code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCAmelCase : int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = -1 _UpperCAmelCase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = model.generate(lowerCAmelCase__ , max_new_tokens=1_0 , do_sample=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _UpperCAmelCase : str = TextStreamer(lowerCAmelCase__ ) model.generate(lowerCAmelCase__ , max_new_tokens=1_0 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCAmelCase : Dict = cs.out[:-1] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCAmelCase : Tuple = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = -1 _UpperCAmelCase : Union[str, Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = model.generate(lowerCAmelCase__ , max_new_tokens=1_0 , do_sample=lowerCAmelCase__ ) _UpperCAmelCase : int = tokenizer.decode(greedy_ids[0] ) _UpperCAmelCase : Tuple = TextIteratorStreamer(lowerCAmelCase__ ) _UpperCAmelCase : Any = {"input_ids": input_ids, "max_new_tokens": 1_0, "do_sample": False, "streamer": streamer} _UpperCAmelCase : Union[str, Any] = Thread(target=model.generate , kwargs=lowerCAmelCase__ ) thread.start() _UpperCAmelCase : List[str] = "" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = -1 _UpperCAmelCase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase__ ) _UpperCAmelCase : Any = model.generate(lowerCAmelCase__ , max_new_tokens=1_0 , do_sample=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = greedy_ids[:, input_ids.shape[1] :] _UpperCAmelCase : Optional[int] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _UpperCAmelCase : List[Any] = TextStreamer(lowerCAmelCase__ , skip_prompt=lowerCAmelCase__ ) model.generate(lowerCAmelCase__ , max_new_tokens=1_0 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCAmelCase : Any = cs.out[:-1] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained("distilgpt2" ) _UpperCAmelCase : int = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(lowerCAmelCase__ ) _UpperCAmelCase : Any = -1 _UpperCAmelCase : Dict = torch.ones((1, 5) , device=lowerCAmelCase__ ).long() * model.config.bos_token_id with CaptureStdout() as cs: _UpperCAmelCase : Union[str, Any] = TextStreamer(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) model.generate(lowerCAmelCase__ , max_new_tokens=1 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _UpperCAmelCase : Tuple = cs.out[:-1] # Remove the final "\n" _UpperCAmelCase : List[Any] = tokenizer(lowerCAmelCase__ , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def _lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCAmelCase : List[Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = -1 _UpperCAmelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = TextIteratorStreamer(lowerCAmelCase__ , timeout=0.001 ) _UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "max_new_tokens": 1_0, "do_sample": False, "streamer": streamer} _UpperCAmelCase : str = Thread(target=model.generate , kwargs=lowerCAmelCase__ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : Dict = "" for new_text in streamer: streamer_text += new_text
17
'''simple docstring''' from importlib import import_module from .logging import get_logger __a = get_logger(__name__) class A__ : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class A__ : """simple docstring""" UpperCamelCase_ : Union[str, Any] = [] def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = obj _UpperCAmelCase : int = target _UpperCAmelCase : Optional[int] = new _UpperCAmelCase : Any = target.split("." )[0] _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : Dict = attrs or [] def __enter__( self : List[str] ) -> int: """simple docstring""" *_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: _UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCAmelCase : Tuple = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) _UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: _UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCAmelCase : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.__enter__() self._active_patches.append(self ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
17
1
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __a = logging.get_logger(__name__) __a = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED __a = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } __a = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) _UpperCAmelCase : List[str] = bs[:] _UpperCAmelCase : Optional[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(a_ ) cs.append(2**8 + n ) n += 1 _UpperCAmelCase : Dict = [chr(a_ ) for n in cs] return dict(zip(a_, a_ ) ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = set() _UpperCAmelCase : List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase : Optional[int] = char return pairs class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int="replace" , lowerCAmelCase__ : Optional[int]="<s>" , lowerCAmelCase__ : Optional[Any]="</s>" , lowerCAmelCase__ : List[str]="</s>" , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : List[Any]="<unk>" , lowerCAmelCase__ : int="<pad>" , lowerCAmelCase__ : str="<mask>" , lowerCAmelCase__ : List[Any]=False , **lowerCAmelCase__ : Tuple , ) -> Any: """simple docstring""" _UpperCAmelCase : int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token _UpperCAmelCase : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token _UpperCAmelCase : Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token _UpperCAmelCase : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token _UpperCAmelCase : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token _UpperCAmelCase : Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8" ) as vocab_handle: _UpperCAmelCase : List[str] = json.load(lowerCAmelCase__ ) _UpperCAmelCase : int = {v: k for k, v in self.encoder.items()} _UpperCAmelCase : Any = errors # how to handle errors in decoding _UpperCAmelCase : Optional[int] = bytes_to_unicode() _UpperCAmelCase : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8" ) as merges_handle: _UpperCAmelCase : Optional[int] = merges_handle.read().split("\n" )[1:-1] _UpperCAmelCase : int = [tuple(merge.split() ) for merge in bpe_merges] _UpperCAmelCase : Union[str, Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) _UpperCAmelCase : str = {} _UpperCAmelCase : Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCAmelCase : Any = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" return len(self.encoder ) def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : str ) -> Tuple: """simple docstring""" if token in self.cache: return self.cache[token] _UpperCAmelCase : Union[str, Any] = tuple(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: _UpperCAmelCase : int = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = bigram _UpperCAmelCase : int = [] _UpperCAmelCase : List[str] = 0 while i < len(lowerCAmelCase__ ): try: _UpperCAmelCase : Optional[int] = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCAmelCase : str = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCAmelCase : int = tuple(lowerCAmelCase__ ) _UpperCAmelCase : Any = new_word if len(lowerCAmelCase__ ) == 1: break else: _UpperCAmelCase : List[Any] = get_pairs(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = " ".join(lowerCAmelCase__ ) _UpperCAmelCase : str = word return word def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : int ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = [] for token in re.findall(self.pat , lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) ) return bpe_tokens def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.decoder.get(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : int = "".join(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : Any = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + "\n" ) _UpperCAmelCase : Dict = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) _UpperCAmelCase : List[str] = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase : Any = [self.cls_token_id] _UpperCAmelCase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" _UpperCAmelCase : Tuple = [self.sep_token_id] _UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any]=False , **lowerCAmelCase__ : Any ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Tuple = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): _UpperCAmelCase : Any = " " + text return (text, kwargs) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[bool] = None , ) -> dict: """simple docstring""" _UpperCAmelCase : Dict = super()._pad( encoded_inputs=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding_strategy=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) # Load from model defaults if return_attention_mask is None: _UpperCAmelCase : str = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _UpperCAmelCase : Tuple = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _UpperCAmelCase : Tuple = len(encoded_inputs["global_attention_mask"] ) != len(lowerCAmelCase__ ) if needs_to_be_padded: _UpperCAmelCase : List[Any] = len(lowerCAmelCase__ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _UpperCAmelCase : Any = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _UpperCAmelCase : List[Any] = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
17
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a = datasets.utils.logging.get_logger(__name__) __a = ['names', 'prefix'] __a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __a = ['encoding_errors', 'on_bad_lines'] __a = ['date_format'] @dataclass class A__ ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_00_00 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase : Any = self.delimiter if self.column_names is not None: _UpperCAmelCase : List[Any] = self.column_names @property def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase_ : int = CsvConfig def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : str = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase : Tuple = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): _UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
17
1
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __a = 500_000 __a , __a = os.path.split(__file__) __a = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def __UpperCAmelCase ( a_: datasets.Dataset, **a_: Tuple ): _UpperCAmelCase : Optional[Any] = dataset.map(**a_ ) @get_duration def __UpperCAmelCase ( a_: datasets.Dataset, **a_: Any ): _UpperCAmelCase : Dict = dataset.filter(**a_ ) def __UpperCAmelCase ( ): _UpperCAmelCase : List[Any] = {"num examples": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase : Optional[Any] = datasets.Features({"text": datasets.Value("string" ), "numbers": datasets.Value("float32" )} ) _UpperCAmelCase : Any = generate_example_dataset( os.path.join(a_, "dataset.arrow" ), a_, num_examples=a_ ) _UpperCAmelCase : Tuple = transformers.AutoTokenizer.from_pretrained("bert-base-cased", use_fast=a_ ) def tokenize(a_: Optional[Any] ): return tokenizer(examples["text"] ) _UpperCAmelCase : Optional[Any] = map(a_ ) _UpperCAmelCase : List[Any] = map(a_, batched=a_ ) _UpperCAmelCase : Optional[int] = map(a_, function=lambda a_ : None, batched=a_ ) with dataset.formatted_as(type="numpy" ): _UpperCAmelCase : Dict = map(a_, function=lambda a_ : None, batched=a_ ) with dataset.formatted_as(type="pandas" ): _UpperCAmelCase : Optional[Any] = map(a_, function=lambda a_ : None, batched=a_ ) with dataset.formatted_as(type="torch", columns="numbers" ): _UpperCAmelCase : List[Any] = map(a_, function=lambda a_ : None, batched=a_ ) with dataset.formatted_as(type="tensorflow", columns="numbers" ): _UpperCAmelCase : str = map(a_, function=lambda a_ : None, batched=a_ ) _UpperCAmelCase : str = map(a_, function=a_, batched=a_ ) _UpperCAmelCase : Union[str, Any] = filter(a_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(a_, "wb" ) as f: f.write(json.dumps(a_ ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
17
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: list[int] ): if not nums: return 0 _UpperCAmelCase : int = nums[0] _UpperCAmelCase : Dict = 0 for num in nums[1:]: _UpperCAmelCase , _UpperCAmelCase : Any = ( max_excluding + num, max(a_, a_ ), ) return max(a_, a_ ) if __name__ == "__main__": import doctest doctest.testmod()
17
1
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = {'vocab_file': 'vocab.json'} __a = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } __a = {'mgp-str': 27} class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : str = VOCAB_FILES_NAMES UpperCamelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any="[GO]" , lowerCAmelCase__ : int="[GO]" , lowerCAmelCase__ : Optional[Any]="[s]" , lowerCAmelCase__ : int="[GO]" , **lowerCAmelCase__ : List[str] ) -> Any: """simple docstring""" super().__init__( unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="utf-8" ) as vocab_handle: _UpperCAmelCase : Tuple = json.load(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" return len(self.vocab ) def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Union[str, Any] ) -> Any: """simple docstring""" _UpperCAmelCase : List[Any] = [] for s in text: char_tokens.extend(lowerCAmelCase__ ) return char_tokens def _lowerCAmelCase ( self : int , lowerCAmelCase__ : int ) -> List[str]: """simple docstring""" return self.vocab.get(lowerCAmelCase__ , self.vocab.get(self.unk_token ) ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] ) -> List[str]: """simple docstring""" return self.decoder.get(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error("Vocabulary path ({}) should be a directory".format(lowerCAmelCase__ ) ) return _UpperCAmelCase : Union[str, Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + "\n" ) return (vocab_file,)
17
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): _UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" ) if key.startswith("module.decoder" ): _UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] _UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )] _UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" ) if "attn.q" in key: _UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Dict = key.replace("attn", "attention.self" ) if "fc1" in key: _UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" ) if "fc2" in key: _UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Any = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" ) _UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: _UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" ) if "skip_conv1" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" ) if "skip_conv2" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" ) if "fusion1" in key: _UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" ) if "fusion2" in key: _UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" ) if "fusion3" in key: _UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" ) if "fusion" in key and "conv" in key: _UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): _UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" ) _UpperCAmelCase : int = value return new_state_dict def __UpperCAmelCase ( a_: str, a_: List[Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ): _UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _UpperCAmelCase : Dict = GLPNImageProcessor() # prepare image _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) ) # rename keys _UpperCAmelCase : List[str] = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict _UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _UpperCAmelCase : Dict = model(a_ ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _UpperCAmelCase : Optional[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _UpperCAmelCase : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) _UpperCAmelCase : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
17
1
'''simple docstring''' # using dfs for finding eulerian path traversal def __UpperCAmelCase ( a_: Optional[Any], a_: Union[str, Any], a_: Union[str, Any], a_: Optional[int]=None ): _UpperCAmelCase : List[Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: _UpperCAmelCase , _UpperCAmelCase : Any = True, True _UpperCAmelCase : Dict = dfs(a_, a_, a_, a_ ) return path def __UpperCAmelCase ( a_: Optional[Any], a_: Dict ): _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Optional[int] = -1 for i in range(a_ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 _UpperCAmelCase : Any = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int] ): _UpperCAmelCase : List[Any] = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] _UpperCAmelCase , _UpperCAmelCase : Tuple = check_circuit_or_path(a_, a_ ) if check == 3: print("graph is not Eulerian" ) print("no path" ) return _UpperCAmelCase : Any = 1 if check == 2: _UpperCAmelCase : int = odd_node print("graph has a Euler path" ) if check == 1: print("graph has a Euler cycle" ) _UpperCAmelCase : Any = dfs(a_, a_, a_ ) print(a_ ) def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} _UpperCAmelCase : Optional[Any] = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} _UpperCAmelCase : Union[str, Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} _UpperCAmelCase : Dict = {1: [2, 3], 2: [1, 3], 3: [1, 2]} _UpperCAmelCase : Tuple = { 1: [], 2: [] # all degree is zero } _UpperCAmelCase : str = 10 check_euler(a_, a_ ) check_euler(a_, a_ ) check_euler(a_, a_ ) check_euler(a_, a_ ) check_euler(a_, a_ ) if __name__ == "__main__": main()
17
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : int = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _UpperCAmelCase : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(a_ ) ), }, features=a_, ) return dataset @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=a_ ) return filename # FILE_CONTENT + files __a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt" _UpperCAmelCase : Tuple = FILE_CONTENT with open(a_, "w" ) as f: f.write(a_ ) return filename @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" ) with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import gzip _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _UpperCAmelCase : Any = bytes(a_, "utf-8" ) with gzip.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _UpperCAmelCase : str = bytes(a_, "utf-8" ) with lza.frame.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Any ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(a_, "w" ) as archive: archive.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: List[str] ): import tarfile _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): import lzma _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _UpperCAmelCase : List[str] = bytes(a_, "utf-8" ) with lzma.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: Tuple ): import zipfile _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _UpperCAmelCase : int = bytes(a_, "utf-8" ) with zstd.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml" _UpperCAmelCase : Tuple = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(a_, "w" ) as f: f.write(a_ ) return filename __a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : str = datasets.Dataset.from_dict(a_ ) _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(a_ ) ) as con: _UpperCAmelCase : List[Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str, a_: str ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(a_, "rb" ) as f: _UpperCAmelCase : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ): _UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) ) f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ): _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _UpperCAmelCase : Dict = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(a_, "wb" ) as f: _UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ ) _UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ ) writer.write_table(a_ ) writer.close() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : str = {"data": DATA} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(a_, "w" ) as f: for item in DATA_312: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(a_, "w" ) as f: for item in DATA_STR: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ): import gzip _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ): import gzip _UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ): _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : List[str] = ["0", "1", "2", "3"] _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Dict = ["0", "1", "2", "3"] _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = ["0", "1", "2", "3"] _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename("unsupported.ext" ) ) f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) return data_dir
17
1
'''simple docstring''' def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : str = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Union[str, Any] = { "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator _UpperCAmelCase : List[str] = len(a_ ) if (len(a_ ) > 7) else 7 # Print table header for output print( "Symbol".center(8 ), "Stack".center(a_ ), "Postfix".center(a_ ), sep=" | ", ) print("-" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(a_ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(a_ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(a_ ) == 0: stack.append(a_ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(a_ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(a_ ) # push x to stack print( x.center(8 ), ("".join(a_ )).ljust(a_ ), ("".join(a_ )).ljust(a_ ), sep=" | ", ) # Output in tabular format while len(a_ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( " ".center(8 ), ("".join(a_ )).ljust(a_ ), ("".join(a_ )).ljust(a_ ), sep=" | ", ) # Output in tabular format return "".join(a_ ) # return Postfix as str def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = list(infix[::-1] ) # reverse the infix equation for i in range(len(a_ ) ): if infix[i] == "(": _UpperCAmelCase : Dict = ")" # change "(" to ")" elif infix[i] == ")": _UpperCAmelCase : Dict = "(" # change ")" to "(" return (infix_2_postfix("".join(a_ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __a = input('\nEnter an Infix Equation = ') # Input an Infix equation __a = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
17
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = BarthezTokenizer UpperCamelCase_ : List[Any] = BarthezTokenizerFast UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : Optional[int] = True def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" super().setUp() _UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = "<pad>" _UpperCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] _UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] _UpperCAmelCase : int = self.tokenizer( lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() _UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé." _UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase : Tuple = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , )
17
1
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): return int(input_a == input_a == 0 ) def __UpperCAmelCase ( ): print("Truth Table of NOR Gate:" ) print("| Input 1 | Input 2 | Output |" ) print(f"""| 0 | 0 | {nor_gate(0, 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0, 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1, 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1, 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
17
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0} _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : str = max_resolution _UpperCAmelCase : List[Any] = size _UpperCAmelCase : Union[str, Any] = do_normalize _UpperCAmelCase : Optional[Any] = do_convert_rgb _UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] _UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image() _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : str = 2_0_4_8 _UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Union[str, Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _UpperCAmelCase : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches _UpperCAmelCase : Any = "Hello" _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : List[Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) _UpperCAmelCase : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Union[str, Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCAmelCase : List[Any] = 3 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Tuple = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
17
1
'''simple docstring''' def __UpperCAmelCase ( a_: str, a_: str ): def get_matched_characters(a_: str, a_: str ) -> str: _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[str] = min(len(_stra ), len(_stra ) ) // 2 for i, l in enumerate(_stra ): _UpperCAmelCase : Optional[Any] = int(max(0, i - limit ) ) _UpperCAmelCase : List[Any] = int(min(i + limit + 1, len(_stra ) ) ) if l in _stra[left:right]: matched.append(a_ ) _UpperCAmelCase : str = f"""{_stra[0:_stra.index(a_ )]} {_stra[_stra.index(a_ ) + 1:]}""" return "".join(a_ ) # matching characters _UpperCAmelCase : Optional[int] = get_matched_characters(a_, a_ ) _UpperCAmelCase : Dict = get_matched_characters(a_, a_ ) _UpperCAmelCase : List[str] = len(a_ ) # transposition _UpperCAmelCase : List[Any] = ( len([(ca, ca) for ca, ca in zip(a_, a_ ) if ca != ca] ) // 2 ) if not match_count: _UpperCAmelCase : List[Any] = 0.0 else: _UpperCAmelCase : Optional[Any] = ( 1 / 3 * ( match_count / len(a_ ) + match_count / len(a_ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters _UpperCAmelCase : List[Any] = 0 for ca, ca in zip(stra[:4], stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
17
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''time_series_transformer''' UpperCamelCase_ : Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = prediction_length _UpperCAmelCase : Optional[Any] = context_length or prediction_length _UpperCAmelCase : Optional[Any] = distribution_output _UpperCAmelCase : Union[str, Any] = loss _UpperCAmelCase : Dict = input_size _UpperCAmelCase : int = num_time_features _UpperCAmelCase : Any = lags_sequence _UpperCAmelCase : Dict = scaling _UpperCAmelCase : Tuple = num_dynamic_real_features _UpperCAmelCase : Dict = num_static_real_features _UpperCAmelCase : Union[str, Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Optional[int] = cardinality else: _UpperCAmelCase : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : List[Any] = embedding_dimension else: _UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : str = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features _UpperCAmelCase : str = d_model _UpperCAmelCase : Optional[Any] = encoder_attention_heads _UpperCAmelCase : Dict = decoder_attention_heads _UpperCAmelCase : List[Any] = encoder_ffn_dim _UpperCAmelCase : str = decoder_ffn_dim _UpperCAmelCase : Dict = encoder_layers _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : Any = dropout _UpperCAmelCase : str = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : Dict = encoder_layerdrop _UpperCAmelCase : Any = decoder_layerdrop _UpperCAmelCase : Optional[Any] = activation_function _UpperCAmelCase : Tuple = init_std _UpperCAmelCase : List[str] = use_cache super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
1
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
17
'''simple docstring''' import baseaa def __UpperCAmelCase ( a_: str ): return baseaa.baaencode(string.encode("utf-8" ) ) def __UpperCAmelCase ( a_: bytes ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": __a = 'Hello World!' __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
17
1
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCAmelCase ( a_: str ): for param in module.parameters(): _UpperCAmelCase : Any = False def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : int = plt.imshow(a_ ) fig.axes.get_xaxis().set_visible(a_ ) fig.axes.get_yaxis().set_visible(a_ ) plt.show() def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = datetime.now() _UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" ) return timestamp
17
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" UpperCamelCase_ : Any = XGLMConfig UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Dict = '''gelu''' def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : str = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : int = d_model _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Tuple = ffn_dim _UpperCAmelCase : Any = activation_function _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Any = None _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Tuple = 1 def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _UpperCAmelCase : Any = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[Any] = self.get_config() _UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : Dict = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Tuple = False def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = TFXGLMModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on _UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) _UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" ) _UpperCAmelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): _UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) _UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[int] = "left" # use different length sentences to test batching _UpperCAmelCase : Tuple = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = inputs["input_ids"] _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 ) _UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
17
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase__ ).to(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("google/mt5-small" ) _UpperCAmelCase : Union[str, Any] = tokenizer("Hello there" , return_tensors="pt" ).input_ids _UpperCAmelCase : Dict = tokenizer("Hi I am" , return_tensors="pt" ).input_ids _UpperCAmelCase : Dict = model(input_ids.to(lowerCAmelCase__ ) , labels=labels.to(lowerCAmelCase__ ) ).loss _UpperCAmelCase : Any = -(labels.shape[-1] * loss.item()) _UpperCAmelCase : Optional[Any] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
17
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def __UpperCAmelCase ( a_: Tuple, a_: Any ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ), ], ) def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ): _UpperCAmelCase : Tuple = str(a_ ) dataset_info.write_to_directory(a_ ) _UpperCAmelCase : Any = DatasetInfo.from_directory(a_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a_, "dataset_info.json" ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, ) _UpperCAmelCase : Tuple = dataset_info._to_yaml_dict() assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) _UpperCAmelCase : List[Any] = yaml.safe_dump(a_ ) _UpperCAmelCase : Optional[int] = yaml.safe_load(a_ ) assert dataset_info_yaml_dict == reloaded def __UpperCAmelCase ( ): _UpperCAmelCase : str = DatasetInfo() _UpperCAmelCase : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1_337 ), } ), ], ) def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ): _UpperCAmelCase : Union[str, Any] = str(a_ ) dataset_infos_dict.write_to_directory(a_ ) _UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a_, "README.md" ) )
17
1
'''simple docstring''' import math def __UpperCAmelCase ( a_: int ): assert isinstance(a_, a_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _UpperCAmelCase : Optional[int] = range(3, int(math.sqrt(a_ ) + 1 ), 2 ) return not any(not number % i for i in odd_numbers ) def __UpperCAmelCase ( a_: List[str], a_: Any=1, **a_: Any ): _UpperCAmelCase : str = factor * value _UpperCAmelCase : int = value while not is_prime(a_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1, **a_ ) return value
17
'''simple docstring''' from math import factorial def __UpperCAmelCase ( a_: int = 100 ): return sum(map(a_, str(factorial(a_ ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
17
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig __a = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : List[Any] = '''tapas''' def __init__( self : Tuple , lowerCAmelCase__ : int=3_0_5_2_2 , lowerCAmelCase__ : Any=7_6_8 , lowerCAmelCase__ : str=1_2 , lowerCAmelCase__ : Optional[Any]=1_2 , lowerCAmelCase__ : Union[str, Any]=3_0_7_2 , lowerCAmelCase__ : Any="gelu" , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : str=1_0_2_4 , lowerCAmelCase__ : int=[3, 2_5_6, 2_5_6, 2, 2_5_6, 2_5_6, 1_0] , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=1e-12 , lowerCAmelCase__ : str=0 , lowerCAmelCase__ : Any=10.0 , lowerCAmelCase__ : Optional[int]=0 , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=1.0 , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : List[str]=1.0 , lowerCAmelCase__ : str=1.0 , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : List[str]=False , lowerCAmelCase__ : int="ratio" , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : List[str]=6_4 , lowerCAmelCase__ : Tuple=3_2 , lowerCAmelCase__ : List[str]=False , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=False , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Tuple=None , **lowerCAmelCase__ : Dict , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) _UpperCAmelCase : List[str] = vocab_size _UpperCAmelCase : int = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Any = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : Union[str, Any] = intermediate_size _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Dict = attention_probs_dropout_prob _UpperCAmelCase : Dict = max_position_embeddings _UpperCAmelCase : List[Any] = type_vocab_sizes _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps # Fine-tuning task hyperparameters _UpperCAmelCase : Union[str, Any] = positive_label_weight _UpperCAmelCase : Dict = num_aggregation_labels _UpperCAmelCase : List[Any] = aggregation_loss_weight _UpperCAmelCase : Any = use_answer_as_supervision _UpperCAmelCase : Tuple = answer_loss_importance _UpperCAmelCase : str = use_normalized_answer_loss _UpperCAmelCase : Tuple = huber_loss_delta _UpperCAmelCase : str = temperature _UpperCAmelCase : List[Any] = aggregation_temperature _UpperCAmelCase : List[Any] = use_gumbel_for_cells _UpperCAmelCase : List[Any] = use_gumbel_for_aggregation _UpperCAmelCase : Dict = average_approximation_function _UpperCAmelCase : str = cell_selection_preference _UpperCAmelCase : Dict = answer_loss_cutoff _UpperCAmelCase : Optional[Any] = max_num_rows _UpperCAmelCase : str = max_num_columns _UpperCAmelCase : List[Any] = average_logits_per_cell _UpperCAmelCase : Optional[Any] = select_one_column _UpperCAmelCase : int = allow_empty_column_selection _UpperCAmelCase : Any = init_cell_selection_weights_to_zero _UpperCAmelCase : Any = reset_position_index_per_cell _UpperCAmelCase : int = disable_per_token_loss # Aggregation hyperparameters _UpperCAmelCase : Any = aggregation_labels _UpperCAmelCase : Union[str, Any] = no_aggregation_label_index if isinstance(self.aggregation_labels , lowerCAmelCase__ ): _UpperCAmelCase : List[str] = {int(lowerCAmelCase__ ): v for k, v in aggregation_labels.items()}
17
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __a = (3, 9, -11, 0, 7, 5, 1, -1) __a = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : int UpperCamelCase_ : Node | None class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None: """simple docstring""" _UpperCAmelCase : Node | None = None for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ): _UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" _UpperCAmelCase : List[Any] = self.head while node: yield node.data _UpperCAmelCase : List[str] = node.next_node def __len__( self : Any ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return " -> ".join([str(lowerCAmelCase__ ) for node in self] ) def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ): return SortedLinkedList(list(a_ ) + list(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() __a = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
17
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
17
'''simple docstring''' def __UpperCAmelCase ( a_: str ): if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) _UpperCAmelCase : Optional[Any] = "" while len(a_ ) % 3 != 0: _UpperCAmelCase : List[Any] = "0" + bin_string _UpperCAmelCase : Dict = [ bin_string[index : index + 3] for index in range(len(a_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _UpperCAmelCase : Optional[Any] = 0 for index, val in enumerate(a_ ): oct_val += int(2 ** (2 - index) * int(a_ ) ) oct_string += str(a_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
17
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Any = tempfile.mkdtemp() _UpperCAmelCase : str = BlipImageProcessor() _UpperCAmelCase : Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) _UpperCAmelCase : Any = BlipProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self : List[Any] , **lowerCAmelCase__ : Tuple ) -> Union[str, Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).tokenizer def _lowerCAmelCase ( self : str , **lowerCAmelCase__ : List[str] ) -> List[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).image_processor def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" _UpperCAmelCase : str = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _UpperCAmelCase : List[str] = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : List[str] = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Optional[int] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _UpperCAmelCase : Optional[int] = self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0 ) _UpperCAmelCase : List[str] = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = self.get_image_processor() _UpperCAmelCase : Union[str, Any] = self.get_tokenizer() _UpperCAmelCase : str = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) _UpperCAmelCase : int = self.prepare_image_inputs() _UpperCAmelCase : Optional[Any] = image_processor(lowerCAmelCase__ , return_tensors="np" ) _UpperCAmelCase : Optional[Any] = processor(images=lowerCAmelCase__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = self.get_image_processor() _UpperCAmelCase : Union[str, Any] = self.get_tokenizer() _UpperCAmelCase : List[str] = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = "lower newer" _UpperCAmelCase : Optional[Any] = processor(text=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer(lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" _UpperCAmelCase : str = self.get_image_processor() _UpperCAmelCase : Optional[Any] = self.get_tokenizer() _UpperCAmelCase : Optional[int] = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) _UpperCAmelCase : str = "lower newer" _UpperCAmelCase : List[str] = self.prepare_image_inputs() _UpperCAmelCase : Optional[int] = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def _lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.get_image_processor() _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : Tuple = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase : str = processor.batch_decode(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" _UpperCAmelCase : Dict = self.get_image_processor() _UpperCAmelCase : Tuple = self.get_tokenizer() _UpperCAmelCase : List[str] = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = "lower newer" _UpperCAmelCase : Optional[Any] = self.prepare_image_inputs() _UpperCAmelCase : Optional[Any] = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
17
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCAmelCase ( a_: str ): for param in module.parameters(): _UpperCAmelCase : Any = False def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : int = plt.imshow(a_ ) fig.axes.get_xaxis().set_visible(a_ ) fig.axes.get_yaxis().set_visible(a_ ) plt.show() def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = datetime.now() _UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" ) return timestamp
17
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __a = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = (EulerDiscreteScheduler,) UpperCamelCase_ : Tuple = 10 def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : str = { "num_train_timesteps": 1_1_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : Any = self.dummy_model() _UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = output.prev_sample _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = self.dummy_model() _UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : Tuple = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = output.prev_sample _UpperCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : str = self.dummy_model() _UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : str = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : int = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : Optional[int] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
17
1
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __UpperCAmelCase ( a_: Tuple, a_: Union[str, Any], a_: List[str] ): # Construct model if openai_config_file == "": _UpperCAmelCase : Optional[int] = OpenAIGPTConfig() else: _UpperCAmelCase : List[Any] = OpenAIGPTConfig.from_json_file(a_ ) _UpperCAmelCase : Dict = OpenAIGPTModel(a_ ) # Load weights from numpy load_tf_weights_in_openai_gpt(a_, a_, a_ ) # Save pytorch-model _UpperCAmelCase : Any = pytorch_dump_folder_path + "/" + WEIGHTS_NAME _UpperCAmelCase : Optional[Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict(), a_ ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--openai_checkpoint_folder_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--openai_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) __a = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
17
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
17
1
