""'{cmd_str}' failed with returncode {result.returncode}\n\n"""
f"""The combined stderr from workers follows:\n{stderr}""" )
return result
class A__ ( UpperCamelCase ):
"""simple docstring"""
pass
def __UpperCAmelCase ( a_: List[str], a_: str=False ):
try:
_UpperCAmelCase : List[str] = subprocess.check_output(a_, stderr=subprocess.STDOUT )
if return_stdout:
if hasattr(a_, "decode" ):
_UpperCAmelCase : List[Any] = output.decode("utf-8" )
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
f"""Command `{' '.join(a_ )}` failed with the following error:\n\n{e.output.decode()}""" ) from e | 17 | '''simple docstring'''
from __future__ import annotations
from collections.abc import Iterable, Iterator
from dataclasses import dataclass
__a = (3, 9, -11, 0, 7, 5, 1, -1)
__a = (4, 6, 2, 0, 8, 10, 3, -2)
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : int
UpperCamelCase_ : Node | None
class A__ :
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None:
"""simple docstring"""
_UpperCAmelCase : Node | None = None
for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ):
_UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head )
def __iter__( self : int ) -> Iterator[int]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.head
while node:
yield node.data
_UpperCAmelCase : List[str] = node.next_node
def __len__( self : Any ) -> int:
"""simple docstring"""
return sum(1 for _ in self )
def __str__( self : Union[str, Any] ) -> str:
"""simple docstring"""
return " -> ".join([str(lowerCAmelCase__ ) for node in self] )
def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ):
return SortedLinkedList(list(a_ ) + list(a_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
__a = SortedLinkedList
print(merge_lists(SSL(test_data_odd), SSL(test_data_even))) | 17 | 1 |
'''simple docstring'''
import csv
import tweepy
# Twitter API credentials
__a = ''
__a = ''
__a = ''
__a = ''
def __UpperCAmelCase ( a_: str ):
# authorize twitter, initialize tweepy
_UpperCAmelCase : str = tweepy.OAuthHandler(a_, a_ )
auth.set_access_token(a_, a_ )
_UpperCAmelCase : Optional[int] = tweepy.API(a_ )
# initialize a list to hold all the tweepy Tweets
_UpperCAmelCase : Optional[Any] = []
# make initial request for most recent tweets (200 is the maximum allowed count)
_UpperCAmelCase : Optional[int] = api.user_timeline(screen_name=a_, count=200 )
# save most recent tweets
alltweets.extend(a_ )
# save the id of the oldest tweet less one
_UpperCAmelCase : Optional[Any] = alltweets[-1].id - 1
# keep grabbing tweets until there are no tweets left to grab
while len(a_ ) > 0:
print(f"""getting tweets before {oldest}""" )
# all subsequent requests use the max_id param to prevent duplicates
_UpperCAmelCase : int = api.user_timeline(
screen_name=a_, count=200, max_id=a_ )
# save most recent tweets
alltweets.extend(a_ )
# update the id of the oldest tweet less one
_UpperCAmelCase : List[str] = alltweets[-1].id - 1
print(f"""...{len(a_ )} tweets downloaded so far""" )
# transform the tweepy tweets into a 2D array that will populate the csv
_UpperCAmelCase : Union[str, Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets]
# write the csv
with open(f"""new_{screen_name}_tweets.csv""", "w" ) as f:
_UpperCAmelCase : str = csv.writer(a_ )
writer.writerow(["id", "created_at", "text"] )
writer.writerows(a_ )
if __name__ == "__main__":
# pass in the username of the account you want to download
get_all_tweets('FirePing32') | 17 | '''simple docstring'''
def __UpperCAmelCase ( a_: str ):
if not all(char in "01" for char in bin_string ):
raise ValueError("Non-binary value was passed to the function" )
if not bin_string:
raise ValueError("Empty string was passed to the function" )
_UpperCAmelCase : Optional[Any] = ""
while len(a_ ) % 3 != 0:
_UpperCAmelCase : List[Any] = "0" + bin_string
_UpperCAmelCase : Dict = [
bin_string[index : index + 3]
for index in range(len(a_ ) )
if index % 3 == 0
]
for bin_group in bin_string_in_3_list:
_UpperCAmelCase : Optional[Any] = 0
for index, val in enumerate(a_ ):
oct_val += int(2 ** (2 - index) * int(a_ ) )
oct_string += str(a_ )
return oct_string
if __name__ == "__main__":
from doctest import testmod
testmod() | 17 | 1 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class A__ :
"""simple docstring"""
@staticmethod
def _lowerCAmelCase ( *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : Tuple ) -> Union[str, Any]:
"""simple docstring"""
pass
@is_pipeline_test
@require_vision
@require_torch
class A__ ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = pipeline(
"zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" )
_UpperCAmelCase : Union[str, Any] = [
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"candidate_labels": ["cat", "remote", "couch"],
}
]
return object_detector, examples
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 )
_UpperCAmelCase : str = len(lowerCAmelCase__ )
self.assertGreater(lowerCAmelCase__ , 0 )
self.assertEqual(
lowerCAmelCase__ , [
{
"score": ANY(lowerCAmelCase__ ),
"label": ANY(lowerCAmelCase__ ),
"box": {"xmin": ANY(lowerCAmelCase__ ), "ymin": ANY(lowerCAmelCase__ ), "xmax": ANY(lowerCAmelCase__ ), "ymax": ANY(lowerCAmelCase__ )},
}
for i in range(lowerCAmelCase__ )
] , )
@require_tf
@unittest.skip("Zero Shot Object Detection not implemented in TF" )
def _lowerCAmelCase ( self : str ) -> Optional[int]:
"""simple docstring"""
pass
@require_torch
def _lowerCAmelCase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Tuple = pipeline(
"zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" )
_UpperCAmelCase : List[Any] = object_detector(
"./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , )
self.assertEqual(
nested_simplify(lowerCAmelCase__ , decimals=4 ) , [
{"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
{"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}},
{"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
] , )
_UpperCAmelCase : Union[str, Any] = object_detector(
[
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"candidate_labels": ["cat", "remote", "couch"],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(lowerCAmelCase__ , decimals=4 ) , [
[
{"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}},
{"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}},
{"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
{"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}},
{"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}},
]
] , )
@require_torch
@slow
def _lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : str = pipeline("zero-shot-object-detection" )
_UpperCAmelCase : Any = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , )
self.assertEqual(
nested_simplify(lowerCAmelCase__ , decimals=4 ) , [
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
{"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}},
{"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}},
] , )
_UpperCAmelCase : Tuple = object_detector(
[
{
"image": "http://images.cocodataset.org/val2017/000000039769.jpg",
"candidate_labels": ["cat", "remote", "couch"],
},
{
"image": "http://images.cocodataset.org/val2017/000000039769.jpg",
"candidate_labels": ["cat", "remote", "couch"],
},
] , )
self.assertEqual(
nested_simplify(lowerCAmelCase__ , decimals=4 ) , [
[
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
{"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}},
{"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}},
],
[
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
{"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}},
{"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}},
],
] , )
@require_tf
@unittest.skip("Zero Shot Object Detection not implemented in TF" )
def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
pass
@require_torch
@slow
def _lowerCAmelCase ( self : List[Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = 0.2
_UpperCAmelCase : Tuple = pipeline("zero-shot-object-detection" )
_UpperCAmelCase : Tuple = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=lowerCAmelCase__ , )
self.assertEqual(
nested_simplify(lowerCAmelCase__ , decimals=4 ) , [
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
{"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}},
] , )
@require_torch
@slow
def _lowerCAmelCase ( self : Optional[int] ) -> Any:
"""simple docstring"""
_UpperCAmelCase : List[Any] = 2
_UpperCAmelCase : Any = pipeline("zero-shot-object-detection" )
_UpperCAmelCase : Dict = object_detector(
"http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=lowerCAmelCase__ , )
self.assertEqual(
nested_simplify(lowerCAmelCase__ , decimals=4 ) , [
{"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}},
{"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}},
] , ) | 17 | '''simple docstring'''
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def __UpperCAmelCase ( a_: str ):
for param in module.parameters():
_UpperCAmelCase : Any = False
def __UpperCAmelCase ( ):
_UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
_UpperCAmelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : int = plt.imshow(a_ )
fig.axes.get_xaxis().set_visible(a_ )
fig.axes.get_yaxis().set_visible(a_ )
plt.show()
def __UpperCAmelCase ( ):
_UpperCAmelCase : Dict = datetime.now()
_UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" )
return timestamp | 17 | 1 |
'''simple docstring'''
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def __UpperCAmelCase ( ):
_UpperCAmelCase : str = HfArgumentParser(a_ )
_UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0]
_UpperCAmelCase : List[str] = TensorFlowBenchmark(args=a_ )
try:
_UpperCAmelCase : Tuple = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
_UpperCAmelCase : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead."
