code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Union[str, Any] = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
350
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __a = (3, 9, -11, 0, 7, 5, 1, -1) __a = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : int UpperCamelCase_ : Node | None class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None: """simple docstring""" _UpperCAmelCase : Node | None = None for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ): _UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" _UpperCAmelCase : List[Any] = self.head while node: yield node.data _UpperCAmelCase : List[str] = node.next_node def __len__( self : Any ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return " -> ".join([str(lowerCAmelCase__ ) for node in self] ) def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ): return SortedLinkedList(list(a_ ) + list(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() __a = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
17
0
'''simple docstring''' def __UpperCAmelCase ( a_: Any ): if collection == []: return [] # get some information about the collection _UpperCAmelCase : List[str] = len(lowercase__ ) _UpperCAmelCase : List[str] = max(lowercase__ ) _UpperCAmelCase : int = min(lowercase__ ) # create the counting array _UpperCAmelCase : Dict = coll_max + 1 - coll_min _UpperCAmelCase : Optional[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1, lowercase__ ): _UpperCAmelCase : Tuple = counting_arr[i] + counting_arr[i - 1] # create the output collection _UpperCAmelCase : Tuple = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0, lowercase__ ) ): _UpperCAmelCase : List[Any] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def __UpperCAmelCase ( a_: Any ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('thisisthestring') == "eghhiiinrsssttt" __a = input('Enter numbers separated by a comma:\n').strip() __a = [int(item) for item in user_input.split(',')] print(counting_sort(unsorted))
351
'''simple docstring''' def __UpperCAmelCase ( a_: str ): if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) _UpperCAmelCase : Optional[Any] = "" while len(a_ ) % 3 != 0: _UpperCAmelCase : List[Any] = "0" + bin_string _UpperCAmelCase : Dict = [ bin_string[index : index + 3] for index in range(len(a_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _UpperCAmelCase : Optional[Any] = 0 for index, val in enumerate(a_ ): oct_val += int(2 ** (2 - index) * int(a_ ) ) oct_string += str(a_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
17
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __UpperCAmelCase ( a_: Tuple ) -> List[str]: _UpperCAmelCase : int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] _UpperCAmelCase : Any = True if '''large''' in model_name or '''huge''' in model_name else False _UpperCAmelCase : Dict = True if '''large''' in model_name or '''huge''' in model_name else False _UpperCAmelCase : Tuple = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: _UpperCAmelCase : Any = [3, 3, 3, 3] _UpperCAmelCase : Any = [5, 5, 5, 5] elif "fl4" in model_name: _UpperCAmelCase : Optional[int] = [4, 4, 4, 4] _UpperCAmelCase : Dict = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: _UpperCAmelCase : Tuple = [3, 3, 3, 3] if "lrf" in model_name: _UpperCAmelCase : Dict = [3, 3, 3, 3] else: _UpperCAmelCase : List[Any] = [2, 2, 2, 2] if "tiny" in model_name: _UpperCAmelCase : Any = 96 elif "small" in model_name: _UpperCAmelCase : Optional[int] = 96 elif "base" in model_name: _UpperCAmelCase : Optional[Any] = 128 elif "large" in model_name: _UpperCAmelCase : List[str] = 192 elif "xlarge" in model_name: _UpperCAmelCase : str = 256 elif "huge" in model_name: _UpperCAmelCase : Dict = 352 # set label information _UpperCAmelCase : Tuple = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: _UpperCAmelCase : Any = '''imagenet-22k-id2label.json''' else: _UpperCAmelCase : Dict = '''imagenet-1k-id2label.json''' _UpperCAmelCase : Dict = json.load(open(hf_hub_download(__UpperCAmelCase, __UpperCAmelCase, repo_type="dataset" ), "r" ) ) _UpperCAmelCase : int = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} _UpperCAmelCase : Any = FocalNetConfig( embed_dim=__UpperCAmelCase, depths=__UpperCAmelCase, focal_levels=__UpperCAmelCase, focal_windows=__UpperCAmelCase, use_conv_embed=__UpperCAmelCase, idalabel=__UpperCAmelCase, labelaid=__UpperCAmelCase, use_post_layernorm=__UpperCAmelCase, use_layerscale=__UpperCAmelCase, ) return config def __UpperCAmelCase ( a_: List[Any] ) -> Optional[Any]: if "patch_embed.proj" in name: _UpperCAmelCase : Dict = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: _UpperCAmelCase : Any = name.replace("patch_embed.norm", "embeddings.norm" ) if "layers" in name: _UpperCAmelCase : Union[str, Any] = '''encoder.''' + name if "encoder.layers" in name: _UpperCAmelCase : List[Any] = name.replace("encoder.layers", "encoder.stages" ) if "downsample.proj" in name: _UpperCAmelCase : List[str] = name.replace("downsample.proj", "downsample.projection" ) if "blocks" in name: _UpperCAmelCase : Dict = name.replace("blocks", "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: _UpperCAmelCase : Any = name.replace("modulation.f", "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: _UpperCAmelCase : Any = name.replace("modulation.h", "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: _UpperCAmelCase : Optional[Any] = name.replace("modulation.proj", "modulation.projection_out" ) if name == "norm.weight": _UpperCAmelCase : Dict = '''layernorm.weight''' if name == "norm.bias": _UpperCAmelCase : str = '''layernorm.bias''' if "head" in name: _UpperCAmelCase : Dict = name.replace("head", "classifier" ) else: _UpperCAmelCase : int = '''focalnet.''' + name return name def __UpperCAmelCase ( a_: Tuple, a_: Dict, a_: Any=False ) -> Optional[int]: # fmt: off _UpperCAmelCase : Any = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on _UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name] print("Checkpoint URL: ", __UpperCAmelCase ) _UpperCAmelCase : Tuple = torch.hub.load_state_dict_from_url(__UpperCAmelCase, map_location="cpu" )['''model'''] # rename keys for key in state_dict.copy().keys(): _UpperCAmelCase : Optional[Any] = state_dict.pop(__UpperCAmelCase ) _UpperCAmelCase : str = val _UpperCAmelCase : Optional[int] = get_focalnet_config(__UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = FocalNetForImageClassification(__UpperCAmelCase ) model.eval() # load state dict model.load_state_dict(__UpperCAmelCase ) # verify conversion _UpperCAmelCase : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCAmelCase : Optional[Any] = BitImageProcessor( do_resize=__UpperCAmelCase, size={"shortest_edge": 