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str]=1_3 , lowerCAmelCase__ : str=3_2 , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : Optional[int]=4 , lowerCAmelCase__ : Optional[int]=[1_0, 2_0, 3_0, 4_0] , lowerCAmelCase__ : str=[2, 2, 3, 2] , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[Any]=3_7 , lowerCAmelCase__ : Optional[int]="gelu" , lowerCAmelCase__ : int=1_0 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : str=["stage2", "stage3", "stage4"] , lowerCAmelCase__ : List[Any]=[2, 3, 4] , lowerCAmelCase__ : Union[str, Any]=None , ) -> List[str]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : Any = image_size _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : Union[str, Any] = num_stages _UpperCAmelCase : List[str] = hidden_sizes _UpperCAmelCase : Tuple = depths _UpperCAmelCase : List[str] = is_training _UpperCAmelCase : Dict = use_labels _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : Optional[int] = num_labels _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : Optional[int] = out_features _UpperCAmelCase : Optional[Any] = out_indices _UpperCAmelCase : Any = scope def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" _UpperCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : List[Any] = None if self.use_labels: _UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = ConvNextVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Any = model(lowerCAmelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = ConvNextVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = ConvNextVaBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : str = model(lowerCAmelCase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _UpperCAmelCase : Dict = None _UpperCAmelCase : Optional[int] = ConvNextVaBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = config_and_inputs _UpperCAmelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Dict = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = config_and_inputs _UpperCAmelCase : str = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) UpperCamelCase_ : List[Any] = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : List[str] = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Union[str, Any] = False def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = ConvNextVaModelTester(self ) _UpperCAmelCase : Tuple = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=3_7 ) def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" pass def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_with_labels() _UpperCAmelCase : Dict = True if model_class.__name__ in [ *get_values(lowerCAmelCase__ ), *get_values(lowerCAmelCase__ ), ]: continue _UpperCAmelCase : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() _UpperCAmelCase : int = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase__ ).loss loss.backward() def _lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: _UpperCAmelCase , _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_with_labels() _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : Optional[Any] = True if ( model_class.__name__ in [*get_values(lowerCAmelCase__ ), *get_values(lowerCAmelCase__ )] or not model_class.supports_gradient_checkpointing ): continue _UpperCAmelCase : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.gradient_checkpointing_enable() model.train() _UpperCAmelCase : Any = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) _UpperCAmelCase : str = model(**lowerCAmelCase__ ).loss loss.backward() def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Union[str, Any] = model_class(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : Dict = [*signature.parameters.keys()] _UpperCAmelCase : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] ): _UpperCAmelCase : Tuple = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase : List[str] = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase , _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Dict = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : List[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Dict = ConvNextVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" _UpperCAmelCase : Dict = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(lowerCAmelCase__ ) _UpperCAmelCase : str = self.default_image_processor _UpperCAmelCase : List[str] = prepare_img() _UpperCAmelCase : int = preprocessor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase__ ) # verify the logits _UpperCAmelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.tensor([0.9996, 0.1966, -0.4386] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
17
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( a_: int ): # A local function to see if a dot lands in the circle. def is_in_circle(a_: float, a_: float ) -> bool: _UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase : str = mean( int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) ) for _ in range(a_ ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase : Optional[int] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ): return mean( function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value) def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ): def identity_function(a_: float ) -> float: return x _UpperCAmelCase : Union[str, Any] = area_under_curve_estimator( a_, a_, a_, a_ ) _UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def __UpperCAmelCase ( a_: int ): def function_to_integrate(a_: float ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase : List[str] = area_under_curve_estimator( a_, a_, 0.0, 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
17
1
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[str] = FunnelTokenizer UpperCamelCase_ : int = FunnelTokenizerFast UpperCamelCase_ : List[Any] = True UpperCamelCase_ : int = True def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" super().setUp() _UpperCAmelCase : List[str] = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _lowerCAmelCase ( self : Tuple , **lowerCAmelCase__ : Tuple ) -> Optional[int]: """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : str , **lowerCAmelCase__ : Any ) -> Optional[int]: """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Dict = "UNwant\u00E9d,running" _UpperCAmelCase : Tuple = "unwanted, running" return input_text, output_text def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : int = self.tokenizer_class(self.vocab_file ) _UpperCAmelCase : Optional[Any] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCAmelCase__ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [7, 4, 5, 1_0, 8, 9] ) def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: _UpperCAmelCase : Optional[Any] = tokenizer("UNwant\u00E9d,running" ) _UpperCAmelCase : List[Any] = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) _UpperCAmelCase : Union[str, Any] = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
17
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __a = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2FeatureExtractor'] __a = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
1
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def __UpperCAmelCase ( a_: int ): return 1 / (1 + np.exp(-z )) def __UpperCAmelCase ( a_: Optional[int], a_: int ): return (-y * np.log(a_ ) - (1 - y) * np.log(1 - h )).mean() def __UpperCAmelCase ( a_: Optional[int], a_: int, a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = np.dot(a_, a_ ) return np.sum(y * scores - np.log(1 + np.exp(a_ ) ) ) def __UpperCAmelCase ( a_: List[str], a_: str, a_: Tuple, a_: List[str]=70_000 ): _UpperCAmelCase : int = np.zeros(x.shape[1] ) for iterations in range(a_ ): _UpperCAmelCase : Optional[int] = np.dot(a_, a_ ) _UpperCAmelCase : Any = sigmoid_function(a_ ) _UpperCAmelCase : List[str] = np.dot(x.T, h - y ) / y.size _UpperCAmelCase : List[str] = theta - alpha * gradient # updating the weights _UpperCAmelCase : Optional[Any] = np.dot(a_, a_ ) _UpperCAmelCase : int = sigmoid_function(a_ ) _UpperCAmelCase : Tuple = cost_function(a_, a_ ) if iterations % 100 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __a = datasets.load_iris() __a = iris.data[:, :2] __a = (iris.target != 0) * 1 __a = 0.1 __a = logistic_reg(alpha, x, y, max_iterations=70_000) print('theta: ', theta) # printing the theta i.e our weights vector def __UpperCAmelCase ( a_: List[str] ): return sigmoid_function( np.dot(a_, a_ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((__a) , (__a)) = (x[:, 0].min(), x[:, 0].max()) ((__a) , (__a)) = (x[:, 1].min(), x[:, 1].max()) ((__a) , (__a)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __a = np.c_[xxa.ravel(), xxa.ravel()] __a = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
17
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if not isinstance(a_, a_ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(a_, a_ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) _UpperCAmelCase : List[str] = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(a_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
17
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = '''realm''' def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int]=3_0_5_2_2 , lowerCAmelCase__ : Tuple=7_6_8 , lowerCAmelCase__ : Optional[int]=1_2_8 , lowerCAmelCase__ : List[str]=1_2 , lowerCAmelCase__ : int=1_2 , lowerCAmelCase__ : List[str]=8 , lowerCAmelCase__ : str=3_0_7_2 , lowerCAmelCase__ : str="gelu_new" , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : List[Any]=0.02 , lowerCAmelCase__ : str=1e-12 , lowerCAmelCase__ : Union[str, Any]=2_5_6 , lowerCAmelCase__ : str=1_0 , lowerCAmelCase__ : Dict=1e-3 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : int=3_2_0 , lowerCAmelCase__ : List[str]=1_3_3_5_3_7_1_8 , lowerCAmelCase__ : List[str]=5_0_0_0 , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : Dict=0 , lowerCAmelCase__ : Dict=2 , **lowerCAmelCase__ : Union[str, Any] , ) -> str: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) # Common config _UpperCAmelCase : Optional[Any] = vocab_size _UpperCAmelCase : Dict = max_position_embeddings _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : Union[str, Any] = retriever_proj_size _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Any = num_candidates _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : int = attention_probs_dropout_prob _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : List[Any] = type_vocab_size _UpperCAmelCase : List[str] = layer_norm_eps # Reader config _UpperCAmelCase : List[str] = span_hidden_size _UpperCAmelCase : Optional[Any] = max_span_width _UpperCAmelCase : Optional[Any] = reader_layer_norm_eps _UpperCAmelCase : int = reader_beam_size _UpperCAmelCase : Optional[int] = reader_seq_len # Retrieval config _UpperCAmelCase : Dict = num_block_records _UpperCAmelCase : Any = searcher_beam_size
17
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') __a = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" if self.train_file is not None: _UpperCAmelCase : List[Any] = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCAmelCase : List[str] = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A__ : """simple docstring""" UpperCamelCase_ : PreTrainedTokenizerBase UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[int] = None def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels" _UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features] _UpperCAmelCase : str = len(lowerCAmelCase__ ) _UpperCAmelCase : int = len(features[0]["input_ids"] ) _UpperCAmelCase : str = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features ] _UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) ) _UpperCAmelCase : Any = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) return batch def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag", a_, a_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCAmelCase : Union[str, Any] = {} if data_args.train_file is not None: _UpperCAmelCase : str = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase : Optional[Any] = data_args.validation_file _UpperCAmelCase : Dict = data_args.train_file.split("." )[-1] _UpperCAmelCase : Optional[int] = load_dataset( a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: # Downloading and loading the swag dataset from the hub. _UpperCAmelCase : Dict = load_dataset( "swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )] _UpperCAmelCase : List[Any] = "sent1" _UpperCAmelCase : Optional[int] = "sent2" if data_args.max_seq_length is None: _UpperCAmelCase : List[str] = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _UpperCAmelCase : Dict = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]] _UpperCAmelCase : Tuple = examples[question_header_name] _UpperCAmelCase : Optional[Any] = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ ) ] # Flatten out _UpperCAmelCase : List[str] = list(chain(*a_ ) ) _UpperCAmelCase : Dict = list(chain(*a_ ) ) # Tokenize _UpperCAmelCase : List[Any] = tokenizer( a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _UpperCAmelCase : int = raw_datasets["train"] if data_args.max_train_samples is not None: _UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples ) _UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _UpperCAmelCase : Union[str, Any] = train_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _UpperCAmelCase : Dict = raw_datasets["validation"] if data_args.max_eval_samples is not None: _UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples ) _UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _UpperCAmelCase : Optional[int] = eval_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator _UpperCAmelCase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a_: Tuple ): _UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions _UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCAmelCase : Any = Trainer( model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, ) # Training if training_args.do_train: _UpperCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : List[str] = last_checkpoint _UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase : str = train_result.metrics _UpperCAmelCase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) _UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) ) trainer.log_metrics("train", a_ ) trainer.save_metrics("train", a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase : List[Any] = trainer.evaluate() _UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) _UpperCAmelCase : Tuple = min(a_, len(a_ ) ) trainer.log_metrics("eval", a_ ) trainer.save_metrics("eval", a_ ) _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __UpperCAmelCase ( a_: int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
17
1
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = ['''image_processor'''] UpperCamelCase_ : int = '''SamImageProcessor''' def __init__( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Optional[int]: """simple docstring""" super().__init__(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = self.image_processor _UpperCAmelCase : Any = -1_0 _UpperCAmelCase : Dict = self.image_processor.size["longest_edge"] def __call__( self : Any , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase__ : List[str] , ) -> BatchEncoding: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processor( lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) # pop arguments that are not used in the foward but used nevertheless _UpperCAmelCase : Optional[int] = encoding_image_processor["original_sizes"] if hasattr(lowerCAmelCase__ , "numpy" ): # Checks if Torch or TF tensor _UpperCAmelCase : List[Any] = original_sizes.numpy() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self._check_and_preprocess_points( input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , input_boxes=lowerCAmelCase__ , ) _UpperCAmelCase : Union[str, Any] = self._normalize_and_convert( lowerCAmelCase__ , lowerCAmelCase__ , input_points=lowerCAmelCase__ , input_labels=lowerCAmelCase__ , input_boxes=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , ) return encoding_image_processor def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Union[str, Any]="pt" , ) -> Union[str, Any]: """simple docstring""" if input_points is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): _UpperCAmelCase : str = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , original_sizes[0] ) for point in input_points ] else: _UpperCAmelCase : Tuple = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , lowerCAmelCase__ ) for point, original_size in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self._pad_points_and_labels(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = np.array(lowerCAmelCase__ ) if input_labels is not None: _UpperCAmelCase : Union[str, Any] = np.array(lowerCAmelCase__ ) if input_boxes is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): _UpperCAmelCase : Dict = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , original_sizes[0] , is_bounding_box=lowerCAmelCase__ ) for box in input_boxes ] else: _UpperCAmelCase : Dict = [ self._normalize_coordinates(self.target_size , lowerCAmelCase__ , lowerCAmelCase__ , is_bounding_box=lowerCAmelCase__ ) for box, original_size in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] _UpperCAmelCase : Tuple = np.array(lowerCAmelCase__ ) if input_boxes is not None: if return_tensors == "pt": _UpperCAmelCase : Optional[int] = torch.from_numpy(lowerCAmelCase__ ) # boxes batch size of 1 by default _UpperCAmelCase : int = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": _UpperCAmelCase : Optional[int] = tf.convert_to_tensor(lowerCAmelCase__ ) # boxes batch size of 1 by default _UpperCAmelCase : Union[str, Any] = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": _UpperCAmelCase : Optional[Any] = torch.from_numpy(lowerCAmelCase__ ) # point batch size of 1 by default _UpperCAmelCase : str = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": _UpperCAmelCase : Optional[int] = tf.convert_to_tensor(lowerCAmelCase__ ) # point batch size of 1 by default _UpperCAmelCase : int = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": _UpperCAmelCase : Dict = torch.from_numpy(lowerCAmelCase__ ) # point batch size of 1 by default _UpperCAmelCase : List[str] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": _UpperCAmelCase : Any = tf.convert_to_tensor(lowerCAmelCase__ ) # point batch size of 1 by default _UpperCAmelCase : Optional[Any] = tf.expand_dims(lowerCAmelCase__ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def _lowerCAmelCase ( self : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = max([point.shape[0] for point in input_points] ) _UpperCAmelCase : List[str] = [] for i, point in enumerate(lowerCAmelCase__ ): if point.shape[0] != expected_nb_points: _UpperCAmelCase : Any = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) _UpperCAmelCase : Dict = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = processed_input_points return input_points, input_labels def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=False ) -> np.ndarray: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : List[Any] = original_size _UpperCAmelCase , _UpperCAmelCase : int = self.image_processor._get_preprocess_shape(lowerCAmelCase__ , longest_edge=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = deepcopy(lowerCAmelCase__ ).astype(lowerCAmelCase__ ) if is_bounding_box: _UpperCAmelCase : List[Any] = coords.reshape(-1 , 2 , 2 ) _UpperCAmelCase : Optional[Any] = coords[..., 0] * (new_w / old_w) _UpperCAmelCase : List[str] = coords[..., 1] * (new_h / old_h) if is_bounding_box: _UpperCAmelCase : Any = coords.reshape(-1 , 4 ) return coords def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : List[str]=None , ) -> List[str]: """simple docstring""" if input_points is not None: if hasattr(lowerCAmelCase__ , "numpy" ): # Checks for TF or Torch tensor _UpperCAmelCase : Tuple = input_points.numpy().tolist() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(input_points[0] , lowerCAmelCase__ ): raise ValueError("Input points must be a list of list of floating points." ) _UpperCAmelCase : List[Any] = [np.array(lowerCAmelCase__ ) for input_point in input_points] else: _UpperCAmelCase : Union[str, Any] = None if input_labels is not None: if hasattr(lowerCAmelCase__ , "numpy" ): _UpperCAmelCase : Dict = input_labels.numpy().tolist() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(input_labels[0] , lowerCAmelCase__ ): raise ValueError("Input labels must be a list of list integers." ) _UpperCAmelCase : str = [np.array(lowerCAmelCase__ ) for label in input_labels] else: _UpperCAmelCase : str = None if input_boxes is not None: if hasattr(lowerCAmelCase__ , "numpy" ): _UpperCAmelCase : Union[str, Any] = input_boxes.numpy().tolist() if ( not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(input_boxes[0] , lowerCAmelCase__ ) or not isinstance(input_boxes[0][0] , lowerCAmelCase__ ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) _UpperCAmelCase : List[str] = [np.array(lowerCAmelCase__ ).astype(np.floataa ) for box in input_boxes] else: _UpperCAmelCase : str = None return input_points, input_labels, input_boxes @property def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.image_processor.model_input_names return list(dict.fromkeys(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : str , *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : Any ) -> List[str]: """simple docstring""" return self.image_processor.post_process_masks(*lowerCAmelCase__ , **lowerCAmelCase__ )
17
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str: """simple docstring""" super().__init__() _UpperCAmelCase : List[str] = model _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass def __UpperCAmelCase ( a_: str, a_: str, a_: str ): # load longformer model from model identifier _UpperCAmelCase : int = LongformerModel.from_pretrained(a_ ) _UpperCAmelCase : Any = LightningModel(a_ ) _UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model _UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(a_ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure)
17
'''simple docstring''' from importlib import import_module from .logging import get_logger __a = get_logger(__name__) class A__ : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class A__ : """simple docstring""" UpperCamelCase_ : Union[str, Any] = [] def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = obj _UpperCAmelCase : int = target _UpperCAmelCase : Optional[int] = new _UpperCAmelCase : Any = target.split("." )[0] _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : Dict = attrs or [] def __enter__( self : List[str] ) -> int: """simple docstring""" *_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: _UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCAmelCase : Tuple = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) _UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: _UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCAmelCase : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.__enter__() self._active_patches.append(self ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
17
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A__ : """simple docstring""" def __init__( self : int , lowerCAmelCase__ : str , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = parent _UpperCAmelCase : Any = 1_3 _UpperCAmelCase : Union[str, Any] = 7 _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Any = True _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Union[str, Any] = 9_9 _UpperCAmelCase : Optional[int] = 3_2 _UpperCAmelCase : List[str] = 2 _UpperCAmelCase : int = 4 _UpperCAmelCase : str = 3_7 _UpperCAmelCase : List[Any] = "gelu" _UpperCAmelCase : List[str] = 0.1 _UpperCAmelCase : int = 0.1 _UpperCAmelCase : Any = 5_1_2 _UpperCAmelCase : str = 1_6 _UpperCAmelCase : Any = 2 _UpperCAmelCase : List[str] = 0.02 _UpperCAmelCase : List[Any] = 3 _UpperCAmelCase : List[str] = 4 _UpperCAmelCase : Optional[int] = None def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Union[str, Any] = None if self.use_input_mask: _UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : List[Any] = None _UpperCAmelCase : Tuple = None _UpperCAmelCase : Union[str, Any] = None if self.use_labels: _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : List[Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[Any] = TFDistilBertModel(config=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} _UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ ) _UpperCAmelCase : str = [input_ids, input_mask] _UpperCAmelCase : Tuple = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Dict = TFDistilBertForMaskedLM(config=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask} _UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any ) -> str: """simple docstring""" _UpperCAmelCase : Tuple = TFDistilBertForQuestionAnswering(config=lowerCAmelCase__ ) _UpperCAmelCase : Any = { "input_ids": input_ids, "attention_mask": input_mask, } _UpperCAmelCase : int = model(lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : int = self.num_labels _UpperCAmelCase : List[str] = TFDistilBertForSequenceClassification(lowerCAmelCase__ ) _UpperCAmelCase : str = {"input_ids": input_ids, "attention_mask": input_mask} _UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int ) -> Tuple: """simple docstring""" _UpperCAmelCase : str = self.num_choices _UpperCAmelCase : Union[str, Any] = TFDistilBertForMultipleChoice(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase : List[Any] = tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) _UpperCAmelCase : Optional[int] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } _UpperCAmelCase : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.num_labels _UpperCAmelCase : Any = TFDistilBertForTokenClassification(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask} _UpperCAmelCase : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) : Tuple = config_and_inputs _UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCamelCase_ : Dict = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ : Any = False UpperCamelCase_ : Union[str, Any] = False def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _UpperCAmelCase : Dict = TFDistilBertModelTester(self ) _UpperCAmelCase : int = ConfigTester(self , config_class=lowerCAmelCase__ , dim=3_7 ) def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): _UpperCAmelCase : Union[str, Any] = TFDistilBertModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[Any] = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) _UpperCAmelCase : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase : Optional[int] = model(lowerCAmelCase__ )[0] _UpperCAmelCase : int = [1, 6, 7_6_8] self.assertEqual(output.shape , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tf.constant( [ [ [0.1926_1885, -0.1373_2955, 0.411_9799], [0.2215_0156, -0.0742_2661, 0.3903_7204], [0.2275_6018, -0.089_6414, 0.370_1467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 )
17
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a = datasets.utils.logging.get_logger(__name__) __a = ['names', 'prefix'] __a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __a = ['encoding_errors', 'on_bad_lines'] __a = ['date_format'] @dataclass class A__ ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_00_00 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase : Any = self.delimiter if self.column_names is not None: _UpperCAmelCase : List[Any] = self.column_names @property def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase_ : int = CsvConfig def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : str = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase : Tuple = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): _UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
17
1
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __a = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : List[Any]=1 ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[str] = tokenizer _UpperCAmelCase : Dict = dataset _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase__ ) if n_tasks is None else n_tasks _UpperCAmelCase : Dict = n_copies def __iter__( self : Dict ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) _UpperCAmelCase : List[Any] = self.tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[Any] = start_length _UpperCAmelCase : Tuple = eof_strings _UpperCAmelCase : Any = tokenizer def __call__( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , **lowerCAmelCase__ : int ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _UpperCAmelCase : str = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCAmelCase__ ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : List[str] = re.split("(%s)" % "|".join(a_ ), a_ ) # last string should be "" return "".join(string_list[:-2] ) def __UpperCAmelCase ( a_: Optional[Any], a_: int, a_: str, a_: Optional[Any], a_: Dict, a_: Union[str, Any]=20, **a_: Tuple ): _UpperCAmelCase : List[Any] = defaultdict(a_ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(a_ ) ): with torch.no_grad(): _UpperCAmelCase : Any = batch["ids"].shape[-1] _UpperCAmelCase : Optional[int] = accelerator.unwrap_model(a_ ).generate( input_ids=batch["ids"][:, : batch["input_len"]], num_return_sequences=a_, **a_ ) # each task is generated batch_size times _UpperCAmelCase : Union[str, Any] = batch["task_id"].repeat(a_ ) _UpperCAmelCase : List[str] = accelerator.pad_across_processes( a_, dim=1, pad_index=tokenizer.pad_token_id ) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) _UpperCAmelCase : Any = generated_tokens.cpu().numpy() _UpperCAmelCase : Any = generated_tasks.cpu().numpy() for task, generated_tokens in zip(a_, a_ ): gen_token_dict[task].append(a_ ) _UpperCAmelCase : Tuple = [[] for _ in range(a_ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _UpperCAmelCase : List[str] = tokenizer.decode(a_, skip_special_tokens=a_, clean_up_tokenization_spaces=a_ ) code_gens[task].append(remove_last_block(a_ ) ) return code_gens def __UpperCAmelCase ( ): # Setup configuration _UpperCAmelCase : Union[str, Any] = HfArgumentParser(a_ ) _UpperCAmelCase : Optional[Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _UpperCAmelCase : Dict = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _UpperCAmelCase : List[str] = "false" if args.num_workers is None: _UpperCAmelCase : Any = multiprocessing.cpu_count() # Use dataset load to feed to accelerate _UpperCAmelCase : Tuple = Accelerator() set_seed(args.seed, device_specific=a_ ) # Load model and tokenizer _UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase : Dict = tokenizer.eos_token _UpperCAmelCase : Dict = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _UpperCAmelCase : List[str] = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0, a_, a_ )] ), } # Load evaluation dataset and metric _UpperCAmelCase : int = load_dataset("openai_humaneval" ) _UpperCAmelCase : List[Any] = load_metric("code_eval" ) _UpperCAmelCase : Tuple = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) _UpperCAmelCase : Optional[Any] = args.n_samples // args.batch_size _UpperCAmelCase : Any = TokenizedDataset(a_, human_eval["test"], n_copies=a_, n_tasks=a_ ) # do not confuse args.batch_size, which is actually the num_return_sequences _UpperCAmelCase : Any = DataLoader(a_, batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _UpperCAmelCase : Optional[Any] = code_eval_metric.compute(references=[""], predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception _UpperCAmelCase , _UpperCAmelCase : List[Any] = accelerator.prepare(a_, a_ ) _UpperCAmelCase : int = complete_code( a_, a_, a_, a_, n_tasks=a_, batch_size=args.batch_size, **a_, ) if accelerator.is_main_process: _UpperCAmelCase : List[str] = [] for task in tqdm(range(a_ ) ): _UpperCAmelCase : Union[str, Any] = human_eval["test"][task]["test"] _UpperCAmelCase : Tuple = f"""check({human_eval['test'][task]['entry_point']})""" references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = code_eval_metric.compute( references=a_, predictions=a_, num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file, "w" ) as fp: json.dump(a_, a_ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
17
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: list[int] ): if not nums: return 0 _UpperCAmelCase : int = nums[0] _UpperCAmelCase : Dict = 0 for num in nums[1:]: _UpperCAmelCase , _UpperCAmelCase : Any = ( max_excluding + num, max(a_, a_ ), ) return max(a_, a_ ) if __name__ == "__main__": import doctest doctest.testmod()
17
1
'''simple docstring''' def __UpperCAmelCase ( a_: int ): if not isinstance(a_, a_ ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
17
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): _UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" ) if key.startswith("module.decoder" ): _UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] _UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )] _UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" ) if "attn.q" in key: _UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Dict = key.replace("attn", "attention.self" ) if "fc1" in key: _UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" ) if "fc2" in key: _UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Any = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" ) _UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: _UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" ) if "skip_conv1" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" ) if "skip_conv2" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" ) if "fusion1" in key: _UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" ) if "fusion2" in key: _UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" ) if "fusion3" in key: _UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" ) if "fusion" in key and "conv" in key: _UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): _UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" ) _UpperCAmelCase : int = value return new_state_dict def __UpperCAmelCase ( a_: str, a_: List[Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ): _UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _UpperCAmelCase : Dict = GLPNImageProcessor() # prepare image _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) ) # rename keys _UpperCAmelCase : List[str] = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict _UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _UpperCAmelCase : Dict = model(a_ ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _UpperCAmelCase : Optional[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _UpperCAmelCase : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) _UpperCAmelCase : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
17
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __a = logging.get_logger(__name__) __a = {'vocab_file': 'spiece.model'} __a = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } __a = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) __a = 0 __a = 1 __a = 2 __a = 3 __a = 4 class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCamelCase_ : Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : List[str] = '''left''' def __init__( self : List[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : Dict="</s>" , lowerCAmelCase__ : int="<unk>" , lowerCAmelCase__ : List[str]="<sep>" , lowerCAmelCase__ : Union[str, Any]="<pad>" , lowerCAmelCase__ : Tuple="<cls>" , lowerCAmelCase__ : Optional[int]="<mask>" , lowerCAmelCase__ : Optional[int]=["<eop>", "<eod>"] , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : List[Any] , ) -> None: """simple docstring""" _UpperCAmelCase : int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token _UpperCAmelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) _UpperCAmelCase : Union[str, Any] = 3 _UpperCAmelCase : Union[str, Any] = do_lower_case _UpperCAmelCase : List[str] = remove_space _UpperCAmelCase : Optional[int] = keep_accents _UpperCAmelCase : Union[str, Any] = vocab_file _UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" return len(self.sp_model ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" _UpperCAmelCase : int = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Tuple = self.__dict__.copy() _UpperCAmelCase : Optional[Any] = None return state def __setstate__( self : str , lowerCAmelCase__ : Dict ) -> Tuple: """simple docstring""" _UpperCAmelCase : Tuple = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase : Any = {} _UpperCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : int ) -> List[str]: """simple docstring""" if self.remove_space: _UpperCAmelCase : Optional[Any] = " ".join(inputs.strip().split() ) else: _UpperCAmelCase : Optional[int] = inputs _UpperCAmelCase : Optional[Any] = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _UpperCAmelCase : Dict = unicodedata.normalize("NFKD" , lowerCAmelCase__ ) _UpperCAmelCase : str = "".join([c for c in outputs if not unicodedata.combining(lowerCAmelCase__ )] ) if self.do_lower_case: _UpperCAmelCase : Optional[int] = outputs.lower() return outputs def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[Any] = self.preprocess_text(lowerCAmelCase__ ) _UpperCAmelCase : int = self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = [] for piece in pieces: if len(lowerCAmelCase__ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _UpperCAmelCase : int = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCAmelCase__ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _UpperCAmelCase : Dict = cur_pieces[1:] else: _UpperCAmelCase : Dict = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCAmelCase__ ) else: new_pieces.append(lowerCAmelCase__ ) return new_pieces def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Dict ) -> int: """simple docstring""" return self.sp_model.PieceToId(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : str ) -> str: """simple docstring""" return self.sp_model.IdToPiece(lowerCAmelCase__ ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[int] = "".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , " " ).strip() return out_string def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : Optional[int] , ) -> str: """simple docstring""" _UpperCAmelCase : Dict = kwargs.pop("use_source_tokenizer" , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : List[str] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) ) _UpperCAmelCase : List[str] = [] sub_texts.append(lowerCAmelCase__ ) else: current_sub_text.append(lowerCAmelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _UpperCAmelCase : Optional[int] = "".join(lowerCAmelCase__ ) _UpperCAmelCase : Any = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _UpperCAmelCase : Union[str, Any] = self.clean_up_tokenization(lowerCAmelCase__ ) return clean_text else: return text def _lowerCAmelCase ( self : str , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" _UpperCAmelCase : str = [self.sep_token_id] _UpperCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is not None: return ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] return ([0] * len(lowerCAmelCase__ )) + [1, 1] def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" _UpperCAmelCase : Optional[Any] = [self.sep_token_id] _UpperCAmelCase : Tuple = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : Dict = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , "wb" ) as fi: _UpperCAmelCase : str = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,)
17
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : int = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _UpperCAmelCase : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(a_ ) ), }, features=a_, ) return dataset @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=a_ ) return filename # FILE_CONTENT + files __a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt" _UpperCAmelCase : Tuple = FILE_CONTENT with open(a_, "w" ) as f: f.write(a_ ) return filename @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" ) with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import gzip _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _UpperCAmelCase : Any = bytes(a_, "utf-8" ) with gzip.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _UpperCAmelCase : str = bytes(a_, "utf-8" ) with lza.frame.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Any ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(a_, "w" ) as archive: archive.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: List[str] ): import tarfile _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): import lzma _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _UpperCAmelCase : List[str] = bytes(a_, "utf-8" ) with lzma.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: Tuple ): import zipfile _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _UpperCAmelCase : int = bytes(a_, "utf-8" ) with zstd.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml" _UpperCAmelCase : Tuple = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(a_, "w" ) as f: f.write(a_ ) return filename __a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : str = datasets.Dataset.from_dict(a_ ) _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(a_ ) ) as con: _UpperCAmelCase : List[Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str, a_: str ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(a_, "rb" ) as f: _UpperCAmelCase : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ): _UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) ) f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ): _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _UpperCAmelCase : Dict = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(a_, "wb" ) as f: _UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ ) _UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ ) writer.write_table(a_ ) writer.close() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : str = {"data": DATA} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(a_, "w" ) as f: for item in DATA_312: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(a_, "w" ) as f: for item in DATA_STR: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ): import gzip _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ): import gzip _UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ): _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : List[str] = ["0", "1", "2", "3"] _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Dict = ["0", "1", "2", "3"] _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = ["0", "1", "2", "3"] _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename("unsupported.ext" ) ) f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) return data_dir
17
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : str , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : Any ) -> None: """simple docstring""" warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead." , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
17
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = BarthezTokenizer UpperCamelCase_ : List[Any] = BarthezTokenizerFast UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : Optional[int] = True def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" super().setUp() _UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = "<pad>" _UpperCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] _UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] _UpperCAmelCase : int = self.tokenizer( lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() _UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé." _UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase : Tuple = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , )
17
1