_UpperCAmelCase : str = " ".join(str(a_ ).split(" " )[:-1] )
_UpperCAmelCase : Any = ""
_UpperCAmelCase : Tuple = eval(str(a_ ).split(" " )[-1] )
_UpperCAmelCase : Optional[int] = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(a_ )
if len(a_ ) > 0:
_UpperCAmelCase : Optional[int] = full_error_msg + begin_error_msg + str(a_ )
raise ValueError(a_ )
benchmark.run()
if __name__ == "__main__":
main() | 17 | '''simple docstring'''
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Optional[int] = (EulerDiscreteScheduler,)
UpperCamelCase_ : Tuple = 10
def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = {
"num_train_timesteps": 1_1_0_0,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**lowerCAmelCase__ )
return config
def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Any ) -> List[str]:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[str] ) -> List[str]:
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=lowerCAmelCase__ )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.scheduler_classes[0]
_UpperCAmelCase : int = self.get_scheduler_config()
_UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
_UpperCAmelCase : int = torch.manual_seed(0 )
_UpperCAmelCase : Any = self.dummy_model()
_UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma
_UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
_UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = output.prev_sample
_UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Any = self.scheduler_classes[0]
_UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" )
_UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
_UpperCAmelCase : str = torch.manual_seed(0 )
_UpperCAmelCase : Optional[Any] = self.dummy_model()
_UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
_UpperCAmelCase : Tuple = sample.to(lowerCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
_UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = output.prev_sample
_UpperCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 0.0002 ) < 1e-2
assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3
def _lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.scheduler_classes[0]
_UpperCAmelCase : List[Any] = self.get_scheduler_config()
_UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
_UpperCAmelCase : str = self.dummy_model()
_UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_UpperCAmelCase : str = sample.to(lowerCAmelCase__ )
for t in scheduler.timesteps:
_UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : int = output.prev_sample
_UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1e-2
assert abs(result_mean.item() - 0.0131 ) < 1e-3
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.scheduler_classes[0]
_UpperCAmelCase : int = self.get_scheduler_config()
_UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
_UpperCAmelCase : List[str] = self.dummy_model()
_UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
_UpperCAmelCase : Optional[int] = sample.to(lowerCAmelCase__ )
for t in scheduler.timesteps:
_UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = output.prev_sample
_UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
_UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2
assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3 | 17 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__a = logging.get_logger(__name__)
def __UpperCAmelCase ( a_: str ):
_UpperCAmelCase : Optional[Any] = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
_UpperCAmelCase : Union[str, Any] = [144, 192, 240]
_UpperCAmelCase : Dict = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
_UpperCAmelCase : str = [96, 120, 144]
_UpperCAmelCase : Optional[int] = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
_UpperCAmelCase : Optional[Any] = [64, 80, 96]
_UpperCAmelCase : Dict = [16, 16, 24, 48, 64, 80, 320]
_UpperCAmelCase : int = 0.05
_UpperCAmelCase : Optional[int] = 2.0
if mobilevit_name.startswith("deeplabv3_" ):
_UpperCAmelCase : Dict = 512
_UpperCAmelCase : int = 16
_UpperCAmelCase : str = 21
_UpperCAmelCase : Union[str, Any] = "pascal-voc-id2label.json"
else:
_UpperCAmelCase : Optional[int] = 1_000
_UpperCAmelCase : int = "imagenet-1k-id2label.json"
_UpperCAmelCase : str = "huggingface/label-files"
_UpperCAmelCase : List[str] = json.load(open(hf_hub_download(a_, a_, repo_type="dataset" ), "r" ) )
_UpperCAmelCase : Union[str, Any] = {int(a_ ): v for k, v in idalabel.items()}
_UpperCAmelCase : Any = idalabel
_UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()}
return config
def __UpperCAmelCase ( a_: List[Any], a_: Union[str, Any]=False ):
for i in range(1, 6 ):
if f"""layer_{i}.""" in name:
_UpperCAmelCase : Optional[Any] = name.replace(f"""layer_{i}.""", f"""encoder.layer.{i - 1}.""" )
if "conv_1." in name:
_UpperCAmelCase : Optional[Any] = name.replace("conv_1.", "conv_stem." )
if ".block." in name:
_UpperCAmelCase : Dict = name.replace(".block.", "." )
if "exp_1x1" in name:
_UpperCAmelCase : List[Any] = name.replace("exp_1x1", "expand_1x1" )
if "red_1x1" in name:
_UpperCAmelCase : Any = name.replace("red_1x1", "reduce_1x1" )
if ".local_rep.conv_3x3." in name:
_UpperCAmelCase : Tuple = name.replace(".local_rep.conv_3x3.", ".conv_kxk." )
if ".local_rep.conv_1x1." in name:
_UpperCAmelCase : Union[str, Any] = name.replace(".local_rep.conv_1x1.", ".conv_1x1." )
if ".norm." in name:
_UpperCAmelCase : Any = name.replace(".norm.", ".normalization." )
if ".conv." in name:
_UpperCAmelCase : Optional[Any] = name.replace(".conv.", ".convolution." )
if ".conv_proj." in name:
_UpperCAmelCase : Any = name.replace(".conv_proj.", ".conv_projection." )
for i in range(0, 2 ):
for j in range(0, 4 ):
if f""".{i}.{j}.""" in name:
_UpperCAmelCase : Tuple = name.replace(f""".{i}.{j}.""", f""".{i}.layer.{j}.""" )
for i in range(2, 6 ):
for j in range(0, 4 ):
if f""".{i}.{j}.""" in name:
_UpperCAmelCase : Union[str, Any] = name.replace(f""".{i}.{j}.""", f""".{i}.""" )
if "expand_1x1" in name:
_UpperCAmelCase : List[str] = name.replace("expand_1x1", "downsampling_layer.expand_1x1" )
if "conv_3x3" in name:
_UpperCAmelCase : int = name.replace("conv_3x3", "downsampling_layer.conv_3x3" )
if "reduce_1x1" in name:
_UpperCAmelCase : List[Any] = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" )
for i in range(2, 5 ):
if f""".global_rep.{i}.weight""" in name:
_UpperCAmelCase : Union[str, Any] = name.replace(f""".global_rep.{i}.weight""", ".layernorm.weight" )
if f""".global_rep.{i}.bias""" in name:
_UpperCAmelCase : List[str] = name.replace(f""".global_rep.{i}.bias""", ".layernorm.bias" )
if ".global_rep." in name:
_UpperCAmelCase : Optional[Any] = name.replace(".global_rep.", ".transformer." )
if ".pre_norm_mha.0." in name:
_UpperCAmelCase : Dict = name.replace(".pre_norm_mha.0.", ".layernorm_before." )
if ".pre_norm_mha.1.out_proj." in name:
_UpperCAmelCase : Any = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." )
if ".pre_norm_ffn.0." in name:
_UpperCAmelCase : Any = name.replace(".pre_norm_ffn.0.", ".layernorm_after." )
if ".pre_norm_ffn.1." in name:
_UpperCAmelCase : Dict = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." )
if ".pre_norm_ffn.4." in name:
_UpperCAmelCase : Any = name.replace(".pre_norm_ffn.4.", ".output.dense." )
if ".transformer." in name:
_UpperCAmelCase : str = name.replace(".transformer.", ".transformer.layer." )
if ".aspp_layer." in name:
_UpperCAmelCase : Optional[Any] = name.replace(".aspp_layer.", "." )
if ".aspp_pool." in name:
_UpperCAmelCase : int = name.replace(".aspp_pool.", "." )
if "seg_head." in name:
_UpperCAmelCase : Optional[Any] = name.replace("seg_head.", "segmentation_head." )
if "segmentation_head.classifier.classifier." in name:
_UpperCAmelCase : Dict = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." )
if "classifier.fc." in name:
_UpperCAmelCase : Optional[int] = name.replace("classifier.fc.", "classifier." )
elif (not base_model) and ("segmentation_head." not in name):
_UpperCAmelCase : List[Any] = "mobilevit." + name
return name
def __UpperCAmelCase ( a_: Any, a_: List[str], a_: int=False ):
if base_model:
_UpperCAmelCase : List[str] = ""
else:
_UpperCAmelCase : Optional[Any] = "mobilevit."
for key in orig_state_dict.copy().keys():
_UpperCAmelCase : List[Any] = orig_state_dict.pop(a_ )
if key[:8] == "encoder.":
_UpperCAmelCase : Dict = key[8:]
if "qkv" in key:
_UpperCAmelCase : Any = key.split("." )
_UpperCAmelCase : List[Any] = int(key_split[0][6:] ) - 1
_UpperCAmelCase : Union[str, Any] = int(key_split[3] )
_UpperCAmelCase : Optional[Any] = model.get_submodule(f"""{model_prefix}encoder.layer.{layer_num}""" )
_UpperCAmelCase : Any = layer.transformer.layer[transformer_num].attention.attention.all_head_size
_UpperCAmelCase : Tuple = (
f"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention."""
)
if "weight" in key:
_UpperCAmelCase : Optional[Any] = val[:dim, :]
_UpperCAmelCase : Any = val[dim : dim * 2, :]
_UpperCAmelCase : Union[str, Any] = val[-dim:, :]
else:
_UpperCAmelCase : Dict = val[:dim]
_UpperCAmelCase : Optional[Any] = val[dim : dim * 2]
_UpperCAmelCase : str = val[-dim:]
else:
_UpperCAmelCase : Optional[Any] = val
return orig_state_dict
def __UpperCAmelCase ( ):
_UpperCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg"
_UpperCAmelCase : Optional[int] = Image.open(requests.get(a_, stream=a_ ).raw )
return im
@torch.no_grad()
def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: List[Any], a_: List[str]=False ):
_UpperCAmelCase : Union[str, Any] = get_mobilevit_config(a_ )
# load original state_dict
_UpperCAmelCase : List[str] = torch.load(a_, map_location="cpu" )
# load 🤗 model
if mobilevit_name.startswith("deeplabv3_" ):
_UpperCAmelCase : Union[str, Any] = MobileViTForSemanticSegmentation(a_ ).eval()
else:
_UpperCAmelCase : List[str] = MobileViTForImageClassification(a_ ).eval()
_UpperCAmelCase : Dict = convert_state_dict(a_, a_ )
model.load_state_dict(a_ )
# Check outputs on an image, prepared by MobileViTImageProcessor
_UpperCAmelCase : str = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 )
_UpperCAmelCase : int = image_processor(images=prepare_img(), return_tensors="pt" )
_UpperCAmelCase : str = model(**a_ )
_UpperCAmelCase : int = outputs.logits
if mobilevit_name.startswith("deeplabv3_" ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
_UpperCAmelCase : Optional[int] = torch.tensor(
[
[[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]],
[[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]],
[[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
_UpperCAmelCase : Tuple = torch.tensor(
[
[[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]],
[[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]],
[[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
_UpperCAmelCase : Tuple = torch.tensor(
[
[[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]],
[[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]],
[[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]],
] )
else:
raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3, :3, :3], a_, atol=1e-4 )
else:
assert logits.shape == (1, 1_000)
if mobilevit_name == "mobilevit_s":
_UpperCAmelCase : str = torch.tensor([-0.98_66, 0.23_92, -1.12_41] )
elif mobilevit_name == "mobilevit_xs":
_UpperCAmelCase : List[Any] = torch.tensor([-2.47_61, -0.93_99, -1.95_87] )
elif mobilevit_name == "mobilevit_xxs":
_UpperCAmelCase : Optional[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] )
else:
raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" )
assert torch.allclose(logits[0, :3], a_, atol=1e-4 )
Path(a_ ).mkdir(exist_ok=a_ )
print(f"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(a_ )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(a_ )
if push_to_hub:
_UpperCAmelCase : Any = {
"mobilevit_s": "mobilevit-small",
"mobilevit_xs": "mobilevit-x-small",
"mobilevit_xxs": "mobilevit-xx-small",
"deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small",
"deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small",
"deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small",
}
print("Pushing to the hub..." )
_UpperCAmelCase : int = model_mapping[mobilevit_name]
image_processor.push_to_hub(a_, organization="apple" )
model.push_to_hub(a_, organization="apple" )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--mobilevit_name',
default='mobilevit_s',
type=str,
help=(
'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','
' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'
),
)
parser.add_argument(
'--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
__a = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
) | 17 | '''simple docstring'''
def __UpperCAmelCase ( a_: int, a_: int ):
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
_UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b"
_UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) )
return "0b" + "".join(
str(int(char_a == "1" and char_b == "1" ) )
for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 1 |
'''simple docstring'''
class A__ :
"""simple docstring"""
def __init__( self : Tuple ) -> str:
"""simple docstring"""
_UpperCAmelCase : Tuple = {}
def _lowerCAmelCase ( self : Union[str, Any] ) -> None:
"""simple docstring"""
print(self.vertex )
for i in self.vertex:
print(lowerCAmelCase__ , " -> " , " -> ".join([str(lowerCAmelCase__ ) for j in self.vertex[i]] ) )
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> None:
"""simple docstring"""
if from_vertex in self.vertex:
self.vertex[from_vertex].append(lowerCAmelCase__ )
else:
# else make a new vertex
_UpperCAmelCase : List[Any] = [to_vertex]
def _lowerCAmelCase ( self : Any ) -> None:
"""simple docstring"""
_UpperCAmelCase : str = [False] * len(self.vertex )
# call the recursive helper function
for i in range(len(self.vertex ) ):
if not visited[i]:
self.dfs_recursive(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : list ) -> None:
"""simple docstring"""
_UpperCAmelCase : int = True
print(lowerCAmelCase__ , end=" " )
# Recur for all the vertices that are adjacent to this node
for i in self.vertex:
if not visited[i]:
self.dfs_recursive(lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
__a = Graph()
g.add_edge(0, 1)
g.add_edge(0, 2)
g.add_edge(1, 2)
g.add_edge(2, 0)
g.add_edge(2, 3)
g.add_edge(3, 3)
g.print_graph()
print('DFS:')
g.dfs()
# OUTPUT:
# 0 -> 1 -> 2
# 1 -> 2
# 2 -> 0 -> 3
# 3 -> 3
# DFS:
# 0 1 2 3 | 17 | '''simple docstring'''
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def __UpperCAmelCase ( a_: int ):
# A local function to see if a dot lands in the circle.
def is_in_circle(a_: float, a_: float ) -> bool:
_UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
_UpperCAmelCase : str = mean(
int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) )
for _ in range(a_ ) )