256}, resample=PILImageResampling.BILINEAR, do_center_crop=__UpperCAmelCase, crop_size=224, do_normalize=__UpperCAmelCase, image_mean=__UpperCAmelCase, image_std=__UpperCAmelCase, ) _UpperCAmelCase : List[str] = Image.open(requests.get(__UpperCAmelCase, stream=__UpperCAmelCase ).raw ) _UpperCAmelCase : Optional[int] = processor(images=__UpperCAmelCase, return_tensors="pt" ) _UpperCAmelCase : Optional[int] = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06], std=[0.2_29, 0.2_24, 0.2_25] ), ] ) _UpperCAmelCase : str = image_transforms(__UpperCAmelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values, __UpperCAmelCase, atol=1e-4 ) _UpperCAmelCase : str = model(**__UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = outputs.logits.argmax(-1 ).item() print("Predicted class:", model.config.idalabel[predicted_class_idx] ) print("First values of logits:", outputs.logits[0, :3] ) if model_name == "focalnet-tiny": _UpperCAmelCase : Union[str, Any] = torch.tensor([0.21_66, -0.43_68, 0.21_91] ) elif model_name == "focalnet-tiny-lrf": _UpperCAmelCase : Union[str, Any] = torch.tensor([1.16_69, 0.01_25, -0.16_95] ) elif model_name == "focalnet-small": _UpperCAmelCase : List[Any] = torch.tensor([0.49_17, -0.04_30, 0.13_41] ) elif model_name == "focalnet-small-lrf": _UpperCAmelCase : List[Any] = torch.tensor([-0.25_88, -0.53_42, -0.23_31] ) elif model_name == "focalnet-base": _UpperCAmelCase : Union[str, Any] = torch.tensor([-0.16_55, -0.40_90, -0.17_30] ) elif model_name == "focalnet-base-lrf": _UpperCAmelCase : Any = torch.tensor([0.53_06, -0.04_83, -0.39_28] ) assert torch.allclose(outputs.logits[0, :3], __UpperCAmelCase, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) __a = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
352
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCAmelCase ( a_: str ): for param in module.parameters(): _UpperCAmelCase : Any = False def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : int = plt.imshow(a_ ) fig.axes.get_xaxis().set_visible(a_ ) fig.axes.get_yaxis().set_visible(a_ ) plt.show() def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = datetime.now() _UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" ) return timestamp
17
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class A__ ( A__ ): """simple docstring""" UpperCamelCase_ : List[Any] = 42 UpperCamelCase_ : str = 42 UpperCamelCase_ : Optional[int] = None class A__ ( A__ , A__ ): """simple docstring""" UpperCamelCase_ : Optional[int] = 2 @register_to_config def __init__( self : Tuple , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : float = 1_0_0 , lowerCAmelCase__ : float = 1.007 , lowerCAmelCase__ : float = 8_0 , lowerCAmelCase__ : float = 0.05 , lowerCAmelCase__ : float = 5_0 , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Tuple = sigma_max # setable values _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : Any = None _UpperCAmelCase : str = None # sigma(t_i) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : Optional[int] = None ) -> torch.FloatTensor: """simple docstring""" return sample def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, torch.device] = None ) -> int: """simple docstring""" _UpperCAmelCase : Dict = num_inference_steps _UpperCAmelCase : int = np.arange(0 , self.num_inference_steps )[::-1].copy() _UpperCAmelCase : Optional[Any] = torch.from_numpy(__snake_case ).to(__snake_case ) _UpperCAmelCase : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] _UpperCAmelCase : List[Any] = torch.tensor(__snake_case , dtype=torch.floataa , device=__snake_case ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : float , lowerCAmelCase__ : Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]: """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: _UpperCAmelCase : Dict = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: _UpperCAmelCase : int = 0 # sample eps ~ N(0, S_noise^2 * I) _UpperCAmelCase : Dict = self.config.s_noise * randn_tensor(sample.shape , generator=__snake_case ).to(sample.device ) _UpperCAmelCase : Optional[int] = sigma + gamma * sigma _UpperCAmelCase : Any = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" _UpperCAmelCase : Optional[int] = sample_hat + sigma_hat * model_output _UpperCAmelCase : Optional[int] = (sample_hat - pred_original_sample) / sigma_hat _UpperCAmelCase : Dict = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__snake_case , derivative=__snake_case , pred_original_sample=__snake_case ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" _UpperCAmelCase : Tuple = sample_prev + sigma_prev * model_output _UpperCAmelCase : List[Any] = (sample_prev - pred_original_sample) / sigma_prev _UpperCAmelCase : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__snake_case , derivative=__snake_case , pred_original_sample=__snake_case ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError()
353
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = (EulerDiscreteScheduler,) UpperCamelCase_ : Tuple = 10 def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : str = { "num_train_timesteps": 1_1_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : Any = self.dummy_model() _UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = output.prev_sample _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = self.dummy_model() _UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : Tuple = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = output.prev_sample _UpperCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : str = self.dummy_model() _UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : str = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : int = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : Optional[int] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
17