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType __a , __a , __a = False, False, False @dataclass class A__ : """simple docstring""" UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None # Automatically constructed UpperCamelCase_ : ClassVar[str] = "dict" UpperCamelCase_ : ClassVar[Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) UpperCamelCase_ : str = field(default='''Audio''' , init=UpperCamelCase , repr=UpperCamelCase ) def __call__( self : Tuple ) -> Optional[Any]: """simple docstring""" return self.pa_type def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Union[str, bytes, dict] ) -> dict: """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return {"bytes": None, "path": value} elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _UpperCAmelCase : Tuple = BytesIO() sf.write(lowerCAmelCase__ , value["array"] , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _UpperCAmelCase : Optional[Any] = np.frombuffer(value["bytes"] , dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: _UpperCAmelCase : Optional[int] = np.memmap(value["path"] , dtype="h" , mode="r" ).astype(np.floataa ) / 3_2_7_6_7 _UpperCAmelCase : Any = BytesIO(bytes() ) sf.write(lowerCAmelCase__ , lowerCAmelCase__ , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( F"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : dict , lowerCAmelCase__ : Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict: """simple docstring""" if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) _UpperCAmelCase , _UpperCAmelCase : Optional[int] = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(F"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err _UpperCAmelCase : Optional[Any] = xsplitext(lowerCAmelCase__ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: _UpperCAmelCase : Optional[int] = token_per_repo_id or {} _UpperCAmelCase : str = path.split("::" )[-1] try: _UpperCAmelCase : List[str] = string_to_dict(lowerCAmelCase__ , config.HUB_DATASETS_URL )["repo_id"] _UpperCAmelCase : Any = token_per_repo_id[repo_id] except (ValueError, KeyError): _UpperCAmelCase : List[Any] = None with xopen(lowerCAmelCase__ , "rb" , use_auth_token=lowerCAmelCase__ ) as f: _UpperCAmelCase , _UpperCAmelCase : Optional[int] = sf.read(lowerCAmelCase__ ) else: _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = sf.read(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = array.T if self.mono: _UpperCAmelCase : List[Any] = librosa.to_mono(lowerCAmelCase__ ) if self.sampling_rate and self.sampling_rate != sampling_rate: _UpperCAmelCase : Optional[int] = librosa.resample(lowerCAmelCase__ , orig_sr=lowerCAmelCase__ , target_sr=self.sampling_rate ) _UpperCAmelCase : str = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _lowerCAmelCase ( self : Tuple ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): _UpperCAmelCase : Dict = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.binary() ) _UpperCAmelCase : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _UpperCAmelCase : str = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() ) _UpperCAmelCase : Optional[Any] = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): _UpperCAmelCase : List[str] = pa.array([Audio().encode_example(lowerCAmelCase__ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: _UpperCAmelCase : Union[str, Any] = storage.field("bytes" ) else: _UpperCAmelCase : Tuple = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: _UpperCAmelCase : Union[str, Any] = storage.field("path" ) else: _UpperCAmelCase : Any = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() ) _UpperCAmelCase : int = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) return array_cast(lowerCAmelCase__ , self.pa_type ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : pa.StructArray ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(lowerCAmelCase__ : Optional[Any] ): with xopen(lowerCAmelCase__ , "rb" ) as f: _UpperCAmelCase : Optional[int] = f.read() return bytes_ _UpperCAmelCase : List[Any] = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _UpperCAmelCase : Any = pa.array( [os.path.basename(lowerCAmelCase__ ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) _UpperCAmelCase : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase__ , self.pa_type )
17
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0} _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : str = max_resolution _UpperCAmelCase : List[Any] = size _UpperCAmelCase : Union[str, Any] = do_normalize _UpperCAmelCase : Optional[Any] = do_convert_rgb _UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] _UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image() _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : str = 2_0_4_8 _UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Union[str, Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _UpperCAmelCase : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches _UpperCAmelCase : Any = "Hello" _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : List[Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) _UpperCAmelCase : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Union[str, Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCAmelCase : List[Any] = 3 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Tuple = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
17
1
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str]=0.2 , lowerCAmelCase__ : str=0.2 ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[Any] = bp_numa _UpperCAmelCase : Any = bp_numa _UpperCAmelCase : Union[str, Any] = bp_numa _UpperCAmelCase : str = conva_get[:2] _UpperCAmelCase : Union[str, Any] = conva_get[2] _UpperCAmelCase : Dict = size_pa _UpperCAmelCase : List[Any] = rate_w _UpperCAmelCase : Dict = rate_t _UpperCAmelCase : List[Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] _UpperCAmelCase : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) _UpperCAmelCase : Optional[int] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) _UpperCAmelCase : Any = -2 * np.random.rand(self.conva[1] ) + 1 _UpperCAmelCase : Optional[Any] = -2 * np.random.rand(self.num_bpa ) + 1 _UpperCAmelCase : Optional[int] = -2 * np.random.rand(self.num_bpa ) + 1 def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : str ) -> int: """simple docstring""" _UpperCAmelCase : Tuple = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(lowerCAmelCase__ , "wb" ) as f: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__ ) print(F"""Model saved: {save_path}""" ) @classmethod def _lowerCAmelCase ( cls : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" with open(lowerCAmelCase__ , "rb" ) as f: _UpperCAmelCase : int = pickle.load(lowerCAmelCase__ ) # noqa: S301 _UpperCAmelCase : int = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) _UpperCAmelCase : List[str] = model_dic.get("size_pooling1" ) _UpperCAmelCase : List[Any] = model_dic.get("num_bp1" ) _UpperCAmelCase : Optional[Any] = model_dic.get("num_bp2" ) _UpperCAmelCase : List[str] = model_dic.get("num_bp3" ) _UpperCAmelCase : Tuple = model_dic.get("rate_weight" ) _UpperCAmelCase : str = model_dic.get("rate_thre" ) # create model instance _UpperCAmelCase : Tuple = CNN(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # modify model parameter _UpperCAmelCase : List[Any] = model_dic.get("w_conv1" ) _UpperCAmelCase : int = model_dic.get("wkj" ) _UpperCAmelCase : Dict = model_dic.get("vji" ) _UpperCAmelCase : int = model_dic.get("thre_conv1" ) _UpperCAmelCase : Any = model_dic.get("thre_bp2" ) _UpperCAmelCase : Optional[int] = model_dic.get("thre_bp3" ) return conv_ins def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : List[str] ) -> Optional[int]: """simple docstring""" return 1 / (1 + np.exp(-1 * x )) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : List[Any] ) -> int: """simple docstring""" return round(lowerCAmelCase__ , 3 ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Any = convs[0] _UpperCAmelCase : str = convs[1] _UpperCAmelCase : Optional[int] = np.shape(lowerCAmelCase__ )[0] # get the data slice of original image data, data_focus _UpperCAmelCase : Tuple = [] for i_focus in range(0 , size_data - size_conv + 1 , lowerCAmelCase__ ): for j_focus in range(0 , size_data - size_conv + 1 , lowerCAmelCase__ ): _UpperCAmelCase : Tuple = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowerCAmelCase__ ) # calculate the feature map of every single kernel, and saved as list of matrix _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = [] for i_focus in range(len(lowerCAmelCase__ ) ): _UpperCAmelCase : Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowerCAmelCase__ ) ) _UpperCAmelCase : List[str] = np.asmatrix(lowerCAmelCase__ ).reshape( lowerCAmelCase__ , lowerCAmelCase__ ) data_featuremap.append(lowerCAmelCase__ ) # expanding the data slice to One dimenssion _UpperCAmelCase : Optional[int] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowerCAmelCase__ ) ) _UpperCAmelCase : Tuple = np.asarray(lowerCAmelCase__ ) return focus_list, data_featuremap def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple="average_pool" ) -> str: """simple docstring""" _UpperCAmelCase : Union[str, Any] = len(featuremaps[0] ) _UpperCAmelCase : Optional[Any] = int(size_map / size_pooling ) _UpperCAmelCase : List[str] = [] for i_map in range(len(lowerCAmelCase__ ) ): _UpperCAmelCase : int = featuremaps[i_map] _UpperCAmelCase : Union[str, Any] = [] for i_focus in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): for j_focus in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowerCAmelCase__ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowerCAmelCase__ ) ) _UpperCAmelCase : str = np.asmatrix(lowerCAmelCase__ ).reshape(lowerCAmelCase__ , lowerCAmelCase__ ) featuremap_pooled.append(lowerCAmelCase__ ) return featuremap_pooled def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = [] for i in range(len(lowerCAmelCase__ ) ): _UpperCAmelCase : Dict = np.shape(data[i] ) _UpperCAmelCase : Optional[int] = data[i].reshape(1 , shapes[0] * shapes[1] ) _UpperCAmelCase : Dict = data_listed.getA().tolist()[0] data_expanded.extend(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = np.asarray(lowerCAmelCase__ ) return data_expanded def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : str ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Dict = np.asarray(lowerCAmelCase__ ) _UpperCAmelCase : Any = np.shape(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Optional[Any] = 0 for i_map in range(lowerCAmelCase__ ): _UpperCAmelCase : List[str] = np.ones((size_map, size_map) ) for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): for j in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] = pd_pool[ i_pool ] _UpperCAmelCase : Tuple = i_pool + 1 _UpperCAmelCase : Union[str, Any] = np.multiply( lowerCAmelCase__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(lowerCAmelCase__ ) return pd_all def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int]=bool ) -> str: """simple docstring""" print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(lowerCAmelCase__ )) ) print((" - - Shape: Teach_Data ", np.shape(lowerCAmelCase__ )) ) _UpperCAmelCase : str = 0 _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Tuple = 1_0_0_0_0 while rp < n_repeat and mse >= error_accuracy: _UpperCAmelCase : List[str] = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(lowerCAmelCase__ ) ): # print('------------Learning Image: %d--------------'%p) _UpperCAmelCase : Optional[int] = np.asmatrix(datas_train[p] ) _UpperCAmelCase : Tuple = np.asarray(datas_teach[p] ) _UpperCAmelCase , _UpperCAmelCase : Tuple = self.convolute( lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _UpperCAmelCase : Optional[Any] = self.pooling(lowerCAmelCase__ , self.size_poolinga ) _UpperCAmelCase : List[Any] = np.shape(lowerCAmelCase__ ) _UpperCAmelCase : Any = self._expand(lowerCAmelCase__ ) _UpperCAmelCase : str = data_bp_input _UpperCAmelCase : Union[str, Any] = np.dot(lowerCAmelCase__ , self.vji.T ) - self.thre_bpa _UpperCAmelCase : str = self.sig(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = np.dot(lowerCAmelCase__ , self.wkj.T ) - self.thre_bpa _UpperCAmelCase : List[Any] = self.sig(lowerCAmelCase__ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- _UpperCAmelCase : Optional[Any] = np.multiply( (data_teach - bp_outa) , np.multiply(lowerCAmelCase__ , (1 - bp_outa) ) ) _UpperCAmelCase : int = np.multiply( np.dot(lowerCAmelCase__ , self.wkj ) , np.multiply(lowerCAmelCase__ , (1 - bp_outa) ) ) _UpperCAmelCase : List[Any] = np.dot(lowerCAmelCase__ , self.vji ) _UpperCAmelCase : List[str] = pd_i_all / (self.size_poolinga * self.size_poolinga) _UpperCAmelCase : Optional[int] = pd_conva_pooled.T.getA().tolist() _UpperCAmelCase : Optional[Any] = self._calculate_gradient_from_pool( lowerCAmelCase__ , lowerCAmelCase__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): _UpperCAmelCase : str = self._expand_mat(pd_conva_all[k_conv] ) _UpperCAmelCase : Tuple = self.rate_weight * np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) _UpperCAmelCase : Dict = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer _UpperCAmelCase : int = self.wkj + pd_k_all.T * bp_outa * self.rate_weight _UpperCAmelCase : Optional[int] = self.vji + pd_j_all.T * bp_outa * self.rate_weight _UpperCAmelCase : Dict = self.thre_bpa - pd_k_all * self.rate_thre _UpperCAmelCase : Union[str, Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image _UpperCAmelCase : Tuple = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) _UpperCAmelCase : Optional[int] = rp + 1 _UpperCAmelCase : Optional[int] = error_count / patterns all_mse.append(lowerCAmelCase__ ) def draw_error(): _UpperCAmelCase : Tuple = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowerCAmelCase__ , "+-" ) plt.plot(lowerCAmelCase__ , "r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(lowerCAmelCase__ , alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(lowerCAmelCase__ )) ) for p in range(len(lowerCAmelCase__ ) ): _UpperCAmelCase : int = np.asmatrix(datas_test[p] ) _UpperCAmelCase , _UpperCAmelCase : Dict = self.convolute( lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _UpperCAmelCase : Union[str, Any] = self.pooling(lowerCAmelCase__ , self.size_poolinga ) _UpperCAmelCase : List[Any] = self._expand(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = data_bp_input _UpperCAmelCase : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa _UpperCAmelCase : int = self.sig(lowerCAmelCase__ ) _UpperCAmelCase : Dict = bp_outa * self.wkj.T - self.thre_bpa _UpperCAmelCase : List[str] = self.sig(lowerCAmelCase__ ) produce_out.extend(bp_outa.getA().tolist() ) _UpperCAmelCase : List[str] = [list(map(self.do_round , lowerCAmelCase__ ) ) for each in produce_out] return np.asarray(lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Dict ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = np.asmatrix(lowerCAmelCase__ ) _UpperCAmelCase , _UpperCAmelCase : Tuple = self.convolute( lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _UpperCAmelCase : Tuple = self.pooling(lowerCAmelCase__ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
17
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''time_series_transformer''' UpperCamelCase_ : Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = prediction_length _UpperCAmelCase : Optional[Any] = context_length or prediction_length _UpperCAmelCase : Optional[Any] = distribution_output _UpperCAmelCase : Union[str, Any] = loss _UpperCAmelCase : Dict = input_size _UpperCAmelCase : int = num_time_features _UpperCAmelCase : Any = lags_sequence _UpperCAmelCase : Dict = scaling _UpperCAmelCase : Tuple = num_dynamic_real_features _UpperCAmelCase : Dict = num_static_real_features _UpperCAmelCase : Union[str, Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Optional[int] = cardinality else: _UpperCAmelCase : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : List[Any] = embedding_dimension else: _UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : str = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features _UpperCAmelCase : str = d_model _UpperCAmelCase : Optional[Any] = encoder_attention_heads _UpperCAmelCase : Dict = decoder_attention_heads _UpperCAmelCase : List[Any] = encoder_ffn_dim _UpperCAmelCase : str = decoder_ffn_dim _UpperCAmelCase : Dict = encoder_layers _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : Any = dropout _UpperCAmelCase : str = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : Dict = encoder_layerdrop _UpperCAmelCase : Any = decoder_layerdrop _UpperCAmelCase : Optional[Any] = activation_function _UpperCAmelCase : Tuple = init_std _UpperCAmelCase : List[str] = use_cache super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : List[Any] = ['''pixel_values'''] def __init__( self : Tuple , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ : str , ) -> None: """simple docstring""" super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : Tuple = size if size is not None else {"shortest_edge": 2_5_6} _UpperCAmelCase : List[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} _UpperCAmelCase : Dict = get_size_dict(lowerCAmelCase__ , param_name="crop_size" ) _UpperCAmelCase : Tuple = do_resize _UpperCAmelCase : Optional[int] = size _UpperCAmelCase : List[Any] = resample _UpperCAmelCase : str = do_center_crop _UpperCAmelCase : List[Any] = crop_size _UpperCAmelCase : Dict = do_rescale _UpperCAmelCase : Union[str, Any] = rescale_factor _UpperCAmelCase : Any = do_normalize _UpperCAmelCase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCAmelCase ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase : Union[str, Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(lowerCAmelCase__ , size=size["shortest_edge"] , default_to_square=lowerCAmelCase__ ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Union[str, Any] , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase : Union[str, Any] = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowerCAmelCase__ , size=(size["height"], size["width"]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Union[str, Any] ) -> np.ndarray: """simple docstring""" return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : int , ) -> np.ndarray: """simple docstring""" return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ : List[Any] , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : Any = size if size is not None else self.size _UpperCAmelCase : Dict = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) _UpperCAmelCase : Dict = resample if resample is not None else self.resample _UpperCAmelCase : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase : Dict = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase : Union[str, Any] = get_size_dict(lowerCAmelCase__ , param_name="crop_size" ) _UpperCAmelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : str = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : List[Any] = image_std if image_std is not None else self.image_std _UpperCAmelCase : int = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _UpperCAmelCase : List[Any] = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: _UpperCAmelCase : int = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: _UpperCAmelCase : Optional[int] = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: _UpperCAmelCase : str = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: _UpperCAmelCase : Optional[Any] = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] _UpperCAmelCase : Optional[int] = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] _UpperCAmelCase : List[str] = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Tuple] = None ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(lowerCAmelCase__ ): _UpperCAmelCase : List[str] = target_sizes.numpy() _UpperCAmelCase : Any = [] for idx in range(len(lowerCAmelCase__ ) ): _UpperCAmelCase : Tuple = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase__ ) else: _UpperCAmelCase : Dict = logits.argmax(dim=1 ) _UpperCAmelCase : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
17
'''simple docstring''' import baseaa def __UpperCAmelCase ( a_: str ): return baseaa.baaencode(string.encode("utf-8" ) ) def __UpperCAmelCase ( a_: bytes ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": __a = 'Hello World!' __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
17
1
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __a = logging.get_logger(__name__) __a = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : str = '''codegen''' UpperCamelCase_ : str = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : List[Any] , lowerCAmelCase__ : int=5_0_4_0_0 , lowerCAmelCase__ : Union[str, Any]=2_0_4_8 , lowerCAmelCase__ : List[Any]=2_0_4_8 , lowerCAmelCase__ : List[Any]=4_0_9_6 , lowerCAmelCase__ : List[str]=2_8 , lowerCAmelCase__ : Optional[int]=1_6 , lowerCAmelCase__ : Any=6_4 , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Union[str, Any]="gelu_new" , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : Optional[int]=1e-5 , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : List[Any]=5_0_2_5_6 , lowerCAmelCase__ : str=5_0_2_5_6 , lowerCAmelCase__ : List[Any]=False , **lowerCAmelCase__ : Dict , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = n_ctx _UpperCAmelCase : Optional[int] = n_positions _UpperCAmelCase : int = n_embd _UpperCAmelCase : Tuple = n_layer _UpperCAmelCase : Dict = n_head _UpperCAmelCase : Optional[int] = n_inner _UpperCAmelCase : Dict = rotary_dim _UpperCAmelCase : List[str] = activation_function _UpperCAmelCase : int = resid_pdrop _UpperCAmelCase : Dict = embd_pdrop _UpperCAmelCase : Dict = attn_pdrop _UpperCAmelCase : Optional[Any] = layer_norm_epsilon _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Optional[Any] = use_cache _UpperCAmelCase : Tuple = bos_token_id _UpperCAmelCase : Dict = eos_token_id super().__init__( bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , tie_word_embeddings=lowerCAmelCase__ , **lowerCAmelCase__ ) class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : PretrainedConfig , lowerCAmelCase__ : str = "default" , lowerCAmelCase__ : List[PatchingSpec] = None , lowerCAmelCase__ : bool = False , ) -> int: """simple docstring""" super().__init__(lowerCAmelCase__ , task=lowerCAmelCase__ , patching_specs=lowerCAmelCase__ , use_past=lowerCAmelCase__ ) if not getattr(self._config , "pad_token_id" , lowerCAmelCase__ ): # TODO: how to do that better? _UpperCAmelCase : Optional[int] = 0 @property def _lowerCAmelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" _UpperCAmelCase : Optional[Any] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase__ , direction="inputs" ) _UpperCAmelCase : int = {0: "batch", 1: "past_sequence + sequence"} else: _UpperCAmelCase : int = {0: "batch", 1: "sequence"} return common_inputs @property def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" return self._config.n_layer @property def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" return self._config.n_head def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" _UpperCAmelCase : Any = super(lowerCAmelCase__ , self ).generate_dummy_inputs( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) # We need to order the input in the way they appears in the forward() _UpperCAmelCase : str = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _UpperCAmelCase , _UpperCAmelCase : Optional[int] = common_inputs["input_ids"].shape # Not using the same length for past_key_values _UpperCAmelCase : str = seqlen + 2 _UpperCAmelCase : Dict = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _UpperCAmelCase : str = [ (torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(self.num_layers ) ] _UpperCAmelCase : Tuple = common_inputs["attention_mask"] if self.use_past: _UpperCAmelCase : Optional[int] = ordered_inputs["attention_mask"].dtype _UpperCAmelCase : Any = torch.cat( [ordered_inputs["attention_mask"], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__ )] , dim=1 ) return ordered_inputs @property def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" return 1_3
17
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" UpperCamelCase_ : Any = XGLMConfig UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Dict = '''gelu''' def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : str = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : int = d_model _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Tuple = ffn_dim _UpperCAmelCase : Any = activation_function _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Any = None _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Tuple = 1 def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _UpperCAmelCase : Any = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[Any] = self.get_config() _UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : Dict = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Tuple = False def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = TFXGLMModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on _UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) _UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" ) _UpperCAmelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): _UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) _UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[int] = "left" # use different length sentences to test batching _UpperCAmelCase : Tuple = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = inputs["input_ids"] _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 ) _UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
17
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : List[Any] = '''glpn''' def __init__( self : Optional[int] , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Union[str, Any]=4 , lowerCAmelCase__ : Tuple=[2, 2, 2, 2] , lowerCAmelCase__ : List[Any]=[8, 4, 2, 1] , lowerCAmelCase__ : Optional[int]=[3_2, 6_4, 1_6_0, 2_5_6] , lowerCAmelCase__ : Tuple=[7, 3, 3, 3] , lowerCAmelCase__ : Optional[int]=[4, 2, 2, 2] , lowerCAmelCase__ : Optional[int]=[1, 2, 5, 8] , lowerCAmelCase__ : List[str]=[4, 4, 4, 4] , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Any=0.0 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : Union[str, Any]=1e-6 , lowerCAmelCase__ : Tuple=6_4 , lowerCAmelCase__ : Union[str, Any]=1_0 , lowerCAmelCase__ : Tuple=-1 , **lowerCAmelCase__ : Optional[Any] , ) -> Tuple: """simple docstring""" super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : str = num_encoder_blocks _UpperCAmelCase : Tuple = depths _UpperCAmelCase : int = sr_ratios _UpperCAmelCase : Union[str, Any] = hidden_sizes _UpperCAmelCase : List[Any] = patch_sizes _UpperCAmelCase : Dict = strides _UpperCAmelCase : List[str] = mlp_ratios _UpperCAmelCase : int = num_attention_heads _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : Dict = hidden_dropout_prob _UpperCAmelCase : Dict = attention_probs_dropout_prob _UpperCAmelCase : int = initializer_range _UpperCAmelCase : List[Any] = drop_path_rate _UpperCAmelCase : List[str] = layer_norm_eps _UpperCAmelCase : Any = decoder_hidden_size _UpperCAmelCase : Optional[int] = max_depth _UpperCAmelCase : List[Any] = head_in_index
17
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def __UpperCAmelCase ( a_: Tuple, a_: Any ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ), ], ) def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ): _UpperCAmelCase : Tuple = str(a_ ) dataset_info.write_to_directory(a_ ) _UpperCAmelCase : Any = DatasetInfo.from_directory(a_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a_, "dataset_info.json" ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, ) _UpperCAmelCase : Tuple = dataset_info._to_yaml_dict() assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) _UpperCAmelCase : List[Any] = yaml.safe_dump(a_ ) _UpperCAmelCase : Optional[int] = yaml.safe_load(a_ ) assert dataset_info_yaml_dict == reloaded def __UpperCAmelCase ( ): _UpperCAmelCase : str = DatasetInfo() _UpperCAmelCase : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1_337 ), } ), ], ) def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ): _UpperCAmelCase : Union[str, Any] = str(a_ ) dataset_infos_dict.write_to_directory(a_ ) _UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a_, "README.md" ) )
17
1
'''simple docstring''' import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int=1_0_0 , lowerCAmelCase__ : Any=1_3 , lowerCAmelCase__ : Union[str, Any]=3_0 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : int=3_2 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Tuple=3_7 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Optional[int]=1_0 , lowerCAmelCase__ : Optional[int]=0.02 , lowerCAmelCase__ : List[Any]=3 , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : str = parent _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : Optional[int] = batch_size _UpperCAmelCase : List[Any] = image_size _UpperCAmelCase : int = patch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : str = is_training _UpperCAmelCase : Union[str, Any] = use_labels _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : List[Any] = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : Union[str, Any] = hidden_dropout_prob _UpperCAmelCase : str = attention_probs_dropout_prob _UpperCAmelCase : Any = type_sequence_label_size _UpperCAmelCase : str = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase : int = (image_size // patch_size) ** 2 _UpperCAmelCase : Dict = num_patches + 1 def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" _UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : List[str] = None if self.use_labels: _UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : str = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = FlaxBeitModel(config=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[Any] = FlaxBeitForMaskedImageModeling(config=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.type_sequence_label_size _UpperCAmelCase : Union[str, Any] = FlaxBeitForImageClassification(config=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase : str = 1 _UpperCAmelCase : str = FlaxBeitForImageClassification(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Union[str, Any] = config_and_inputs _UpperCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def _lowerCAmelCase ( self : Any ) -> None: """simple docstring""" _UpperCAmelCase : Union[str, Any] = FlaxBeitModelTester(self ) _UpperCAmelCase : str = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=3_7 ) def _lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : List[str] = model_class(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : Optional[int] = [*signature.parameters.keys()] _UpperCAmelCase : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase : Optional[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = model_class(lowerCAmelCase__ ) @jax.jit def model_jitted(lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Optional[int] ): return model(pixel_values=lowerCAmelCase__ , **lowerCAmelCase__ ) with self.subTest("JIT Enabled" ): _UpperCAmelCase : Any = model_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _UpperCAmelCase : int = model_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : str ) -> Any: """simple docstring""" for model_class_name in self.all_model_classes: _UpperCAmelCase : Any = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) _UpperCAmelCase : List[Any] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(lowerCAmelCase__ ) def __UpperCAmelCase ( ): _UpperCAmelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @require_flax class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : str = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) _UpperCAmelCase : Dict = self.default_image_processor _UpperCAmelCase : str = prepare_img() _UpperCAmelCase : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="np" ).pixel_values # prepare bool_masked_pos _UpperCAmelCase : Optional[int] = np.ones((1, 1_9_6) , dtype=lowerCAmelCase__ ) # forward pass _UpperCAmelCase : Optional[int] = model(pixel_values=lowerCAmelCase__ , bool_masked_pos=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = outputs.logits # verify the logits _UpperCAmelCase : Dict = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape , lowerCAmelCase__ ) _UpperCAmelCase : Dict = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , lowerCAmelCase__ , atol=1e-2 ) ) @slow def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : int = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) _UpperCAmelCase : str = self.default_image_processor _UpperCAmelCase : str = prepare_img() _UpperCAmelCase : List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="np" ) # forward pass _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase__ ) _UpperCAmelCase : Tuple = outputs.logits # verify the logits _UpperCAmelCase : str = (1, 1_0_0_0) self.assertEqual(logits.shape , lowerCAmelCase__ ) _UpperCAmelCase : Dict = np.array([-1.2385, -1.0987, -1.0108] ) self.assertTrue(np.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) _UpperCAmelCase : List[Any] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) _UpperCAmelCase : List[str] = self.default_image_processor _UpperCAmelCase : Optional[int] = prepare_img() _UpperCAmelCase : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="np" ) # forward pass _UpperCAmelCase : Optional[int] = model(**lowerCAmelCase__ ) _UpperCAmelCase : List[str] = outputs.logits # verify the logits _UpperCAmelCase : str = (1, 2_1_8_4_1) self.assertEqual(logits.shape , lowerCAmelCase__ ) _UpperCAmelCase : int = np.array([1.6881, -0.2787, 0.5901] ) self.assertTrue(np.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) _UpperCAmelCase : int = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase__ )
17
'''simple docstring''' from math import factorial def __UpperCAmelCase ( a_: int = 100 ): return sum(map(a_, str(factorial(a_ ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
17
1
'''simple docstring''' import cmath import math def __UpperCAmelCase ( a_: float, a_: float, a_: float, a_: float ): _UpperCAmelCase : Optional[int] = math.radians(a_ ) _UpperCAmelCase : Union[str, Any] = math.radians(a_ ) # Convert voltage and current to rectangular form _UpperCAmelCase : Optional[Any] = cmath.rect(a_, a_ ) _UpperCAmelCase : Optional[int] = cmath.rect(a_, a_ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
17
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __a = (3, 9, -11, 0, 7, 5, 1, -1) __a = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : int UpperCamelCase_ : Node | None class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None: """simple docstring""" _UpperCAmelCase : Node | None = None for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ): _UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" _UpperCAmelCase : List[Any] = self.head while node: yield node.data _UpperCAmelCase : List[str] = node.next_node def __len__( self : Any ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return " -> ".join([str(lowerCAmelCase__ ) for node in self] ) def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ): return SortedLinkedList(list(a_ ) + list(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() __a = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
17
1
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def __UpperCAmelCase ( a_: Tuple, a_: Any ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ), ], ) def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ): _UpperCAmelCase : Tuple = str(a_ ) dataset_info.write_to_directory(a_ ) _UpperCAmelCase : Any = DatasetInfo.from_directory(a_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a_, "dataset_info.json" ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, ) _UpperCAmelCase : Tuple = dataset_info._to_yaml_dict() assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) _UpperCAmelCase : List[Any] = yaml.safe_dump(a_ ) _UpperCAmelCase : Optional[int] = yaml.safe_load(a_ ) assert dataset_info_yaml_dict == reloaded def __UpperCAmelCase ( ): _UpperCAmelCase : str = DatasetInfo() _UpperCAmelCase : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1_337 ), } ), ], ) def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ): _UpperCAmelCase : Union[str, Any] = str(a_ ) dataset_infos_dict.write_to_directory(a_ ) _UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a_, "README.md" ) )
17
'''simple docstring''' def __UpperCAmelCase ( a_: str ): if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) _UpperCAmelCase : Optional[Any] = "" while len(a_ ) % 3 != 0: _UpperCAmelCase : List[Any] = "0" + bin_string _UpperCAmelCase : Dict = [ bin_string[index : index + 3] for index in range(len(a_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _UpperCAmelCase : Optional[Any] = 0 for index, val in enumerate(a_ ): oct_val += int(2 ** (2 - index) * int(a_ ) ) oct_string += str(a_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
17
1
'''simple docstring''' import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib __a = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } __a = logging.WARNING def __UpperCAmelCase ( ): _UpperCAmelCase : Tuple = os.getenv("DATASETS_VERBOSITY", a_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def __UpperCAmelCase ( ): return __name__.split("." )[0] def __UpperCAmelCase ( ): return logging.getLogger(_get_library_name() ) def __UpperCAmelCase ( ): # Apply our default configuration to the library root logger. _UpperCAmelCase : Tuple = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def __UpperCAmelCase ( ): _UpperCAmelCase : Tuple = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def __UpperCAmelCase ( a_: Optional[str] = None ): if name is None: _UpperCAmelCase : List[Any] = _get_library_name() return logging.getLogger(a_ ) def __UpperCAmelCase ( ): return _get_library_root_logger().getEffectiveLevel() def __UpperCAmelCase ( a_: int ): _get_library_root_logger().setLevel(a_ ) def __UpperCAmelCase ( ): return set_verbosity(a_ ) def __UpperCAmelCase ( ): return set_verbosity(a_ ) def __UpperCAmelCase ( ): return set_verbosity(a_ ) def __UpperCAmelCase ( ): return set_verbosity(a_ ) def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = False def __UpperCAmelCase ( ): _UpperCAmelCase : Any = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class A__ : """simple docstring""" def __init__( self : int , *lowerCAmelCase__ : str , **lowerCAmelCase__ : List[str] ) -> Optional[int]: # pylint: disable=unused-argument """simple docstring""" _UpperCAmelCase : Union[str, Any] = args[0] if args else None def __iter__( self : Union[str, Any] ) -> Dict: """simple docstring""" return iter(self._iterator ) def __getattr__( self : int , lowerCAmelCase__ : int ) -> str: """simple docstring""" def empty_fn(*lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : List[Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Union[str, Any] ) -> str: """simple docstring""" return self def __exit__( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str ) -> Union[str, Any]: """simple docstring""" return __a = True class A__ : """simple docstring""" def __call__( self : str , *lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str]=False , **lowerCAmelCase__ : List[Any] ) -> List[str]: """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*lowerCAmelCase__ , **lowerCAmelCase__ ) else: return EmptyTqdm(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() __a = _tqdm_cls() def __UpperCAmelCase ( ): global _tqdm_active return bool(_tqdm_active ) def __UpperCAmelCase ( ): global _tqdm_active _UpperCAmelCase : Dict = True def __UpperCAmelCase ( ): global _tqdm_active _UpperCAmelCase : List[Any] = False
17
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCAmelCase ( a_: str ): for param in module.parameters(): _UpperCAmelCase : Any = False def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : int = plt.imshow(a_ ) fig.axes.get_xaxis().set_visible(a_ ) fig.axes.get_yaxis().set_visible(a_ ) plt.show() def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = datetime.now() _UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" ) return timestamp
17
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __a = None __a = logging.get_logger(__name__) __a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __a = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } __a = { 'google/bigbird-roberta-base': 4_096, 'google/bigbird-roberta-large': 4_096, 'google/bigbird-base-trivia-itc': 4_096, } __a = '▁' class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : List[str] = VOCAB_FILES_NAMES UpperCamelCase_ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Dict = BigBirdTokenizer UpperCamelCase_ : Tuple = ['''input_ids''', '''attention_mask'''] UpperCamelCase_ : List[int] = [] def __init__( self : Optional[int] , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Optional[int]="<unk>" , lowerCAmelCase__ : List[Any]="<s>" , lowerCAmelCase__ : Any="</s>" , lowerCAmelCase__ : Tuple="<pad>" , lowerCAmelCase__ : Tuple="[SEP]" , lowerCAmelCase__ : Optional[int]="[MASK]" , lowerCAmelCase__ : Tuple="[CLS]" , **lowerCAmelCase__ : int , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token _UpperCAmelCase : Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token _UpperCAmelCase : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token _UpperCAmelCase : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token _UpperCAmelCase : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token _UpperCAmelCase : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase : List[str] = vocab_file _UpperCAmelCase : Dict = False if not self.vocab_file else True def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" _UpperCAmelCase : Optional[Any] = [self.sep_token_id] _UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" _UpperCAmelCase : Optional[Any] = [self.sep_token_id] _UpperCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCAmelCase ( self : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
17
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = (EulerDiscreteScheduler,) UpperCamelCase_ : Tuple = 10 def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : str = { "num_train_timesteps": 1_1_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : Any = self.dummy_model() _UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = output.prev_sample _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = self.dummy_model() _UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : Tuple = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = output.prev_sample _UpperCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : str = self.dummy_model() _UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : str = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : int = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : Optional[int] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