# The ratio of the area for circle to square is pi/4.
_UpperCAmelCase : Optional[int] = proportion * 4
print(f"""The estimated value of pi is {pi_estimate}""" )
print(f"""The numpy value of pi is {pi}""" )
print(f"""The total error is {abs(pi - pi_estimate )}""" )
def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ):
return mean(
function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value)
def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ):
def identity_function(a_: float ) -> float:
return x
_UpperCAmelCase : Union[str, Any] = area_under_curve_estimator(
a_, a_, a_, a_ )
_UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2
print("******************" )
print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {expected_value}""" )
print(f"""Total error is {abs(estimated_value - expected_value )}""" )
print("******************" )
def __UpperCAmelCase ( a_: int ):
def function_to_integrate(a_: float ) -> float:
return sqrt(4.0 - x * x )
_UpperCAmelCase : List[str] = area_under_curve_estimator(
a_, a_, 0.0, 2.0 )
print("******************" )
print("Estimating pi using area_under_curve_estimator" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {pi}""" )
print(f"""Total error is {abs(estimated_value - pi )}""" )
print("******************" )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 1 |
'''simple docstring'''
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
__a = 16
__a = 32
def __UpperCAmelCase ( a_: Accelerator, a_: int = 16, a_: str = "bert-base-cased" ):
_UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(a_ )
_UpperCAmelCase : Union[str, Any] = load_dataset("glue", "mrpc" )
def tokenize_function(a_: Any ):
# max_length=None => use the model max length (it's actually the default)
_UpperCAmelCase : Union[str, Any] = tokenizer(examples["sentence1"], examples["sentence2"], truncation=a_, max_length=a_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
_UpperCAmelCase : List[Any] = datasets.map(
a_, batched=a_, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=a_ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_UpperCAmelCase : Union[str, Any] = tokenized_datasets.rename_column("label", "labels" )
def collate_fn(a_: Union[str, Any] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(a_, padding="max_length", max_length=128, return_tensors="pt" )
return tokenizer.pad(a_, padding="longest", return_tensors="pt" )
# Instantiate dataloaders.
_UpperCAmelCase : List[str] = DataLoader(
tokenized_datasets["train"], shuffle=a_, collate_fn=a_, batch_size=a_ )
_UpperCAmelCase : Any = DataLoader(
tokenized_datasets["validation"], shuffle=a_, collate_fn=a_, batch_size=a_ )
return train_dataloader, eval_dataloader
def __UpperCAmelCase ( a_: Optional[int], a_: str ):
# Initialize accelerator
_UpperCAmelCase : List[Any] = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_UpperCAmelCase : Tuple = config["lr"]
_UpperCAmelCase : List[Any] = int(config["num_epochs"] )
_UpperCAmelCase : Optional[int] = int(config["seed"] )
_UpperCAmelCase : Optional[Any] = int(config["batch_size"] )
_UpperCAmelCase : List[Any] = args.model_name_or_path
set_seed(a_ )
_UpperCAmelCase , _UpperCAmelCase : Optional[Any] = get_dataloaders(a_, a_, a_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained(a_, return_dict=a_ )
# Instantiate optimizer
_UpperCAmelCase : str = (
AdamW
if accelerator.state.deepspeed_plugin is None
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
_UpperCAmelCase : Union[str, Any] = optimizer_cls(params=model.parameters(), lr=a_ )
if accelerator.state.deepspeed_plugin is not None:
_UpperCAmelCase : int = accelerator.state.deepspeed_plugin.deepspeed_config[
"gradient_accumulation_steps"
]
else:
_UpperCAmelCase : int = 1
_UpperCAmelCase : List[Any] = (len(a_ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
_UpperCAmelCase : Optional[int] = get_linear_schedule_with_warmup(
optimizer=a_, num_warmup_steps=0, num_training_steps=a_, )
else:
_UpperCAmelCase : str = DummyScheduler(a_, total_num_steps=a_, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = accelerator.prepare(
a_, a_, a_, a_, a_ )
# We need to keep track of how many total steps we have iterated over
_UpperCAmelCase : Any = 0
# We also need to keep track of the stating epoch so files are named properly
_UpperCAmelCase : List[Any] = 0
# Now we train the model
_UpperCAmelCase : str = evaluate.load("glue", "mrpc" )
_UpperCAmelCase : Tuple = 0
_UpperCAmelCase : int = {}
for epoch in range(a_, a_ ):
model.train()
for step, batch in enumerate(a_ ):
_UpperCAmelCase : Tuple = model(**a_ )
_UpperCAmelCase : Tuple = outputs.loss
_UpperCAmelCase : Tuple = loss / gradient_accumulation_steps
accelerator.backward(a_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
_UpperCAmelCase : Tuple = 0
for step, batch in enumerate(a_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_UpperCAmelCase : Optional[Any] = model(**a_ )
_UpperCAmelCase : Union[str, Any] = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
_UpperCAmelCase , _UpperCAmelCase : Dict = accelerator.gather(
(predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(a_ ) - 1:
_UpperCAmelCase : int = predictions[: len(eval_dataloader.dataset ) - samples_seen]
_UpperCAmelCase : Union[str, Any] = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=a_, references=a_, )
_UpperCAmelCase : Optional[Any] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""", a_ )
_UpperCAmelCase : List[str] = eval_metric["accuracy"]
if best_performance < eval_metric["accuracy"]:
_UpperCAmelCase : Optional[Any] = eval_metric["accuracy"]
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}"""
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, "all_results.json" ), "w" ) as f:
json.dump(a_, a_ )
def __UpperCAmelCase ( ):
_UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." )
parser.add_argument(
"--model_name_or_path", type=a_, default="bert-base-cased", help="Path to pretrained model or model identifier from huggingface.co/models.", required=a_, )
parser.add_argument(
"--output_dir", type=a_, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", )
parser.add_argument(
"--performance_lower_bound", type=a_, default=a_, help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.", )
parser.add_argument(
"--num_epochs", type=a_, default=3, help="Number of train epochs.", )
_UpperCAmelCase : List[Any] = parser.parse_args()
_UpperCAmelCase : int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16}
training_function(a_, a_ )
if __name__ == "__main__":
main() | 17 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__a = {
'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'],
'processing_layoutlmv2': ['LayoutLMv2Processor'],
'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['LayoutLMv2TokenizerFast']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ['LayoutLMv2FeatureExtractor']
__a = ['LayoutLMv2ImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'LayoutLMv2ForQuestionAnswering',
'LayoutLMv2ForSequenceClassification',
'LayoutLMv2ForTokenClassification',
'LayoutLMv2Layer',
'LayoutLMv2Model',
'LayoutLMv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 17 | 1 |
'''simple docstring'''
from math import factorial
__a = {str(d): factorial(d) for d in range(10)}
def __UpperCAmelCase ( a_: int ):
return sum(DIGIT_FACTORIAL[d] for d in str(a_ ) )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[Any] = 7 * factorial(9 ) + 1
return sum(i for i in range(3, a_ ) if sum_of_digit_factorial(a_ ) == i )
if __name__ == "__main__":
print(f'{solution() = }') | 17 | '''simple docstring'''
def __UpperCAmelCase ( a_: int, a_: int ):
if not isinstance(a_, a_ ):
raise ValueError("iterations must be defined as integers" )
if not isinstance(a_, a_ ) or not number >= 1:
raise ValueError(
"starting number must be\n and integer and be more than 0" )
if not iterations >= 1:
raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" )
_UpperCAmelCase : List[str] = ""
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(a_ )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 1 |
'''simple docstring'''
from __future__ import annotations
from math import pow, sqrt
def __UpperCAmelCase ( a_: float, a_: float, a_: float ):
if (resistance, reactance, impedance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if resistance == 0:
return {"resistance": sqrt(pow(a_, 2 ) - pow(a_, 2 ) )}
elif reactance == 0:
return {"reactance": sqrt(pow(a_, 2 ) - pow(a_, 2 ) )}
elif impedance == 0:
return {"impedance": sqrt(pow(a_, 2 ) + pow(a_, 2 ) )}
else:
raise ValueError("Exactly one argument must be 0" )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | '''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
__a = logging.getLogger(__name__)
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : str = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , )
UpperCamelCase_ : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. If passed, sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
UpperCamelCase_ : bool = field(
default=UpperCamelCase , metadata={
'''help''': (
'''Whether to pad all samples to the maximum sentence length. '''
'''If False, will pad the samples dynamically when batching to the maximum length in the batch. More '''
'''efficient on GPU but very bad for TPU.'''
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCamelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def _lowerCAmelCase ( self : Any ) -> Any:
"""simple docstring"""
if self.train_file is not None:
_UpperCAmelCase : List[Any] = self.train_file.split("." )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
_UpperCAmelCase : List[str] = self.validation_file.split("." )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class A__ :
"""simple docstring"""
UpperCamelCase_ : PreTrainedTokenizerBase
UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True
UpperCamelCase_ : Optional[int] = None
UpperCamelCase_ : Optional[int] = None
def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels"
_UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features]
_UpperCAmelCase : str = len(lowerCAmelCase__ )
_UpperCAmelCase : int = len(features[0]["input_ids"] )
_UpperCAmelCase : str = [
[{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features
]
_UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) )
_UpperCAmelCase : Any = self.tokenizer.pad(
lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , )
# Un-flatten
_UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()}
# Add back labels
_UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa )
return batch
def __UpperCAmelCase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_swag", a_, a_ )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_UpperCAmelCase : Optional[int] = training_args.get_process_log_level()
logger.setLevel(a_ )
datasets.utils.logging.set_verbosity(a_ )
transformers.utils.logging.set_verbosity(a_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
_UpperCAmelCase : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
_UpperCAmelCase : Union[str, Any] = {}
if data_args.train_file is not None:
_UpperCAmelCase : str = data_args.train_file
if data_args.validation_file is not None:
_UpperCAmelCase : Optional[Any] = data_args.validation_file
_UpperCAmelCase : Dict = data_args.train_file.split("." )[-1]
_UpperCAmelCase : Optional[int] = load_dataset(
a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
else:
# Downloading and loading the swag dataset from the hub.
_UpperCAmelCase : Dict = load_dataset(
"swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_UpperCAmelCase : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
_UpperCAmelCase : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
_UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
_UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )]
_UpperCAmelCase : List[Any] = "sent1"
_UpperCAmelCase : Optional[int] = "sent2"
if data_args.max_seq_length is None:
_UpperCAmelCase : List[str] = tokenizer.model_max_length
if max_seq_length > 1_024:
logger.warning(
"The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
" override this default with `--block_size xxx`." )
_UpperCAmelCase : Dict = 1_024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
_UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(a_: Union[str, Any] ):
_UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]]
_UpperCAmelCase : Tuple = examples[question_header_name]
_UpperCAmelCase : Optional[Any] = [
[f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ )
]
# Flatten out
_UpperCAmelCase : List[str] = list(chain(*a_ ) )
_UpperCAmelCase : Dict = list(chain(*a_ ) )
# Tokenize
_UpperCAmelCase : List[Any] = tokenizer(
a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset" )
_UpperCAmelCase : int = raw_datasets["train"]
if data_args.max_train_samples is not None:
_UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples )
_UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) )
with training_args.main_process_first(desc="train dataset map pre-processing" ):
_UpperCAmelCase : Union[str, Any] = train_dataset.map(
a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset" )
_UpperCAmelCase : Dict = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
_UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples )
_UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) )
with training_args.main_process_first(desc="validation dataset map pre-processing" ):
_UpperCAmelCase : Optional[int] = eval_dataset.map(
a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, )
# Data collator
_UpperCAmelCase : Tuple = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(a_: Tuple ):
_UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions
_UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
_UpperCAmelCase : Any = Trainer(
model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, )
# Training
if training_args.do_train:
_UpperCAmelCase : Optional[Any] = None
if training_args.resume_from_checkpoint is not None:
_UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_UpperCAmelCase : List[str] = last_checkpoint
_UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ )
trainer.save_model() # Saves the tokenizer too for easy upload
_UpperCAmelCase : str = train_result.metrics
_UpperCAmelCase : List[str] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ )
)
_UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) )
trainer.log_metrics("train", a_ )
trainer.save_metrics("train", a_ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
_UpperCAmelCase : List[Any] = trainer.evaluate()
_UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ )
_UpperCAmelCase : Tuple = min(a_, len(a_ ) )
trainer.log_metrics("eval", a_ )
trainer.save_metrics("eval", a_ )
_UpperCAmelCase : int = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "multiple-choice",
"dataset_tags": "swag",
"dataset_args": "regular",
"dataset": "SWAG",
"language": "en",
}
if training_args.push_to_hub:
trainer.push_to_hub(**a_ )
else:
trainer.create_model_card(**a_ )
def __UpperCAmelCase ( a_: int ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main() | 17 | 1 |
'''simple docstring'''
import functools
import logging
import os
import sys
import threading
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
import huggingface_hub.utils as hf_hub_utils
from tqdm import auto as tqdm_lib
__a = threading.Lock()
__a = None
__a = {
'debug': logging.DEBUG,
'info': logging.INFO,
'warning': logging.WARNING,
'error': logging.ERROR,
'critical': logging.CRITICAL,
}
__a = logging.WARNING
__a = True
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = os.getenv("TRANSFORMERS_VERBOSITY", a_ )
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """
f"""has to be one of: { ', '.join(log_levels.keys() ) }""" )
return _default_log_level
def __UpperCAmelCase ( ):
return __name__.split("." )[0]
def __UpperCAmelCase ( ):
return logging.getLogger(_get_library_name() )
def __UpperCAmelCase ( ):
global _default_handler
with _lock:
if _default_handler:
# This library has already configured the library root logger.
return
_UpperCAmelCase : Optional[Any] = logging.StreamHandler() # Set sys.stderr as stream.
_UpperCAmelCase : Dict = sys.stderr.flush
# Apply our default configuration to the library root logger.
_UpperCAmelCase : Union[str, Any] = _get_library_root_logger()
library_root_logger.addHandler(_default_handler )
library_root_logger.setLevel(_get_default_logging_level() )
_UpperCAmelCase : List[str] = False
def __UpperCAmelCase ( ):
global _default_handler
with _lock:
if not _default_handler:
return
_UpperCAmelCase : Union[str, Any] = _get_library_root_logger()
library_root_logger.removeHandler(_default_handler )
library_root_logger.setLevel(logging.NOTSET )
_UpperCAmelCase : List[Any] = None
def __UpperCAmelCase ( ):
return log_levels
def __UpperCAmelCase ( a_: Optional[str] = None ):
if name is None:
_UpperCAmelCase : Optional[Any] = _get_library_name()
_configure_library_root_logger()
return logging.getLogger(a_ )
def __UpperCAmelCase ( ):
_configure_library_root_logger()
return _get_library_root_logger().getEffectiveLevel()
def __UpperCAmelCase ( a_: int ):
_configure_library_root_logger()
_get_library_root_logger().setLevel(a_ )
def __UpperCAmelCase ( ):
return set_verbosity(a_ )
def __UpperCAmelCase ( ):
return set_verbosity(a_ )
def __UpperCAmelCase ( ):
return set_verbosity(a_ )
def __UpperCAmelCase ( ):
return set_verbosity(a_ )
def __UpperCAmelCase ( ):
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().removeHandler(_default_handler )
def __UpperCAmelCase ( ):
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().addHandler(_default_handler )
def __UpperCAmelCase ( a_: logging.Handler ):
_configure_library_root_logger()
assert handler is not None
_get_library_root_logger().addHandler(a_ )
def __UpperCAmelCase ( a_: logging.Handler ):
_configure_library_root_logger()
assert handler is not None and handler not in _get_library_root_logger().handlers
_get_library_root_logger().removeHandler(a_ )
def __UpperCAmelCase ( ):
_configure_library_root_logger()
_UpperCAmelCase : Union[str, Any] = False
def __UpperCAmelCase ( ):
_configure_library_root_logger()
_UpperCAmelCase : int = True
def __UpperCAmelCase ( ):
_UpperCAmelCase : List[Any] = _get_library_root_logger().handlers
for handler in handlers:
_UpperCAmelCase : List[Any] = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" )
handler.setFormatter(a_ )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Dict = _get_library_root_logger().handlers
for handler in handlers:
handler.setFormatter(a_ )
def __UpperCAmelCase ( self: Any, *a_: Tuple, **a_: Dict ):
_UpperCAmelCase : Optional[Any] = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS", a_ )
if no_advisory_warnings:
return
self.warning(*a_, **a_ )
__a = warning_advice
@functools.lru_cache(a_ )
def __UpperCAmelCase ( self: Union[str, Any], *a_: Optional[Any], **a_: Union[str, Any] ):
self.warning(*a_, **a_ )
__a = warning_once
class A__ :
"""simple docstring"""
def __init__( self : List[str] , *lowerCAmelCase__ : int , **lowerCAmelCase__ : List[Any] ) -> Union[str, Any]: # pylint: disable=unused-argument
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = args[0] if args else None
def __iter__( self : List[Any] ) -> Any:
"""simple docstring"""
return iter(self._iterator )
def __getattr__( self : Any , lowerCAmelCase__ : Any ) -> List[Any]:
"""simple docstring"""
def empty_fn(*lowerCAmelCase__ : Any , **lowerCAmelCase__ : List[str] ): # pylint: disable=unused-argument
return
return empty_fn
def __enter__( self : str ) -> Optional[int]:
"""simple docstring"""
return self
def __exit__( self : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
return
class A__ :
"""simple docstring"""
def __call__( self : Any , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Any ) -> Tuple:
"""simple docstring"""
if _tqdm_active:
return tqdm_lib.tqdm(*lowerCAmelCase__ , **lowerCAmelCase__ )
else:
return EmptyTqdm(*lowerCAmelCase__ , **lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[Any] , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*lowerCAmelCase__ , **lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
__a = _tqdm_cls()
def __UpperCAmelCase ( ):
global _tqdm_active
return bool(_tqdm_active )
def __UpperCAmelCase ( ):
global _tqdm_active
_UpperCAmelCase : Optional[Any] = True
hf_hub_utils.enable_progress_bars()
def __UpperCAmelCase ( ):
global _tqdm_active
_UpperCAmelCase : int = False
hf_hub_utils.disable_progress_bars() | 17 | '''simple docstring'''
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class A__ ( pl.LightningModule ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str:
"""simple docstring"""
super().__init__()
_UpperCAmelCase : List[str] = model
_UpperCAmelCase : Dict = 2
_UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels )
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
pass
def __UpperCAmelCase ( a_: str, a_: str, a_: str ):
# load longformer model from model identifier
_UpperCAmelCase : int = LongformerModel.from_pretrained(a_ )
_UpperCAmelCase : Any = LightningModel(a_ )
_UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) )
lightning_model.load_state_dict(ckpt["state_dict"] )
# init longformer question answering model
_UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ )
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() )
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() )
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(a_ )
print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--longformer_model',
default=None,
type=str,
required=True,
help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.',
)
parser.add_argument(
'--longformer_question_answering_ckpt_path',
default=None,
type=str,
required=True,
help='Path the official PyTorch Lightning Checkpoint.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__a = parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
) | 17 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
__a = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class A__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0}
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : Tuple = batch_size
_UpperCAmelCase : str = num_channels
_UpperCAmelCase : Optional[Any] = image_size
_UpperCAmelCase : Dict = min_resolution
_UpperCAmelCase : str = max_resolution
_UpperCAmelCase : List[Any] = size
_UpperCAmelCase : Union[str, Any] = do_normalize
_UpperCAmelCase : Optional[Any] = do_convert_rgb
_UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6]
_UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6}
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def _lowerCAmelCase ( self : Any ) -> str:
"""simple docstring"""
_UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
_UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self )
@property
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image()
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
_UpperCAmelCase : str = 2_0_4_8
_UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) )
def _lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : Union[str, Any] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
_UpperCAmelCase : str = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(lowerCAmelCase__ ):
_UpperCAmelCase : str = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
_UpperCAmelCase : Any = "Hello"
_UpperCAmelCase : Optional[int] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : List[Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
_UpperCAmelCase : Any = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : int = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Union[str, Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : int ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 )
_UpperCAmelCase : List[Any] = 3
@property
def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : str = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Any = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Tuple = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) | 17 | '''simple docstring'''
from importlib import import_module
from .logging import get_logger
__a = get_logger(__name__)
class A__ :
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Any = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith("__" ):
setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
_UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module
class A__ :
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = []
def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = obj
_UpperCAmelCase : int = target
_UpperCAmelCase : Optional[int] = new
_UpperCAmelCase : Any = target.split("." )[0]
_UpperCAmelCase : Optional[int] = {}
_UpperCAmelCase : Dict = attrs or []
def __enter__( self : List[str] ) -> int:
"""simple docstring"""
*_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(lowerCAmelCase__ ) ):
try:
_UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
_UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule)
):
_UpperCAmelCase : Tuple = obj_attr
# patch at top level
setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) )
_UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) )
_UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ )
# finally set the target attribute
setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
_UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj , lowerCAmelCase__ ) is attr_value:
_UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ )
setattr(self.obj , lowerCAmelCase__ , self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
_UpperCAmelCase : Dict = globals()["__builtins__"][target_attr]
setattr(self.obj , lowerCAmelCase__ , self.new )
else:
raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" )
def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for attr in list(self.original ):
setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
self.__enter__()
self._active_patches.append(self )
def _lowerCAmelCase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__() | 17 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, PegasusConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel
@require_tf
class A__ :
"""simple docstring"""
UpperCamelCase_ : Tuple = PegasusConfig
UpperCamelCase_ : str = {}
UpperCamelCase_ : str = '''gelu'''
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=1_3 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : List[Any]=9_9 , lowerCAmelCase__ : int=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : Optional[int]=3_7 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Dict=4_0 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : int=1 , lowerCAmelCase__ : List[str]=0 , ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = parent
_UpperCAmelCase : Tuple = batch_size
_UpperCAmelCase : Any = seq_length
_UpperCAmelCase : Optional[int] = is_training
_UpperCAmelCase : str = use_labels
_UpperCAmelCase : int = vocab_size
_UpperCAmelCase : List[str] = hidden_size
_UpperCAmelCase : int = num_hidden_layers
_UpperCAmelCase : Optional[int] = num_attention_heads
_UpperCAmelCase : Any = intermediate_size
_UpperCAmelCase : List[Any] = hidden_dropout_prob
_UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
_UpperCAmelCase : Any = max_position_embeddings
_UpperCAmelCase : List[Any] = eos_token_id
_UpperCAmelCase : str = pad_token_id
_UpperCAmelCase : Optional[int] = bos_token_id
def _lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_UpperCAmelCase : Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 )
_UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase : Any = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_UpperCAmelCase : List[str] = prepare_pegasus_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
return config, inputs_dict
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : str ) -> int:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = TFPegasusModel(config=lowerCAmelCase__ ).get_decoder()
_UpperCAmelCase : Optional[int] = inputs_dict["input_ids"]
_UpperCAmelCase : List[Any] = input_ids[:1, :]
_UpperCAmelCase : Union[str, Any] = inputs_dict["attention_mask"][:1, :]
_UpperCAmelCase : Union[str, Any] = inputs_dict["head_mask"]
_UpperCAmelCase : int = 1
# first forward pass
_UpperCAmelCase : int = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ )
_UpperCAmelCase , _UpperCAmelCase : List[str] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
_UpperCAmelCase : Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 )
_UpperCAmelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_UpperCAmelCase : Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0]
_UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_UpperCAmelCase : Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_UpperCAmelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx]
_UpperCAmelCase : int = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1e-3 )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Tuple, a_: List[Any], a_: Optional[Any]=None, a_: Any=None, a_: Tuple=None, a_: Optional[int]=None, a_: Tuple=None, ):
if attention_mask is None:
_UpperCAmelCase : str = tf.cast(tf.math.not_equal(a_, config.pad_token_id ), tf.inta )
if decoder_attention_mask is None:
_UpperCAmelCase : str = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ),
], axis=-1, )
if head_mask is None:
_UpperCAmelCase : Optional[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_UpperCAmelCase : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_UpperCAmelCase : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Tuple = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else ()
UpperCamelCase_ : List[str] = (TFPegasusForConditionalGeneration,) if is_tf_available() else ()
UpperCamelCase_ : int = (
{
'''conversational''': TFPegasusForConditionalGeneration,
'''feature-extraction''': TFPegasusModel,
'''summarization''': TFPegasusForConditionalGeneration,
'''text2text-generation''': TFPegasusForConditionalGeneration,
'''translation''': TFPegasusForConditionalGeneration,
}
if is_tf_available()
else {}
)
UpperCamelCase_ : Optional[int] = True
UpperCamelCase_ : int = False
UpperCamelCase_ : Dict = False
def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = TFPegasusModelTester(self )
_UpperCAmelCase : List[str] = ConfigTester(self , config_class=lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__ )
@require_sentencepiece
@require_tokenizers
@require_tf
class A__ ( unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = [
''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''',
''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''',
]
UpperCamelCase_ : List[str] = [
'''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to'''
''' reduce the risk of wildfires.''',
'''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''',
] # differs slightly from pytorch, likely due to numerical differences in linear layers
UpperCamelCase_ : str = '''google/pegasus-xsum'''
@cached_property
def _lowerCAmelCase ( self : str ) -> Optional[int]:
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def _lowerCAmelCase ( self : int , **lowerCAmelCase__ : Tuple ) -> int:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.translate_src_text(**lowerCAmelCase__ )
assert self.expected_text == generated_words
def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : int = self.tokenizer(self.src_text , **lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="tf" )
_UpperCAmelCase : List[str] = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowerCAmelCase__ , )
_UpperCAmelCase : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase__ )
return generated_words
@slow
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
self._assert_generated_batch_equal_expected() | 17 | '''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
__a = datasets.utils.logging.get_logger(__name__)
__a = ['names', 'prefix']
__a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols']
__a = ['encoding_errors', 'on_bad_lines']
__a = ['date_format']
@dataclass
class A__ ( datasets.BuilderConfig ):
"""simple docstring"""
UpperCamelCase_ : str = ","
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer"
UpperCamelCase_ : Optional[List[str]] = None
UpperCamelCase_ : Optional[List[str]] = None
UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None
UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None
UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None
UpperCamelCase_ : Optional[list] = None
UpperCamelCase_ : Optional[list] = None
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[Union[int, List[int]]] = None
UpperCamelCase_ : Optional[int] = None
UpperCamelCase_ : Optional[Union[str, List[str]]] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = False
UpperCamelCase_ : bool = True
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : str = "."