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __a = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: List[Any] ): _UpperCAmelCase : Tuple = state_dict.pop(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = val def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : int = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _UpperCAmelCase : int = key.replace("backbone.0.body", "backbone.conv_encoder.model" ) _UpperCAmelCase : List[str] = value else: _UpperCAmelCase : Optional[int] = value return new_state_dict def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Any = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _UpperCAmelCase : Tuple = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) _UpperCAmelCase : Dict = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : str = in_proj_weight[:256, :] _UpperCAmelCase : Optional[Any] = in_proj_bias[:256] _UpperCAmelCase : Dict = in_proj_weight[256:512, :] _UpperCAmelCase : Tuple = in_proj_bias[256:512] _UpperCAmelCase : Tuple = in_proj_weight[-256:, :] _UpperCAmelCase : Optional[int] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) _UpperCAmelCase : Dict = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : List[str] = in_proj_weight[:256, :] _UpperCAmelCase : int = in_proj_bias[:256] _UpperCAmelCase : Any = in_proj_weight[256:512, :] _UpperCAmelCase : List[str] = in_proj_bias[256:512] _UpperCAmelCase : Union[str, Any] = in_proj_weight[-256:, :] _UpperCAmelCase : Optional[Any] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _UpperCAmelCase : Tuple = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) _UpperCAmelCase : Optional[Any] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict _UpperCAmelCase : Dict = in_proj_weight_cross_attn[:256, :] _UpperCAmelCase : Tuple = in_proj_bias_cross_attn[:256] _UpperCAmelCase : int = in_proj_weight_cross_attn[256:512, :] _UpperCAmelCase : List[str] = in_proj_bias_cross_attn[256:512] _UpperCAmelCase : Any = in_proj_weight_cross_attn[-256:, :] _UpperCAmelCase : Any = in_proj_bias_cross_attn[-256:] def __UpperCAmelCase ( a_: List[str], a_: Tuple ): _UpperCAmelCase : int = image.size _UpperCAmelCase : Tuple = max(lowerCamelCase__, lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = 800 if '''detection''' in checkpoint_url else 1_000 _UpperCAmelCase : Union[str, Any] = target_max_size / current_max_size _UpperCAmelCase : Any = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Any = F.to_tensor(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = F.normalize(lowerCamelCase__, mean=[0.4_85, 0.4_56, 0.4_06], std=[0.2_29, 0.2_24, 0.2_25] ) return image @torch.no_grad() def __UpperCAmelCase ( a_: List[Any], a_: int, a_: int ): logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase__, map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) _UpperCAmelCase : str = rename_backbone_keys(lowerCamelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _UpperCAmelCase : List[Any] = '''model.''' for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): _UpperCAmelCase : List[Any] = state_dict.pop(lowerCamelCase__ ) _UpperCAmelCase : str = val # create HuggingFace model and load state dict _UpperCAmelCase : Union[str, Any] = TableTransformerConfig( backbone="resnet18", mask_loss_coefficient=1, dice_loss_coefficient=1, ce_loss_coefficient=1, bbox_loss_coefficient=5, giou_loss_coefficient=2, eos_coefficient=0.4, class_cost=1, bbox_cost=5, giou_cost=2, ) if "detection" in checkpoint_url: _UpperCAmelCase : Dict = 15 _UpperCAmelCase : Dict = 2 _UpperCAmelCase : int = {0: '''table''', 1: '''table rotated'''} _UpperCAmelCase : List[str] = idalabel _UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} else: _UpperCAmelCase : Union[str, Any] = 125 _UpperCAmelCase : Optional[Any] = 6 _UpperCAmelCase : Optional[Any] = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } _UpperCAmelCase : int = idalabel _UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} _UpperCAmelCase : Optional[Any] = DetrImageProcessor( format="coco_detection", max_size=800 if "detection" in checkpoint_url else 1_000 ) _UpperCAmelCase : int = TableTransformerForObjectDetection(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() # verify our conversion _UpperCAmelCase : Optional[int] = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' _UpperCAmelCase : Union[str, Any] = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename=lowerCamelCase__ ) _UpperCAmelCase : Tuple = Image.open(lowerCamelCase__ ).convert("RGB" ) _UpperCAmelCase : int = normalize(resize(lowerCamelCase__, lowerCamelCase__ ) ).unsqueeze(0 ) _UpperCAmelCase : str = model(lowerCamelCase__ ) if "detection" in checkpoint_url: _UpperCAmelCase : str = (1, 15, 3) _UpperCAmelCase : int = torch.tensor( [[-6.78_97, -16.99_85, 6.79_37], [-8.01_86, -22.21_92, 6.96_77], [-7.31_17, -21.07_08, 7.40_55]] ) _UpperCAmelCase : Tuple = torch.tensor([[0.48_67, 0.17_67, 0.67_32], [0.67_18, 0.44_79, 0.38_30], [0.47_16, 0.17_60, 0.63_64]] ) else: _UpperCAmelCase : Optional[int] = (1, 125, 7) _UpperCAmelCase : Dict = torch.tensor( [[-18.14_30, -8.32_14, 4.82_74], [-18.46_85, -7.13_61, -4.26_67], [-26.36_93, -9.34_29, -4.99_62]] ) _UpperCAmelCase : Any = torch.tensor([[0.49_83, 0.55_95, 0.94_40], [0.49_16, 0.63_15, 0.59_54], [0.61_08, 0.86_37, 0.11_35]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3], lowerCamelCase__, atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3], lowerCamelCase__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) _UpperCAmelCase : List[Any] = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(lowerCamelCase__ ) image_processor.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __a = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
354
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __a = logging.get_logger(__name__) class A__ ( lowercase__ , lowercase__ ): """simple docstring""" UpperCamelCase_ : Dict = '''maskformer-swin''' UpperCamelCase_ : Tuple = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Dict , lowerCAmelCase__ : Tuple=2_2_4 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : List[str]=3 , lowerCAmelCase__ : Any=9_6 , lowerCAmelCase__ : int=[2, 2, 6, 2] , lowerCAmelCase__ : Optional[int]=[3, 6, 1_2, 2_4] , lowerCAmelCase__ : List[Any]=7 , lowerCAmelCase__ : Union[str, Any]=4.0 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : int=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Tuple="gelu" , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : int=1e-5 , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : List[str]=None , **lowerCAmelCase__ : Tuple , ) -> Tuple: """simple docstring""" super().__init__(**_a ) _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : List[Any] = patch_size _UpperCAmelCase : int = num_channels _UpperCAmelCase : List[str] = embed_dim _UpperCAmelCase : int = depths _UpperCAmelCase : str = len(_a ) _UpperCAmelCase : Dict = num_heads _UpperCAmelCase : Any = window_size _UpperCAmelCase : str = mlp_ratio _UpperCAmelCase : str = qkv_bias _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : Tuple = attention_probs_dropout_prob _UpperCAmelCase : Tuple = drop_path_rate _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : int = use_absolute_embeddings _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase : str = int(embed_dim * 2 ** (len(_a ) - 1) ) _UpperCAmelCase : Tuple = ['stem'] + [F"""stage{idx}""" for idx in range(1 , len(_a ) + 1 )] _UpperCAmelCase : Optional[Any] = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names )
355