17
1
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue_model_parallelism.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 16_00, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 16_00, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, ] ) class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=lowerCAmelCase__ , ) assert hasattr(self , "env" ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Optional[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[Any] = { "enabled": True, "processes_per_host": 8, } _UpperCAmelCase : Any = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } _UpperCAmelCase : Optional[int] = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} _UpperCAmelCase : Optional[int] = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=lowerCAmelCase__ , instance_type=self.instance_type , debugger_hook_config=lowerCAmelCase__ , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 5_0_0, } , metric_definitions=self.env.metric_definitions , distribution=lowerCAmelCase__ , py_version="py36" , ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> Tuple: """simple docstring""" TrainingJobAnalytics(lowerCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : int ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Tuple = self.create_estimator(lowerCAmelCase__ ) # run training estimator.fit() # result dataframe _UpperCAmelCase : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _UpperCAmelCase : int = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) _UpperCAmelCase : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _UpperCAmelCase : Union[str, Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , lowerCAmelCase__ )
17
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
17
1
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __a = get_tests_dir('fixtures/dummy-config.json') class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" _UpperCAmelCase : List[str] = 0 def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" _UpperCAmelCase : Dict = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _UpperCAmelCase : Tuple = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = AutoConfig.for_model("roberta" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. _UpperCAmelCase : Optional[int] = os.path.join(lowerCAmelCase__ , "fake-roberta" ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , "config.json" ) , "w" ) as f: f.write(json.dumps({} ) ) _UpperCAmelCase : Tuple = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(type(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" try: AutoConfig.register("custom" , lowerCAmelCase__ ) # Wrong model type will raise an error with self.assertRaises(lowerCAmelCase__ ): AutoConfig.register("model" , lowerCAmelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase__ ): AutoConfig.register("bert" , lowerCAmelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API _UpperCAmelCase : Any = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ ) _UpperCAmelCase : Any = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase__ , "bert-base is not a local folder and is not a valid model identifier" ): _UpperCAmelCase : str = AutoConfig.from_pretrained("bert-base" ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase__ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): _UpperCAmelCase : Tuple = AutoConfig.from_pretrained(lowerCAmelCase__ , revision="aaaaaa" ) def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase__ , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ): _UpperCAmelCase : List[Any] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : str = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : Tuple = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ ) _UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowerCAmelCase__ , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig" ) def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : List[Any] = '''new-model''' try: AutoConfig.register("new-model" , lowerCAmelCase__ ) # If remote code is not set, the default is to use local _UpperCAmelCase : str = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote code is disabled, we load the local one. _UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote is enabled, we load from the Hub _UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
17
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( a_: int ): # A local function to see if a dot lands in the circle. def is_in_circle(a_: float, a_: float ) -> bool: _UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase : str = mean( int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) ) for _ in range(a_ ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase : Optional[int] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ): return mean( function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value) def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ): def identity_function(a_: float ) -> float: return x _UpperCAmelCase : Union[str, Any] = area_under_curve_estimator( a_, a_, a_, a_ ) _UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def __UpperCAmelCase ( a_: int ): def function_to_integrate(a_: float ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase : List[str] = area_under_curve_estimator( a_, a_, 0.0, 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
17
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : List[Any] = '''convbert''' def __init__( self : Optional[int] , lowerCAmelCase__ : str=3_0_5_2_2 , lowerCAmelCase__ : str=7_6_8 , lowerCAmelCase__ : Tuple=1_2 , lowerCAmelCase__ : Dict=1_2 , lowerCAmelCase__ : Tuple=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Optional[Any]=5_1_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Tuple=1e-12 , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : Optional[int]=0 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : int=7_6_8 , lowerCAmelCase__ : Union[str, Any]=2 , lowerCAmelCase__ : Union[str, Any]=9 , lowerCAmelCase__ : Optional[int]=1 , lowerCAmelCase__ : Optional[int]=None , **lowerCAmelCase__ : Optional[int] , ) -> List[Any]: """simple docstring""" super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase : Tuple = vocab_size _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : List[Any] = intermediate_size _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : Union[str, Any] = hidden_dropout_prob _UpperCAmelCase : List[str] = attention_probs_dropout_prob _UpperCAmelCase : Tuple = max_position_embeddings _UpperCAmelCase : List[str] = type_vocab_size _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : Any = embedding_size _UpperCAmelCase : Tuple = head_ratio _UpperCAmelCase : int = conv_kernel_size _UpperCAmelCase : List[str] = num_groups _UpperCAmelCase : Any = classifier_dropout class A__ ( UpperCamelCase ): """simple docstring""" @property def _lowerCAmelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase : Tuple = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCAmelCase : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
17
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __a = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2FeatureExtractor'] __a = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
1
'''simple docstring''' from numpy import exp, pi, sqrt def __UpperCAmelCase ( a_: Tuple, a_: float = 0.0, a_: float = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
17
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if not isinstance(a_, a_ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(a_, a_ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) _UpperCAmelCase : List[str] = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(a_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
17
1
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _UpperCAmelCase : List[Any] = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ) _UpperCAmelCase : str = [t[-1] for t in os.walk(os.path.join(lowerCAmelCase__ , os.listdir(lowerCAmelCase__ )[0] , "snapshots" ) )] _UpperCAmelCase : int = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : int = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=lowerCAmelCase__ ) _UpperCAmelCase : str = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) _UpperCAmelCase : Any = jax.random.PRNGKey(0 ) _UpperCAmelCase : Tuple = 4 _UpperCAmelCase : Tuple = jax.device_count() _UpperCAmelCase : Optional[int] = num_samples * [prompt] _UpperCAmelCase : List[str] = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng _UpperCAmelCase : Any = replicate(lowerCAmelCase__ ) _UpperCAmelCase : Dict = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = shard(lowerCAmelCase__ ) _UpperCAmelCase : str = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.151_4745 ) < 1e-3 assert np.abs(np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 4_9947.875 ) < 5e-1 _UpperCAmelCase : int = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCAmelCase__ ) == num_samples def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=lowerCAmelCase__ ) _UpperCAmelCase : int = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) _UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) _UpperCAmelCase : Any = 5_0 _UpperCAmelCase : List[str] = jax.device_count() _UpperCAmelCase : Tuple = num_samples * [prompt] _UpperCAmelCase : Tuple = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng _UpperCAmelCase : Any = replicate(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = shard(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0565_2401) ) < 1e-3 assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 238_3808.2) ) < 5e-1 def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) _UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) _UpperCAmelCase : Any = 5_0 _UpperCAmelCase : Tuple = jax.device_count() _UpperCAmelCase : str = num_samples * [prompt] _UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng _UpperCAmelCase : List[str] = replicate(lowerCAmelCase__ ) _UpperCAmelCase : Dict = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = shard(lowerCAmelCase__ ) _UpperCAmelCase : Any = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3 assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 237_3516.75) ) < 5e-1 def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) _UpperCAmelCase : List[str] = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) _UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) _UpperCAmelCase : int = 5_0 _UpperCAmelCase : Dict = jax.device_count() _UpperCAmelCase : Dict = num_samples * [prompt] _UpperCAmelCase : str = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng _UpperCAmelCase : Optional[int] = replicate(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = shard(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0400_3906) ) < 1e-3 assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 237_3516.75) ) < 5e-1 def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : Dict = FlaxDDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , ) _UpperCAmelCase , _UpperCAmelCase : int = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) _UpperCAmelCase : Any = scheduler.create_state() _UpperCAmelCase : Tuple = scheduler_state _UpperCAmelCase : str = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) _UpperCAmelCase : Tuple = jax.random.PRNGKey(0 ) _UpperCAmelCase : Union[str, Any] = 5_0 _UpperCAmelCase : Optional[Any] = jax.device_count() _UpperCAmelCase : int = num_samples * [prompt] _UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(lowerCAmelCase__ ) # shard inputs and rng _UpperCAmelCase : List[str] = replicate(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = jax.random.split(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = shard(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4504_3945) ) < 1e-3 assert np.abs((np.abs(lowerCAmelCase__ , dtype=np.floataa ).sum() - 234_7693.5) ) < 5e-1 def _lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" _UpperCAmelCase : str = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) _UpperCAmelCase : List[str] = jax.device_count() _UpperCAmelCase : Optional[Any] = num_samples * [prompt] _UpperCAmelCase : int = jax.random.split(jax.random.PRNGKey(0 ) , lowerCAmelCase__ ) _UpperCAmelCase , _UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase__ , ) _UpperCAmelCase : List[Any] = replicate(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(lowerCAmelCase__ ) _UpperCAmelCase : Dict = shard(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : Optional[Any] = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention _UpperCAmelCase , _UpperCAmelCase : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=lowerCAmelCase__ , use_memory_efficient_attention=lowerCAmelCase__ , ) _UpperCAmelCase : str = replicate(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = pipeline.prepare_inputs(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = shard(lowerCAmelCase__ ) _UpperCAmelCase : int = pipeline(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , jit=lowerCAmelCase__ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : str = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
17
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') __a = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" if self.train_file is not None: _UpperCAmelCase : List[Any] = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCAmelCase : List[str] = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A__ : """simple docstring""" UpperCamelCase_ : PreTrainedTokenizerBase UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[int] = None def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels" _UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features] _UpperCAmelCase : str = len(lowerCAmelCase__ ) _UpperCAmelCase : int = len(features[0]["input_ids"] ) _UpperCAmelCase : str = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features ] _UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) ) _UpperCAmelCase : Any = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) return batch def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag", a_, a_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCAmelCase : Union[str, Any] = {} if data_args.train_file is not None: _UpperCAmelCase : str = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase : Optional[Any] = data_args.validation_file _UpperCAmelCase : Dict = data_args.train_file.split("." )[-1] _UpperCAmelCase : Optional[int] = load_dataset( a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: # Downloading and loading the swag dataset from the hub. _UpperCAmelCase : Dict = load_dataset( "swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )] _UpperCAmelCase : List[Any] = "sent1" _UpperCAmelCase : Optional[int] = "sent2" if data_args.max_seq_length is None: _UpperCAmelCase : List[str] = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _UpperCAmelCase : Dict = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]] _UpperCAmelCase : Tuple = examples[question_header_name] _UpperCAmelCase : Optional[Any] = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ ) ] # Flatten out _UpperCAmelCase : List[str] = list(chain(*a_ ) ) _UpperCAmelCase : Dict = list(chain(*a_ ) ) # Tokenize _UpperCAmelCase : List[Any] = tokenizer( a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _UpperCAmelCase : int = raw_datasets["train"] if data_args.max_train_samples is not None: _UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples ) _UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _UpperCAmelCase : Union[str, Any] = train_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _UpperCAmelCase : Dict = raw_datasets["validation"] if data_args.max_eval_samples is not None: _UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples ) _UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _UpperCAmelCase : Optional[int] = eval_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator _UpperCAmelCase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a_: Tuple ): _UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions _UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCAmelCase : Any = Trainer( model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, ) # Training if training_args.do_train: _UpperCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : List[str] = last_checkpoint _UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase : str = train_result.metrics _UpperCAmelCase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) _UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) ) trainer.log_metrics("train", a_ ) trainer.save_metrics("train", a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase : List[Any] = trainer.evaluate() _UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) _UpperCAmelCase : Tuple = min(a_, len(a_ ) ) trainer.log_metrics("eval", a_ ) trainer.save_metrics("eval", a_ ) _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __UpperCAmelCase ( a_: int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
17
1
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=8 , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=9_9 , lowerCAmelCase__ : Any=1_6 , lowerCAmelCase__ : Union[str, Any]=5 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : List[str]=3_6 , lowerCAmelCase__ : Tuple="gelu" , lowerCAmelCase__ : Any=0.0 , lowerCAmelCase__ : List[str]=0.0 , lowerCAmelCase__ : Union[str, Any]=5_1_2 , lowerCAmelCase__ : Optional[Any]=1_6 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : int=None , ) -> Dict: """simple docstring""" _UpperCAmelCase : str = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : List[str] = is_training _UpperCAmelCase : List[str] = use_input_mask _UpperCAmelCase : Any = use_token_type_ids _UpperCAmelCase : List[Any] = use_labels _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : int = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : int = attention_probs_dropout_prob _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : Tuple = type_vocab_size _UpperCAmelCase : List[str] = type_sequence_label_size _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : Any = num_labels _UpperCAmelCase : List[Any] = num_choices _UpperCAmelCase : Tuple = scope def _lowerCAmelCase ( self : str ) -> Any: """simple docstring""" _UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : List[Any] = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Any = None if self.use_token_type_ids: _UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase : List[str] = None _UpperCAmelCase : int = None _UpperCAmelCase : str = None if self.use_labels: _UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = self.get_config() _UpperCAmelCase : Optional[int] = 3_0_0 return config def _lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[str] = self.prepare_config_and_inputs() _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : int = MraModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : List[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : Optional[Any] = MraModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Tuple = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , ) _UpperCAmelCase : Dict = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , ) _UpperCAmelCase : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : str = MraForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> Dict: """simple docstring""" _UpperCAmelCase : Tuple = MraForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Optional[Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = self.num_labels _UpperCAmelCase : Dict = MraForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str ) -> str: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.num_labels _UpperCAmelCase : List[str] = MraForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : str = self.num_choices _UpperCAmelCase : Optional[Any] = MraForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : str = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Union[str, Any] = config_and_inputs _UpperCAmelCase : Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase_ : Any = False UpperCamelCase_ : Tuple = False UpperCamelCase_ : str = False UpperCamelCase_ : str = False UpperCamelCase_ : Union[str, Any] = () def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[Any] = MraModelTester(self ) _UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase : int = type self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Union[str, Any] = MraModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="MRA does not output attentions" ) def _lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" return @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : str = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) _UpperCAmelCase : Optional[Any] = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): _UpperCAmelCase : Tuple = model(lowerCAmelCase__ )[0] _UpperCAmelCase : Union[str, Any] = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase__ ) _UpperCAmelCase : str = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" _UpperCAmelCase : Union[str, Any] = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) _UpperCAmelCase : Any = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): _UpperCAmelCase : str = model(lowerCAmelCase__ )[0] _UpperCAmelCase : Union[str, Any] = 5_0_2_6_5 _UpperCAmelCase : Any = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase__ ) _UpperCAmelCase : Dict = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" _UpperCAmelCase : Tuple = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) _UpperCAmelCase : Dict = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ )[0] _UpperCAmelCase : Dict = 5_0_2_6_5 _UpperCAmelCase : List[str] = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase__ ) _UpperCAmelCase : int = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) )
17
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str: """simple docstring""" super().__init__() _UpperCAmelCase : List[str] = model _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass def __UpperCAmelCase ( a_: str, a_: str, a_: str ): # load longformer model from model identifier _UpperCAmelCase : int = LongformerModel.from_pretrained(a_ ) _UpperCAmelCase : Any = LightningModel(a_ ) _UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model _UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(a_ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
1
'''simple docstring''' import cva import numpy as np class A__ : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : float , lowerCAmelCase__ : int ) -> List[str]: """simple docstring""" if k in (0.04, 0.06): _UpperCAmelCase : Optional[Any] = k _UpperCAmelCase : str = window_size else: raise ValueError("invalid k value" ) def __str__( self : Dict ) -> str: """simple docstring""" return str(self.k ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" _UpperCAmelCase : str = cva.imread(lowerCAmelCase__ , 0 ) _UpperCAmelCase , _UpperCAmelCase : str = img.shape _UpperCAmelCase : list[list[int]] = [] _UpperCAmelCase : int = img.copy() _UpperCAmelCase : Dict = cva.cvtColor(lowerCAmelCase__ , cva.COLOR_GRAY2RGB ) _UpperCAmelCase , _UpperCAmelCase : Dict = np.gradient(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = dx**2 _UpperCAmelCase : Any = dy**2 _UpperCAmelCase : Optional[Any] = dx * dy _UpperCAmelCase : Dict = 0.04 _UpperCAmelCase : Optional[int] = self.window_size // 2 for y in range(lowerCAmelCase__ , h - offset ): for x in range(lowerCAmelCase__ , w - offset ): _UpperCAmelCase : str = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _UpperCAmelCase : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _UpperCAmelCase : List[str] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _UpperCAmelCase : str = (wxx * wyy) - (wxy**2) _UpperCAmelCase : List[str] = wxx + wyy _UpperCAmelCase : Any = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_5_5 ) return color_img, corner_list if __name__ == "__main__": __a = HarrisCorner(0.0_4, 3) __a , __a = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
17
'''simple docstring''' from importlib import import_module from .logging import get_logger __a = get_logger(__name__) class A__ : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class A__ : """simple docstring""" UpperCamelCase_ : Union[str, Any] = [] def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = obj _UpperCAmelCase : int = target _UpperCAmelCase : Optional[int] = new _UpperCAmelCase : Any = target.split("." )[0] _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : Dict = attrs or [] def __enter__( self : List[str] ) -> int: """simple docstring""" *_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: _UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCAmelCase : Tuple = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) _UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: _UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCAmelCase : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.__enter__() self._active_patches.append(self ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
17
1
'''simple docstring''' import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __a = logging.getLogger() def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("-f" ) _UpperCAmelCase : Optional[int] = parser.parse_args() return args.f class A__ ( UpperCamelCase ): """simple docstring""" def _lowerCAmelCase ( self : int ) -> None: """simple docstring""" _UpperCAmelCase : Dict = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(lowerCAmelCase__ , "argv" , lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCAmelCase__ , 0.666 ) @slow @require_torch_non_multi_gpu def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : int = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(lowerCAmelCase__ ) _UpperCAmelCase : str = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowerCAmelCase__ )
17
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a = datasets.utils.logging.get_logger(__name__) __a = ['names', 'prefix'] __a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __a = ['encoding_errors', 'on_bad_lines'] __a = ['date_format'] @dataclass class A__ ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_00_00 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase : Any = self.delimiter if self.column_names is not None: _UpperCAmelCase : List[Any] = self.column_names @property def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase_ : int = CsvConfig def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : str = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase : Tuple = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): _UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
17
1
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __a = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Path , lowerCAmelCase__ : Union[str, None] = None , lowerCAmelCase__ : Union[List[str], None] = None , lowerCAmelCase__ : Union[str, List[str], None] = None , lowerCAmelCase__ : bool = True , ) -> str: """simple docstring""" _UpperCAmelCase : str = [file for file in os.listdir(lowerCAmelCase__ ) if os.path.isfile(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) )] if identifier is not None: _UpperCAmelCase : Dict = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): for n_ in n_identifier: _UpperCAmelCase : int = [file for file in files if n_ not in file] else: _UpperCAmelCase : str = [file for file in files if n_identifier not in file] _UpperCAmelCase : int = ignore_files or [] ignore_files.append("__init__.py" ) _UpperCAmelCase : Any = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , lowerCAmelCase__ ) if only_modules: _UpperCAmelCase : Optional[Any] = file.split("." )[0] try: _UpperCAmelCase : List[str] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = doctest.DocTestSuite(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = unittest.TextTestRunner().run(lowerCAmelCase__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F"""{module_identifier} is not a module.""" ) else: _UpperCAmelCase : Union[str, Any] = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def _lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[Any] = Path("src/transformers" ) _UpperCAmelCase : Union[str, Any] = "modeling" _UpperCAmelCase : List[Any] = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(lowerCAmelCase__ , identifier=lowerCAmelCase__ , ignore_files=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" _UpperCAmelCase : Dict = Path("src/transformers" ) _UpperCAmelCase : Optional[Any] = "tokenization" self.analyze_directory(lowerCAmelCase__ , identifier=lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Any = Path("src/transformers" ) _UpperCAmelCase : int = "configuration" self.analyze_directory(lowerCAmelCase__ , identifier=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = Path("src/transformers" ) _UpperCAmelCase : List[str] = ["configuration", "modeling", "tokenization"] self.analyze_directory(lowerCAmelCase__ , n_identifier=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = Path("docs/source" ) _UpperCAmelCase : Any = ["favicon.ico"] self.analyze_directory(lowerCAmelCase__ , ignore_files=lowerCAmelCase__ , only_modules=lowerCAmelCase__ )
17
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: list[int] ): if not nums: return 0 _UpperCAmelCase : int = nums[0] _UpperCAmelCase : Dict = 0 for num in nums[1:]: _UpperCAmelCase , _UpperCAmelCase : Any = ( max_excluding + num, max(a_, a_ ), ) return max(a_, a_ ) if __name__ == "__main__": import doctest doctest.testmod()
17
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[str], a_: Any=False ): _UpperCAmelCase : Optional[int] = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): _UpperCAmelCase : List[str] = "segformer.encoder." + key if key.startswith("backbone" ): _UpperCAmelCase : int = key.replace("backbone", "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : List[Any] = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : int = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _UpperCAmelCase : str = key.replace("norm", "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : Dict = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] _UpperCAmelCase : Optional[int] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase : Tuple = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : Union[str, Any] = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Union[str, Any] = key[key.find("block" ) + len("block" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" ) if "attn.q" in key: _UpperCAmelCase : List[Any] = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : str = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : List[str] = key.replace("attn", "attention.self" ) if "fc1" in key: _UpperCAmelCase : Union[str, Any] = key.replace("fc1", "dense1" ) if "fc2" in key: _UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" ) if "linear_pred" in key: _UpperCAmelCase : int = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : List[Any] = key.replace("linear_fuse.conv", "linear_fuse" ) _UpperCAmelCase : str = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : Any = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" ) if key.startswith("head" ): _UpperCAmelCase : Union[str, Any] = key.replace("head", "classifier" ) _UpperCAmelCase : int = value return new_state_dict def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Optional[Any] = state_dict.pop(f"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase : Optional[int] = state_dict.pop(f"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : int = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : int = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Tuple = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Optional[int] = kv_bias[ config.hidden_sizes[i] : ] def __UpperCAmelCase ( ): _UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Optional[int] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Dict, a_: List[str] ): _UpperCAmelCase : Optional[Any] = SegformerConfig() _UpperCAmelCase : Tuple = False # set attributes based on model_name _UpperCAmelCase : Optional[int] = "huggingface/label-files" if "segformer" in model_name: _UpperCAmelCase : List[Any] = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: _UpperCAmelCase : Union[str, Any] = 150 _UpperCAmelCase : List[str] = "ade20k-id2label.json" _UpperCAmelCase : Any = (1, 150, 128, 128) elif "city" in model_name: _UpperCAmelCase : Any = 19 _UpperCAmelCase : Optional[int] = "cityscapes-id2label.json" _UpperCAmelCase : Tuple = (1, 19, 128, 128) else: raise ValueError(f"""Model {model_name} not supported""" ) elif "mit" in model_name: _UpperCAmelCase : Dict = True _UpperCAmelCase : str = model_name[4:6] _UpperCAmelCase : str = 1_000 _UpperCAmelCase : List[str] = "imagenet-1k-id2label.json" _UpperCAmelCase : int = (1, 1_000) else: raise ValueError(f"""Model {model_name} not supported""" ) # set config attributes _UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(a_, a_, repo_type="dataset" ), "r" ) ) _UpperCAmelCase : List[str] = {int(a_ ): v for k, v in idalabel.items()} _UpperCAmelCase : str = idalabel _UpperCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _UpperCAmelCase : Union[str, Any] = [64, 128, 320, 512] _UpperCAmelCase : List[str] = 256 elif size == "b2": _UpperCAmelCase : List[Any] = [64, 128, 320, 512] _UpperCAmelCase : Union[str, Any] = 768 _UpperCAmelCase : int = [3, 4, 6, 3] elif size == "b3": _UpperCAmelCase : Optional[int] = [64, 128, 320, 512] _UpperCAmelCase : str = 768 _UpperCAmelCase : Tuple = [3, 4, 18, 3] elif size == "b4": _UpperCAmelCase : Dict = [64, 128, 320, 512] _UpperCAmelCase : str = 768 _UpperCAmelCase : int = [3, 8, 27, 3] elif size == "b5": _UpperCAmelCase : Tuple = [64, 128, 320, 512] _UpperCAmelCase : Dict = 768 _UpperCAmelCase : Optional[int] = [3, 6, 40, 3] else: raise ValueError(f"""Size {size} not supported""" ) # load image processor (only resize + normalize) _UpperCAmelCase : Union[str, Any] = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=a_, align=a_, do_random_crop=a_ ) # prepare image _UpperCAmelCase : Optional[Any] = prepare_img() _UpperCAmelCase : str = image_processor(images=a_, return_tensors="pt" ).pixel_values logger.info(f"""Converting model {model_name}...""" ) # load original state dict if encoder_only: _UpperCAmelCase : Tuple = torch.load(a_, map_location=torch.device("cpu" ) ) else: _UpperCAmelCase : Optional[Any] = torch.load(a_, map_location=torch.device("cpu" ) )["state_dict"] # rename keys _UpperCAmelCase : str = rename_keys(a_, encoder_only=a_ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict if encoder_only: _UpperCAmelCase : int = False _UpperCAmelCase : Dict = SegformerForImageClassification(a_ ) else: _UpperCAmelCase : Optional[int] = SegformerForSemanticSegmentation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _UpperCAmelCase : Optional[Any] = model(a_ ) _UpperCAmelCase : int = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _UpperCAmelCase : Optional[Any] = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _UpperCAmelCase : Tuple = torch.tensor( [ [[-7.58_20, -8.72_31, -8.32_15], [-8.06_00, -10.35_29, -10.03_04], [-7.52_08, -9.41_03, -9.62_39]], [[-12.69_18, -13.89_94, -13.71_37], [-13.31_96, -15.75_23, -15.47_89], [-12.93_43, -14.87_57, -14.96_89]], [[-11.19_11, -11.94_21, -11.32_43], [-11.33_42, -13.68_39, -13.35_81], [-10.39_09, -12.18_32, -12.48_58]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _UpperCAmelCase : int = torch.tensor( [ [[-11.81_73, -14.38_50, -16.31_28], [-14.56_48, -16.58_04, -18.65_68], [-14.72_23, -15.73_87, -18.42_18]], [[-15.72_90, -17.91_71, -19.44_23], [-18.31_05, -19.94_48, -21.46_61], [-17.92_96, -18.64_97, -20.79_10]], [[-15.07_83, -17.03_36, -18.27_89], [-16.87_71, -18.68_70, -20.16_12], [-16.24_54, -17.14_26, -19.50_55]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _UpperCAmelCase : Union[str, Any] = torch.tensor( [ [[-9.08_78, -10.20_81, -10.18_91], [-9.31_44, -10.79_41, -10.98_43], [-9.22_94, -10.38_55, -10.57_04]], [[-12.23_16, -13.90_68, -13.61_02], [-12.91_61, -14.37_02, -14.32_35], [-12.52_33, -13.71_74, -13.79_32]], [[-14.62_75, -15.24_90, -14.97_27], [-14.34_00, -15.96_87, -16.28_27], [-14.14_84, -15.40_33, -15.89_37]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _UpperCAmelCase : int = torch.tensor( [ [[-12.31_44, -13.24_47, -14.08_02], [-13.36_14, -14.58_16, -15.61_17], [-13.33_40, -14.44_33, -16.22_19]], [[-19.27_81, -20.41_28, -20.75_06], [-20.61_53, -21.65_66, -22.09_98], [-19.98_00, -21.04_30, -22.14_94]], [[-18.87_39, -19.78_04, -21.18_34], [-20.12_33, -21.67_65, -23.29_44], [-20.03_15, -21.26_41, -23.69_44]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _UpperCAmelCase : List[Any] = torch.tensor( [ [[-9.55_24, -12.08_35, -11.73_48], [-10.52_29, -13.64_46, -14.56_62], [-9.58_42, -12.88_51, -13.94_14]], [[-15.34_32, -17.53_23, -17.08_18], [-16.33_30, -18.92_55, -19.21_01], [-15.13_40, -17.78_48, -18.39_71]], [[-12.60_72, -14.94_86, -14.66_31], [-13.76_29, -17.09_07, -17.77_45], [-12.78_99, -16.16_95, -17.16_71]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _UpperCAmelCase : Optional[int] = torch.tensor( [ [[-11.92_95, -13.40_57, -14.81_06], [-13.34_31, -14.81_79, -15.37_81], [-14.28_36, -15.59_42, -16.15_88]], [[-11.49_06, -12.80_67, -13.65_64], [-13.11_89, -14.05_00, -14.15_43], [-13.87_48, -14.51_36, -14.87_89]], [[0.53_74, 0.10_67, -0.47_42], [0.11_41, -0.22_55, -0.70_99], [-0.30_00, -0.59_24, -1.31_05]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _UpperCAmelCase : Any = torch.tensor( [ [[-7.82_17, -9.87_67, -10.17_17], [-9.44_38, -10.90_58, -11.40_47], [-9.79_39, -12.34_95, -12.10_79]], [[-7.15_14, -9.53_36, -10.08_60], [-9.77_76, -11.68_22, -11.84_39], [-10.14_11, -12.76_55, -12.89_72]], [[0.30_21, 0.08_05, -0.23_10], [-0.03_28, -0.16_05, -0.27_14], [-0.14_08, -0.54_77, -0.69_76]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _UpperCAmelCase : List[str] = torch.tensor( [ [ [-1.1_3_7_2e0_1, -1.2_7_8_7e0_1, -1.3_4_7_7e0_1], [-1.2_5_3_6e0_1, -1.4_1_9_4e0_1, -1.4_4_0_9e0_1], [-1.3_2_1_7e0_1, -1.4_8_8_8e0_1, -1.5_3_2_7e0_1], ], [ [-1.4_7_9_1e0_1, -1.7_1_2_2e0_1, -1.8_2_7_7e0_1], [-1.7_1_6_3e0_1, -1.9_1_9_2e0_1, -1.9_5_3_3e0_1], [-1.7_8_9_7e0_1, -1.9_9_9_1e0_1, -2.0_3_1_5e0_1], ], [ [7.6_7_2_3e-0_1, 4.1_9_2_1e-0_1, -7.7_8_7_8e-0_2], [4.7_7_7_2e-0_1, 9.5_5_5_7e-0_3, -2.8_0_8_2e-0_1], [3.6_0_3_2e-0_1, -2.4_8_2_6e-0_1, -5.1_1_6_8e-0_1], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _UpperCAmelCase : str = torch.tensor( [ [[-9.49_59, -11.30_87, -11.74_79], [-11.00_25, -12.65_40, -12.33_19], [-11.40_64, -13.04_87, -12.99_05]], [[-9.89_05, -11.30_84, -12.08_54], [-11.17_26, -12.76_98, -12.95_83], [-11.59_85, -13.32_78, -14.17_74]], [[0.22_13, 0.01_92, -0.24_66], [-0.17_31, -0.42_13, -0.48_74], [-0.31_26, -0.65_41, -1.13_89]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _UpperCAmelCase : Dict = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _UpperCAmelCase : Union[str, Any] = torch.tensor( [ [[-16.09_76, -16.48_56, -17.39_62], [-16.62_34, -19.03_42, -19.76_85], [-16.09_00, -18.06_61, -19.11_80]], [[-18.47_50, -18.84_88, -19.50_74], [-19.40_30, -22.15_70, -22.59_77], [-19.11_91, -20.84_86, -22.37_83]], [[-4.51_78, -5.50_37, -6.51_09], [-5.08_84, -7.21_74, -8.03_34], [-4.41_56, -5.81_17, -7.29_70]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _UpperCAmelCase : int = torch.tensor( [ [[-14.20_81, -14.47_32, -14.19_77], [-14.58_67, -16.44_23, -16.63_56], [-13.44_41, -14.96_85, -16.86_96]], [[-14.45_76, -14.70_73, -15.04_51], [-15.08_16, -17.62_37, -17.98_73], [-14.42_13, -16.01_99, -18.59_92]], [[-4.73_49, -4.95_88, -5.09_66], [-4.32_10, -6.93_25, -7.25_91], [-3.43_12, -4.74_84, -7.19_17]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _UpperCAmelCase : List[Any] = torch.tensor( [ [[-11.77_37, -11.95_26, -11.32_73], [-13.66_92, -14.45_74, -13.88_78], [-13.89_37, -14.69_24, -15.93_45]], [[-14.67_06, -14.53_30, -14.13_06], [-16.15_02, -16.81_80, -16.42_69], [-16.83_38, -17.89_39, -20.17_46]], [[1.04_91, 0.82_89, 1.03_10], [1.10_44, 0.52_19, 0.80_55], [1.08_99, 0.69_26, 0.55_90]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _UpperCAmelCase : List[str] = torch.tensor( [ [[-12.56_41, -13.47_77, -13.06_84], [-13.95_87, -15.89_83, -16.65_57], [-13.31_09, -15.73_50, -16.31_41]], [[-14.70_74, -15.43_52, -14.59_44], [-16.63_53, -18.16_63, -18.61_20], [-15.17_02, -18.03_29, -18.15_47]], [[-1.79_90, -2.09_51, -1.77_84], [-2.63_97, -3.82_45, -3.96_86], [-1.52_64, -2.81_26, -2.93_16]], ] ) else: _UpperCAmelCase : List[Any] = logits.argmax(-1 ).item() print("Predicted class:", model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3], a_, atol=1e-2 ) # finally, save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--model_name', default='segformer.b0.512x512.ade.160k', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __a = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
17
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): _UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" ) if key.startswith("module.decoder" ): _UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] _UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )] _UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" ) if "attn.q" in key: _UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Dict = key.replace("attn", "attention.self" ) if "fc1" in key: _UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" ) if "fc2" in key: _UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Any = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" ) _UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: _UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" ) if "skip_conv1" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" ) if "skip_conv2" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" ) if "fusion1" in key: _UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" ) if "fusion2" in key: _UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" ) if "fusion3" in key: _UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" ) if "fusion" in key and "conv" in key: _UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): _UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" ) _UpperCAmelCase : int = value return new_state_dict def __UpperCAmelCase ( a_: str, a_: List[Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ): _UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _UpperCAmelCase : Dict = GLPNImageProcessor() # prepare image _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) ) # rename keys _UpperCAmelCase : List[str] = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict _UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _UpperCAmelCase : Dict = model(a_ ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _UpperCAmelCase : Optional[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _UpperCAmelCase : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) _UpperCAmelCase : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