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : str = '"'
UpperCamelCase_ : int = 0
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = True
UpperCamelCase_ : int = 0
UpperCamelCase_ : bool = True
UpperCamelCase_ : bool = False
UpperCamelCase_ : Optional[str] = None
UpperCamelCase_ : int = 1_00_00
UpperCamelCase_ : Optional[datasets.Features] = None
UpperCamelCase_ : Optional[str] = "strict"
UpperCamelCase_ : Literal["error", "warn", "skip"] = "error"
UpperCamelCase_ : Optional[str] = None
def _lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
if self.delimiter is not None:
_UpperCAmelCase : Any = self.delimiter
if self.column_names is not None:
_UpperCAmelCase : List[Any] = self.column_names
@property
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Dict = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class A__ ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
UpperCamelCase_ : int = CsvConfig
def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
_UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(lowerCAmelCase__ , (str, list, tuple) ):
_UpperCAmelCase : int = data_files
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : Any = [files]
_UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
_UpperCAmelCase : Optional[Any] = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCAmelCase : str = [files]
_UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) )
return splits
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
_UpperCAmelCase : Tuple = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ):
# cheaper cast
_UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
_UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ )
return pa_table
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
_UpperCAmelCase : Optional[Any] = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ):
_UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(lowerCAmelCase__ ):
_UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ )
except ValueError as e:
logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" )
raise | 17 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__a = {
'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'],
'tokenization_luke': ['LukeTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST',
'LukeForEntityClassification',
'LukeForEntityPairClassification',
'LukeForEntitySpanClassification',
'LukeForMultipleChoice',
'LukeForQuestionAnswering',
'LukeForSequenceClassification',
'LukeForTokenClassification',
'LukeForMaskedLM',
'LukeModel',
'LukePreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig
from .tokenization_luke import LukeTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_luke import (
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST,
LukeForEntityClassification,
LukeForEntityPairClassification,
LukeForEntitySpanClassification,
LukeForMaskedLM,
LukeForMultipleChoice,
LukeForQuestionAnswering,
LukeForSequenceClassification,
LukeForTokenClassification,
LukeModel,
LukePreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 17 | '''simple docstring'''
from __future__ import annotations
def __UpperCAmelCase ( a_: list[int] ):
if not nums:
return 0
_UpperCAmelCase : int = nums[0]
_UpperCAmelCase : Dict = 0
for num in nums[1:]:
_UpperCAmelCase , _UpperCAmelCase : Any = (
max_excluding + num,
max(a_, a_ ),
)
return max(a_, a_ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class A__ :
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int=1_3 , lowerCAmelCase__ : int=7 , lowerCAmelCase__ : str=6 , lowerCAmelCase__ : Tuple=1_7 , lowerCAmelCase__ : Dict=2_3 , lowerCAmelCase__ : List[Any]=1_1 , lowerCAmelCase__ : Optional[Any]=True , ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Any = parent
_UpperCAmelCase : Union[str, Any] = batch_size
_UpperCAmelCase : Dict = seq_length
_UpperCAmelCase : Optional[int] = act_dim
_UpperCAmelCase : Any = state_dim
_UpperCAmelCase : int = hidden_size
_UpperCAmelCase : List[Any] = max_length
_UpperCAmelCase : Tuple = is_training
def _lowerCAmelCase ( self : int ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) )
_UpperCAmelCase : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) )
_UpperCAmelCase : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) )
_UpperCAmelCase : str = floats_tensor((self.batch_size, self.seq_length, 1) )
_UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 )
_UpperCAmelCase : str = random_attention_mask((self.batch_size, self.seq_length) )
_UpperCAmelCase : Optional[int] = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def _lowerCAmelCase ( self : int ) -> Union[str, Any]:
"""simple docstring"""
return DecisionTransformerConfig(
batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : str = DecisionTransformerModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Optional[int] = model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
self.parent.assertEqual(result.state_preds.shape , states.shape )
self.parent.assertEqual(result.action_preds.shape , actions.shape )
self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions
def _lowerCAmelCase ( self : int ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : str = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) : Optional[int] = config_and_inputs
_UpperCAmelCase : str = {
"states": states,
"actions": actions,
"rewards": rewards,
"returns_to_go": returns_to_go,
"timesteps": timesteps,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Union[str, Any] = (DecisionTransformerModel,) if is_torch_available() else ()
UpperCamelCase_ : List[str] = ()
UpperCamelCase_ : Any = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
UpperCamelCase_ : Dict = False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
UpperCamelCase_ : List[Any] = False
UpperCamelCase_ : Optional[Any] = False
UpperCamelCase_ : int = False
UpperCamelCase_ : str = False
UpperCamelCase_ : int = False
UpperCamelCase_ : Optional[int] = False
UpperCamelCase_ : Any = False
UpperCamelCase_ : List[Any] = False
UpperCamelCase_ : Optional[Any] = False
def _lowerCAmelCase ( self : Optional[int] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Tuple = DecisionTransformerModelTester(self )
_UpperCAmelCase : List[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : List[str] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Any ) -> Tuple:
"""simple docstring"""
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase : Dict = DecisionTransformerModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def _lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase : int = model_class(lowerCAmelCase__ )
_UpperCAmelCase : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase : str = [*signature.parameters.keys()]
_UpperCAmelCase : Tuple = [
"states",
"actions",
"rewards",
"returns_to_go",
"timesteps",
"attention_mask",
]
self.assertListEqual(arg_names[: len(lowerCAmelCase__ )] , lowerCAmelCase__ )
@require_torch
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : int ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = 2 # number of steps of autoregressive prediction we will perform
_UpperCAmelCase : List[str] = 1_0 # defined by the RL environment, may be normalized
_UpperCAmelCase : Optional[Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" )
_UpperCAmelCase : Optional[Any] = model.to(lowerCAmelCase__ )
_UpperCAmelCase : Any = model.config
torch.manual_seed(0 )
_UpperCAmelCase : Dict = torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase__ , dtype=torch.floataa ) # env.reset()
_UpperCAmelCase : Union[str, Any] = torch.tensor(
[[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=lowerCAmelCase__ )
_UpperCAmelCase : Any = torch.tensor(lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=torch.floataa ).reshape(1 , 1 , 1 )
_UpperCAmelCase : str = state
_UpperCAmelCase : Union[str, Any] = torch.zeros(1 , 0 , config.act_dim , device=lowerCAmelCase__ , dtype=torch.floataa )
_UpperCAmelCase : Dict = torch.zeros(1 , 0 , device=lowerCAmelCase__ , dtype=torch.floataa )
_UpperCAmelCase : Optional[Any] = torch.tensor(0 , device=lowerCAmelCase__ , dtype=torch.long ).reshape(1 , 1 )
for step in range(lowerCAmelCase__ ):
_UpperCAmelCase : Optional[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowerCAmelCase__ )] , dim=1 )
_UpperCAmelCase : Tuple = torch.cat([rewards, torch.zeros(1 , 1 , device=lowerCAmelCase__ )] , dim=1 )
_UpperCAmelCase : List[str] = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device )
with torch.no_grad():
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = model(
states=lowerCAmelCase__ , actions=lowerCAmelCase__ , rewards=lowerCAmelCase__ , returns_to_go=lowerCAmelCase__ , timesteps=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )
self.assertEqual(action_pred.shape , actions.shape )
self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) )
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = ( # env.step(action)
torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase__ , dtype=torch.floataa ),
1.0,
False,
{},
)
_UpperCAmelCase : List[str] = action_pred[0, -1]
_UpperCAmelCase : Union[str, Any] = torch.cat([states, state] , dim=1 )
_UpperCAmelCase : Any = returns_to_go[0, -1] - reward
_UpperCAmelCase : List[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 )
_UpperCAmelCase : Dict = torch.cat(
[timesteps, torch.ones((1, 1) , device=lowerCAmelCase__ , dtype=torch.long ) * (step + 1)] , dim=1 ) | 17 | '''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a = logging.get_logger(__name__)
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : Union[str, Any] = OrderedDict()
for key, value in state_dict.items():
if key.startswith("module.encoder" ):
_UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" )
if key.startswith("module.decoder" ):
_UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
_UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )]
_UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" )
if "norm" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
_UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )]
_UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" )
if "layer_norm1" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" )
if "layer_norm2" in key:
_UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" )
if "block" in key:
# replace for example block1 by block.0
_UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )]
_UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" )
if "attn.q" in key:
_UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" )
if "attn.proj" in key:
_UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" )
if "attn" in key:
_UpperCAmelCase : Dict = key.replace("attn", "attention.self" )
if "fc1" in key:
_UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" )
if "fc2" in key:
_UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" )
if "linear_pred" in key:
_UpperCAmelCase : Any = key.replace("linear_pred", "classifier" )
if "linear_fuse" in key:
_UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" )
_UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
_UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )]
_UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" )
if "bot_conv" in key:
_UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" )
if "skip_conv1" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" )
if "skip_conv2" in key:
_UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" )
if "fusion1" in key:
_UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" )
if "fusion2" in key:
_UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" )
if "fusion3" in key:
_UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" )
if "fusion" in key and "conv" in key:
_UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" )
if key.startswith("module.last_layer_depth" ):
_UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" )
_UpperCAmelCase : int = value
return new_state_dict
def __UpperCAmelCase ( a_: str, a_: List[Any] ):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
_UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" )
_UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" )
# next, add keys and values (in that order) to the state dict
_UpperCAmelCase : Optional[int] = kv_weight[
: config.hidden_sizes[i], :
]
_UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]]
_UpperCAmelCase : Optional[int] = kv_weight[
config.hidden_sizes[i] :, :
]
_UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :]
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw )
return image
@torch.no_grad()
def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ):
_UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
_UpperCAmelCase : Dict = GLPNImageProcessor()
# prepare image
_UpperCAmelCase : List[Any] = prepare_img()
_UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values
logger.info("Converting model..." )
# load original state dict
_UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) )
# rename keys
_UpperCAmelCase : List[str] = rename_keys(a_ )
# key and value matrices need special treatment
read_in_k_v(a_, a_ )
# create HuggingFace model and load state dict
_UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ )
model.load_state_dict(a_ )
model.eval()
# forward pass
_UpperCAmelCase : Dict = model(a_ )
_UpperCAmelCase : List[str] = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
_UpperCAmelCase : Optional[Any] = torch.tensor(
[[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] )
elif "kitti" in model_name:
_UpperCAmelCase : Tuple = torch.tensor(
[[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] )
else:
raise ValueError(f"""Unknown model name: {model_name}""" )
_UpperCAmelCase : Dict = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 )
print("Looks ok!" )
# finally, push to hub if required
if push_to_hub:
logger.info("Pushing model and image processor to the hub..." )
model.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, )
image_processor.push_to_hub(
repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path',
default=None,
type=str,
help='Path to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.'