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( a_: int ): # A local function to see if a dot lands in the circle. def is_in_circle(a_: float, a_: float ) -> bool: _UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase : str = mean( int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) ) for _ in range(a_ ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase : Optional[int] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ): return mean( function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value) def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ): def identity_function(a_: float ) -> float: return x _UpperCAmelCase : Union[str, Any] = area_under_curve_estimator( a_, a_, a_, a_ ) _UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def __UpperCAmelCase ( a_: int ): def function_to_integrate(a_: float ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase : List[str] = area_under_curve_estimator( a_, a_, 0.0, 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = DDIMPipeline UpperCamelCase_ : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCamelCase_ : Dict = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } UpperCamelCase_ : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS UpperCamelCase_ : Optional[Any] = False def _lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : int = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) _UpperCAmelCase : Optional[Any] = DDIMScheduler() _UpperCAmelCase : str = {"unet": unet, "scheduler": scheduler} return components def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int]=0 ) -> int: """simple docstring""" if str(lowerCAmelCase__ ).startswith("mps" ): _UpperCAmelCase : List[str] = torch.manual_seed(lowerCAmelCase__ ) else: _UpperCAmelCase : Tuple = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = { "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : Any = "cpu" _UpperCAmelCase : Tuple = self.get_dummy_components() _UpperCAmelCase : Tuple = self.pipeline_class(**lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = self.get_dummy_inputs(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = pipe(**lowerCAmelCase__ ).images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 3_2, 3_2, 3) ) _UpperCAmelCase : List[Any] = np.array( [1.0_00e00, 5.7_17e-01, 4.7_17e-01, 1.0_00e00, 0.0_00e00, 1.0_00e00, 3.0_00e-04, 0.0_00e00, 9.0_00e-04] ) _UpperCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase__ , 1e-3 ) def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" super().test_save_load_local(expected_max_difference=3e-3 ) def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3e-3 ) def _lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = "google/ddpm-cifar10-32" _UpperCAmelCase : int = UNetaDModel.from_pretrained(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = DDIMScheduler() _UpperCAmelCase : List[str] = DDIMPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) ddim.to(lowerCAmelCase__ ) ddim.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = torch.manual_seed(0 ) _UpperCAmelCase : int = ddim(generator=lowerCAmelCase__ , eta=0.0 , output_type="numpy" ).images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _UpperCAmelCase : Optional[int] = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Tuple = "google/ddpm-ema-bedroom-256" _UpperCAmelCase : Tuple = UNetaDModel.from_pretrained(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = DDIMScheduler.from_pretrained(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = DDIMPipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) ddpm.to(lowerCAmelCase__ ) ddpm.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = ddpm(generator=lowerCAmelCase__ , output_type="numpy" ).images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) _UpperCAmelCase : str = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __a = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2FeatureExtractor'] __a = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = '''fnet''' def __init__( self : Optional[int] , lowerCAmelCase__ : Tuple=3_2_0_0_0 , lowerCAmelCase__ : List[Any]=7_6_8 , lowerCAmelCase__ : Dict=1_2 , lowerCAmelCase__ : Any=3_0_7_2 , lowerCAmelCase__ : str="gelu_new" , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Dict=1e-12 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Optional[Any]=5_1_2 , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : Optional[int]=2 , **lowerCAmelCase__ : List[str] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : int = max_position_embeddings _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : Optional[Any] = type_vocab_size _UpperCAmelCase : Tuple = layer_norm_eps _UpperCAmelCase : str = use_tpu_fourier_optimizations _UpperCAmelCase : List[Any] = tpu_short_seq_length
357
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if not isinstance(a_, a_ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(a_, a_ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) _UpperCAmelCase : List[str] = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(a_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class A__ ( nn.Module ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int=0.0 , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "geglu" , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "layer_norm" , lowerCAmelCase__ : bool = False , ) -> Union[str, Any]: """simple docstring""" super().__init__() _UpperCAmelCase : Any = only_cross_attention _UpperCAmelCase : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" _UpperCAmelCase : Any = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _UpperCAmelCase : Dict = AdaLayerNorm(_UpperCamelCase , _UpperCamelCase ) elif self.use_ada_layer_norm_zero: _UpperCAmelCase : str = AdaLayerNormZero(_UpperCamelCase , _UpperCamelCase ) else: _UpperCAmelCase : List[Any] = nn.LayerNorm(_UpperCamelCase , elementwise_affine=_UpperCamelCase ) _UpperCAmelCase : List[str] = Attention( query_dim=_UpperCamelCase , heads=_UpperCamelCase , dim_head=_UpperCamelCase , dropout=_UpperCamelCase , bias=_UpperCamelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_UpperCamelCase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _UpperCAmelCase : str = ( AdaLayerNorm(_UpperCamelCase , _UpperCamelCase ) if self.use_ada_layer_norm else nn.LayerNorm(_UpperCamelCase , elementwise_affine=_UpperCamelCase ) ) _UpperCAmelCase : List[str] = Attention( query_dim=_UpperCamelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_UpperCamelCase , dim_head=_UpperCamelCase , dropout=_UpperCamelCase , bias=_UpperCamelCase , upcast_attention=_UpperCamelCase , ) # is self-attn if encoder_hidden_states is none else: _UpperCAmelCase : Any = None _UpperCAmelCase : Optional[Any] = None # 3. Feed-forward _UpperCAmelCase : List[str] = nn.LayerNorm(_UpperCamelCase , elementwise_affine=_UpperCamelCase ) _UpperCAmelCase : Union[str, Any] = FeedForward(_UpperCamelCase , dropout=_UpperCamelCase , activation_fn=_UpperCamelCase , final_dropout=_UpperCamelCase ) # let chunk size default to None _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Dict = 0 def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[Any] = chunk_size _UpperCAmelCase : Optional[Any] = dim def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : torch.FloatTensor , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[torch.LongTensor] = None , lowerCAmelCase__ : Dict[str, Any] = None , lowerCAmelCase__ : Optional[torch.LongTensor] = None , ) -> Optional[int]: """simple docstring""" if self.use_ada_layer_norm: _UpperCAmelCase : Optional[Any] = self.norma(_UpperCamelCase , _UpperCamelCase ) elif self.use_ada_layer_norm_zero: _UpperCAmelCase : Union[str, Any] = self.norma( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hidden_dtype=hidden_states.dtype ) else: _UpperCAmelCase : Optional[int] = self.norma(_UpperCamelCase ) _UpperCAmelCase : int = cross_attention_kwargs if cross_attention_kwargs is not None else {} _UpperCAmelCase : Union[str, Any] = self.attna( _UpperCamelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_UpperCamelCase , **_UpperCamelCase , ) if self.use_ada_layer_norm_zero: _UpperCAmelCase : Union[str, Any] = gate_msa.unsqueeze(1 ) * attn_output _UpperCAmelCase : Union[str, Any] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _UpperCAmelCase : Any = ( self.norma(_UpperCamelCase , _UpperCamelCase ) if self.use_ada_layer_norm else self.norma(_UpperCamelCase ) ) _UpperCAmelCase : List[Any] = self.attna( _UpperCamelCase , encoder_hidden_states=_UpperCamelCase , attention_mask=_UpperCamelCase , **_UpperCamelCase , ) _UpperCAmelCase : Tuple = attn_output + hidden_states # 3. Feed-forward _UpperCAmelCase : Optional[Any] = self.norma(_UpperCamelCase ) if self.use_ada_layer_norm_zero: _UpperCAmelCase : Dict = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) _UpperCAmelCase : Union[str, Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _UpperCAmelCase : int = torch.cat( [self.ff(_UpperCamelCase ) for hid_slice in norm_hidden_states.chunk(_UpperCamelCase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _UpperCAmelCase : List[str] = self.ff(_UpperCamelCase ) if self.use_ada_layer_norm_zero: _UpperCAmelCase : Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output _UpperCAmelCase : Any = ff_output + hidden_states return hidden_states class A__ ( nn.Module ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : int = 4 , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : str = "geglu" , lowerCAmelCase__ : bool = False , ) -> Optional[int]: """simple docstring""" super().__init__() _UpperCAmelCase : Tuple = int(dim * mult ) _UpperCAmelCase : Optional[int] = dim_out if dim_out is not None else dim if activation_fn == "gelu": _UpperCAmelCase : Any = GELU(_UpperCamelCase , _UpperCamelCase ) if activation_fn == "gelu-approximate": _UpperCAmelCase : Tuple = GELU(_UpperCamelCase , _UpperCamelCase , approximate="tanh" ) elif activation_fn == "geglu": _UpperCAmelCase : Dict = GEGLU(_UpperCamelCase , _UpperCamelCase ) elif activation_fn == "geglu-approximate": _UpperCAmelCase : Optional[Any] = ApproximateGELU(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase : Dict = nn.ModuleList([] ) # project in self.net.append(_UpperCamelCase ) # project dropout self.net.append(nn.Dropout(_UpperCamelCase ) ) # project out self.net.append(nn.Linear(_UpperCamelCase , _UpperCamelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_UpperCamelCase ) ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for module in self.net: _UpperCAmelCase : Tuple = module(_UpperCamelCase ) return hidden_states class A__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : str = "none" ) -> Any: """simple docstring""" super().__init__() _UpperCAmelCase : Union[str, Any] = nn.Linear(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase : Optional[Any] = approximate def _lowerCAmelCase ( self : str , lowerCAmelCase__ : int ) -> Tuple: """simple docstring""" if gate.device.type != "mps": return F.gelu(_UpperCamelCase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.proj(_UpperCamelCase ) _UpperCAmelCase : int = self.gelu(_UpperCamelCase ) return hidden_states class A__ ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> Tuple: """simple docstring""" super().__init__() _UpperCAmelCase : str = nn.Linear(_UpperCamelCase , dim_out * 2 ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[str] ) -> Any: """simple docstring""" if gate.device.type != "mps": return F.gelu(_UpperCamelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Dict = self.proj(_UpperCamelCase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(_UpperCamelCase ) class A__ ( nn.Module ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> Optional[Any]: """simple docstring""" super().__init__() _UpperCAmelCase : int = nn.Linear(_UpperCamelCase , _UpperCamelCase ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : int = self.proj(_UpperCamelCase ) return x * torch.sigmoid(1.702 * x ) class A__ ( nn.Module ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] ) -> Dict: """simple docstring""" super().__init__() _UpperCAmelCase : int = nn.Embedding(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase : Union[str, Any] = nn.SiLU() _UpperCAmelCase : Any = nn.Linear(_UpperCamelCase , embedding_dim * 2 ) _UpperCAmelCase : Dict = nn.LayerNorm(_UpperCamelCase , elementwise_affine=_UpperCamelCase ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int ) -> Dict: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase ) ) ) _UpperCAmelCase : Tuple = torch.chunk(_UpperCamelCase , 2 ) _UpperCAmelCase : Tuple = self.norm(_UpperCamelCase ) * (1 + scale) + shift return x class A__ ( nn.Module ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ) -> Tuple: """simple docstring""" super().__init__() _UpperCAmelCase : int = CombinedTimestepLabelEmbeddings(_UpperCamelCase , _UpperCamelCase ) _UpperCAmelCase : int = nn.SiLU() _UpperCAmelCase : List[str] = nn.Linear(_UpperCamelCase , 6 * embedding_dim , bias=_UpperCamelCase ) _UpperCAmelCase : str = nn.LayerNorm(_UpperCamelCase , elementwise_affine=_UpperCamelCase , eps=1e-6 ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str=None ) -> List[str]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.linear(self.silu(self.emb(_UpperCamelCase , _UpperCamelCase , hidden_dtype=_UpperCamelCase ) ) ) _UpperCAmelCase : Any = emb.chunk(6 , dim=1 ) _UpperCAmelCase : str = self.norm(_UpperCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class A__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : float = 1e-5 ) -> Optional[int]: """simple docstring""" super().__init__() _UpperCAmelCase : Optional[int] = num_groups _UpperCAmelCase : List[Any] = eps if act_fn is None: _UpperCAmelCase : int = None else: _UpperCAmelCase : Dict = get_activation(_UpperCamelCase ) _UpperCAmelCase : Optional[int] = nn.Linear(_UpperCamelCase , out_dim * 2 ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] ) -> List[Any]: """simple docstring""" if self.act: _UpperCAmelCase : Any = self.act(_UpperCamelCase ) _UpperCAmelCase : Optional[int] = self.linear(_UpperCamelCase ) _UpperCAmelCase : Dict = emb[:, :, None, None] _UpperCAmelCase : str = emb.chunk(2 , dim=1 ) _UpperCAmelCase : str = F.group_norm(_UpperCamelCase , self.num_groups , eps=self.eps ) _UpperCAmelCase : List[str] = x * (1 + scale) + shift return x