17
1
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Dict = logging.get_logger() # the current default level is logging.WARNING _UpperCAmelCase : Dict = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" _UpperCAmelCase : Any = logging.get_verbosity() _UpperCAmelCase : str = logging.get_logger("transformers.models.bart.tokenization_bart" ) _UpperCAmelCase : str = "Testing 1, 2, 3" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(lowerCAmelCase__ ) as cl: logger.warning(lowerCAmelCase__ ) self.assertEqual(cl.out , msg + "\n" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(lowerCAmelCase__ ) as cl: logger.warning(lowerCAmelCase__ ) self.assertEqual(cl.out , "" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(lowerCAmelCase__ ) as cl: logger.warning(lowerCAmelCase__ ) self.assertEqual(cl.out , msg + "\n" ) # restore to the original level logging.set_verbosity(lowerCAmelCase__ ) @mockenv(TRANSFORMERS_VERBOSITY="error" ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" transformers.utils.logging._reset_library_root_logger() # this action activates the env var _UpperCAmelCase : Tuple = logging.get_logger("transformers.models.bart.tokenization_bart" ) _UpperCAmelCase : Union[str, Any] = os.getenv("TRANSFORMERS_VERBOSITY" , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = logging.log_levels[env_level_str] _UpperCAmelCase : Optional[int] = logging.get_verbosity() self.assertEqual( lowerCAmelCase__ , lowerCAmelCase__ , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level _UpperCAmelCase : Optional[Any] = "" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="super-error" ) def _lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" transformers.utils.logging._reset_library_root_logger() _UpperCAmelCase : Tuple = logging.logging.getLogger() with CaptureLogger(lowerCAmelCase__ ) as cl: # this action activates the env var logging.get_logger("transformers.models.bart.tokenization_bart" ) self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error" , cl.out ) # no need to restore as nothing was changed def _lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" transformers.utils.logging._reset_library_root_logger() _UpperCAmelCase : int = logging.get_logger("transformers.models.bart.tokenization_bart" ) _UpperCAmelCase : Optional[Any] = "Testing 1, 2, 3" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1" ): # nothing should be logged as env var disables this method with CaptureLogger(lowerCAmelCase__ ) as cl: logger.warning_advice(lowerCAmelCase__ ) self.assertEqual(cl.out , "" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(lowerCAmelCase__ ) as cl: logger.warning_advice(lowerCAmelCase__ ) self.assertEqual(cl.out , msg + "\n" ) def __UpperCAmelCase ( ): disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
17
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : int = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _UpperCAmelCase : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(a_ ) ), }, features=a_, ) return dataset @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=a_ ) return filename # FILE_CONTENT + files __a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt" _UpperCAmelCase : Tuple = FILE_CONTENT with open(a_, "w" ) as f: f.write(a_ ) return filename @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" ) with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import gzip _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _UpperCAmelCase : Any = bytes(a_, "utf-8" ) with gzip.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _UpperCAmelCase : str = bytes(a_, "utf-8" ) with lza.frame.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Any ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(a_, "w" ) as archive: archive.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: List[str] ): import tarfile _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): import lzma _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _UpperCAmelCase : List[str] = bytes(a_, "utf-8" ) with lzma.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: Tuple ): import zipfile _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _UpperCAmelCase : int = bytes(a_, "utf-8" ) with zstd.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml" _UpperCAmelCase : Tuple = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(a_, "w" ) as f: f.write(a_ ) return filename __a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : str = datasets.Dataset.from_dict(a_ ) _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(a_ ) ) as con: _UpperCAmelCase : List[Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str, a_: str ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(a_, "rb" ) as f: _UpperCAmelCase : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ): _UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) ) f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ): _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _UpperCAmelCase : Dict = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(a_, "wb" ) as f: _UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ ) _UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ ) writer.write_table(a_ ) writer.close() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : str = {"data": DATA} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(a_, "w" ) as f: for item in DATA_312: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(a_, "w" ) as f: for item in DATA_STR: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ): import gzip _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ): import gzip _UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ): _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : List[str] = ["0", "1", "2", "3"] _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Dict = ["0", "1", "2", "3"] _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = ["0", "1", "2", "3"] _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename("unsupported.ext" ) ) f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) return data_dir
17
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json', 'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json', 'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json', 'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json', 'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json', 'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json', 'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json', 'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json', 'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json', 'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json', } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = '''rwkv''' UpperCamelCase_ : Tuple = {'''max_position_embeddings''': '''context_length'''} def __init__( self : Union[str, Any] , lowerCAmelCase__ : List[str]=5_0_2_7_7 , lowerCAmelCase__ : Optional[int]=1_0_2_4 , lowerCAmelCase__ : Any=4_0_9_6 , lowerCAmelCase__ : Dict=3_2 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Dict=1e-5 , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : List[str]=0 , lowerCAmelCase__ : int=6 , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : List[str]=True , **lowerCAmelCase__ : int , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = vocab_size _UpperCAmelCase : Optional[int] = context_length _UpperCAmelCase : str = hidden_size _UpperCAmelCase : Dict = num_hidden_layers _UpperCAmelCase : Union[str, Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCAmelCase : str = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCAmelCase : Union[str, Any] = layer_norm_epsilon _UpperCAmelCase : str = rescale_every _UpperCAmelCase : Optional[Any] = use_cache _UpperCAmelCase : List[str] = bos_token_id _UpperCAmelCase : Union[str, Any] = eos_token_id super().__init__( tie_word_embeddings=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
17
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = BarthezTokenizer UpperCamelCase_ : List[Any] = BarthezTokenizerFast UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : Optional[int] = True def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" super().setUp() _UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = "<pad>" _UpperCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] _UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] _UpperCAmelCase : int = self.tokenizer( lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() _UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé." _UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase : Tuple = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , )
17
1
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class A__ ( ctypes.Structure ): """simple docstring""" UpperCamelCase_ : str = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def __UpperCAmelCase ( ): if os.name == "nt": _UpperCAmelCase : Dict = CursorInfo() _UpperCAmelCase : Union[str, Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(a_, ctypes.byref(a_ ) ) _UpperCAmelCase : str = False ctypes.windll.kernelaa.SetConsoleCursorInfo(a_, ctypes.byref(a_ ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def __UpperCAmelCase ( ): if os.name == "nt": _UpperCAmelCase : Tuple = CursorInfo() _UpperCAmelCase : Union[str, Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(a_, ctypes.byref(a_ ) ) _UpperCAmelCase : int = True ctypes.windll.kernelaa.SetConsoleCursorInfo(a_, ctypes.byref(a_ ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def __UpperCAmelCase ( ): try: hide_cursor() yield finally: show_cursor()
17
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0} _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : str = max_resolution _UpperCAmelCase : List[Any] = size _UpperCAmelCase : Union[str, Any] = do_normalize _UpperCAmelCase : Optional[Any] = do_convert_rgb _UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] _UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image() _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : str = 2_0_4_8 _UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Union[str, Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _UpperCAmelCase : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches _UpperCAmelCase : Any = "Hello" _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : List[Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) _UpperCAmelCase : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Union[str, Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCAmelCase : List[Any] = 3 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Tuple = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
17
1
'''simple docstring''' import pytest __a = '__dummy_dataset1__' __a = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __UpperCAmelCase ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __UpperCAmelCase ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: str ): _UpperCAmelCase : int = dataset_loading_script_name _UpperCAmelCase : Optional[Any] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=a_ ) _UpperCAmelCase : int = script_dir / f"""{script_name}.py""" with open(a_, "w" ) as f: f.write(a_ ) return str(a_ )
17
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''time_series_transformer''' UpperCamelCase_ : Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = prediction_length _UpperCAmelCase : Optional[Any] = context_length or prediction_length _UpperCAmelCase : Optional[Any] = distribution_output _UpperCAmelCase : Union[str, Any] = loss _UpperCAmelCase : Dict = input_size _UpperCAmelCase : int = num_time_features _UpperCAmelCase : Any = lags_sequence _UpperCAmelCase : Dict = scaling _UpperCAmelCase : Tuple = num_dynamic_real_features _UpperCAmelCase : Dict = num_static_real_features _UpperCAmelCase : Union[str, Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Optional[int] = cardinality else: _UpperCAmelCase : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : List[Any] = embedding_dimension else: _UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : str = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features _UpperCAmelCase : str = d_model _UpperCAmelCase : Optional[Any] = encoder_attention_heads _UpperCAmelCase : Dict = decoder_attention_heads _UpperCAmelCase : List[Any] = encoder_ffn_dim _UpperCAmelCase : str = decoder_ffn_dim _UpperCAmelCase : Dict = encoder_layers _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : Any = dropout _UpperCAmelCase : str = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : Dict = encoder_layerdrop _UpperCAmelCase : Any = decoder_layerdrop _UpperCAmelCase : Optional[Any] = activation_function _UpperCAmelCase : Tuple = init_std _UpperCAmelCase : List[str] = use_cache super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') __a = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" if self.train_file is not None: _UpperCAmelCase : List[Any] = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCAmelCase : List[str] = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A__ : """simple docstring""" UpperCamelCase_ : PreTrainedTokenizerBase UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[int] = None def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels" _UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features] _UpperCAmelCase : str = len(lowerCAmelCase__ ) _UpperCAmelCase : int = len(features[0]["input_ids"] ) _UpperCAmelCase : str = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features ] _UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) ) _UpperCAmelCase : Any = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) return batch def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag", a_, a_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCAmelCase : Union[str, Any] = {} if data_args.train_file is not None: _UpperCAmelCase : str = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase : Optional[Any] = data_args.validation_file _UpperCAmelCase : Dict = data_args.train_file.split("." )[-1] _UpperCAmelCase : Optional[int] = load_dataset( a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: # Downloading and loading the swag dataset from the hub. _UpperCAmelCase : Dict = load_dataset( "swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )] _UpperCAmelCase : List[Any] = "sent1" _UpperCAmelCase : Optional[int] = "sent2" if data_args.max_seq_length is None: _UpperCAmelCase : List[str] = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _UpperCAmelCase : Dict = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]] _UpperCAmelCase : Tuple = examples[question_header_name] _UpperCAmelCase : Optional[Any] = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ ) ] # Flatten out _UpperCAmelCase : List[str] = list(chain(*a_ ) ) _UpperCAmelCase : Dict = list(chain(*a_ ) ) # Tokenize _UpperCAmelCase : List[Any] = tokenizer( a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _UpperCAmelCase : int = raw_datasets["train"] if data_args.max_train_samples is not None: _UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples ) _UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _UpperCAmelCase : Union[str, Any] = train_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _UpperCAmelCase : Dict = raw_datasets["validation"] if data_args.max_eval_samples is not None: _UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples ) _UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _UpperCAmelCase : Optional[int] = eval_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator _UpperCAmelCase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a_: Tuple ): _UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions _UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCAmelCase : Any = Trainer( model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, ) # Training if training_args.do_train: _UpperCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : List[str] = last_checkpoint _UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase : str = train_result.metrics _UpperCAmelCase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) _UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) ) trainer.log_metrics("train", a_ ) trainer.save_metrics("train", a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase : List[Any] = trainer.evaluate() _UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) _UpperCAmelCase : Tuple = min(a_, len(a_ ) ) trainer.log_metrics("eval", a_ ) trainer.save_metrics("eval", a_ ) _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __UpperCAmelCase ( a_: int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
17
'''simple docstring''' import baseaa def __UpperCAmelCase ( a_: str ): return baseaa.baaencode(string.encode("utf-8" ) ) def __UpperCAmelCase ( a_: bytes ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": __a = 'Hello World!' __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
17
1
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) __a = _symbol_database.Default() __a = _descriptor_pool.Default().AddSerializedFile( b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03' ) __a = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals) if _descriptor._USE_C_DESCRIPTORS is False: __a = None __a = b'H\003' # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" __a = 45 __a = 1_581 __a = 1_517 __a = 1_570 __a = 1_584 __a = 1_793 __a = 1_795 __a = 1_916 __a = 1_864 __a = 1_905 __a = 1_919 __a = 2_429 __a = 2_208 __a = 2_418 __a = 2_323 __a = 2_407 # @@protoc_insertion_point(module_scope)
17
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" UpperCamelCase_ : Any = XGLMConfig UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Dict = '''gelu''' def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : str = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : int = d_model _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Tuple = ffn_dim _UpperCAmelCase : Any = activation_function _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Any = None _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Tuple = 1 def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _UpperCAmelCase : Any = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[Any] = self.get_config() _UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : Dict = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Tuple = False def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = TFXGLMModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on _UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) _UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" ) _UpperCAmelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): _UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) _UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[int] = "left" # use different length sentences to test batching _UpperCAmelCase : Tuple = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = inputs["input_ids"] _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 ) _UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
17
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { 'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'], 'tokenization_deberta': ['DebertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['DebertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'DebertaForMaskedLM', 'DebertaForQuestionAnswering', 'DebertaForSequenceClassification', 'DebertaForTokenClassification', 'DebertaModel', 'DebertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDebertaForMaskedLM', 'TFDebertaForQuestionAnswering', 'TFDebertaForSequenceClassification', 'TFDebertaForTokenClassification', 'TFDebertaModel', 'TFDebertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def __UpperCAmelCase ( a_: Tuple, a_: Any ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ), ], ) def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ): _UpperCAmelCase : Tuple = str(a_ ) dataset_info.write_to_directory(a_ ) _UpperCAmelCase : Any = DatasetInfo.from_directory(a_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a_, "dataset_info.json" ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, ) _UpperCAmelCase : Tuple = dataset_info._to_yaml_dict() assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) _UpperCAmelCase : List[Any] = yaml.safe_dump(a_ ) _UpperCAmelCase : Optional[int] = yaml.safe_load(a_ ) assert dataset_info_yaml_dict == reloaded def __UpperCAmelCase ( ): _UpperCAmelCase : str = DatasetInfo() _UpperCAmelCase : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1_337 ), } ), ], ) def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ): _UpperCAmelCase : Union[str, Any] = str(a_ ) dataset_infos_dict.write_to_directory(a_ ) _UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a_, "README.md" ) )
17
1
'''simple docstring''' import inspect import unittest class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" try: import diffusers # noqa: F401 except ImportError: assert False def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" import diffusers from diffusers.dependency_versions_table import deps _UpperCAmelCase : int = inspect.getmembers(lowerCAmelCase__ , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": _UpperCAmelCase : Union[str, Any] = "k-diffusion" elif backend == "invisible_watermark": _UpperCAmelCase : Tuple = "invisible-watermark" assert backend in deps, F"""{backend} is not in the deps table!"""
17
'''simple docstring''' from math import factorial def __UpperCAmelCase ( a_: int = 100 ): return sum(map(a_, str(factorial(a_ ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
17
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : List[str] = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ : Tuple = '''ViltImageProcessor''' UpperCamelCase_ : Tuple = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : List[str] , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Dict=None , **lowerCAmelCase__ : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCAmelCase__ , ) _UpperCAmelCase : Tuple = kwargs.pop("feature_extractor" ) _UpperCAmelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = self.image_processor def __call__( self : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase__ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase__ : Any , ) -> BatchEncoding: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) # add pixel_values + pixel_mask _UpperCAmelCase : Dict = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) encoding.update(lowerCAmelCase__ ) return encoding def _lowerCAmelCase ( self : Optional[int] , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Any ) -> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : int , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Tuple ) -> List[str]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.tokenizer.model_input_names _UpperCAmelCase : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCAmelCase__ , ) return self.image_processor_class @property def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCAmelCase__ , ) return self.image_processor
17
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __a = (3, 9, -11, 0, 7, 5, 1, -1) __a = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : int UpperCamelCase_ : Node | None class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None: """simple docstring""" _UpperCAmelCase : Node | None = None for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ): _UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" _UpperCAmelCase : List[Any] = self.head while node: yield node.data _UpperCAmelCase : List[str] = node.next_node def __len__( self : Any ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return " -> ".join([str(lowerCAmelCase__ ) for node in self] ) def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ): return SortedLinkedList(list(a_ ) + list(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() __a = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
17
1
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class A__ ( unittest.TestCase , UpperCamelCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = load_tool("text-classification" ) self.tool.setup() _UpperCAmelCase : Any = load_tool("text-classification" , remote=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(lowerCAmelCase__ , "positive" ) def _lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(lowerCAmelCase__ , "positive" ) def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _UpperCAmelCase : List[str] = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(lowerCAmelCase__ , "positive" ) def _lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(lowerCAmelCase__ , "positive" )
17
'''simple docstring''' def __UpperCAmelCase ( a_: str ): if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) _UpperCAmelCase : Optional[Any] = "" while len(a_ ) % 3 != 0: _UpperCAmelCase : List[Any] = "0" + bin_string _UpperCAmelCase : Dict = [ bin_string[index : index + 3] for index in range(len(a_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _UpperCAmelCase : Optional[Any] = 0 for index, val in enumerate(a_ ): oct_val += int(2 ** (2 - index) * int(a_ ) ) oct_string += str(a_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
17
1
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False __a = logging.get_logger(__name__) __a = 'ybelkada/fonts' def __UpperCAmelCase ( ): if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ "Pix2StructImageProcessor. Please upgrade torch." ) def __UpperCAmelCase ( a_: Any, a_: Optional[Any], a_: Optional[Any] ): requires_backends(a_, ["torch"] ) _check_torch_version() _UpperCAmelCase : Tuple = image_tensor.unsqueeze(0 ) _UpperCAmelCase : str = torch.nn.functional.unfold(a_, (patch_height, patch_width), stride=(patch_height, patch_width) ) _UpperCAmelCase : Optional[Any] = patches.reshape(image_tensor.size(0 ), image_tensor.size(1 ), a_, a_, -1 ) _UpperCAmelCase : Optional[int] = patches.permute(0, 4, 2, 3, 1 ).reshape( image_tensor.size(2 ) // patch_height, image_tensor.size(3 ) // patch_width, image_tensor.size(1 ) * patch_height * patch_width, ) return patches.unsqueeze(0 ) def __UpperCAmelCase ( a_: str, a_: int = 36, a_: str = "black", a_: str = "white", a_: int = 5, a_: int = 5, a_: int = 5, a_: int = 5, a_: Optional[bytes] = None, a_: Optional[str] = None, ): requires_backends(a_, "vision" ) # Add new lines so that each line is no more than 80 characters. _UpperCAmelCase : Union[str, Any] = textwrap.TextWrapper(width=80 ) _UpperCAmelCase : Optional[int] = wrapper.wrap(text=a_ ) _UpperCAmelCase : Optional[int] = "\n".join(a_ ) if font_bytes is not None and font_path is None: _UpperCAmelCase : List[str] = io.BytesIO(a_ ) elif font_path is not None: _UpperCAmelCase : str = font_path else: _UpperCAmelCase : Union[str, Any] = hf_hub_download(a_, "Arial.TTF" ) _UpperCAmelCase : Any = ImageFont.truetype(a_, encoding="UTF-8", size=a_ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. _UpperCAmelCase : Dict = ImageDraw.Draw(Image.new("RGB", (1, 1), a_ ) ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = temp_draw.textbbox((0, 0), a_, a_ ) # Create the actual image with a bit of padding around the text. _UpperCAmelCase : Any = text_width + left_padding + right_padding _UpperCAmelCase : Dict = text_height + top_padding + bottom_padding _UpperCAmelCase : List[Any] = Image.new("RGB", (image_width, image_height), a_ ) _UpperCAmelCase : List[Any] = ImageDraw.Draw(a_ ) draw.text(xy=(left_padding, top_padding), text=a_, fill=a_, font=a_ ) return image def __UpperCAmelCase ( a_: np.ndarray, a_: str, **a_: Tuple ): requires_backends(a_, "vision" ) # Convert to PIL image if necessary _UpperCAmelCase : Optional[Any] = to_pil_image(a_ ) _UpperCAmelCase : Optional[Any] = render_text(a_, **a_ ) _UpperCAmelCase : int = max(header_image.width, image.width ) _UpperCAmelCase : List[str] = int(image.height * (new_width / image.width) ) _UpperCAmelCase : Optional[int] = int(header_image.height * (new_width / header_image.width) ) _UpperCAmelCase : Any = Image.new("RGB", (new_width, new_height + new_header_height), "white" ) new_image.paste(header_image.resize((new_width, new_header_height) ), (0, 0) ) new_image.paste(image.resize((new_width, new_height) ), (0, new_header_height) ) # Convert back to the original framework if necessary _UpperCAmelCase : Optional[Any] = to_numpy_array(a_ ) if infer_channel_dimension_format(a_ ) == ChannelDimension.LAST: _UpperCAmelCase : Union[str, Any] = to_channel_dimension_format(a_, ChannelDimension.LAST ) return new_image class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = ['''flattened_patches'''] def __init__( self : Optional[int] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : int = 2_0_4_8 , lowerCAmelCase__ : bool = False , **lowerCAmelCase__ : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} _UpperCAmelCase : List[str] = do_normalize _UpperCAmelCase : List[str] = do_convert_rgb _UpperCAmelCase : List[Any] = max_patches _UpperCAmelCase : Any = is_vqa def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : int , lowerCAmelCase__ : dict , **lowerCAmelCase__ : Union[str, Any] ) -> np.ndarray: """simple docstring""" requires_backends(self.extract_flattened_patches , "torch" ) _check_torch_version() # convert to torch _UpperCAmelCase : Dict = to_channel_dimension_format(lowerCAmelCase__ , ChannelDimension.FIRST ) _UpperCAmelCase : Any = torch.from_numpy(lowerCAmelCase__ ) _UpperCAmelCase , _UpperCAmelCase : str = patch_size["height"], patch_size["width"] _UpperCAmelCase , _UpperCAmelCase : Optional[int] = get_image_size(lowerCAmelCase__ ) # maximize scale s.t. _UpperCAmelCase : Any = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) _UpperCAmelCase : Dict = max(min(math.floor(scale * image_height / patch_height ) , lowerCAmelCase__ ) , 1 ) _UpperCAmelCase : Union[str, Any] = max(min(math.floor(scale * image_width / patch_width ) , lowerCAmelCase__ ) , 1 ) _UpperCAmelCase : Optional[Any] = max(num_feasible_rows * patch_height , 1 ) _UpperCAmelCase : Tuple = max(num_feasible_cols * patch_width , 1 ) _UpperCAmelCase : Tuple = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=lowerCAmelCase__ , antialias=lowerCAmelCase__ , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] _UpperCAmelCase : Optional[Any] = torch_extract_patches(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = patches.shape _UpperCAmelCase : Optional[Any] = patches_shape[1] _UpperCAmelCase : List[Any] = patches_shape[2] _UpperCAmelCase : Optional[int] = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] _UpperCAmelCase : List[Any] = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] _UpperCAmelCase : List[str] = torch.arange(lowerCAmelCase__ ).reshape([rows, 1] ).repeat(1 , lowerCAmelCase__ ).reshape([rows * columns, 1] ) _UpperCAmelCase : List[str] = torch.arange(lowerCAmelCase__ ).reshape([1, columns] ).repeat(lowerCAmelCase__ , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] _UpperCAmelCase : str = row_ids.to(torch.floataa ) _UpperCAmelCase : Tuple = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] _UpperCAmelCase : Tuple = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] _UpperCAmelCase : Dict = torch.nn.functional.pad(lowerCAmelCase__ , [0, 0, 0, max_patches - (rows * columns)] ).float() _UpperCAmelCase : Optional[int] = to_numpy_array(lowerCAmelCase__ ) return result def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Dict ) -> np.ndarray: """simple docstring""" if image.dtype == np.uinta: _UpperCAmelCase : str = image.astype(np.floataa ) # take mean across the whole `image` _UpperCAmelCase : Tuple = np.mean(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = np.std(lowerCAmelCase__ ) _UpperCAmelCase : int = max(lowerCAmelCase__ , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase__ : Optional[Any] , ) -> ImageInput: """simple docstring""" _UpperCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCAmelCase : Optional[Any] = patch_size if patch_size is not None else self.patch_size _UpperCAmelCase : Optional[Any] = max_patches if max_patches is not None else self.max_patches _UpperCAmelCase : Tuple = self.is_vqa if kwargs.get("data_format" , lowerCAmelCase__ ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) _UpperCAmelCase : Any = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCAmelCase : Tuple = [convert_to_rgb(lowerCAmelCase__ ) for image in images] # All transformations expect numpy arrays. _UpperCAmelCase : List[Any] = [to_numpy_array(lowerCAmelCase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) _UpperCAmelCase : List[Any] = kwargs.pop("font_bytes" , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = kwargs.pop("font_path" , lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = [header_text] * len(lowerCAmelCase__ ) _UpperCAmelCase : Any = [ render_header(lowerCAmelCase__ , header_text[i] , font_bytes=lowerCAmelCase__ , font_path=lowerCAmelCase__ ) for i, image in enumerate(lowerCAmelCase__ ) ] if do_normalize: _UpperCAmelCase : Optional[Any] = [self.normalize(image=lowerCAmelCase__ ) for image in images] # convert to torch tensor and permute _UpperCAmelCase : Optional[int] = [ self.extract_flattened_patches(image=lowerCAmelCase__ , max_patches=lowerCAmelCase__ , patch_size=lowerCAmelCase__ ) for image in images ] # create attention mask in numpy _UpperCAmelCase : Optional[int] = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] _UpperCAmelCase : Optional[Any] = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=lowerCAmelCase__ ) return encoded_outputs
17
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCAmelCase ( a_: str ): for param in module.parameters(): _UpperCAmelCase : Any = False def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : int = plt.imshow(a_ ) fig.axes.get_xaxis().set_visible(a_ ) fig.axes.get_yaxis().set_visible(a_ ) plt.show() def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = datetime.now() _UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" ) return timestamp
17
1
'''simple docstring''' def __UpperCAmelCase ( ): return [list(range(1_000 - i, -1_000 - i, -1 ) ) for i in range(1_000 )] __a = generate_large_matrix() __a = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __UpperCAmelCase ( a_: list[list[int]] ): assert all(row == sorted(a_, reverse=a_ ) for row in grid ) assert all(list(a_ ) == sorted(a_, reverse=a_ ) for col in zip(*a_ ) ) def __UpperCAmelCase ( a_: list[int] ): _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : str = len(a_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _UpperCAmelCase : List[str] = (left + right) // 2 _UpperCAmelCase : Tuple = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _UpperCAmelCase : Dict = mid + 1 else: _UpperCAmelCase : Optional[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(a_ ) def __UpperCAmelCase ( a_: list[list[int]] ): _UpperCAmelCase : str = 0 _UpperCAmelCase : int = len(grid[0] ) for i in range(len(a_ ) ): _UpperCAmelCase : Dict = find_negative_index(grid[i][:bound] ) total += bound return (len(a_ ) * len(grid[0] )) - total def __UpperCAmelCase ( a_: list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def __UpperCAmelCase ( a_: list[list[int]] ): _UpperCAmelCase : Union[str, Any] = 0 for row in grid: for i, number in enumerate(a_ ): if number < 0: total += len(a_ ) - i break return total def __UpperCAmelCase ( ): from timeit import timeit print("Running benchmarks" ) _UpperCAmelCase : Optional[Any] = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _UpperCAmelCase : List[Any] = timeit(f"""{func}(grid=grid)""", setup=a_, number=500 ) print(f"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
17
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = (EulerDiscreteScheduler,) UpperCamelCase_ : Tuple = 10 def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : str = { "num_train_timesteps": 1_1_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : Any = self.dummy_model() _UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = output.prev_sample _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = self.dummy_model() _UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : Tuple = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = output.prev_sample _UpperCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : str = self.dummy_model() _UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : str = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : int = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : Optional[int] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
17
1
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = 1 _UpperCAmelCase : List[Any] = 3 _UpperCAmelCase : Dict = (3_2, 3_2) _UpperCAmelCase : List[Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) return model @property def _lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : int = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" def extract(*lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : Dict ): class A__ : """simple docstring""" def __init__( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Dict = torch.ones([0] ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : int ) -> Union[str, Any]: """simple docstring""" self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def _lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Dict = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) _UpperCAmelCase : Dict = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) _UpperCAmelCase : Optional[int] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : str = "A painting of a squirrel eating a burger" _UpperCAmelCase : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe([prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) _UpperCAmelCase : List[Any] = output.images _UpperCAmelCase : Optional[Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : Dict = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=lowerCAmelCase__ , )[0] _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _UpperCAmelCase : Dict = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Dict = self.dummy_cond_unet _UpperCAmelCase : List[str] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) _UpperCAmelCase : str = self.dummy_vae _UpperCAmelCase : Tuple = self.dummy_text_encoder _UpperCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : Optional[Any] = StableDiffusionPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) _UpperCAmelCase : Any = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = "A painting of a squirrel eating a burger" _UpperCAmelCase : Union[str, Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) _UpperCAmelCase : str = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=lowerCAmelCase__ , )[0] _UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _UpperCAmelCase : List[Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Dict = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=lowerCAmelCase__ ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert isinstance(pipe.scheduler , lowerCAmelCase__ ) assert pipe.safety_checker is None _UpperCAmelCase : str = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(lowerCAmelCase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : str = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.dummy_vae _UpperCAmelCase : Any = self.dummy_text_encoder _UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 _UpperCAmelCase : Any = unet.half() _UpperCAmelCase : Optional[Any] = vae.half() _UpperCAmelCase : Any = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) _UpperCAmelCase : Optional[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = "A painting of a squirrel eating a burger" _UpperCAmelCase : Optional[int] = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=lowerCAmelCase__ ) _UpperCAmelCase : int = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) _UpperCAmelCase : Tuple = 4_0_0_3_6_6_0_3_4_6 _UpperCAmelCase : Union[str, Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : Optional[int] = torch.manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) _UpperCAmelCase : int = output.images _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _UpperCAmelCase : int = torch.manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=lowerCAmelCase__ ) _UpperCAmelCase : Any = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Optional[int] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = "padme amidala taking a bath artwork, safe for work, no nudity" _UpperCAmelCase : str = 2_7_3_4_9_7_1_7_5_5 _UpperCAmelCase : Any = 7 _UpperCAmelCase : Dict = torch.manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : Any = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[Any] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _UpperCAmelCase : List[str] = torch.manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Any = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : int = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) _UpperCAmelCase : str = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : int = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) _UpperCAmelCase : List[str] = 1_0_4_4_3_5_5_2_3_4 _UpperCAmelCase : Tuple = 1_2 _UpperCAmelCase : Tuple = torch.manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) _UpperCAmelCase : Tuple = output.images _UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _UpperCAmelCase : Any = torch.manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=5_0 , output_type="np" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _UpperCAmelCase : List[Any] = output.images _UpperCAmelCase : int = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
17
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
17
1