)
parser.add_argument(
'--model_name',
default='glpn-kitti',
type=str,
help='Name of the model in case you\'re pushing to the hub.',
)
__a = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name) | 17 | 1 |
'''simple docstring'''
import unittest
from transformers import MPNetConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
class A__ :
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any]=1_3 , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Any=9_9 , lowerCAmelCase__ : Union[str, Any]=6_4 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : Tuple=6_4 , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : List[Any]=1_6 , lowerCAmelCase__ : Union[str, Any]=2 , lowerCAmelCase__ : Union[str, Any]=0.02 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Union[str, Any]=4 , lowerCAmelCase__ : Any=None , ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[str] = parent
_UpperCAmelCase : Any = batch_size
_UpperCAmelCase : Dict = seq_length
_UpperCAmelCase : List[Any] = is_training
_UpperCAmelCase : Optional[Any] = use_input_mask
_UpperCAmelCase : Union[str, Any] = use_token_type_ids
_UpperCAmelCase : Optional[Any] = use_labels
_UpperCAmelCase : int = vocab_size
_UpperCAmelCase : str = hidden_size
_UpperCAmelCase : List[str] = num_hidden_layers
_UpperCAmelCase : Any = num_attention_heads
_UpperCAmelCase : Union[str, Any] = intermediate_size
_UpperCAmelCase : List[Any] = hidden_act
_UpperCAmelCase : str = hidden_dropout_prob
_UpperCAmelCase : Tuple = attention_probs_dropout_prob
_UpperCAmelCase : Optional[Any] = max_position_embeddings
_UpperCAmelCase : Optional[Any] = type_vocab_size
_UpperCAmelCase : List[str] = type_sequence_label_size
_UpperCAmelCase : Optional[Any] = initializer_range
_UpperCAmelCase : Dict = num_labels
_UpperCAmelCase : str = num_choices
_UpperCAmelCase : List[str] = scope
def _lowerCAmelCase ( self : Tuple ) -> Any:
"""simple docstring"""
return MPNetConfig.from_pretrained("microsoft/mpnet-base" )
def _lowerCAmelCase ( self : Any ) -> int:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase : List[str] = None
if self.use_input_mask:
_UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : List[str] = None
_UpperCAmelCase : Union[str, Any] = None
_UpperCAmelCase : Optional[Any] = None
if self.use_labels:
_UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices )
_UpperCAmelCase : str = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCAmelCase ( self : List[str] ) -> Any:
"""simple docstring"""
return MPNetConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = MPNetModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Any = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int ) -> int:
"""simple docstring"""
_UpperCAmelCase : List[str] = MPNetForQuestionAnswering(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : List[Any] = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = self.num_labels
_UpperCAmelCase : Tuple = MPNetForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int ) -> str:
"""simple docstring"""
_UpperCAmelCase : Dict = self.num_choices
_UpperCAmelCase : Union[str, Any] = MPNetForMultipleChoice(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCAmelCase : Any = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Tuple = self.num_labels
_UpperCAmelCase : str = MPNetForTokenClassification(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _lowerCAmelCase ( self : str ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Dict = self.prepare_config_and_inputs()
((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) : List[Any] = config_and_inputs
_UpperCAmelCase : int = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Tuple = (
(
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
if is_torch_available()
else ()
)
UpperCamelCase_ : int = (
{
'''feature-extraction''': MPNetModel,
'''fill-mask''': MPNetForMaskedLM,
'''question-answering''': MPNetForQuestionAnswering,
'''text-classification''': MPNetForSequenceClassification,
'''token-classification''': MPNetForTokenClassification,
'''zero-shot''': MPNetForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCamelCase_ : Dict = False
UpperCamelCase_ : Optional[int] = True
def _lowerCAmelCase ( self : Optional[int] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = MPNetModelTester(self )
_UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 )
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_model(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Dict ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Any ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_token_classification(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_question_answering(*lowerCAmelCase__ )
@require_torch
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : str ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : str = MPNetModel.from_pretrained("microsoft/mpnet-base" )
_UpperCAmelCase : Tuple = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
_UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ )[0]
_UpperCAmelCase : Union[str, Any] = torch.Size((1, 1_1, 7_6_8) )
self.assertEqual(output.shape , lowerCAmelCase__ )
_UpperCAmelCase : Dict = torch.tensor(
[[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] )
# compare the actual values for a slice.
self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) | 17 | '''simple docstring'''
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[Any] = 10
_UpperCAmelCase : int = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string" ) ),
"labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ),
"answers": datasets.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
"id": datasets.Value("int64" ),
} )
_UpperCAmelCase : List[str] = datasets.Dataset.from_dict(
{
"tokens": [["foo"] * 5] * n,
"labels": [[1] * 5] * n,
"answers": [{"answer_start": [97], "text": ["1976"]}] * 10,
"id": list(range(a_ ) ),
}, features=a_, )
return dataset
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" )
dataset.map(cache_file_name=a_ )
return filename
# FILE_CONTENT + files
__a = '\\n Text data.\n Second line of data.'
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt"
_UpperCAmelCase : Tuple = FILE_CONTENT
with open(a_, "w" ) as f:
f.write(a_ )
return filename
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2"
_UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" )
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
import gzip
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" )
_UpperCAmelCase : Any = bytes(a_, "utf-8" )
with gzip.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
if datasets.config.LZ4_AVAILABLE:
import lza.frame
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4"
_UpperCAmelCase : str = bytes(a_, "utf-8" )
with lza.frame.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Any ):
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z"
with pyazr.SevenZipFile(a_, "w" ) as archive:
archive.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: List[str] ):
import tarfile
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
import lzma
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz"
_UpperCAmelCase : List[str] = bytes(a_, "utf-8" )
with lzma.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: Tuple ):
import zipfile
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
_UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst"
_UpperCAmelCase : int = bytes(a_, "utf-8" )
with zstd.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int] ):
_UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml"
_UpperCAmelCase : Tuple = textwrap.dedent(
"\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" )
with open(a_, "w" ) as f:
f.write(a_ )
return filename
__a = [
{'col_1': '0', 'col_2': 0, 'col_3': 0.0},
{'col_1': '1', 'col_2': 1, 'col_3': 1.0},
{'col_1': '2', 'col_2': 2, 'col_3': 2.0},
{'col_1': '3', 'col_2': 3, 'col_3': 3.0},
]
__a = [
{'col_1': '4', 'col_2': 4, 'col_3': 4.0},
{'col_1': '5', 'col_2': 5, 'col_3': 5.0},
]
__a = {
'col_1': ['0', '1', '2', '3'],
'col_2': [0, 1, 2, 3],
'col_3': [0.0, 1.0, 2.0, 3.0],
}
__a = [
{'col_3': 0.0, 'col_1': '0', 'col_2': 0},
{'col_3': 1.0, 'col_1': '1', 'col_2': 1},
]
__a = [
{'col_1': 's0', 'col_2': 0, 'col_3': 0.0},
{'col_1': 's1', 'col_2': 1, 'col_3': 1.0},
{'col_1': 's2', 'col_2': 2, 'col_3': 2.0},
{'col_1': 's3', 'col_2': 3, 'col_3': 3.0},
]
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : str = datasets.Dataset.from_dict(a_ )
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" )
dataset.map(cache_file_name=a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" )
with contextlib.closing(sqlitea.connect(a_ ) ) as con:
_UpperCAmelCase : List[Any] = con.cursor()
cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" )
for item in DATA:
cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" )
with open(a_, "w", newline="" ) as f:
_UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] )
writer.writeheader()
for item in DATA:
writer.writerow(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: str, a_: str ):
import bza
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2"
with open(a_, "rb" ) as f:
_UpperCAmelCase : Any = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(a_, "wb" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ):
_UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) )
f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ):
_UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" )
_UpperCAmelCase : Dict = pa.schema(
{
"col_1": pa.string(),
"col_2": pa.intaa(),
"col_3": pa.floataa(),
} )
with open(a_, "wb" ) as f:
_UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ )
_UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ )
writer.write_table(a_ )
writer.close()
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : str = {"data": DATA}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" )
_UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS}
with open(a_, "w" ) as f:
json.dump(a_, a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int ):
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" )
with open(a_, "w" ) as f:
for item in DATA:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_312:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" )
with open(a_, "w" ) as f:
for item in DATA_STR:
f.write(json.dumps(a_ ) + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ):
import gzip
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ):
import gzip
_UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" )
with open(a_, "rb" ) as orig_file:
with gzip.open(a_, "wb" ) as zipped_file:
zipped_file.writelines(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ):
_UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ):
_UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.basename(a_ ) )
f.add(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar"
with tarfile.TarFile(a_, "w" ) as f:
f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: List[str] ):
_UpperCAmelCase : List[str] = ["0", "1", "2", "3"]
_UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Union[str, Any] ):
_UpperCAmelCase : Dict = ["0", "1", "2", "3"]
_UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" )
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any ):
_UpperCAmelCase : int = ["0", "1", "2", "3"]
_UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc"
with open(a_, "w" ) as f:
for item in data:
f.write(item + "\n" )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ):
_UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename("unsupported.ext" ) )
f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] )
_UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" )
with open(a_, "w", encoding="utf-8" ) as f:
f.write(a_ )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_image_rgb.jpg" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( ):
return os.path.join("tests", "features", "data", "test_audio_44100.wav" )
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: int, a_: Optional[Any] ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip"
with zipfile.ZipFile(a_, "w" ) as f:
f.write(a_, arcname=os.path.basename(a_ ) )
f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) )
return path
@pytest.fixture(scope="session" )
def __UpperCAmelCase ( a_: Tuple ):
_UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" )
(data_dir / "subdir").mkdir()
with open(data_dir / "subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / "subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden file
with open(data_dir / "subdir" / ".test.txt", "w" ) as f:
f.write("bar\n" * 10 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / ".subdir" / "train.txt", "w" ) as f:
f.write("foo\n" * 10 )
with open(data_dir / ".subdir" / "test.txt", "w" ) as f:
f.write("bar\n" * 10 )
return data_dir | 17 | 1 |
'''simple docstring'''
import datasets
from .evaluate import evaluate
__a = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n'
__a = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n'
__a = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A__ ( datasets.Metric ):
"""simple docstring"""
def _lowerCAmelCase ( self : str ) -> List[Any]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )},
"references": {
"id": datasets.Value("string" ),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
},
} ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , )
def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Dict = {prediction["id"]: prediction["prediction_text"] for prediction in predictions}
_UpperCAmelCase : List[Any] = [
{
"paragraphs": [
{
"qas": [
{
"answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]],
"id": ref["id"],
}
for ref in references
]
}
]
}
]
_UpperCAmelCase : Tuple = evaluate(dataset=lowerCAmelCase__ , predictions=lowerCAmelCase__ )
return score | 17 | '''simple docstring'''
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = BarthezTokenizer
UpperCamelCase_ : List[Any] = BarthezTokenizerFast
UpperCamelCase_ : Optional[int] = True
UpperCamelCase_ : Optional[int] = True
def _lowerCAmelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
super().setUp()
_UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer
def _lowerCAmelCase ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = "<pad>"
_UpperCAmelCase : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 )
@require_torch
def _lowerCAmelCase ( self : Any ) -> int:
"""simple docstring"""
_UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."]
_UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2]
_UpperCAmelCase : int = self.tokenizer(
lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
_UpperCAmelCase : str = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
_UpperCAmelCase : Optional[int] = self.get_tokenizer()
_UpperCAmelCase : Optional[int] = self.get_rust_tokenizer()
_UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé."
_UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer()
_UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ )
_UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
_UpperCAmelCase : Tuple = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , ) | 17 | 1 |
'''simple docstring'''
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def __UpperCAmelCase ( a_: int ):
# A local function to see if a dot lands in the circle.
def is_in_circle(a_: float, a_: float ) -> bool:
_UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
_UpperCAmelCase : str = mean(
int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) )
for _ in range(a_ ) )
# The ratio of the area for circle to square is pi/4.
_UpperCAmelCase : Optional[int] = proportion * 4
print(f"""The estimated value of pi is {pi_estimate}""" )
print(f"""The numpy value of pi is {pi}""" )
print(f"""The total error is {abs(pi - pi_estimate )}""" )
def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ):
return mean(
function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value)
def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ):
def identity_function(a_: float ) -> float:
return x
_UpperCAmelCase : Union[str, Any] = area_under_curve_estimator(
a_, a_, a_, a_ )
_UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2
print("******************" )
print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {expected_value}""" )
print(f"""Total error is {abs(estimated_value - expected_value )}""" )
print("******************" )
def __UpperCAmelCase ( a_: int ):
def function_to_integrate(a_: float ) -> float:
return sqrt(4.0 - x * x )
_UpperCAmelCase : List[str] = area_under_curve_estimator(
a_, a_, 0.0, 2.0 )
print("******************" )
print("Estimating pi using area_under_curve_estimator" )
print(f"""Estimated value is {estimated_value}""" )
print(f"""Expected value is {pi}""" )
print(f"""Total error is {abs(estimated_value - pi )}""" )
print("******************" )
if __name__ == "__main__":
import doctest
doctest.testmod() | 17 | '''simple docstring'''
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
__a = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class A__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0}
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : Tuple = batch_size
_UpperCAmelCase : str = num_channels
_UpperCAmelCase : Optional[Any] = image_size
_UpperCAmelCase : Dict = min_resolution
_UpperCAmelCase : str = max_resolution
_UpperCAmelCase : List[Any] = size
_UpperCAmelCase : Union[str, Any] = do_normalize
_UpperCAmelCase : Optional[Any] = do_convert_rgb
_UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6]
_UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6}
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def _lowerCAmelCase ( self : Any ) -> str:
"""simple docstring"""
_UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
_UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self )
@property
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image()
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
_UpperCAmelCase : str = 2_0_4_8
_UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) )
def _lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : Union[str, Any] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
_UpperCAmelCase : str = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(lowerCAmelCase__ ):
_UpperCAmelCase : str = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
_UpperCAmelCase : Any = "Hello"
_UpperCAmelCase : Optional[int] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : List[Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
_UpperCAmelCase : Any = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : int = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Union[str, Any] = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self : int ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCAmelCase : List[str] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : str = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , )
@require_torch
@require_vision
class A__ ( UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 )
_UpperCAmelCase : List[Any] = 3
@property
def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) )
def _lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCAmelCase : str = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
_UpperCAmelCase : Any = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
_UpperCAmelCase : Tuple = image_processor(
lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) | 17 | 1 |
'''simple docstring'''
import sys
from collections import defaultdict
class A__ :
"""simple docstring"""
def __init__( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Tuple = []
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Tuple ) -> str:
"""simple docstring"""
return self.node_position[vertex]
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = pos
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] ) -> int:
"""simple docstring"""
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
_UpperCAmelCase : Optional[int] = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
_UpperCAmelCase : Dict = 2 * start + 1
else:
_UpperCAmelCase : Dict = 2 * start + 2
if heap[smallest_child] < heap[start]:
_UpperCAmelCase , _UpperCAmelCase : Optional[Any] = heap[smallest_child], positions[smallest_child]
_UpperCAmelCase , _UpperCAmelCase : int = (
heap[start],
positions[start],
)
_UpperCAmelCase , _UpperCAmelCase : Optional[Any] = temp, tempa
_UpperCAmelCase : Optional[Any] = self.get_position(positions[smallest_child] )
self.set_position(
positions[smallest_child] , self.get_position(positions[start] ) )
self.set_position(positions[start] , lowerCAmelCase__ )
self.top_to_bottom(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = position[index]
while index != 0:
_UpperCAmelCase : Tuple = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 )
if val < heap[parent]:
_UpperCAmelCase : str = heap[parent]
_UpperCAmelCase : Any = position[parent]
self.set_position(position[parent] , lowerCAmelCase__ )
else:
_UpperCAmelCase : int = val
_UpperCAmelCase : int = temp
self.set_position(lowerCAmelCase__ , lowerCAmelCase__ )
break
_UpperCAmelCase : str = parent
else:
_UpperCAmelCase : Dict = val
_UpperCAmelCase : Tuple = temp
self.set_position(lowerCAmelCase__ , 0 )
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Tuple = len(lowerCAmelCase__ ) // 2 - 1
for i in range(lowerCAmelCase__ , -1 , -1 ):
self.top_to_bottom(lowerCAmelCase__ , lowerCAmelCase__ , len(lowerCAmelCase__ ) , lowerCAmelCase__ )
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = positions[0]
_UpperCAmelCase : List[str] = sys.maxsize
self.top_to_bottom(lowerCAmelCase__ , 0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ )
return temp
def __UpperCAmelCase ( a_: Optional[Any] ):
_UpperCAmelCase : Union[str, Any] = Heap()
_UpperCAmelCase : Optional[Any] = [0] * len(a_ )
_UpperCAmelCase : Any = [-1] * len(a_ ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
_UpperCAmelCase : List[Any] = [] # Heap of Distance of vertices from their neighboring vertex
_UpperCAmelCase : Any = []
for vertex in range(len(a_ ) ):
distance_tv.append(sys.maxsize )
positions.append(a_ )
heap.node_position.append(a_ )
_UpperCAmelCase : Optional[int] = []
_UpperCAmelCase : Any = 1
_UpperCAmelCase : List[Any] = sys.maxsize
for neighbor, distance in adjacency_list[0]:
_UpperCAmelCase : Any = 0
_UpperCAmelCase : Optional[int] = distance
heap.heapify(a_, a_ )
for _ in range(1, len(a_ ) ):
_UpperCAmelCase : Optional[Any] = heap.delete_minimum(a_, a_ )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
_UpperCAmelCase : Optional[Any] = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(a_ )]
):
_UpperCAmelCase : Tuple = distance
heap.bottom_to_top(
a_, heap.get_position(a_ ), a_, a_ )
_UpperCAmelCase : List[str] = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
__a = int(input('Enter number of edges: ').strip())
__a = defaultdict(list)
for _ in range(edges_number):
__a = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list)) | 17 | '''simple docstring'''
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class A__ ( UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ : Tuple = '''time_series_transformer'''
UpperCamelCase_ : Optional[Any] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = prediction_length
_UpperCAmelCase : Optional[Any] = context_length or prediction_length
_UpperCAmelCase : Optional[Any] = distribution_output
_UpperCAmelCase : Union[str, Any] = loss
_UpperCAmelCase : Dict = input_size
_UpperCAmelCase : int = num_time_features
_UpperCAmelCase : Any = lags_sequence
_UpperCAmelCase : Dict = scaling
_UpperCAmelCase : Tuple = num_dynamic_real_features
_UpperCAmelCase : Dict = num_static_real_features
_UpperCAmelCase : Union[str, Any] = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : Optional[int] = cardinality
else:
_UpperCAmelCase : Optional[Any] = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
_UpperCAmelCase : List[Any] = embedding_dimension
else:
_UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality]
_UpperCAmelCase : str = num_parallel_samples
# Transformer architecture configuration
_UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features
_UpperCAmelCase : str = d_model
_UpperCAmelCase : Optional[Any] = encoder_attention_heads
_UpperCAmelCase : Dict = decoder_attention_heads
_UpperCAmelCase : List[Any] = encoder_ffn_dim
_UpperCAmelCase : str = decoder_ffn_dim
_UpperCAmelCase : Dict = encoder_layers
_UpperCAmelCase : str = decoder_layers
_UpperCAmelCase : Any = dropout
_UpperCAmelCase : str = attention_dropout
_UpperCAmelCase : List[Any] = activation_dropout
_UpperCAmelCase : Dict = encoder_layerdrop
_UpperCAmelCase : Any = decoder_layerdrop
_UpperCAmelCase : Optional[Any] = activation_function
_UpperCAmelCase : Tuple = init_std
_UpperCAmelCase : List[str] = use_cache
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def _lowerCAmelCase ( self : str ) -> int:
"""simple docstring"""
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
) | 17 | 1 |
'''simple docstring'''
import math
__a = 10
__a = 7
__a = BALLS_PER_COLOUR * NUM_COLOURS
def __UpperCAmelCase ( a_: int = 20 ):
_UpperCAmelCase : int = math.comb(a_, a_ )
_UpperCAmelCase : Tuple = math.comb(NUM_BALLS - BALLS_PER_COLOUR, a_ )
_UpperCAmelCase : Union[str, Any] = NUM_COLOURS * (1 - missing_colour / total)
return f"""{result:.9f}"""
if __name__ == "__main__":
print(solution(20)) | 17 | '''simple docstring'''
import baseaa
def __UpperCAmelCase ( a_: str ):
return baseaa.baaencode(string.encode("utf-8" ) )
def __UpperCAmelCase ( a_: bytes ):
return baseaa.baadecode(a_ ).decode("utf-8" )
if __name__ == "__main__":