358
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') __a = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" if self.train_file is not None: _UpperCAmelCase : List[Any] = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCAmelCase : List[str] = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A__ : """simple docstring""" UpperCamelCase_ : PreTrainedTokenizerBase UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[int] = None def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels" _UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features] _UpperCAmelCase : str = len(lowerCAmelCase__ ) _UpperCAmelCase : int = len(features[0]["input_ids"] ) _UpperCAmelCase : str = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features ] _UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) ) _UpperCAmelCase : Any = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) return batch def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag", a_, a_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCAmelCase : Union[str, Any] = {} if data_args.train_file is not None: _UpperCAmelCase : str = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase : Optional[Any] = data_args.validation_file _UpperCAmelCase : Dict = data_args.train_file.split("." )[-1] _UpperCAmelCase : Optional[int] = load_dataset( a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: # Downloading and loading the swag dataset from the hub. _UpperCAmelCase : Dict = load_dataset( "swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )] _UpperCAmelCase : List[Any] = "sent1" _UpperCAmelCase : Optional[int] = "sent2" if data_args.max_seq_length is None: _UpperCAmelCase : List[str] = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _UpperCAmelCase : Dict = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]] _UpperCAmelCase : Tuple = examples[question_header_name] _UpperCAmelCase : Optional[Any] = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ ) ] # Flatten out _UpperCAmelCase : List[str] = list(chain(*a_ ) ) _UpperCAmelCase : Dict = list(chain(*a_ ) ) # Tokenize _UpperCAmelCase : List[Any] = tokenizer( a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _UpperCAmelCase : int = raw_datasets["train"] if data_args.max_train_samples is not None: _UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples ) _UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _UpperCAmelCase : Union[str, Any] = train_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _UpperCAmelCase : Dict = raw_datasets["validation"] if data_args.max_eval_samples is not None: _UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples ) _UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _UpperCAmelCase : Optional[int] = eval_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator _UpperCAmelCase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a_: Tuple ): _UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions _UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCAmelCase : Any = Trainer( model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, ) # Training if training_args.do_train: _UpperCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : List[str] = last_checkpoint _UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase : str = train_result.metrics _UpperCAmelCase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) _UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) ) trainer.log_metrics("train", a_ ) trainer.save_metrics("train", a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase : List[Any] = trainer.evaluate() _UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) _UpperCAmelCase : Tuple = min(a_, len(a_ ) ) trainer.log_metrics("eval", a_ ) trainer.save_metrics("eval", a_ ) _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __UpperCAmelCase ( a_: int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
17
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def __UpperCAmelCase ( a_: List[str] ): return ConvertCommand( args.model_type, args.tf_checkpoint, args.pytorch_dump_output, args.config, args.finetuning_task_name ) __a = """ transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. """ class A__ ( __A ): """simple docstring""" @staticmethod def _lowerCAmelCase ( lowerCAmelCase__ : Any ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : List[str] = parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=__lowercase , required=__lowercase , help="Model\'s type." ) train_parser.add_argument( "--tf_checkpoint" , type=__lowercase , required=__lowercase , help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output" , type=__lowercase , required=__lowercase , help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config" , type=__lowercase , default="" , help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name" , type=__lowercase , default=__lowercase , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=__lowercase ) def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , *lowerCAmelCase__ : Any , ) -> Dict: """simple docstring""" _UpperCAmelCase : int = logging.get_logger("transformers-cli/converting" ) self._logger.info(F"""Loading model {model_type}""" ) _UpperCAmelCase : Dict = model_type _UpperCAmelCase : str = tf_checkpoint _UpperCAmelCase : Dict = pytorch_dump_output _UpperCAmelCase : Dict = config _UpperCAmelCase : List[str] = finetuning_task_name def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(__lowercase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) if "ckpt" in self._tf_checkpoint.lower(): _UpperCAmelCase : Any = self._tf_checkpoint _UpperCAmelCase : Optional[Any] = "" else: _UpperCAmelCase : Any = self._tf_checkpoint _UpperCAmelCase : str = "" convert_transfo_xl_checkpoint_to_pytorch( __lowercase , self._config , self._pytorch_dump_output , __lowercase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(__lowercase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
359