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __a = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) __a = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCAmelCase ( ): _UpperCAmelCase : str = "https://pypi.org/pypi/diffusers/json" _UpperCAmelCase : List[str] = json.loads(request.urlopen(a_ ).read() )["releases"].keys() return sorted(a_, key=lambda a_ : version.Version(a_ ) ) def __UpperCAmelCase ( ): # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(a_ ) os.makedirs(a_, exist_ok=a_ ) _UpperCAmelCase : List[str] = Path(a_ ) / "__init__.py" if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( a_: Union[str, os.PathLike] ): init_hf_modules() _UpperCAmelCase : Tuple = Path(a_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(a_, exist_ok=a_ ) _UpperCAmelCase : Any = dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def __UpperCAmelCase ( a_: Union[str, Any] ): with open(a_, "r", encoding="utf-8" ) as f: _UpperCAmelCase : int = f.read() # Imports of the form `import .xxx` _UpperCAmelCase : List[Any] = re.findall("^\s*import\s+\.(\S+)\s*$", a_, flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import", a_, flags=re.MULTILINE ) # Unique-ify return list(set(a_ ) ) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : List[Any] = False _UpperCAmelCase : int = [module_file] _UpperCAmelCase : int = [] # Let's recurse through all relative imports while not no_change: _UpperCAmelCase : str = [] for f in files_to_check: new_imports.extend(get_relative_imports(a_ ) ) _UpperCAmelCase : Union[str, Any] = Path(a_ ).parent _UpperCAmelCase : Optional[int] = [str(module_path / m ) for m in new_imports] _UpperCAmelCase : Union[str, Any] = [f for f in new_import_files if f not in all_relative_imports] _UpperCAmelCase : List[Any] = [f"""{f}.py""" for f in new_import_files] _UpperCAmelCase : Optional[Any] = len(a_ ) == 0 all_relative_imports.extend(a_ ) return all_relative_imports def __UpperCAmelCase ( a_: Tuple ): with open(a_, "r", encoding="utf-8" ) as f: _UpperCAmelCase : List[Any] = f.read() # Imports of the form `import xxx` _UpperCAmelCase : List[Any] = re.findall("^\s*import\s+(\S+)\s*$", a_, flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("^\s*from\s+(\S+)\s+import", a_, flags=re.MULTILINE ) # Only keep the top-level module _UpperCAmelCase : Union[str, Any] = [imp.split("." )[0] for imp in imports if not imp.startswith("." )] # Unique-ify and test we got them all _UpperCAmelCase : List[str] = list(set(a_ ) ) _UpperCAmelCase : List[str] = [] for imp in imports: try: importlib.import_module(a_ ) except ImportError: missing_packages.append(a_ ) if len(a_ ) > 0: raise ImportError( "This modeling file requires the following packages that were not found in your environment: " f"""{', '.join(a_ )}. Run `pip install {' '.join(a_ )}`""" ) return get_relative_imports(a_ ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): _UpperCAmelCase : Tuple = module_path.replace(os.path.sep, "." ) _UpperCAmelCase : Union[str, Any] = importlib.import_module(a_ ) if class_name is None: return find_pipeline_class(a_ ) return getattr(a_, a_ ) def __UpperCAmelCase ( a_: Tuple ): from ..pipelines import DiffusionPipeline _UpperCAmelCase : Union[str, Any] = dict(inspect.getmembers(a_, inspect.isclass ) ) _UpperCAmelCase : str = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls, a_ ) and cls.__module__.split("." )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" f""" {loaded_module}.""" ) _UpperCAmelCase : Optional[int] = cls return pipeline_class def __UpperCAmelCase ( a_: Union[str, os.PathLike], a_: str, a_: Optional[Union[str, os.PathLike]] = None, a_: bool = False, a_: bool = False, a_: Optional[Dict[str, str]] = None, a_: Optional[Union[bool, str]] = None, a_: Optional[str] = None, a_: bool = False, ): _UpperCAmelCase : Dict = str(a_ ) _UpperCAmelCase : str = os.path.join(a_, a_ ) if os.path.isfile(a_ ): _UpperCAmelCase : List[Any] = module_file_or_url _UpperCAmelCase : Optional[int] = "local" elif pretrained_model_name_or_path.count("/" ) == 0: _UpperCAmelCase : Dict = get_diffusers_versions() # cut ".dev0" _UpperCAmelCase : Dict = "v" + ".".join(__version__.split("." )[:3] ) # retrieve github version that matches if revision is None: _UpperCAmelCase : Optional[int] = latest_version if latest_version[1:] in available_versions else "main" logger.info(f"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: _UpperCAmelCase : List[Any] = f"""v{revision}""" elif revision == "main": _UpperCAmelCase : int = revision else: raise ValueError( f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" f""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub _UpperCAmelCase : Any = COMMUNITY_PIPELINES_URL.format(revision=a_, pipeline=a_ ) try: _UpperCAmelCase : Any = cached_download( a_, cache_dir=a_, force_download=a_, proxies=a_, resume_download=a_, local_files_only=a_, use_auth_token=a_, ) _UpperCAmelCase : Optional[int] = "git" _UpperCAmelCase : int = pretrained_model_name_or_path + ".py" except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached _UpperCAmelCase : str = hf_hub_download( a_, a_, cache_dir=a_, force_download=a_, proxies=a_, resume_download=a_, local_files_only=a_, use_auth_token=a_, ) _UpperCAmelCase : List[Any] = os.path.join("local", "--".join(pretrained_model_name_or_path.split("/" ) ) ) except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment _UpperCAmelCase : Any = check_imports(a_ ) # Now we move the module inside our cached dynamic modules. _UpperCAmelCase : Union[str, Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(a_ ) _UpperCAmelCase : Union[str, Any] = Path(a_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(a_, submodule_path / module_file ) for module_needed in modules_needed: _UpperCAmelCase : Tuple = f"""{module_needed}.py""" shutil.copy(os.path.join(a_, a_ ), submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(a_, a_ ): _UpperCAmelCase : str = use_auth_token elif use_auth_token is True: _UpperCAmelCase : str = HfFolder.get_token() else: _UpperCAmelCase : List[str] = None _UpperCAmelCase : Union[str, Any] = model_info(a_, revision=a_, token=a_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. _UpperCAmelCase : List[str] = submodule_path / commit_hash _UpperCAmelCase : List[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(a_ ) if not (submodule_path / module_file).exists(): shutil.copy(a_, submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( a_, f"""{module_needed}.py""", cache_dir=a_, force_download=a_, resume_download=a_, proxies=a_, use_auth_token=a_, revision=a_, local_files_only=a_, ) return os.path.join(a_, a_ ) def __UpperCAmelCase ( a_: Union[str, os.PathLike], a_: str, a_: Optional[str] = None, a_: Optional[Union[str, os.PathLike]] = None, a_: bool = False, a_: bool = False, a_: Optional[Dict[str, str]] = None, a_: Optional[Union[bool, str]] = None, a_: Optional[str] = None, a_: bool = False, **a_: Dict, ): _UpperCAmelCase : Tuple = get_cached_module_file( a_, a_, cache_dir=a_, force_download=a_, resume_download=a_, proxies=a_, use_auth_token=a_, revision=a_, local_files_only=a_, ) return get_class_in_module(a_, final_module.replace(".py", "" ) )
17
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( a_: int ): # A local function to see if a dot lands in the circle. def is_in_circle(a_: float, a_: float ) -> bool: _UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase : str = mean( int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) ) for _ in range(a_ ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase : Optional[int] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ): return mean( function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value) def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ): def identity_function(a_: float ) -> float: return x _UpperCAmelCase : Union[str, Any] = area_under_curve_estimator( a_, a_, a_, a_ ) _UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def __UpperCAmelCase ( a_: int ): def function_to_integrate(a_: float ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase : List[str] = area_under_curve_estimator( a_, a_, 0.0, 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
17
1
'''simple docstring''' def __UpperCAmelCase ( a_: int = 1_000 ): _UpperCAmelCase , _UpperCAmelCase : Dict = 1, 1 _UpperCAmelCase : Dict = 2 while True: _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : Optional[Any] = fa + fa _UpperCAmelCase , _UpperCAmelCase : Dict = fa, f index += 1 for _ in str(a_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
17
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __a = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2FeatureExtractor'] __a = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): _UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" ) if key.startswith("module.decoder" ): _UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] _UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )] _UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" ) if "attn.q" in key: _UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Dict = key.replace("attn", "attention.self" ) if "fc1" in key: _UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" ) if "fc2" in key: _UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Any = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" ) _UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: _UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" ) if "skip_conv1" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" ) if "skip_conv2" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" ) if "fusion1" in key: _UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" ) if "fusion2" in key: _UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" ) if "fusion3" in key: _UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" ) if "fusion" in key and "conv" in key: _UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): _UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" ) _UpperCAmelCase : int = value return new_state_dict def __UpperCAmelCase ( a_: str, a_: List[Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ): _UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _UpperCAmelCase : Dict = GLPNImageProcessor() # prepare image _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) ) # rename keys _UpperCAmelCase : List[str] = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict _UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _UpperCAmelCase : Dict = model(a_ ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _UpperCAmelCase : Optional[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _UpperCAmelCase : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) _UpperCAmelCase : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
17
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if not isinstance(a_, a_ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(a_, a_ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) _UpperCAmelCase : List[str] = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(a_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
17
1
'''simple docstring''' def __UpperCAmelCase ( a_: Tuple ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __UpperCAmelCase ( a_: dict[int, list[int]] ): _UpperCAmelCase : List[Any] = 0 _UpperCAmelCase : Union[str, Any] = len(a_ ) # No of vertices in graph _UpperCAmelCase : Union[str, Any] = [0] * n _UpperCAmelCase : str = [False] * n def dfs(a_: Dict, a_: List[Any], a_: Tuple, a_: Optional[int] ): _UpperCAmelCase : str = True _UpperCAmelCase : Optional[int] = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(a_, a_, a_, id_ ) _UpperCAmelCase : Tuple = min(low[at], low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge _UpperCAmelCase : Optional[int] = min(low[at], low[to] ) _UpperCAmelCase : list[tuple[int, int]] = [] for i in range(a_ ): if not visited[i]: dfs(a_, -1, a_, id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
17
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') __a = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" if self.train_file is not None: _UpperCAmelCase : List[Any] = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCAmelCase : List[str] = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A__ : """simple docstring""" UpperCamelCase_ : PreTrainedTokenizerBase UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[int] = None def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels" _UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features] _UpperCAmelCase : str = len(lowerCAmelCase__ ) _UpperCAmelCase : int = len(features[0]["input_ids"] ) _UpperCAmelCase : str = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features ] _UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) ) _UpperCAmelCase : Any = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) return batch def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag", a_, a_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCAmelCase : Union[str, Any] = {} if data_args.train_file is not None: _UpperCAmelCase : str = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase : Optional[Any] = data_args.validation_file _UpperCAmelCase : Dict = data_args.train_file.split("." )[-1] _UpperCAmelCase : Optional[int] = load_dataset( a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: # Downloading and loading the swag dataset from the hub. _UpperCAmelCase : Dict = load_dataset( "swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )] _UpperCAmelCase : List[Any] = "sent1" _UpperCAmelCase : Optional[int] = "sent2" if data_args.max_seq_length is None: _UpperCAmelCase : List[str] = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _UpperCAmelCase : Dict = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]] _UpperCAmelCase : Tuple = examples[question_header_name] _UpperCAmelCase : Optional[Any] = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ ) ] # Flatten out _UpperCAmelCase : List[str] = list(chain(*a_ ) ) _UpperCAmelCase : Dict = list(chain(*a_ ) ) # Tokenize _UpperCAmelCase : List[Any] = tokenizer( a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _UpperCAmelCase : int = raw_datasets["train"] if data_args.max_train_samples is not None: _UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples ) _UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _UpperCAmelCase : Union[str, Any] = train_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _UpperCAmelCase : Dict = raw_datasets["validation"] if data_args.max_eval_samples is not None: _UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples ) _UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _UpperCAmelCase : Optional[int] = eval_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator _UpperCAmelCase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a_: Tuple ): _UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions _UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCAmelCase : Any = Trainer( model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, ) # Training if training_args.do_train: _UpperCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : List[str] = last_checkpoint _UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase : str = train_result.metrics _UpperCAmelCase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) _UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) ) trainer.log_metrics("train", a_ ) trainer.save_metrics("train", a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase : List[Any] = trainer.evaluate() _UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) _UpperCAmelCase : Tuple = min(a_, len(a_ ) ) trainer.log_metrics("eval", a_ ) trainer.save_metrics("eval", a_ ) _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __UpperCAmelCase ( a_: int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
17
1
'''simple docstring''' import os import sys import unittest __a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __a = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') __a = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : int = get_test_to_tester_mapping(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = get_test_to_tester_mapping(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = {"BertModelTest": "BertModelTester"} _UpperCAmelCase : Dict = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(get_test_info.to_json(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : int = get_model_to_test_mapping(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = get_model_to_test_mapping(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } _UpperCAmelCase : int = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(get_test_info.to_json(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Dict = get_model_to_tester_mapping(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = get_model_to_tester_mapping(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } _UpperCAmelCase : List[Any] = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(get_test_info.to_json(lowerCAmelCase__ ) , lowerCAmelCase__ )
17
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str: """simple docstring""" super().__init__() _UpperCAmelCase : List[str] = model _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass def __UpperCAmelCase ( a_: str, a_: str, a_: str ): # load longformer model from model identifier _UpperCAmelCase : int = LongformerModel.from_pretrained(a_ ) _UpperCAmelCase : Any = LightningModel(a_ ) _UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model _UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(a_ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=7 , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : Optional[int]=1_8 , lowerCAmelCase__ : Any=3_0 , lowerCAmelCase__ : Union[str, Any]=4_0_0 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Optional[int]=True , ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = size if size is not None else {"shortest_edge": 2_0} _UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} _UpperCAmelCase : Tuple = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Optional[int] = num_channels _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : List[str] = max_resolution _UpperCAmelCase : Optional[int] = do_resize _UpperCAmelCase : Union[str, Any] = size _UpperCAmelCase : Tuple = do_center_crop _UpperCAmelCase : Optional[Any] = crop_size _UpperCAmelCase : Optional[Any] = do_flip_channel_order def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[str] = MobileViTImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = MobileViTImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_center_crop" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "center_crop" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_flip_channel_order" ) ) def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" _UpperCAmelCase : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 2_0} ) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8} ) _UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" pass def _lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : str = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input _UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : List[Any] = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched _UpperCAmelCase : Any = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
17
'''simple docstring''' from importlib import import_module from .logging import get_logger __a = get_logger(__name__) class A__ : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class A__ : """simple docstring""" UpperCamelCase_ : Union[str, Any] = [] def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = obj _UpperCAmelCase : int = target _UpperCAmelCase : Optional[int] = new _UpperCAmelCase : Any = target.split("." )[0] _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : Dict = attrs or [] def __enter__( self : List[str] ) -> int: """simple docstring""" *_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: _UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCAmelCase : Tuple = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) _UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: _UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCAmelCase : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.__enter__() self._active_patches.append(self ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
17
1
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): return int((input_a, input_a).count(1 ) != 0 ) def __UpperCAmelCase ( ): assert or_gate(0, 0 ) == 0 assert or_gate(0, 1 ) == 1 assert or_gate(1, 0 ) == 1 assert or_gate(1, 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
17
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a = datasets.utils.logging.get_logger(__name__) __a = ['names', 'prefix'] __a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __a = ['encoding_errors', 'on_bad_lines'] __a = ['date_format'] @dataclass class A__ ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_00_00 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase : Any = self.delimiter if self.column_names is not None: _UpperCAmelCase : List[Any] = self.column_names @property def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase_ : int = CsvConfig def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : str = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase : Tuple = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): _UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
17
1
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __a = get_tests_dir('fixtures/test_sentencepiece.model') __a = {'target_lang': 'fi', 'source_lang': 'en'} __a = '>>zh<<' __a = 'Helsinki-NLP/' if is_torch_available(): __a = 'pt' elif is_tf_available(): __a = 'tf' else: __a = 'jax' @require_sentencepiece class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[str] = MarianTokenizer UpperCamelCase_ : str = False UpperCamelCase_ : Union[str, Any] = True def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" super().setUp() _UpperCAmelCase : Dict = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _UpperCAmelCase : Union[str, Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) _UpperCAmelCase : int = Path(self.tmpdirname ) save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["vocab"] ) save_json(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["source_spm"] ) copyfile(lowerCAmelCase__ , save_dir / VOCAB_FILES_NAMES["target_spm"] ) _UpperCAmelCase : Optional[int] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self : Any , **lowerCAmelCase__ : Optional[int] ) -> MarianTokenizer: """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : List[str] ) -> List[Any]: """simple docstring""" return ( "This is a test", "This is a test", ) def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Any = "</s>" _UpperCAmelCase : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" _UpperCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(lowerCAmelCase__ ) , 9 ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def _lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : List[str] = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""" ) _UpperCAmelCase : int = en_de_tokenizer(["I am a small frog"] , return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = [3_8, 1_2_1, 1_4, 6_9_7, 3_8_8_4_8, 0] self.assertListEqual(lowerCAmelCase__ , batch.input_ids[0] ) _UpperCAmelCase : Optional[int] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowerCAmelCase__ ) _UpperCAmelCase : Any = [x.name for x in Path(lowerCAmelCase__ ).glob("*" )] self.assertIn("source.spm" , lowerCAmelCase__ ) MarianTokenizer.from_pretrained(lowerCAmelCase__ ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.get_tokenizer() _UpperCAmelCase : Any = tok( ["I am a small frog" * 1_0_0_0, "I am a small frog"] , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2) ) def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = self.get_tokenizer() _UpperCAmelCase : Optional[int] = tok(["I am a tiny frog", "I am a small frog"] , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 1_0) ) @slow def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = {"input_ids": [[4_3_4_9_5, 4_6_2, 2_0, 4_2_1_6_4, 1_3_6_9, 5_2, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 7_4_9_1, 3_8_9_9_9, 6, 8, 4_6_4, 1_3_2, 1_7_0_3, 4_9_2, 1_3, 4_6_6_9, 3_7_8_6_7, 1_3, 7_5_2_5, 2_7, 1_5_9_3, 9_8_8, 1_3, 3_3_9_7_2, 7_0_2_9, 6, 2_0, 8_2_5_1, 3_8_3, 2, 2_7_0, 5_8_6_6, 3_7_8_8, 2, 2_3_5_3, 8_2_5_1, 1_2_3_3_8, 2, 1_3_9_5_8, 3_8_7, 2, 3_6_2_9, 6_9_5_3, 1_8_8, 2_9_0_0, 2, 1_3_9_5_8, 8_0_1_1, 1_1_5_0_1, 2_3, 8_4_6_0, 4_0_7_3, 3_4_0_0_9, 2_0, 4_3_5, 1_1_4_3_9, 2_7, 8, 8_4_6_0, 4_0_7_3, 6_0_0_4, 2_0, 9_9_8_8, 3_7_5, 2_7, 3_3, 2_6_6, 1_9_4_5, 1_0_7_6, 1_3_5_0, 3_7_8_6_7, 3_2_8_8, 5, 5_7_7, 1_0_7_6, 4_3_7_4, 8, 5_0_8_2, 5, 2_6_4_5_3, 2_5_7, 5_5_6, 4_0_3, 2, 2_4_2, 1_3_2, 3_8_3, 3_1_6, 4_9_2, 8, 1_0_7_6_7, 6, 3_1_6, 3_0_4, 4_2_3_9, 3, 0], [1_4_8, 1_5_7_2_2, 1_9, 1_8_3_9, 1_2, 1_3_5_0, 1_3, 2_2_3_2_7, 5_0_8_2, 5_4_1_8, 4_7_5_6_7, 3_5_9_3_8, 5_9, 3_1_8, 1_9_5_5_2, 1_0_8, 2_1_8_3, 5_4, 1_4_9_7_6, 4_8_3_5, 3_2, 5_4_7, 1_1_1_4, 8, 3_1_5, 2_4_1_7, 5, 9_2, 1_9_0_8_8, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0], [3_6, 6_3_9_5, 1_2_5_7_0, 3_9_1_4_7, 1_1_5_9_7, 6, 2_6_6, 4, 4_5_4_0_5, 7_2_9_6, 3, 0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0, 5_8_1_0_0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="Helsinki-NLP/opus-mt-en-de" , revision="1a8c2263da11e68e50938f97e10cd57820bd504c" , decode_kwargs={"use_source_tokenizer": True} , ) def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" ) _UpperCAmelCase : Dict = "Tämä on testi" _UpperCAmelCase : Union[str, Any] = "This is a test" _UpperCAmelCase : Dict = [7_6, 7, 2_0_4_7, 2] _UpperCAmelCase : Tuple = [6_9, 1_2, 1_1, 9_4_0, 2] _UpperCAmelCase : Optional[Any] = tokenizer(lowerCAmelCase__ ).input_ids self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = tokenizer(text_target=lowerCAmelCase__ ).input_ids self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
17
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: list[int] ): if not nums: return 0 _UpperCAmelCase : int = nums[0] _UpperCAmelCase : Dict = 0 for num in nums[1:]: _UpperCAmelCase , _UpperCAmelCase : Any = ( max_excluding + num, max(a_, a_ ), ) return max(a_, a_ ) if __name__ == "__main__": import doctest doctest.testmod()
17
1
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( a_: Tuple, a_: Any=(), a_: int=None, a_: Dict="no", a_: Dict="29500" ): _UpperCAmelCase : int = False _UpperCAmelCase : Any = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): _UpperCAmelCase : Union[str, Any] = True elif "IPython" in sys.modules: _UpperCAmelCase : List[Any] = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: _UpperCAmelCase : List[Any] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME", a_ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: _UpperCAmelCase : Union[str, Any] = 8 _UpperCAmelCase : Tuple = PrepareForLaunch(a_, distributed_type="TPU" ) print(f"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(a_, args=a_, nprocs=a_, start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*a_ ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=a_, master_addr="127.0.01", master_port=a_, mixed_precision=a_ ): _UpperCAmelCase : str = PrepareForLaunch(a_, distributed_type="MULTI_GPU" ) print(f"""Launching training on {num_processes} GPUs.""" ) try: start_processes(a_, args=a_, nprocs=a_, start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): _UpperCAmelCase : Any = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*a_ ) def __UpperCAmelCase ( a_: Tuple, a_: List[Any]=(), a_: Dict=2 ): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=a_, master_addr="127.0.01", master_port="29500", accelerate_mixed_precision="no", accelerate_debug_rdv_file=tmp_file.name, accelerate_use_cpu="yes", ): _UpperCAmelCase : List[Any] = PrepareForLaunch(a_, debug=a_ ) start_processes(a_, args=a_, nprocs=a_, start_method="fork" )
17
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): _UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" ) if key.startswith("module.decoder" ): _UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] _UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )] _UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" ) if "attn.q" in key: _UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Dict = key.replace("attn", "attention.self" ) if "fc1" in key: _UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" ) if "fc2" in key: _UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Any = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" ) _UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: _UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" ) if "skip_conv1" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" ) if "skip_conv2" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" ) if "fusion1" in key: _UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" ) if "fusion2" in key: _UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" ) if "fusion3" in key: _UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" ) if "fusion" in key and "conv" in key: _UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): _UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" ) _UpperCAmelCase : int = value return new_state_dict def __UpperCAmelCase ( a_: str, a_: List[Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ): _UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _UpperCAmelCase : Dict = GLPNImageProcessor() # prepare image _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) ) # rename keys _UpperCAmelCase : List[str] = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict _UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _UpperCAmelCase : Dict = model(a_ ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _UpperCAmelCase : Optional[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _UpperCAmelCase : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) _UpperCAmelCase : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
17
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : int = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _UpperCAmelCase : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(a_ ) ), }, features=a_, ) return dataset @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=a_ ) return filename # FILE_CONTENT + files __a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt" _UpperCAmelCase : Tuple = FILE_CONTENT with open(a_, "w" ) as f: f.write(a_ ) return filename @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" ) with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import gzip _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _UpperCAmelCase : Any = bytes(a_, "utf-8" ) with gzip.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _UpperCAmelCase : str = bytes(a_, "utf-8" ) with lza.frame.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Any ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(a_, "w" ) as archive: archive.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: List[str] ): import tarfile _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): import lzma _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _UpperCAmelCase : List[str] = bytes(a_, "utf-8" ) with lzma.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: Tuple ): import zipfile _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _UpperCAmelCase : int = bytes(a_, "utf-8" ) with zstd.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml" _UpperCAmelCase : Tuple = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(a_, "w" ) as f: f.write(a_ ) return filename __a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : str = datasets.Dataset.from_dict(a_ ) _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(a_ ) ) as con: _UpperCAmelCase : List[Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str, a_: str ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(a_, "rb" ) as f: _UpperCAmelCase : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ): _UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) ) f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ): _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _UpperCAmelCase : Dict = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(a_, "wb" ) as f: _UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ ) _UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ ) writer.write_table(a_ ) writer.close() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : str = {"data": DATA} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(a_, "w" ) as f: for item in DATA_312: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(a_, "w" ) as f: for item in DATA_STR: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ): import gzip _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ): import gzip _UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ): _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : List[str] = ["0", "1", "2", "3"] _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Dict = ["0", "1", "2", "3"] _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = ["0", "1", "2", "3"] _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename("unsupported.ext" ) ) f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) return data_dir
17
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" UpperCamelCase_ : Any = XGLMConfig UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Dict = '''gelu''' def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : str = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : int = d_model _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Tuple = ffn_dim _UpperCAmelCase : Any = activation_function _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Any = None _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Tuple = 1 def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _UpperCAmelCase : Any = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[Any] = self.get_config() _UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : Dict = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Tuple = False def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = TFXGLMModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on _UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) _UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" ) _UpperCAmelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): _UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) _UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[int] = "left" # use different length sentences to test batching _UpperCAmelCase : Tuple = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = inputs["input_ids"] _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 ) _UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
17
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = BarthezTokenizer UpperCamelCase_ : List[Any] = BarthezTokenizerFast UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : Optional[int] = True def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" super().setUp() _UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = "<pad>" _UpperCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] _UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] _UpperCAmelCase : int = self.tokenizer( lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() _UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé." _UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase : Tuple = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , )
17
1
'''simple docstring''' def __UpperCAmelCase ( a_: str ): _UpperCAmelCase , _UpperCAmelCase : Optional[int] = [], [] while len(a_ ) > 1: _UpperCAmelCase , _UpperCAmelCase : Dict = min(a_ ), max(a_ ) start.append(a_ ) end.append(a_ ) collection.remove(a_ ) collection.remove(a_ ) end.reverse() return start + collection + end if __name__ == "__main__": __a = input('Enter numbers separated by a comma:\n').strip() __a = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
17
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0} _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : str = max_resolution _UpperCAmelCase : List[Any] = size _UpperCAmelCase : Union[str, Any] = do_normalize _UpperCAmelCase : Optional[Any] = do_convert_rgb _UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] _UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image() _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : str = 2_0_4_8 _UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Union[str, Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _UpperCAmelCase : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches _UpperCAmelCase : Any = "Hello" _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : List[Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) _UpperCAmelCase : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Union[str, Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCAmelCase : List[Any] = 3 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Tuple = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
17
1
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : int = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _UpperCAmelCase : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(a_ ) ), }, features=a_, ) return dataset @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=a_ ) return filename # FILE_CONTENT + files __a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt" _UpperCAmelCase : Tuple = FILE_CONTENT with open(a_, "w" ) as f: f.write(a_ ) return filename @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" ) with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import gzip _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _UpperCAmelCase : Any = bytes(a_, "utf-8" ) with gzip.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _UpperCAmelCase : str = bytes(a_, "utf-8" ) with lza.frame.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Any ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(a_, "w" ) as archive: archive.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: List[str] ): import tarfile _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): import lzma _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _UpperCAmelCase : List[str] = bytes(a_, "utf-8" ) with lzma.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: Tuple ): import zipfile _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _UpperCAmelCase : int = bytes(a_, "utf-8" ) with zstd.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml" _UpperCAmelCase : Tuple = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(a_, "w" ) as f: f.write(a_ ) return filename __a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : str = datasets.Dataset.from_dict(a_ ) _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(a_ ) ) as con: _UpperCAmelCase : List[Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str, a_: str ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(a_, "rb" ) as f: _UpperCAmelCase : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ): _UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) ) f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ): _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _UpperCAmelCase : Dict = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(a_, "wb" ) as f: _UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ ) _UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ ) writer.write_table(a_ ) writer.close() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : str = {"data": DATA} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(a_, "w" ) as f: for item in DATA_312: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(a_, "w" ) as f: for item in DATA_STR: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ): import gzip _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ): import gzip _UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ): _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : List[str] = ["0", "1", "2", "3"] _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Dict = ["0", "1", "2", "3"] _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = ["0", "1", "2", "3"] _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename("unsupported.ext" ) ) f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) return data_dir
17
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''time_series_transformer''' UpperCamelCase_ : Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = prediction_length _UpperCAmelCase : Optional[Any] = context_length or prediction_length _UpperCAmelCase : Optional[Any] = distribution_output _UpperCAmelCase : Union[str, Any] = loss _UpperCAmelCase : Dict = input_size _UpperCAmelCase : int = num_time_features _UpperCAmelCase : Any = lags_sequence _UpperCAmelCase : Dict = scaling _UpperCAmelCase : Tuple = num_dynamic_real_features _UpperCAmelCase : Dict = num_static_real_features _UpperCAmelCase : Union[str, Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Optional[int] = cardinality else: _UpperCAmelCase : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : List[Any] = embedding_dimension else: _UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : str = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features _UpperCAmelCase : str = d_model _UpperCAmelCase : Optional[Any] = encoder_attention_heads _UpperCAmelCase : Dict = decoder_attention_heads _UpperCAmelCase : List[Any] = encoder_ffn_dim _UpperCAmelCase : str = decoder_ffn_dim _UpperCAmelCase : Dict = encoder_layers _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : Any = dropout _UpperCAmelCase : str = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : Dict = encoder_layerdrop _UpperCAmelCase : Any = decoder_layerdrop _UpperCAmelCase : Optional[Any] = activation_function _UpperCAmelCase : Tuple = init_std _UpperCAmelCase : List[str] = use_cache super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
1
'''simple docstring''' def __UpperCAmelCase ( a_: list[int] ): if not numbers: return 0 if not isinstance(a_, (list, tuple) ) or not all( isinstance(a_, a_ ) for number in numbers ): raise ValueError("numbers must be an iterable of integers" ) _UpperCAmelCase : Any = numbers[0] for i in range(1, len(a_ ) ): # update the maximum and minimum subarray products _UpperCAmelCase : int = numbers[i] if number < 0: _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = min_till_now, max_till_now _UpperCAmelCase : str = max(a_, max_till_now * number ) _UpperCAmelCase : List[str] = min(a_, min_till_now * number ) # update the maximum product found till now _UpperCAmelCase : int = max(a_, a_ ) return max_prod
17
'''simple docstring''' import baseaa def __UpperCAmelCase ( a_: str ): return baseaa.baaencode(string.encode("utf-8" ) ) def __UpperCAmelCase ( a_: bytes ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": __a = 'Hello World!' __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
17
1
'''simple docstring''' from math import pi, sqrt def __UpperCAmelCase ( a_: float ): if num <= 0: raise ValueError("math domain error" ) if num > 1_71.5: raise OverflowError("math range error" ) elif num - int(a_ ) not in (0, 0.5): raise NotImplementedError("num must be an integer or a half-integer" ) elif num == 0.5: return sqrt(a_ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __UpperCAmelCase ( ): assert gamma(0.5 ) == sqrt(a_ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __a = 1.0 while num: __a = float(input('Gamma of: ')) print(f'gamma({num}) = {gamma(num)}') print('\nEnter 0 to exit...')