__a = 'Hello World!'
__a = baseaa_encode(test)
print(encoded)
__a = baseaa_decode(encoded)
print(decoded) | 17 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ..utils import _LazyModule
__a = {
'config': [
'EXTERNAL_DATA_FORMAT_SIZE_LIMIT',
'OnnxConfig',
'OnnxConfigWithPast',
'OnnxSeq2SeqConfigWithPast',
'PatchingSpec',
],
'convert': ['export', 'validate_model_outputs'],
'features': ['FeaturesManager'],
'utils': ['ParameterFormat', 'compute_serialized_parameters_size'],
}
if TYPE_CHECKING:
from .config import (
EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
OnnxConfig,
OnnxConfigWithPast,
OnnxSeqaSeqConfigWithPast,
PatchingSpec,
)
from .convert import export, validate_model_outputs
from .features import FeaturesManager
from .utils import ParameterFormat, compute_serialized_parameters_size
else:
import sys
__a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 17 | '''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class A__ :
"""simple docstring"""
UpperCamelCase_ : Any = XGLMConfig
UpperCamelCase_ : Union[str, Any] = {}
UpperCamelCase_ : Dict = '''gelu'''
def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : str = batch_size
_UpperCAmelCase : str = seq_length
_UpperCAmelCase : int = is_training
_UpperCAmelCase : List[Any] = use_input_mask
_UpperCAmelCase : Optional[int] = use_labels
_UpperCAmelCase : str = vocab_size
_UpperCAmelCase : int = d_model
_UpperCAmelCase : Tuple = num_hidden_layers
_UpperCAmelCase : Tuple = num_attention_heads
_UpperCAmelCase : Tuple = ffn_dim
_UpperCAmelCase : Any = activation_function
_UpperCAmelCase : Union[str, Any] = activation_dropout
_UpperCAmelCase : Union[str, Any] = attention_dropout
_UpperCAmelCase : Any = max_position_embeddings
_UpperCAmelCase : int = initializer_range
_UpperCAmelCase : Any = None
_UpperCAmelCase : int = 0
_UpperCAmelCase : Union[str, Any] = 2
_UpperCAmelCase : Tuple = 1
def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : int = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
_UpperCAmelCase : Any = None
if self.use_input_mask:
_UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : Optional[Any] = self.get_config()
_UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowerCAmelCase ( self : int ) -> Any:
"""simple docstring"""
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , )
def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) , (
_UpperCAmelCase
) ,
) : List[Any] = config_and_inputs
_UpperCAmelCase : Optional[int] = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else ()
UpperCamelCase_ : Tuple = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
UpperCamelCase_ : Dict = False
UpperCamelCase_ : List[Any] = False
UpperCamelCase_ : Tuple = False
def _lowerCAmelCase ( self : List[str] ) -> int:
"""simple docstring"""
_UpperCAmelCase : Dict = TFXGLMModelTester(self )
_UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 )
def _lowerCAmelCase ( self : List[str] ) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
@slow
def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def _lowerCAmelCase ( self : Union[str, Any] ) -> int:
"""simple docstring"""
super().test_resize_token_embeddings()
@require_tf
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
_UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1]
# fmt: on
_UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : List[Any] ) -> str:
"""simple docstring"""
_UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
_UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" )
_UpperCAmelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
_UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] )
_UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Optional[int] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
_UpperCAmelCase : Optional[int] = "left"
# use different length sentences to test batching
_UpperCAmelCase : Tuple = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
_UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ )
_UpperCAmelCase : List[Any] = inputs["input_ids"]
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 )
_UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids
_UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids
_UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 )
_UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ )
_UpperCAmelCase : Union[str, Any] = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] ) | 17 | 1 |
'''simple docstring'''
from __future__ import annotations
__a = 'Muhammad Umer Farooq'
__a = 'MIT'
__a = '1.0.0'
__a = 'Muhammad Umer Farooq'
__a = '[email protected]'
__a = 'Alpha'
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class A__ ( UpperCamelCase ):
"""simple docstring"""
def __init__( self : List[Any] , lowerCAmelCase__ : str ) -> None:
"""simple docstring"""
super().__init__()
_UpperCAmelCase : list[str] = []
_UpperCAmelCase : int = domain
def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : list[tuple[str, str | None]] ) -> None:
"""simple docstring"""
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
_UpperCAmelCase : str = parse.urljoin(self.domain , lowerCAmelCase__ )
self.urls.append(lowerCAmelCase__ )
def __UpperCAmelCase ( a_: str ):
return ".".join(get_sub_domain_name(a_ ).split("." )[-2:] )
def __UpperCAmelCase ( a_: str ):
return parse.urlparse(a_ ).netloc
def __UpperCAmelCase ( a_: str = "https://github.com" ):
_UpperCAmelCase : List[str] = get_domain_name(a_ )
# Initialize the parser
_UpperCAmelCase : Dict = Parser(a_ )
try:
# Open URL
_UpperCAmelCase : Any = requests.get(a_ )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
_UpperCAmelCase : Tuple = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
_UpperCAmelCase : Optional[int] = requests.get(a_ )
# Get the valid email.
_UpperCAmelCase : Optional[int] = re.findall("[a-zA-Z0-9]+@" + domain, read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(a_ )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(a_ )
if __name__ == "__main__":
__a = emails_from_url('https://github.com')
print(f'{len(emails)} emails found:')
print('\n'.join(sorted(emails))) | 17 | '''simple docstring'''
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"files", [
["full:README.md", "dataset_infos.json"],
["empty:README.md", "dataset_infos.json"],
["dataset_infos.json"],
["full:README.md"],
], )
def __UpperCAmelCase ( a_: Tuple, a_: Any ):
_UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" )
if "full:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("---\ndataset_info:\n dataset_size: 42\n---" )
if "empty:README.md" in files:
with open(dataset_infos_dir / "README.md", "w" ) as f:
f.write("" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f:
f.write("{\"default\": {\"dataset_size\": 42}}" )
_UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
"dataset_info", [
DatasetInfo(),
DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ),
], )
def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ):
_UpperCAmelCase : Tuple = str(a_ )
dataset_info.write_to_directory(a_ )
_UpperCAmelCase : Any = DatasetInfo.from_directory(a_ )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(a_, "dataset_info.json" ) )
def __UpperCAmelCase ( ):
_UpperCAmelCase : Optional[int] = DatasetInfo(
description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, )
_UpperCAmelCase : Tuple = dataset_info._to_yaml_dict()
assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) )
_UpperCAmelCase : List[Any] = yaml.safe_dump(a_ )
_UpperCAmelCase : Optional[int] = yaml.safe_load(a_ )
assert dataset_info_yaml_dict == reloaded
def __UpperCAmelCase ( ):
_UpperCAmelCase : str = DatasetInfo()
_UpperCAmelCase : List[str] = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"dataset_infos_dict", [
DatasetInfosDict(),
DatasetInfosDict({"default": DatasetInfo()} ),
DatasetInfosDict({"my_config_name": DatasetInfo()} ),
DatasetInfosDict(
{
"default": DatasetInfo(
description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, )
} ),
DatasetInfosDict(
{
"v1": DatasetInfo(dataset_size=42 ),
"v2": DatasetInfo(dataset_size=1_337 ),
} ),
], )
def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ):
_UpperCAmelCase : Union[str, Any] = str(a_ )
dataset_infos_dict.write_to_directory(a_ )
_UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
_UpperCAmelCase : Optional[int] = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
_UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(a_, "README.md" ) ) | 17 | 1 |
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import DistilBertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
class A__ ( UpperCamelCase ):
"""simple docstring"""
def __init__( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any]=1_3 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : int=3_2 , lowerCAmelCase__ : str=5 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : Any="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : Any=1_6 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : List[str]=None , ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : Dict = parent
_UpperCAmelCase : List[Any] = batch_size
_UpperCAmelCase : Any = seq_length
_UpperCAmelCase : int = is_training
_UpperCAmelCase : int = use_input_mask
_UpperCAmelCase : int = use_token_type_ids
_UpperCAmelCase : Optional[Any] = use_labels
_UpperCAmelCase : Union[str, Any] = vocab_size
_UpperCAmelCase : Any = hidden_size
_UpperCAmelCase : str = num_hidden_layers
_UpperCAmelCase : List[str] = num_attention_heads
_UpperCAmelCase : Dict = intermediate_size
_UpperCAmelCase : Optional[int] = hidden_act
_UpperCAmelCase : Dict = hidden_dropout_prob
_UpperCAmelCase : int = attention_probs_dropout_prob
_UpperCAmelCase : int = max_position_embeddings
_UpperCAmelCase : Optional[int] = type_vocab_size
_UpperCAmelCase : str = type_sequence_label_size
_UpperCAmelCase : str = initializer_range
_UpperCAmelCase : Any = num_labels
_UpperCAmelCase : str = num_choices
_UpperCAmelCase : Tuple = scope
def _lowerCAmelCase ( self : List[str] ) -> str:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase : int = None
if self.use_input_mask:
_UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : Dict = None
_UpperCAmelCase : int = None
_UpperCAmelCase : int = None
if self.use_labels:
_UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices )
_UpperCAmelCase : Tuple = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCAmelCase ( self : int ) -> str:
"""simple docstring"""
return DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict ) -> str:
"""simple docstring"""
_UpperCAmelCase : Any = DistilBertModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : List[str] = model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : str = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict:
"""simple docstring"""
_UpperCAmelCase : List[Any] = DistilBertForMaskedLM(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Optional[int] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Dict = DistilBertForQuestionAnswering(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Any = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Any = self.num_labels
_UpperCAmelCase : Any = DistilBertForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : str = self.num_labels
_UpperCAmelCase : Tuple = DistilBertForTokenClassification(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.num_choices
_UpperCAmelCase : List[str] = DistilBertForMultipleChoice(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCAmelCase : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCAmelCase : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCAmelCase : Optional[int] = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _lowerCAmelCase ( self : str ) -> Any:
"""simple docstring"""
_UpperCAmelCase : Tuple = self.prepare_config_and_inputs()
((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) : Any = config_and_inputs
_UpperCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase_ : Dict = (
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
UpperCamelCase_ : Optional[int] = (
{
'''feature-extraction''': DistilBertModel,
'''fill-mask''': DistilBertForMaskedLM,
'''question-answering''': DistilBertForQuestionAnswering,
'''text-classification''': DistilBertForSequenceClassification,
'''token-classification''': DistilBertForTokenClassification,
'''zero-shot''': DistilBertForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCamelCase_ : Union[str, Any] = True
UpperCamelCase_ : Any = True
UpperCamelCase_ : str = True
UpperCamelCase_ : int = True
def _lowerCAmelCase ( self : Tuple ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Tuple = DistilBertModelTester(self )
_UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=lowerCAmelCase__ , dim=3_7 )
def _lowerCAmelCase ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Tuple ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase__ )
def _lowerCAmelCase ( self : Dict ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase__ )
@slow
def _lowerCAmelCase ( self : Optional[Any] ) -> str:
"""simple docstring"""
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase : List[Any] = DistilBertModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@slow
@require_torch_gpu
def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase , _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# BertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == DistilBertForMultipleChoice:
return
_UpperCAmelCase : List[Any] = True
_UpperCAmelCase : Optional[int] = model_class(config=lowerCAmelCase__ )
_UpperCAmelCase : Optional[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCAmelCase : str = torch.jit.trace(
lowerCAmelCase__ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , "traced_model.pt" ) )
_UpperCAmelCase : Dict = torch.jit.load(os.path.join(lowerCAmelCase__ , "traced_model.pt" ) , map_location=lowerCAmelCase__ )
loaded(inputs_dict["input_ids"].to(lowerCAmelCase__ ) , inputs_dict["attention_mask"].to(lowerCAmelCase__ ) )
@require_torch
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowerCAmelCase ( self : str ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = DistilBertModel.from_pretrained("distilbert-base-uncased" )
_UpperCAmelCase : List[Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
_UpperCAmelCase : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
_UpperCAmelCase : Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0]
_UpperCAmelCase : Any = torch.Size((1, 1_1, 7_6_8) )
self.assertEqual(output.shape , lowerCAmelCase__ )
_UpperCAmelCase : Any = torch.tensor(
[[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) ) | 17 | '''simple docstring'''
from math import factorial
def __UpperCAmelCase ( a_: int = 100 ):
return sum(map(a_, str(factorial(a_ ) ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip()))) | 17 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.