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str: """simple docstring""" super().__init__() _UpperCAmelCase : List[str] = model _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass def __UpperCAmelCase ( a_: str, a_: str, a_: str ): # load longformer model from model identifier _UpperCAmelCase : int = LongformerModel.from_pretrained(a_ ) _UpperCAmelCase : Any = LightningModel(a_ ) _UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model _UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(a_ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : str = tf.convert_to_tensor( [ [ 8.222_0991, # 3rd highest value; idx. 0 -0.562_0044, 5.2322_9752, 4.038_6393, -6.879_8378, -0.5478_5802, -3.201_2153, 2.9277_7176, 1.8817_1953, 7.3534_1276, # 5th highest value; idx. 9 8.4320_7833, # 2nd highest value; idx. 10 -9.8571_1836, -5.9620_9236, -1.1303_9161, -7.111_5294, -0.836_9633, -5.318_6408, 7.0642_7407, 0.8136_9344, -0.8202_3817, -5.917_9796, 0.5881_3443, -6.9977_8438, 4.7155_1189, -0.1877_1637, 7.4402_0759, # 4th highest value; idx. 25 9.3845_0987, # 1st highest value; idx. 26 2.1266_2941, -9.3256_2038, 2.3565_2522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5842_5518, 4.5313_9238, -5.5751_0464, -6.2803_0699, -7.1952_9503, -4.0212_2551, 1.3933_7037, -6.0670_7057, 1.5948_0517, -9.64_3119, 0.0390_7799, 0.6723_1762, -8.8820_6726, 6.2711_5922, # 4th highest value; idx. 13 2.2852_0723, 4.8276_7506, 4.3042_1368, 8.827_5313, # 2nd highest value; idx. 17 5.4402_9958, # 5th highest value; idx. 18 -4.473_5794, 7.3857_9536, # 3rd highest value; idx. 20 -2.9105_1663, 2.6194_6077, -2.567_4762, -9.4895_9302, -4.0292_2645, -1.3541_6918, 9.6770_2323, # 1st highest value; idx. 27 -5.8947_8553, 1.8537_0467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) _UpperCAmelCase : int = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above _UpperCAmelCase : Optional[Any] = tf.convert_to_tensor( [8.22_2099, 7.353_4126, 8.43_2078, 7.440_2075, 9.3_8451, 6.27_1159, 8.82_7531, 5.440_2995, 7.385_7956, 9.67_7023] , dtype=tf.floataa , ) # expected non filtered values as noted above _UpperCAmelCase : Union[str, Any] = tf_top_k_top_p_filtering(snake_case__ , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) _UpperCAmelCase : Optional[Any] = output[output != -float("inf" )] _UpperCAmelCase : Any = tf.cast( tf.where(tf.not_equal(snake_case__ , tf.constant(-float("inf" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1e-12 ) tf.debugging.assert_equal(snake_case__ , snake_case__ ) @require_tf class A__ ( unittest.TestCase , A_ ): """simple docstring""" if is_tf_available(): UpperCamelCase_ : str = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[Any] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCAmelCase : List[Any] = 2 _UpperCAmelCase : List[str] = 2 class A__ ( tf.Module ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : Tuple ) -> Dict: """simple docstring""" super(snake_case__ , self ).__init__() _UpperCAmelCase : str = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids" ), tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask" ), ) , jit_compile=snake_case__ , ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.model.generate( input_ids=snake_case__ , attention_mask=snake_case__ , max_new_tokens=snake_case__ , return_dict_in_generate=snake_case__ , ) return {"sequences": outputs["sequences"]} _UpperCAmelCase : List[Any] = [[2, 0], [1_0_2, 1_0_3]] _UpperCAmelCase : Any = [[1, 0], [1, 1]] _UpperCAmelCase : str = DummyModel(model=snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(snake_case__ , snake_case__ , signatures={"serving_default": dummy_model.serving} ) _UpperCAmelCase : List[str] = tf.saved_model.load(snake_case__ ).signatures["serving_default"] for batch_size in range(1 , len(snake_case__ ) + 1 ): _UpperCAmelCase : int = { "input_ids": tf.constant(dummy_input_ids[:batch_size] ), "attention_mask": tf.constant(dummy_attention_masks[:batch_size] ), } _UpperCAmelCase : Dict = serving_func(**snake_case__ )["sequences"] _UpperCAmelCase : Optional[int] = test_model.generate(**snake_case__ , max_new_tokens=snake_case__ ) tf.debugging.assert_equal(snake_case__ , snake_case__ ) @slow def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" _UpperCAmelCase : str = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCAmelCase : Tuple = 1 _UpperCAmelCase : Any = 2 class A__ ( tf.Module ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Optional[int] ) -> Any: """simple docstring""" super(snake_case__ , self ).__init__() _UpperCAmelCase : Dict = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask" ), ) , jit_compile=snake_case__ , ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.model.generate( input_ids=snake_case__ , attention_mask=snake_case__ , max_new_tokens=snake_case__ , return_dict_in_generate=snake_case__ , ) return {"sequences": outputs["sequences"]} _UpperCAmelCase : List[Any] = [[2], [1_0_2, 1_0_3]] _UpperCAmelCase : Union[str, Any] = [[1], [1, 1]] _UpperCAmelCase : Optional[Any] = DummyModel(model=snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(snake_case__ , snake_case__ , signatures={"serving_default": dummy_model.serving} ) _UpperCAmelCase : int = tf.saved_model.load(snake_case__ ).signatures["serving_default"] for input_row in range(len(snake_case__ ) ): _UpperCAmelCase : List[str] = { "input_ids": tf.constant([dummy_input_ids[input_row]] ), "attention_mask": tf.constant([dummy_attention_masks[input_row]] ), } _UpperCAmelCase : str = serving_func(**snake_case__ )["sequences"] _UpperCAmelCase : Optional[int] = test_model.generate(**snake_case__ , max_new_tokens=snake_case__ ) tf.debugging.assert_equal(snake_case__ , snake_case__ ) @slow @require_tensorflow_text def _lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=snake_case__ ) class A__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str ) -> Any: """simple docstring""" super().