17
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" UpperCamelCase_ : Any = XGLMConfig UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Dict = '''gelu''' def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : str = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : int = d_model _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Tuple = ffn_dim _UpperCAmelCase : Any = activation_function _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Any = None _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Tuple = 1 def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _UpperCAmelCase : Any = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[Any] = self.get_config() _UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : Dict = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Tuple = False def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = TFXGLMModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on _UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) _UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" ) _UpperCAmelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): _UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) _UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[int] = "left" # use different length sentences to test batching _UpperCAmelCase : Tuple = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = inputs["input_ids"] _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 ) _UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
17
1
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: list[list[int]] ): _UpperCAmelCase : Any = len(a_ ) # We need to create solution object to save path. _UpperCAmelCase : str = [[0 for _ in range(a_ )] for _ in range(a_ )] _UpperCAmelCase : Optional[Any] = run_maze(a_, 0, 0, a_ ) if solved: print("\n".join(str(a_ ) for row in solutions ) ) else: print("No solution exists!" ) return solved def __UpperCAmelCase ( a_: list[list[int]], a_: int, a_: int, a_: list[list[int]] ): _UpperCAmelCase : Optional[int] = len(a_ ) # Final check point. if i == j == (size - 1): _UpperCAmelCase : Union[str, Any] = 1 return True _UpperCAmelCase : int = (not i < 0) and (not j < 0) # Check lower bounds _UpperCAmelCase : Dict = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. _UpperCAmelCase : List[Any] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited _UpperCAmelCase : Tuple = 1 # check for directions if ( run_maze(a_, i + 1, a_, a_ ) or run_maze(a_, a_, j + 1, a_ ) or run_maze(a_, i - 1, a_, a_ ) or run_maze(a_, a_, j - 1, a_ ) ): return True _UpperCAmelCase : Dict = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
17
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def __UpperCAmelCase ( a_: Tuple, a_: Any ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ), ], ) def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ): _UpperCAmelCase : Tuple = str(a_ ) dataset_info.write_to_directory(a_ ) _UpperCAmelCase : Any = DatasetInfo.from_directory(a_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a_, "dataset_info.json" ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, ) _UpperCAmelCase : Tuple = dataset_info._to_yaml_dict() assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) _UpperCAmelCase : List[Any] = yaml.safe_dump(a_ ) _UpperCAmelCase : Optional[int] = yaml.safe_load(a_ ) assert dataset_info_yaml_dict == reloaded def __UpperCAmelCase ( ): _UpperCAmelCase : str = DatasetInfo() _UpperCAmelCase : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1_337 ), } ), ], ) def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ): _UpperCAmelCase : Union[str, Any] = str(a_ ) dataset_infos_dict.write_to_directory(a_ ) _UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a_, "README.md" ) )
17
1
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder __a = '__DUMMY_TRANSFORMERS_USER__' __a = 'Dummy User' __a = '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' __a = 'https://hub-ci.huggingface.co' __a = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' __a = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' __a = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def __UpperCAmelCase ( a_: Optional[int] ): monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", a_ ) @pytest.fixture def __UpperCAmelCase ( a_: List[str] ): monkeypatch.setattr("datasets.config.HF_ENDPOINT", a_ ) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", a_ ) @pytest.fixture def __UpperCAmelCase ( a_: str ): monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", a_ ) @pytest.fixture def __UpperCAmelCase ( a_: str, a_: Any ): HfFolder.save_token(a_ ) yield HfFolder.delete_token() @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return HfApi(endpoint=a_ ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: HfApi ): _UpperCAmelCase : Any = HfFolder.get_token() HfFolder.save_token(a_ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(a_ ) @pytest.fixture def __UpperCAmelCase ( a_: List[str] ): def _cleanup_repo(a_: Dict ): hf_api.delete_repo(a_, token=a_, repo_type="dataset" ) return _cleanup_repo @pytest.fixture def __UpperCAmelCase ( a_: List[Any] ): @contextmanager def _temporary_repo(a_: str ): try: yield repo_id finally: cleanup_repo(a_ ) return _temporary_repo @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: HfApi, a_: List[str], a_: Optional[Any] ): _UpperCAmelCase : Optional[Any] = f"""repo_txt_data-{int(time.time() * 1_0e3 )}""" _UpperCAmelCase : Optional[Any] = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(a_, token=a_, repo_type="dataset", private=a_ ) hf_api.upload_file( token=a_, path_or_fileobj=str(a_ ), path_in_repo="data/text_data.txt", repo_id=a_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(a_, token=a_, repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __UpperCAmelCase ( a_: List[str], a_: Dict, a_: Union[str, Any] ): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: HfApi, a_: Union[str, Any], a_: Optional[int] ): _UpperCAmelCase : Dict = f"""repo_zipped_txt_data-{int(time.time() * 1_0e3 )}""" _UpperCAmelCase : int = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(a_, token=a_, repo_type="dataset", private=a_ ) hf_api.upload_file( token=a_, path_or_fileobj=str(a_ ), path_in_repo="data.zip", repo_id=a_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(a_, token=a_, repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __UpperCAmelCase ( a_: int, a_: Optional[Any], a_: Tuple ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: HfApi, a_: Optional[Any], a_: Any ): _UpperCAmelCase : Tuple = f"""repo_zipped_img_data-{int(time.time() * 1_0e3 )}""" _UpperCAmelCase : Optional[int] = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(a_, token=a_, repo_type="dataset", private=a_ ) hf_api.upload_file( token=a_, path_or_fileobj=str(a_ ), path_in_repo="data.zip", repo_id=a_, repo_type="dataset", ) yield repo_id try: hf_api.delete_repo(a_, token=a_, repo_type="dataset" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ): return hf_private_dataset_repo_zipped_img_data_
17
'''simple docstring''' from math import factorial def __UpperCAmelCase ( a_: int = 100 ): return sum(map(a_, str(factorial(a_ ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
17
1
'''simple docstring''' import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def __UpperCAmelCase ( a_: Any, a_: List[Any]=False ): try: _UpperCAmelCase : Any = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCAmelCase : Tuple = default else: # KEY is set, convert it to True or False. try: _UpperCAmelCase : List[str] = strtobool(a_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value __a = parse_flag_from_env('RUN_SLOW', default=False) def __UpperCAmelCase ( a_: Any ): return unittest.skip("Test was skipped" )(a_ ) def __UpperCAmelCase ( a_: Dict ): return unittest.skipUnless(_run_slow_tests, "test is slow" )(a_ ) def __UpperCAmelCase ( a_: Union[str, Any] ): return unittest.skipUnless(not torch.cuda.is_available(), "test requires only a CPU" )(a_ ) def __UpperCAmelCase ( a_: List[Any] ): return unittest.skipUnless(torch.cuda.is_available(), "test requires a GPU" )(a_ ) def __UpperCAmelCase ( a_: Any ): return unittest.skipUnless(is_xpu_available(), "test requires a XPU" )(a_ ) def __UpperCAmelCase ( a_: List[Any] ): return unittest.skipUnless(is_mps_available(), "test requires a `mps` backend support in `torch`" )(a_ ) def __UpperCAmelCase ( a_: Tuple ): return unittest.skipUnless( is_transformers_available() and is_datasets_available(), "test requires the Hugging Face suite" )(a_ ) def __UpperCAmelCase ( a_: Any ): return unittest.skipUnless(is_bnb_available(), "test requires the bitsandbytes library" )(a_ ) def __UpperCAmelCase ( a_: Dict ): return unittest.skipUnless(is_tpu_available(), "test requires TPU" )(a_ ) def __UpperCAmelCase ( a_: int ): return unittest.skipUnless(torch.cuda.device_count() == 1, "test requires a GPU" )(a_ ) def __UpperCAmelCase ( a_: Union[str, Any] ): return unittest.skipUnless(torch.xpu.device_count() == 1, "test requires a XPU" )(a_ ) def __UpperCAmelCase ( a_: Tuple ): return unittest.skipUnless(torch.cuda.device_count() > 1, "test requires multiple GPUs" )(a_ ) def __UpperCAmelCase ( a_: Union[str, Any] ): return unittest.skipUnless(torch.xpu.device_count() > 1, "test requires multiple XPUs" )(a_ ) def __UpperCAmelCase ( a_: Union[str, Any] ): return unittest.skipUnless(is_safetensors_available(), "test requires safetensors" )(a_ ) def __UpperCAmelCase ( a_: Dict ): return unittest.skipUnless(is_deepspeed_available(), "test requires DeepSpeed" )(a_ ) def __UpperCAmelCase ( a_: Tuple ): return unittest.skipUnless(is_torch_version(">=", "1.12.0" ), "test requires torch version >= 1.12.0" )(a_ ) def __UpperCAmelCase ( a_: int=None, a_: Union[str, Any]=None ): if test_case is None: return partial(a_, version=a_ ) return unittest.skipUnless(is_torch_version(">=", a_ ), f"""test requires torch version >= {version}""" )(a_ ) def __UpperCAmelCase ( a_: Dict ): return unittest.skipUnless(is_tensorboard_available(), "test requires Tensorboard" )(a_ ) def __UpperCAmelCase ( a_: int ): return unittest.skipUnless(is_wandb_available(), "test requires wandb" )(a_ ) def __UpperCAmelCase ( a_: Optional[Any] ): return unittest.skipUnless(is_comet_ml_available(), "test requires comet_ml" )(a_ ) __a = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def __UpperCAmelCase ( a_: Dict ): return unittest.skipUnless( _atleast_one_tracker_available, "test requires at least one tracker to be available and for `comet_ml` to not be installed", )(a_ ) class A__ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Tuple = True @classmethod def _lowerCAmelCase ( cls : str ) -> str: """simple docstring""" _UpperCAmelCase : Union[str, Any] = tempfile.mkdtemp() @classmethod def _lowerCAmelCase ( cls : int ) -> Tuple: """simple docstring""" if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowerCAmelCase__ ) class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Union[mock.Mock, List[mock.Mock]] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = mocks if isinstance(lowerCAmelCase__ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : List[Any] = AcceleratorState() _UpperCAmelCase : List[Any] = tensor[None].clone().to(state.device ) _UpperCAmelCase : int = gather(a_ ).cpu() _UpperCAmelCase : List[Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i], a_ ): return False return True class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = returncode _UpperCAmelCase : Optional[int] = stdout _UpperCAmelCase : str = stderr async def __UpperCAmelCase ( a_: Union[str, Any], a_: List[Any] ): while True: _UpperCAmelCase : List[str] = await stream.readline() if line: callback(a_ ) else: break async def __UpperCAmelCase ( a_: Optional[Any], a_: Dict=None, a_: Dict=None, a_: List[Any]=None, a_: Optional[Any]=False, a_: Optional[Any]=False ): if echo: print("\nRunning: ", " ".join(a_ ) ) _UpperCAmelCase : Union[str, Any] = await asyncio.create_subprocess_exec( cmd[0], *cmd[1:], stdin=a_, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env=a_, ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[str] = [] def tee(a_: Union[str, Any], a_: str, a_: Optional[Any], a_: Union[str, Any]="" ): _UpperCAmelCase : Any = line.decode("utf-8" ).rstrip() sink.append(a_ ) if not quiet: print(a_, a_, file=a_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout, lambda a_ : tee(a_, a_, sys.stdout, label="stdout:" ) ) ), asyncio.create_task(_read_stream(p.stderr, lambda a_ : tee(a_, a_, sys.stderr, label="stderr:" ) ) ), ], timeout=a_, ) return _RunOutput(await p.wait(), a_, a_ ) def __UpperCAmelCase ( a_: Optional[Any], a_: Optional[Any]=None, a_: int=None, a_: Any=180, a_: Optional[int]=False, a_: int=True ): _UpperCAmelCase : Union[str, Any] = asyncio.get_event_loop() _UpperCAmelCase : Union[str, Any] = loop.run_until_complete( _stream_subprocess(a_, env=a_, stdin=a_, timeout=a_, quiet=a_, echo=a_ ) ) _UpperCAmelCase : Tuple = " ".join(a_ ) if result.returncode > 0: _UpperCAmelCase : Any = "\n".join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) return result class A__ ( UpperCamelCase ): """simple docstring""" pass def __UpperCAmelCase ( a_: List[str], a_: str=False ): try: _UpperCAmelCase : List[str] = subprocess.check_output(a_, stderr=subprocess.STDOUT ) if return_stdout: if hasattr(a_, "decode" ): _UpperCAmelCase : List[Any] = output.decode("utf-8" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f"""Command `{' '.join(a_ )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
17
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __a = (3, 9, -11, 0, 7, 5, 1, -1) __a = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : int UpperCamelCase_ : Node | None class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None: """simple docstring""" _UpperCAmelCase : Node | None = None for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ): _UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" _UpperCAmelCase : List[Any] = self.head while node: yield node.data _UpperCAmelCase : List[str] = node.next_node def __len__( self : Any ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return " -> ".join([str(lowerCAmelCase__ ) for node in self] ) def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ): return SortedLinkedList(list(a_ ) + list(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() __a = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
17
1
'''simple docstring''' import csv import tweepy # Twitter API credentials __a = '' __a = '' __a = '' __a = '' def __UpperCAmelCase ( a_: str ): # authorize twitter, initialize tweepy _UpperCAmelCase : str = tweepy.OAuthHandler(a_, a_ ) auth.set_access_token(a_, a_ ) _UpperCAmelCase : Optional[int] = tweepy.API(a_ ) # initialize a list to hold all the tweepy Tweets _UpperCAmelCase : Optional[Any] = [] # make initial request for most recent tweets (200 is the maximum allowed count) _UpperCAmelCase : Optional[int] = api.user_timeline(screen_name=a_, count=200 ) # save most recent tweets alltweets.extend(a_ ) # save the id of the oldest tweet less one _UpperCAmelCase : Optional[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(a_ ) > 0: print(f"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _UpperCAmelCase : int = api.user_timeline( screen_name=a_, count=200, max_id=a_ ) # save most recent tweets alltweets.extend(a_ ) # update the id of the oldest tweet less one _UpperCAmelCase : List[str] = alltweets[-1].id - 1 print(f"""...{len(a_ )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _UpperCAmelCase : Union[str, Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f"""new_{screen_name}_tweets.csv""", "w" ) as f: _UpperCAmelCase : str = csv.writer(a_ ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(a_ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('FirePing32')
17
'''simple docstring''' def __UpperCAmelCase ( a_: str ): if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) _UpperCAmelCase : Optional[Any] = "" while len(a_ ) % 3 != 0: _UpperCAmelCase : List[Any] = "0" + bin_string _UpperCAmelCase : Dict = [ bin_string[index : index + 3] for index in range(len(a_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _UpperCAmelCase : Optional[Any] = 0 for index, val in enumerate(a_ ): oct_val += int(2 ** (2 - index) * int(a_ ) ) oct_string += str(a_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
17
1
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A__ : """simple docstring""" @staticmethod def _lowerCAmelCase ( *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : Tuple ) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class A__ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) _UpperCAmelCase : Union[str, Any] = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def _lowerCAmelCase ( self : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 ) _UpperCAmelCase : str = len(lowerCAmelCase__ ) self.assertGreater(lowerCAmelCase__ , 0 ) self.assertEqual( lowerCAmelCase__ , [ { "score": ANY(lowerCAmelCase__ ), "label": ANY(lowerCAmelCase__ ), "box": {"xmin": ANY(lowerCAmelCase__ ), "ymin": ANY(lowerCAmelCase__ ), "xmax": ANY(lowerCAmelCase__ ), "ymax": ANY(lowerCAmelCase__ )}, } for i in range(lowerCAmelCase__ ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def _lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" pass @require_torch def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Tuple = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) _UpperCAmelCase : List[Any] = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, {"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, ] , ) _UpperCAmelCase : Union[str, Any] = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, {"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, ] ] , ) @require_torch @slow def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" _UpperCAmelCase : str = pipeline("zero-shot-object-detection" ) _UpperCAmelCase : Any = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ] , ) _UpperCAmelCase : Tuple = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ], [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" pass @require_torch @slow def _lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[Any] = 0.2 _UpperCAmelCase : Tuple = pipeline("zero-shot-object-detection" ) _UpperCAmelCase : Tuple = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, ] , ) @require_torch @slow def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" _UpperCAmelCase : List[Any] = 2 _UpperCAmelCase : Any = pipeline("zero-shot-object-detection" ) _UpperCAmelCase : Dict = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=lowerCAmelCase__ , ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, ] , )
17
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCAmelCase ( a_: str ): for param in module.parameters(): _UpperCAmelCase : Any = False def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : int = plt.imshow(a_ ) fig.axes.get_xaxis().set_visible(a_ ) fig.axes.get_yaxis().set_visible(a_ ) plt.show() def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = datetime.now() _UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" ) return timestamp
17
1
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __UpperCAmelCase ( ): _UpperCAmelCase : str = HfArgumentParser(a_ ) _UpperCAmelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] _UpperCAmelCase : List[str] = TensorFlowBenchmark(args=a_ ) try: _UpperCAmelCase : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: _UpperCAmelCase : Union[str, Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." _UpperCAmelCase : str = " ".join(str(a_ ).split(" " )[:-1] ) _UpperCAmelCase : Any = "" _UpperCAmelCase : Tuple = eval(str(a_ ).split(" " )[-1] ) _UpperCAmelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(a_ ) if len(a_ ) > 0: _UpperCAmelCase : Optional[int] = full_error_msg + begin_error_msg + str(a_ ) raise ValueError(a_ ) benchmark.run() if __name__ == "__main__": main()
17
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = (EulerDiscreteScheduler,) UpperCamelCase_ : Tuple = 10 def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : str = { "num_train_timesteps": 1_1_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : Any = self.dummy_model() _UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = output.prev_sample _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = self.dummy_model() _UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : Tuple = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = output.prev_sample _UpperCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : str = self.dummy_model() _UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : str = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : int = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : Optional[int] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
17
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : Optional[Any] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _UpperCAmelCase : Union[str, Any] = [144, 192, 240] _UpperCAmelCase : Dict = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _UpperCAmelCase : str = [96, 120, 144] _UpperCAmelCase : Optional[int] = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _UpperCAmelCase : Optional[Any] = [64, 80, 96] _UpperCAmelCase : Dict = [16, 16, 24, 48, 64, 80, 320] _UpperCAmelCase : int = 0.05 _UpperCAmelCase : Optional[int] = 2.0 if mobilevit_name.startswith("deeplabv3_" ): _UpperCAmelCase : Dict = 512 _UpperCAmelCase : int = 16 _UpperCAmelCase : str = 21 _UpperCAmelCase : Union[str, Any] = "pascal-voc-id2label.json" else: _UpperCAmelCase : Optional[int] = 1_000 _UpperCAmelCase : int = "imagenet-1k-id2label.json" _UpperCAmelCase : str = "huggingface/label-files" _UpperCAmelCase : List[str] = json.load(open(hf_hub_download(a_, a_, repo_type="dataset" ), "r" ) ) _UpperCAmelCase : Union[str, Any] = {int(a_ ): v for k, v in idalabel.items()} _UpperCAmelCase : Any = idalabel _UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( a_: List[Any], a_: Union[str, Any]=False ): for i in range(1, 6 ): if f"""layer_{i}.""" in name: _UpperCAmelCase : Optional[Any] = name.replace(f"""layer_{i}.""", f"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: _UpperCAmelCase : Optional[Any] = name.replace("conv_1.", "conv_stem." ) if ".block." in name: _UpperCAmelCase : Dict = name.replace(".block.", "." ) if "exp_1x1" in name: _UpperCAmelCase : List[Any] = name.replace("exp_1x1", "expand_1x1" ) if "red_1x1" in name: _UpperCAmelCase : Any = name.replace("red_1x1", "reduce_1x1" ) if ".local_rep.conv_3x3." in name: _UpperCAmelCase : Tuple = name.replace(".local_rep.conv_3x3.", ".conv_kxk." ) if ".local_rep.conv_1x1." in name: _UpperCAmelCase : Union[str, Any] = name.replace(".local_rep.conv_1x1.", ".conv_1x1." ) if ".norm." in name: _UpperCAmelCase : Any = name.replace(".norm.", ".normalization." ) if ".conv." in name: _UpperCAmelCase : Optional[Any] = name.replace(".conv.", ".convolution." ) if ".conv_proj." in name: _UpperCAmelCase : Any = name.replace(".conv_proj.", ".conv_projection." ) for i in range(0, 2 ): for j in range(0, 4 ): if f""".{i}.{j}.""" in name: _UpperCAmelCase : Tuple = name.replace(f""".{i}.{j}.""", f""".{i}.layer.{j}.""" ) for i in range(2, 6 ): for j in range(0, 4 ): if f""".{i}.{j}.""" in name: _UpperCAmelCase : Union[str, Any] = name.replace(f""".{i}.{j}.""", f""".{i}.""" ) if "expand_1x1" in name: _UpperCAmelCase : List[str] = name.replace("expand_1x1", "downsampling_layer.expand_1x1" ) if "conv_3x3" in name: _UpperCAmelCase : int = name.replace("conv_3x3", "downsampling_layer.conv_3x3" ) if "reduce_1x1" in name: _UpperCAmelCase : List[Any] = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" ) for i in range(2, 5 ): if f""".global_rep.{i}.weight""" in name: _UpperCAmelCase : Union[str, Any] = name.replace(f""".global_rep.{i}.weight""", ".layernorm.weight" ) if f""".global_rep.{i}.bias""" in name: _UpperCAmelCase : List[str] = name.replace(f""".global_rep.{i}.bias""", ".layernorm.bias" ) if ".global_rep." in name: _UpperCAmelCase : Optional[Any] = name.replace(".global_rep.", ".transformer." ) if ".pre_norm_mha.0." in name: _UpperCAmelCase : Dict = name.replace(".pre_norm_mha.0.", ".layernorm_before." ) if ".pre_norm_mha.1.out_proj." in name: _UpperCAmelCase : Any = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." ) if ".pre_norm_ffn.0." in name: _UpperCAmelCase : Any = name.replace(".pre_norm_ffn.0.", ".layernorm_after." ) if ".pre_norm_ffn.1." in name: _UpperCAmelCase : Dict = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." ) if ".pre_norm_ffn.4." in name: _UpperCAmelCase : Any = name.replace(".pre_norm_ffn.4.", ".output.dense." ) if ".transformer." in name: _UpperCAmelCase : str = name.replace(".transformer.", ".transformer.layer." ) if ".aspp_layer." in name: _UpperCAmelCase : Optional[Any] = name.replace(".aspp_layer.", "." ) if ".aspp_pool." in name: _UpperCAmelCase : int = name.replace(".aspp_pool.", "." ) if "seg_head." in name: _UpperCAmelCase : Optional[Any] = name.replace("seg_head.", "segmentation_head." ) if "segmentation_head.classifier.classifier." in name: _UpperCAmelCase : Dict = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." ) if "classifier.fc." in name: _UpperCAmelCase : Optional[int] = name.replace("classifier.fc.", "classifier." ) elif (not base_model) and ("segmentation_head." not in name): _UpperCAmelCase : List[Any] = "mobilevit." + name return name def __UpperCAmelCase ( a_: Any, a_: List[str], a_: int=False ): if base_model: _UpperCAmelCase : List[str] = "" else: _UpperCAmelCase : Optional[Any] = "mobilevit." for key in orig_state_dict.copy().keys(): _UpperCAmelCase : List[Any] = orig_state_dict.pop(a_ ) if key[:8] == "encoder.": _UpperCAmelCase : Dict = key[8:] if "qkv" in key: _UpperCAmelCase : Any = key.split("." ) _UpperCAmelCase : List[Any] = int(key_split[0][6:] ) - 1 _UpperCAmelCase : Union[str, Any] = int(key_split[3] ) _UpperCAmelCase : Optional[Any] = model.get_submodule(f"""{model_prefix}encoder.layer.{layer_num}""" ) _UpperCAmelCase : Any = layer.transformer.layer[transformer_num].attention.attention.all_head_size _UpperCAmelCase : Tuple = ( f"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: _UpperCAmelCase : Optional[Any] = val[:dim, :] _UpperCAmelCase : Any = val[dim : dim * 2, :] _UpperCAmelCase : Union[str, Any] = val[-dim:, :] else: _UpperCAmelCase : Dict = val[:dim] _UpperCAmelCase : Optional[Any] = val[dim : dim * 2] _UpperCAmelCase : str = val[-dim:] else: _UpperCAmelCase : Optional[Any] = val return orig_state_dict def __UpperCAmelCase ( ): _UpperCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Optional[int] = Image.open(requests.get(a_, stream=a_ ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: List[Any], a_: List[str]=False ): _UpperCAmelCase : Union[str, Any] = get_mobilevit_config(a_ ) # load original state_dict _UpperCAmelCase : List[str] = torch.load(a_, map_location="cpu" ) # load 🤗 model if mobilevit_name.startswith("deeplabv3_" ): _UpperCAmelCase : Union[str, Any] = MobileViTForSemanticSegmentation(a_ ).eval() else: _UpperCAmelCase : List[str] = MobileViTForImageClassification(a_ ).eval() _UpperCAmelCase : Dict = convert_state_dict(a_, a_ ) model.load_state_dict(a_ ) # Check outputs on an image, prepared by MobileViTImageProcessor _UpperCAmelCase : str = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 ) _UpperCAmelCase : int = image_processor(images=prepare_img(), return_tensors="pt" ) _UpperCAmelCase : str = model(**a_ ) _UpperCAmelCase : int = outputs.logits if mobilevit_name.startswith("deeplabv3_" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _UpperCAmelCase : Optional[int] = torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _UpperCAmelCase : Tuple = torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _UpperCAmelCase : Tuple = torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3], a_, atol=1e-4 ) else: assert logits.shape == (1, 1_000) if mobilevit_name == "mobilevit_s": _UpperCAmelCase : str = torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": _UpperCAmelCase : List[Any] = torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": _UpperCAmelCase : Optional[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(f"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3], a_, atol=1e-4 ) Path(a_ ).mkdir(exist_ok=a_ ) print(f"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a_ ) if push_to_hub: _UpperCAmelCase : Any = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print("Pushing to the hub..." ) _UpperCAmelCase : int = model_mapping[mobilevit_name] image_processor.push_to_hub(a_, organization="apple" ) model.push_to_hub(a_, organization="apple" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--mobilevit_name', default='mobilevit_s', type=str, help=( 'Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',' ' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.' ), ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __a = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
17
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
17
1
'''simple docstring''' class A__ : """simple docstring""" def __init__( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Tuple = {} def _lowerCAmelCase ( self : Union[str, Any] ) -> None: """simple docstring""" print(self.vertex ) for i in self.vertex: print(lowerCAmelCase__ , " -> " , " -> ".join([str(lowerCAmelCase__ ) for j in self.vertex[i]] ) ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> None: """simple docstring""" if from_vertex in self.vertex: self.vertex[from_vertex].append(lowerCAmelCase__ ) else: # else make a new vertex _UpperCAmelCase : List[Any] = [to_vertex] def _lowerCAmelCase ( self : Any ) -> None: """simple docstring""" _UpperCAmelCase : str = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : list ) -> None: """simple docstring""" _UpperCAmelCase : int = True print(lowerCAmelCase__ , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": __a = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
17
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( a_: int ): # A local function to see if a dot lands in the circle. def is_in_circle(a_: float, a_: float ) -> bool: _UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase : str = mean( int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) ) for _ in range(a_ ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase : Optional[int] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ): return mean( function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value) def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ): def identity_function(a_: float ) -> float: return x _UpperCAmelCase : Union[str, Any] = area_under_curve_estimator( a_, a_, a_, a_ ) _UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def __UpperCAmelCase ( a_: int ): def function_to_integrate(a_: float ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase : List[str] = area_under_curve_estimator( a_, a_, 0.0, 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
17
1
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __a = 16 __a = 32 def __UpperCAmelCase ( a_: Accelerator, a_: int = 16, a_: str = "bert-base-cased" ): _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(a_ ) _UpperCAmelCase : Union[str, Any] = load_dataset("glue", "mrpc" ) def tokenize_function(a_: Any ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : Union[str, Any] = tokenizer(examples["sentence1"], examples["sentence2"], truncation=a_, max_length=a_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _UpperCAmelCase : List[Any] = datasets.map( a_, batched=a_, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=a_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : Union[str, Any] = tokenized_datasets.rename_column("label", "labels" ) def collate_fn(a_: Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(a_, padding="max_length", max_length=128, return_tensors="pt" ) return tokenizer.pad(a_, padding="longest", return_tensors="pt" ) # Instantiate dataloaders. _UpperCAmelCase : List[str] = DataLoader( tokenized_datasets["train"], shuffle=a_, collate_fn=a_, batch_size=a_ ) _UpperCAmelCase : Any = DataLoader( tokenized_datasets["validation"], shuffle=a_, collate_fn=a_, batch_size=a_ ) return train_dataloader, eval_dataloader def __UpperCAmelCase ( a_: Optional[int], a_: str ): # Initialize accelerator _UpperCAmelCase : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Tuple = config["lr"] _UpperCAmelCase : List[Any] = int(config["num_epochs"] ) _UpperCAmelCase : Optional[int] = int(config["seed"] ) _UpperCAmelCase : Optional[Any] = int(config["batch_size"] ) _UpperCAmelCase : List[Any] = args.model_name_or_path set_seed(a_ ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = get_dataloaders(a_, a_, a_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained(a_, return_dict=a_ ) # Instantiate optimizer _UpperCAmelCase : str = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _UpperCAmelCase : Union[str, Any] = optimizer_cls(params=model.parameters(), lr=a_ ) if accelerator.state.deepspeed_plugin is not None: _UpperCAmelCase : int = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: _UpperCAmelCase : int = 1 _UpperCAmelCase : List[Any] = (len(a_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _UpperCAmelCase : Optional[int] = get_linear_schedule_with_warmup( optimizer=a_, num_warmup_steps=0, num_training_steps=a_, ) else: _UpperCAmelCase : str = DummyScheduler(a_, total_num_steps=a_, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = accelerator.prepare( a_, a_, a_, a_, a_ ) # We need to keep track of how many total steps we have iterated over _UpperCAmelCase : Any = 0 # We also need to keep track of the stating epoch so files are named properly _UpperCAmelCase : List[Any] = 0 # Now we train the model _UpperCAmelCase : str = evaluate.load("glue", "mrpc" ) _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : int = {} for epoch in range(a_, a_ ): model.train() for step, batch in enumerate(a_ ): _UpperCAmelCase : Tuple = model(**a_ ) _UpperCAmelCase : Tuple = outputs.loss _UpperCAmelCase : Tuple = loss / gradient_accumulation_steps accelerator.backward(a_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() _UpperCAmelCase : Tuple = 0 for step, batch in enumerate(a_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : Optional[Any] = model(**a_ ) _UpperCAmelCase : Union[str, Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _UpperCAmelCase , _UpperCAmelCase : Dict = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(a_ ) - 1: _UpperCAmelCase : int = predictions[: len(eval_dataloader.dataset ) - samples_seen] _UpperCAmelCase : Union[str, Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=a_, references=a_, ) _UpperCAmelCase : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", a_ ) _UpperCAmelCase : List[str] = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: _UpperCAmelCase : Optional[Any] = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, "all_results.json" ), "w" ) as f: json.dump(a_, a_ ) def __UpperCAmelCase ( ): _UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path", type=a_, default="bert-base-cased", help="Path to pretrained model or model identifier from huggingface.co/models.", required=a_, ) parser.add_argument( "--output_dir", type=a_, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--performance_lower_bound", type=a_, default=a_, help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.", ) parser.add_argument( "--num_epochs", type=a_, default=3, help="Number of train epochs.", ) _UpperCAmelCase : List[Any] = parser.parse_args() _UpperCAmelCase : int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(a_, a_ ) if __name__ == "__main__": main()
17
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __a = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2FeatureExtractor'] __a = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
1
'''simple docstring''' from math import factorial __a = {str(d): factorial(d) for d in range(10)} def __UpperCAmelCase ( a_: int ): return sum(DIGIT_FACTORIAL[d] for d in str(a_ ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 7 * factorial(9 ) + 1 return sum(i for i in range(3, a_ ) if sum_of_digit_factorial(a_ ) == i ) if __name__ == "__main__": print(f'{solution() = }')
17
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if not isinstance(a_, a_ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(a_, a_ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) _UpperCAmelCase : List[str] = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(a_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
17
1
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def __UpperCAmelCase ( a_: float, a_: float, a_: float ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(a_, 2 ) - pow(a_, 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(a_, 2 ) - pow(a_, 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(a_, 2 ) + pow(a_, 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
17
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') __a = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" if self.train_file is not None: _UpperCAmelCase : List[Any] = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCAmelCase : List[str] = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A__ : """simple docstring""" UpperCamelCase_ : PreTrainedTokenizerBase UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[int] = None def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels" _UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features] _UpperCAmelCase : str = len(lowerCAmelCase__ ) _UpperCAmelCase : int = len(features[0]["input_ids"] ) _UpperCAmelCase : str = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features ] _UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) ) _UpperCAmelCase : Any = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) return batch def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag", a_, a_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCAmelCase : Union[str, Any] = {} if data_args.train_file is not None: _UpperCAmelCase : str = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase : Optional[Any] = data_args.validation_file _UpperCAmelCase : Dict = data_args.train_file.split("." )[-1] _UpperCAmelCase : Optional[int] = load_dataset( a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: # Downloading and loading the swag dataset from the hub. _UpperCAmelCase : Dict = load_dataset( "swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )] _UpperCAmelCase : List[Any] = "sent1" _UpperCAmelCase : Optional[int] = "sent2" if data_args.max_seq_length is None: _UpperCAmelCase : List[str] = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _UpperCAmelCase : Dict = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]] _UpperCAmelCase : Tuple = examples[question_header_name] _UpperCAmelCase : Optional[Any] = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ ) ] # Flatten out _UpperCAmelCase : List[str] = list(chain(*a_ ) ) _UpperCAmelCase : Dict = list(chain(*a_ ) ) # Tokenize _UpperCAmelCase : List[Any] = tokenizer( a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _UpperCAmelCase : int = raw_datasets["train"] if data_args.max_train_samples is not None: _UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples ) _UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _UpperCAmelCase : Union[str, Any] = train_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _UpperCAmelCase : Dict = raw_datasets["validation"] if data_args.max_eval_samples is not None: _UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples ) _UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _UpperCAmelCase : Optional[int] = eval_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator _UpperCAmelCase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a_: Tuple ): _UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions _UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCAmelCase : Any = Trainer( model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, ) # Training if training_args.do_train: _UpperCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : List[str] = last_checkpoint _UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase : str = train_result.metrics _UpperCAmelCase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) _UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) ) trainer.log_metrics("train", a_ ) trainer.save_metrics("train", a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase : List[Any] = trainer.evaluate() _UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) _UpperCAmelCase : Tuple = min(a_, len(a_ ) ) trainer.log_metrics("eval", a_ ) trainer.save_metrics("eval", a_ ) _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __UpperCAmelCase ( a_: int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
17
1
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib __a = threading.Lock() __a = None __a = { 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } __a = logging.WARNING __a = True def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = os.getenv("TRANSFORMERS_VERBOSITY", a_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def __UpperCAmelCase ( ): return __name__.split("." )[0] def __UpperCAmelCase ( ): return logging.getLogger(_get_library_name() ) def __UpperCAmelCase ( ): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _UpperCAmelCase : Optional[Any] = logging.StreamHandler() # Set sys.stderr as stream. _UpperCAmelCase : Dict = sys.stderr.flush # Apply our default configuration to the library root logger. _UpperCAmelCase : Union[str, Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _UpperCAmelCase : List[str] = False def __UpperCAmelCase ( ): global _default_handler with _lock: if not _default_handler: return _UpperCAmelCase : Union[str, Any] = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _UpperCAmelCase : List[Any] = None def __UpperCAmelCase ( ): return log_levels def __UpperCAmelCase ( a_: Optional[str] = None ): if name is None: _UpperCAmelCase : Optional[Any] = _get_library_name() _configure_library_root_logger() return logging.getLogger(a_ ) def __UpperCAmelCase ( ): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def __UpperCAmelCase ( a_: int ): _configure_library_root_logger() _get_library_root_logger().setLevel(a_ ) def __UpperCAmelCase ( ): return set_verbosity(a_ ) def __UpperCAmelCase ( ): return set_verbosity(a_ ) def __UpperCAmelCase ( ): return set_verbosity(a_ ) def __UpperCAmelCase ( ): return set_verbosity(a_ ) def __UpperCAmelCase ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def __UpperCAmelCase ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def __UpperCAmelCase ( a_: logging.Handler ): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(a_ ) def __UpperCAmelCase ( a_: logging.Handler ): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(a_ ) def __UpperCAmelCase ( ): _configure_library_root_logger() _UpperCAmelCase : Union[str, Any] = False def __UpperCAmelCase ( ): _configure_library_root_logger() _UpperCAmelCase : int = True def __UpperCAmelCase ( ): _UpperCAmelCase : List[Any] = _get_library_root_logger().handlers for handler in handlers: _UpperCAmelCase : List[Any] = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(a_ ) def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(a_ ) def __UpperCAmelCase ( self: Any, *a_: Tuple, **a_: Dict ): _UpperCAmelCase : Optional[Any] = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS", a_ ) if no_advisory_warnings: return self.warning(*a_, **a_ ) __a = warning_advice @functools.lru_cache(a_ ) def __UpperCAmelCase ( self: Union[str, Any], *a_: Optional[Any], **a_: Union[str, Any] ): self.warning(*a_, **a_ ) __a = warning_once class A__ : """simple docstring""" def __init__( self : List[str] , *lowerCAmelCase__ : int , **lowerCAmelCase__ : List[Any] ) -> Union[str, Any]: # pylint: disable=unused-argument """simple docstring""" _UpperCAmelCase : Union[str, Any] = args[0] if args else None def __iter__( self : List[Any] ) -> Any: """simple docstring""" return iter(self._iterator ) def __getattr__( self : Any , lowerCAmelCase__ : Any ) -> List[Any]: """simple docstring""" def empty_fn(*lowerCAmelCase__ : Any , **lowerCAmelCase__ : List[str] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : str ) -> Optional[int]: """simple docstring""" return self def __exit__( self : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" return class A__ : """simple docstring""" def __call__( self : Any , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Any ) -> Tuple: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm(*lowerCAmelCase__ , **lowerCAmelCase__ ) else: return EmptyTqdm(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() __a = _tqdm_cls() def __UpperCAmelCase ( ): global _tqdm_active return bool(_tqdm_active ) def __UpperCAmelCase ( ): global _tqdm_active _UpperCAmelCase : Optional[Any] = True hf_hub_utils.enable_progress_bars() def __UpperCAmelCase ( ): global _tqdm_active _UpperCAmelCase : int = False hf_hub_utils.disable_progress_bars()
17
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str: """simple docstring""" super().__init__() _UpperCAmelCase : List[str] = model _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass def __UpperCAmelCase ( a_: str, a_: str, a_: str ): # load longformer model from model identifier _UpperCAmelCase : int = LongformerModel.from_pretrained(a_ ) _UpperCAmelCase : Any = LightningModel(a_ ) _UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model _UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(a_ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
1
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0} _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : str = max_resolution _UpperCAmelCase : List[Any] = size _UpperCAmelCase : Union[str, Any] = do_normalize _UpperCAmelCase : Optional[Any] = do_convert_rgb _UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] _UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image() _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : str = 2_0_4_8 _UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Union[str, Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _UpperCAmelCase : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches _UpperCAmelCase : Any = "Hello" _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : List[Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) _UpperCAmelCase : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Union[str, Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCAmelCase : List[Any] = 3 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Tuple = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
17
'''simple docstring''' from importlib import import_module from .logging import get_logger __a = get_logger(__name__) class A__ : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class A__ : """simple docstring""" UpperCamelCase_ : Union[str, Any] = [] def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = obj _UpperCAmelCase : int = target _UpperCAmelCase : Optional[int] = new _UpperCAmelCase : Any = target.split("." )[0] _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : Dict = attrs or [] def __enter__( self : List[str] ) -> int: """simple docstring""" *_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: _UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCAmelCase : Tuple = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) _UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: _UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCAmelCase : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.__enter__() self._active_patches.append(self ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
17
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class A__ : """simple docstring""" UpperCamelCase_ : Tuple = PegasusConfig UpperCamelCase_ : str = {} UpperCamelCase_ : str = '''gelu''' def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]=1_3 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : List[Any]=9_9 , lowerCAmelCase__ : int=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : Optional[int]=3_7 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Dict=4_0 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : int=1 , lowerCAmelCase__ : List[str]=0 , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : Any = seq_length _UpperCAmelCase : Optional[int] = is_training _UpperCAmelCase : str = use_labels _UpperCAmelCase : int = vocab_size _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : Optional[int] = num_attention_heads _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : List[Any] = eos_token_id _UpperCAmelCase : str = pad_token_id _UpperCAmelCase : Optional[int] = bos_token_id def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _UpperCAmelCase : Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCAmelCase : List[str] = prepare_pegasus_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : str ) -> int: """simple docstring""" _UpperCAmelCase : Union[str, Any] = TFPegasusModel(config=lowerCAmelCase__ ).get_decoder() _UpperCAmelCase : Optional[int] = inputs_dict["input_ids"] _UpperCAmelCase : List[Any] = input_ids[:1, :] _UpperCAmelCase : Union[str, Any] = inputs_dict["attention_mask"][:1, :] _UpperCAmelCase : Union[str, Any] = inputs_dict["head_mask"] _UpperCAmelCase : int = 1 # first forward pass _UpperCAmelCase : int = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) _UpperCAmelCase , _UpperCAmelCase : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase : Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _UpperCAmelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _UpperCAmelCase : Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] _UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _UpperCAmelCase : Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _UpperCAmelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx] _UpperCAmelCase : int = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1e-3 ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Tuple, a_: List[Any], a_: Optional[Any]=None, a_: Any=None, a_: Tuple=None, a_: Optional[int]=None, a_: Tuple=None, ): if attention_mask is None: _UpperCAmelCase : str = tf.cast(tf.math.not_equal(a_, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: _UpperCAmelCase : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: _UpperCAmelCase : Optional[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCAmelCase : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCAmelCase : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Tuple = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () UpperCamelCase_ : List[str] = (TFPegasusForConditionalGeneration,) if is_tf_available() else () UpperCamelCase_ : int = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : int = False UpperCamelCase_ : Dict = False def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = TFPegasusModelTester(self ) _UpperCAmelCase : List[str] = ConfigTester(self , config_class=lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__ ) @require_sentencepiece @require_tokenizers @require_tf class A__ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] UpperCamelCase_ : List[str] = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers UpperCamelCase_ : str = '''google/pegasus-xsum''' @cached_property def _lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowerCAmelCase ( self : int , **lowerCAmelCase__ : Tuple ) -> int: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.translate_src_text(**lowerCAmelCase__ ) assert self.expected_text == generated_words def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : int = self.tokenizer(self.src_text , **lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="tf" ) _UpperCAmelCase : List[str] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowerCAmelCase__ , ) _UpperCAmelCase : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase__ ) return generated_words @slow def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" self._assert_generated_batch_equal_expected()
17
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a = datasets.utils.logging.get_logger(__name__) __a = ['names', 'prefix'] __a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __a = ['encoding_errors', 'on_bad_lines'] __a = ['date_format'] @dataclass class A__ ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_00_00 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase : Any = self.delimiter if self.column_names is not None: _UpperCAmelCase : List[Any] = self.column_names @property def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase_ : int = CsvConfig def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : str = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase : Tuple = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): _UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
17
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: list[int] ): if not nums: return 0 _UpperCAmelCase : int = nums[0] _UpperCAmelCase : Dict = 0 for num in nums[1:]: _UpperCAmelCase , _UpperCAmelCase : Any = ( max_excluding + num, max(a_, a_ ), ) return max(a_, a_ ) if __name__ == "__main__": import doctest doctest.testmod()
17
1
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class A__ : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int=1_3 , lowerCAmelCase__ : int=7 , lowerCAmelCase__ : str=6 , lowerCAmelCase__ : Tuple=1_7 , lowerCAmelCase__ : Dict=2_3 , lowerCAmelCase__ : List[Any]=1_1 , lowerCAmelCase__ : Optional[Any]=True , ) -> Any: """simple docstring""" _UpperCAmelCase : Any = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : Dict = seq_length _UpperCAmelCase : Optional[int] = act_dim _UpperCAmelCase : Any = state_dim _UpperCAmelCase : int = hidden_size _UpperCAmelCase : List[Any] = max_length _UpperCAmelCase : Tuple = is_training def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _UpperCAmelCase : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _UpperCAmelCase : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) _UpperCAmelCase : str = floats_tensor((self.batch_size, self.seq_length, 1) ) _UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) _UpperCAmelCase : str = random_attention_mask((self.batch_size, self.seq_length) ) _UpperCAmelCase : Optional[int] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : str = DecisionTransformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Optional[int] = model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : str = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Optional[int] = config_and_inputs _UpperCAmelCase : str = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = (DecisionTransformerModel,) if is_torch_available() else () UpperCamelCase_ : List[str] = () UpperCamelCase_ : Any = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids UpperCamelCase_ : Dict = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : int = False UpperCamelCase_ : str = False UpperCamelCase_ : int = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : Any = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Optional[Any] = False def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" _UpperCAmelCase : Tuple = DecisionTransformerModelTester(self ) _UpperCAmelCase : List[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Dict = DecisionTransformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : int = model_class(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : str = [*signature.parameters.keys()] _UpperCAmelCase : Tuple = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(lowerCAmelCase__ )] , lowerCAmelCase__ ) @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = 2 # number of steps of autoregressive prediction we will perform _UpperCAmelCase : List[str] = 1_0 # defined by the RL environment, may be normalized _UpperCAmelCase : Optional[Any] = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) _UpperCAmelCase : Optional[Any] = model.to(lowerCAmelCase__ ) _UpperCAmelCase : Any = model.config torch.manual_seed(0 ) _UpperCAmelCase : Dict = torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase__ , dtype=torch.floataa ) # env.reset() _UpperCAmelCase : Union[str, Any] = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=lowerCAmelCase__ ) _UpperCAmelCase : Any = torch.tensor(lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _UpperCAmelCase : str = state _UpperCAmelCase : Union[str, Any] = torch.zeros(1 , 0 , config.act_dim , device=lowerCAmelCase__ , dtype=torch.floataa ) _UpperCAmelCase : Dict = torch.zeros(1 , 0 , device=lowerCAmelCase__ , dtype=torch.floataa ) _UpperCAmelCase : Optional[Any] = torch.tensor(0 , device=lowerCAmelCase__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowerCAmelCase__ )] , dim=1 ) _UpperCAmelCase : Tuple = torch.cat([rewards, torch.zeros(1 , 1 , device=lowerCAmelCase__ )] , dim=1 ) _UpperCAmelCase : List[str] = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = model( states=lowerCAmelCase__ , actions=lowerCAmelCase__ , rewards=lowerCAmelCase__ , returns_to_go=lowerCAmelCase__ , timesteps=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase__ , dtype=torch.floataa ), 1.0, False, {}, ) _UpperCAmelCase : List[str] = action_pred[0, -1] _UpperCAmelCase : Union[str, Any] = torch.cat([states, state] , dim=1 ) _UpperCAmelCase : Any = returns_to_go[0, -1] - reward _UpperCAmelCase : List[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _UpperCAmelCase : Dict = torch.cat( [timesteps, torch.ones((1, 1) , device=lowerCAmelCase__ , dtype=torch.long ) * (step + 1)] , dim=1 )
17
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): _UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" ) if key.startswith("module.decoder" ): _UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] _UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )] _UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" ) if "attn.q" in key: _UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Dict = key.replace("attn", "attention.self" ) if "fc1" in key: _UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" ) if "fc2" in key: _UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Any = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" ) _UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: _UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" ) if "skip_conv1" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" ) if "skip_conv2" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" ) if "fusion1" in key: _UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" ) if "fusion2" in key: _UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" ) if "fusion3" in key: _UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" ) if "fusion" in key and "conv" in key: _UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): _UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" ) _UpperCAmelCase : int = value return new_state_dict def __UpperCAmelCase ( a_: str, a_: List[Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ): _UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _UpperCAmelCase : Dict = GLPNImageProcessor() # prepare image _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) ) # rename keys _UpperCAmelCase : List[str] = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict _UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _UpperCAmelCase : Dict = model(a_ ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _UpperCAmelCase : Optional[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _UpperCAmelCase : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) _UpperCAmelCase : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
17
1
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any]=1_3 , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Any=9_9 , lowerCAmelCase__ : Union[str, Any]=6_4 , lowerCAmelCase__ : Any=5 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : Tuple=6_4 , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : List[Any]=1_6 , lowerCAmelCase__ : Union[str, Any]=2 , lowerCAmelCase__ : Union[str, Any]=0.02 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Union[str, Any]=4 , lowerCAmelCase__ : Any=None , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = parent _UpperCAmelCase : Any = batch_size _UpperCAmelCase : Dict = seq_length _UpperCAmelCase : List[Any] = is_training _UpperCAmelCase : Optional[Any] = use_input_mask _UpperCAmelCase : Union[str, Any] = use_token_type_ids _UpperCAmelCase : Optional[Any] = use_labels _UpperCAmelCase : int = vocab_size _UpperCAmelCase : str = hidden_size _UpperCAmelCase : List[str] = num_hidden_layers _UpperCAmelCase : Any = num_attention_heads _UpperCAmelCase : Union[str, Any] = intermediate_size _UpperCAmelCase : List[Any] = hidden_act _UpperCAmelCase : str = hidden_dropout_prob _UpperCAmelCase : Tuple = attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] = max_position_embeddings _UpperCAmelCase : Optional[Any] = type_vocab_size _UpperCAmelCase : List[str] = type_sequence_label_size _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : Dict = num_labels _UpperCAmelCase : str = num_choices _UpperCAmelCase : List[str] = scope def _lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return MPNetConfig.from_pretrained("microsoft/mpnet-base" ) def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : List[str] = None if self.use_input_mask: _UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : List[str] = None _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : Optional[Any] = None if self.use_labels: _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = MPNetModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = MPNetForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : List[Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.num_labels _UpperCAmelCase : Tuple = MPNetForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int ) -> str: """simple docstring""" _UpperCAmelCase : Dict = self.num_choices _UpperCAmelCase : Union[str, Any] = MPNetForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Any = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Tuple = self.num_labels _UpperCAmelCase : str = MPNetForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _UpperCAmelCase : Dict = self.prepare_config_and_inputs() ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) : List[Any] = config_and_inputs _UpperCAmelCase : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Tuple = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) UpperCamelCase_ : int = ( { '''feature-extraction''': MPNetModel, '''fill-mask''': MPNetForMaskedLM, '''question-answering''': MPNetForQuestionAnswering, '''text-classification''': MPNetForSequenceClassification, '''token-classification''': MPNetForTokenClassification, '''zero-shot''': MPNetForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : Dict = False UpperCamelCase_ : Optional[int] = True def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" _UpperCAmelCase : Optional[int] = MPNetModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowerCAmelCase__ ) @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : str = MPNetModel.from_pretrained("microsoft/mpnet-base" ) _UpperCAmelCase : Tuple = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase__ )[0] _UpperCAmelCase : Union[str, Any] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase__ ) _UpperCAmelCase : Dict = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) )
17
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : int = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _UpperCAmelCase : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(a_ ) ), }, features=a_, ) return dataset @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=a_ ) return filename # FILE_CONTENT + files __a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt" _UpperCAmelCase : Tuple = FILE_CONTENT with open(a_, "w" ) as f: f.write(a_ ) return filename @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" ) with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import gzip _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _UpperCAmelCase : Any = bytes(a_, "utf-8" ) with gzip.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _UpperCAmelCase : str = bytes(a_, "utf-8" ) with lza.frame.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Any ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(a_, "w" ) as archive: archive.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: List[str] ): import tarfile _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): import lzma _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _UpperCAmelCase : List[str] = bytes(a_, "utf-8" ) with lzma.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: Tuple ): import zipfile _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _UpperCAmelCase : int = bytes(a_, "utf-8" ) with zstd.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml" _UpperCAmelCase : Tuple = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(a_, "w" ) as f: f.write(a_ ) return filename __a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : str = datasets.Dataset.from_dict(a_ ) _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(a_ ) ) as con: _UpperCAmelCase : List[Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str, a_: str ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(a_, "rb" ) as f: _UpperCAmelCase : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ): _UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) ) f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ): _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _UpperCAmelCase : Dict = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(a_, "wb" ) as f: _UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ ) _UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ ) writer.write_table(a_ ) writer.close() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : str = {"data": DATA} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(a_, "w" ) as f: for item in DATA_312: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(a_, "w" ) as f: for item in DATA_STR: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ): import gzip _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ): import gzip _UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ): _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : List[str] = ["0", "1", "2", "3"] _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Dict = ["0", "1", "2", "3"] _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = ["0", "1", "2", "3"] _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename("unsupported.ext" ) ) f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) return data_dir
17
1
'''simple docstring''' import datasets from .evaluate import evaluate __a = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' __a = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' __a = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): """simple docstring""" def _lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> Any: """simple docstring""" _UpperCAmelCase : Dict = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} _UpperCAmelCase : List[Any] = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] _UpperCAmelCase : Tuple = evaluate(dataset=lowerCAmelCase__ , predictions=lowerCAmelCase__ ) return score
17
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = BarthezTokenizer UpperCamelCase_ : List[Any] = BarthezTokenizerFast UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : Optional[int] = True def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" super().setUp() _UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = "<pad>" _UpperCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] _UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] _UpperCAmelCase : int = self.tokenizer( lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() _UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé." _UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase : Tuple = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , )
17
1
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( a_: int ): # A local function to see if a dot lands in the circle. def is_in_circle(a_: float, a_: float ) -> bool: _UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase : str = mean( int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) ) for _ in range(a_ ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase : Optional[int] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ): return mean( function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value) def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ): def identity_function(a_: float ) -> float: return x _UpperCAmelCase : Union[str, Any] = area_under_curve_estimator( a_, a_, a_, a_ ) _UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def __UpperCAmelCase ( a_: int ): def function_to_integrate(a_: float ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase : List[str] = area_under_curve_estimator( a_, a_, 0.0, 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
17
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0} _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : str = max_resolution _UpperCAmelCase : List[Any] = size _UpperCAmelCase : Union[str, Any] = do_normalize _UpperCAmelCase : Optional[Any] = do_convert_rgb _UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] _UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image() _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : str = 2_0_4_8 _UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Union[str, Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _UpperCAmelCase : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches _UpperCAmelCase : Any = "Hello" _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : List[Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) _UpperCAmelCase : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Union[str, Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCAmelCase : List[Any] = 3 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Tuple = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
17
1
'''simple docstring''' import sys from collections import defaultdict class A__ : """simple docstring""" def __init__( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Tuple = [] def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Tuple ) -> str: """simple docstring""" return self.node_position[vertex] def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = pos def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] ) -> int: """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCAmelCase : Optional[int] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCAmelCase : Dict = 2 * start + 1 else: _UpperCAmelCase : Dict = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = heap[smallest_child], positions[smallest_child] _UpperCAmelCase , _UpperCAmelCase : int = ( heap[start], positions[start], ) _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = temp, tempa _UpperCAmelCase : Optional[Any] = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCAmelCase__ ) self.top_to_bottom(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = position[index] while index != 0: _UpperCAmelCase : Tuple = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _UpperCAmelCase : str = heap[parent] _UpperCAmelCase : Any = position[parent] self.set_position(position[parent] , lowerCAmelCase__ ) else: _UpperCAmelCase : int = val _UpperCAmelCase : int = temp self.set_position(lowerCAmelCase__ , lowerCAmelCase__ ) break _UpperCAmelCase : str = parent else: _UpperCAmelCase : Dict = val _UpperCAmelCase : Tuple = temp self.set_position(lowerCAmelCase__ , 0 ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] ) -> Any: """simple docstring""" _UpperCAmelCase : Tuple = len(lowerCAmelCase__ ) // 2 - 1 for i in range(lowerCAmelCase__ , -1 , -1 ): self.top_to_bottom(lowerCAmelCase__ , lowerCAmelCase__ , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = positions[0] _UpperCAmelCase : List[str] = sys.maxsize self.top_to_bottom(lowerCAmelCase__ , 0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) return temp def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = Heap() _UpperCAmelCase : Optional[Any] = [0] * len(a_ ) _UpperCAmelCase : Any = [-1] * len(a_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCAmelCase : List[Any] = [] # Heap of Distance of vertices from their neighboring vertex _UpperCAmelCase : Any = [] for vertex in range(len(a_ ) ): distance_tv.append(sys.maxsize ) positions.append(a_ ) heap.node_position.append(a_ ) _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Any = 1 _UpperCAmelCase : List[Any] = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCAmelCase : Any = 0 _UpperCAmelCase : Optional[int] = distance heap.heapify(a_, a_ ) for _ in range(1, len(a_ ) ): _UpperCAmelCase : Optional[Any] = heap.delete_minimum(a_, a_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCAmelCase : Optional[Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(a_ )] ): _UpperCAmelCase : Tuple = distance heap.bottom_to_top( a_, heap.get_position(a_ ), a_, a_ ) _UpperCAmelCase : List[str] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __a = int(input('Enter number of edges: ').strip()) __a = defaultdict(list) for _ in range(edges_number): __a = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
17
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''time_series_transformer''' UpperCamelCase_ : Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = prediction_length _UpperCAmelCase : Optional[Any] = context_length or prediction_length _UpperCAmelCase : Optional[Any] = distribution_output _UpperCAmelCase : Union[str, Any] = loss _UpperCAmelCase : Dict = input_size _UpperCAmelCase : int = num_time_features _UpperCAmelCase : Any = lags_sequence _UpperCAmelCase : Dict = scaling _UpperCAmelCase : Tuple = num_dynamic_real_features _UpperCAmelCase : Dict = num_static_real_features _UpperCAmelCase : Union[str, Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Optional[int] = cardinality else: _UpperCAmelCase : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : List[Any] = embedding_dimension else: _UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : str = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features _UpperCAmelCase : str = d_model _UpperCAmelCase : Optional[Any] = encoder_attention_heads _UpperCAmelCase : Dict = decoder_attention_heads _UpperCAmelCase : List[Any] = encoder_ffn_dim _UpperCAmelCase : str = decoder_ffn_dim _UpperCAmelCase : Dict = encoder_layers _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : Any = dropout _UpperCAmelCase : str = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : Dict = encoder_layerdrop _UpperCAmelCase : Any = decoder_layerdrop _UpperCAmelCase : Optional[Any] = activation_function _UpperCAmelCase : Tuple = init_std _UpperCAmelCase : List[str] = use_cache super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
1
'''simple docstring''' import math __a = 10 __a = 7 __a = BALLS_PER_COLOUR * NUM_COLOURS def __UpperCAmelCase ( a_: int = 20 ): _UpperCAmelCase : int = math.comb(a_, a_ ) _UpperCAmelCase : Tuple = math.comb(NUM_BALLS - BALLS_PER_COLOUR, a_ ) _UpperCAmelCase : Union[str, Any] = NUM_COLOURS * (1 - missing_colour / total) return f"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
17
'''simple docstring''' import baseaa def __UpperCAmelCase ( a_: str ): return baseaa.baaencode(string.encode("utf-8" ) ) def __UpperCAmelCase ( a_: bytes ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": __a = 'Hello World!' __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
17
1
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule __a = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" UpperCamelCase_ : Any = XGLMConfig UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Dict = '''gelu''' def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : str = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : int = d_model _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Tuple = ffn_dim _UpperCAmelCase : Any = activation_function _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Any = None _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Tuple = 1 def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _UpperCAmelCase : Any = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[Any] = self.get_config() _UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : Dict = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Tuple = False def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = TFXGLMModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on _UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) _UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" ) _UpperCAmelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): _UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) _UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[int] = "left" # use different length sentences to test batching _UpperCAmelCase : Tuple = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = inputs["input_ids"] _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 ) _UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
17
1
'''simple docstring''' from __future__ import annotations __a = 'Muhammad Umer Farooq' __a = 'MIT' __a = '1.0.0' __a = 'Muhammad Umer Farooq' __a = '[email protected]' __a = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : str ) -> None: """simple docstring""" super().__init__() _UpperCAmelCase : list[str] = [] _UpperCAmelCase : int = domain def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : list[tuple[str, str | None]] ) -> None: """simple docstring""" if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: _UpperCAmelCase : str = parse.urljoin(self.domain , lowerCAmelCase__ ) self.urls.append(lowerCAmelCase__ ) def __UpperCAmelCase ( a_: str ): return ".".join(get_sub_domain_name(a_ ).split("." )[-2:] ) def __UpperCAmelCase ( a_: str ): return parse.urlparse(a_ ).netloc def __UpperCAmelCase ( a_: str = "https://github.com" ): _UpperCAmelCase : List[str] = get_domain_name(a_ ) # Initialize the parser _UpperCAmelCase : Dict = Parser(a_ ) try: # Open URL _UpperCAmelCase : Any = requests.get(a_ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through _UpperCAmelCase : Tuple = set() for link in parser.urls: # open URL. # read = requests.get(link) try: _UpperCAmelCase : Optional[int] = requests.get(a_ ) # Get the valid email. _UpperCAmelCase : Optional[int] = re.findall("[a-zA-Z0-9]+@" + domain, read.text ) # If not in list then append it. for email in emails: valid_emails.add(a_ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(a_ ) if __name__ == "__main__": __a = emails_from_url('https://github.com') print(f'{len(emails)} emails found:') print('\n'.join(sorted(emails)))
17
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def __UpperCAmelCase ( a_: Tuple, a_: Any ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ), ], ) def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ): _UpperCAmelCase : Tuple = str(a_ ) dataset_info.write_to_directory(a_ ) _UpperCAmelCase : Any = DatasetInfo.from_directory(a_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a_, "dataset_info.json" ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, ) _UpperCAmelCase : Tuple = dataset_info._to_yaml_dict() assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) _UpperCAmelCase : List[Any] = yaml.safe_dump(a_ ) _UpperCAmelCase : Optional[int] = yaml.safe_load(a_ ) assert dataset_info_yaml_dict == reloaded def __UpperCAmelCase ( ): _UpperCAmelCase : str = DatasetInfo() _UpperCAmelCase : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1_337 ), } ), ], ) def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ): _UpperCAmelCase : Union[str, Any] = str(a_ ) dataset_infos_dict.write_to_directory(a_ ) _UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a_, "README.md" ) )
17
1
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any]=1_3 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : int=3_2 , lowerCAmelCase__ : str=5 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : Any="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : Any=1_6 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : List[str]=None , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Dict = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Any = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : int = use_input_mask _UpperCAmelCase : int = use_token_type_ids _UpperCAmelCase : Optional[Any] = use_labels _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : List[str] = num_attention_heads _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Dict = hidden_dropout_prob _UpperCAmelCase : int = attention_probs_dropout_prob _UpperCAmelCase : int = max_position_embeddings _UpperCAmelCase : Optional[int] = type_vocab_size _UpperCAmelCase : str = type_sequence_label_size _UpperCAmelCase : str = initializer_range _UpperCAmelCase : Any = num_labels _UpperCAmelCase : str = num_choices _UpperCAmelCase : Tuple = scope def _lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : int = None if self.use_input_mask: _UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Dict = None _UpperCAmelCase : int = None _UpperCAmelCase : int = None if self.use_labels: _UpperCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict ) -> str: """simple docstring""" _UpperCAmelCase : Any = DistilBertModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : List[str] = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = DistilBertForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Optional[int] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Dict = DistilBertForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Any = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> Any: """simple docstring""" _UpperCAmelCase : Any = self.num_labels _UpperCAmelCase : Any = DistilBertForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : str = self.num_labels _UpperCAmelCase : Tuple = DistilBertForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.num_choices _UpperCAmelCase : List[str] = DistilBertForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Optional[int] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : str ) -> Any: """simple docstring""" _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) : Any = config_and_inputs _UpperCAmelCase : Tuple = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Dict = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase_ : Optional[int] = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Any = True UpperCamelCase_ : str = True UpperCamelCase_ : int = True def _lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" _UpperCAmelCase : Tuple = DistilBertModelTester(self ) _UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=lowerCAmelCase__ , dim=3_7 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : List[Any] = DistilBertModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @slow @require_torch_gpu def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _UpperCAmelCase : List[Any] = True _UpperCAmelCase : Optional[int] = model_class(config=lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = torch.jit.trace( lowerCAmelCase__ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , "traced_model.pt" ) ) _UpperCAmelCase : Dict = torch.jit.load(os.path.join(lowerCAmelCase__ , "traced_model.pt" ) , map_location=lowerCAmelCase__ ) loaded(inputs_dict["input_ids"].to(lowerCAmelCase__ ) , inputs_dict["attention_mask"].to(lowerCAmelCase__ ) ) @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) _UpperCAmelCase : List[Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _UpperCAmelCase : Dict = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase : Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] _UpperCAmelCase : Any = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase__ ) _UpperCAmelCase : Any = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
17
'''simple docstring''' from math import factorial def __UpperCAmelCase ( a_: int = 100 ): return sum(map(a_, str(factorial(a_ ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
17
1