__init__() _UpperCAmelCase : List[str] = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(snake_case__ , "spiece.model" ) , "rb" ).read() ) _UpperCAmelCase : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5" ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : str , *lowerCAmelCase__ : Any , **lowerCAmelCase__ : List[str] ) -> Dict: """simple docstring""" _UpperCAmelCase : str = self.tokenizer.tokenize(snake_case__ ) _UpperCAmelCase : str = text.pad_model_inputs( snake_case__ , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) _UpperCAmelCase : str = self.model.generate(input_ids=snake_case__ , attention_mask=snake_case__ ) return self.tokenizer.detokenize(snake_case__ ) _UpperCAmelCase : Union[str, Any] = CompleteSentenceTransformer() _UpperCAmelCase : Any = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs" ) _UpperCAmelCase : List[Any] = complete_model(snake_case__ ) _UpperCAmelCase : Optional[Any] = tf.keras.Model(snake_case__ , snake_case__ ) keras_model.save(snake_case__ ) def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase : int = { "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 1_0, "temperature": 0.7, } _UpperCAmelCase : List[Any] = 1_4 _UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCAmelCase : str = "Hello, my dog is cute and" _UpperCAmelCase : Union[str, Any] = tokenizer(snake_case__ , return_tensors="tf" ) _UpperCAmelCase : List[Any] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCAmelCase : List[Any] = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) _UpperCAmelCase : int = model.generate(**snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) _UpperCAmelCase : Tuple = [6_3_8, 1_9_8] with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) _UpperCAmelCase : Union[str, Any] = model.generate(**snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart" ) _UpperCAmelCase : Tuple = "Hugging Face is a technology company based in New York and Paris." _UpperCAmelCase : int = bart_tokenizer(snake_case__ , return_tensors="tf" ).input_ids _UpperCAmelCase : Optional[int] = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart" ) _UpperCAmelCase : str = bart_model.generate(snake_case__ ).numpy() class A__ ( A_ ): """simple docstring""" def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int=None , **lowerCAmelCase__ : int ) -> Dict: """simple docstring""" return super().call(snake_case__ , **snake_case__ ) _UpperCAmelCase : str = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart" ) _UpperCAmelCase : Tuple = bart_model.generate(snake_case__ , foo="bar" ).numpy() self.assertTrue(np.array_equal(snake_case__ , snake_case__ ) ) class A__ ( bart_model.model.encoder.__class__ ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : Optional[Any] ) -> List[Any]: """simple docstring""" return super().call(snake_case__ , **snake_case__ ) _UpperCAmelCase : Tuple = FakeEncoder(bart_model.config , bart_model.model.shared ) _UpperCAmelCase : Tuple = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) _UpperCAmelCase : Tuple = bart_model.generate(snake_case__ ).numpy() with self.assertRaises(snake_case__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(snake_case__ , foo="bar" )
360
'''simple docstring''' from importlib import import_module from .logging import get_logger __a = get_logger(__name__) class A__ : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class A__ : """simple docstring""" UpperCamelCase_ : Union[str, Any] = [] def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = obj _UpperCAmelCase : int = target _UpperCAmelCase : Optional[int] = new _UpperCAmelCase : Any = target.split("." )[0] _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : Dict = attrs or [] def __enter__( self : List[str] ) -> int: """simple docstring""" *_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: _UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCAmelCase : Tuple = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) _UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: _UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCAmelCase : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.__enter__() self._active_patches.append(self ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
17
0
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __UpperCAmelCase ( a_: int, a_: Dict=None ): _UpperCAmelCase : List[Any] = None if token is not None: _UpperCAmelCase : Dict = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""} _UpperCAmelCase : Dict = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" _UpperCAmelCase : Tuple = requests.get(lowerCAmelCase__, headers=lowerCAmelCase__ ).json() _UpperCAmelCase : Union[str, Any] = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) _UpperCAmelCase : Optional[Any] = math.ceil((result["total_count"] - 100) / 100 ) for i in range(lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] = requests.get(url + f"""&page={i + 2}""", headers=lowerCAmelCase__ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def __UpperCAmelCase ( a_: List[str], a_: Optional[int]=None ): _UpperCAmelCase : List[Any] = None if token is not None: _UpperCAmelCase : Dict = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""} _UpperCAmelCase : int = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" _UpperCAmelCase : List[str] = requests.get(lowerCAmelCase__, headers=lowerCAmelCase__ ).json() _UpperCAmelCase : Dict = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) _UpperCAmelCase : Any = math.ceil((result["total_count"] - 100) / 100 ) for i in range(lowerCAmelCase__ ): _UpperCAmelCase : List[Any] = requests.get(url + f"""&page={i + 2}""", headers=lowerCAmelCase__ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Any, a_: Optional[int] ): _UpperCAmelCase : Tuple = None if token is not None: _UpperCAmelCase : List[str] = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""} _UpperCAmelCase : Tuple = requests.get(lowerCAmelCase__, headers=lowerCAmelCase__, allow_redirects=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = result.headers["Location"] _UpperCAmelCase : Any = requests.get(lowerCAmelCase__, allow_redirects=lowerCAmelCase__ ) _UpperCAmelCase : Dict = os.path.join(lowerCAmelCase__, f"""{artifact_name}.zip""" ) with open(lowerCAmelCase__, "wb" ) as fp: fp.write(response.content ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Dict=None ): _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Dict = [] _UpperCAmelCase : Dict = None with zipfile.ZipFile(lowerCAmelCase__ ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(lowerCAmelCase__ ) as f: for line in f: _UpperCAmelCase : Tuple = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _UpperCAmelCase : str = line[: line.index(": " )] _UpperCAmelCase : Tuple = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed _UpperCAmelCase : Optional[int] = line[len("FAILED " ) :] failed_tests.append(lowerCAmelCase__ ) elif filename == "job_name.txt": _UpperCAmelCase : Union[str, Any] = line if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError( f"""`errors` and `failed_tests` should have the same number of elements. Got {len(lowerCAmelCase__ )} for `errors` """ f"""and {len(lowerCAmelCase__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" " problem." ) _UpperCAmelCase : List[Any] = None if job_name and job_links: _UpperCAmelCase : Union[str, Any] = job_links.get(lowerCAmelCase__, lowerCAmelCase__ ) # A list with elements of the form (line of error, error, failed test) _UpperCAmelCase : List[Any] = [x + [y] + [job_link] for x, y in zip(lowerCAmelCase__, lowerCAmelCase__ )] return result def __UpperCAmelCase ( a_: str, a_: Optional[int]=None ): _UpperCAmelCase : List[str] = [] _UpperCAmelCase : str = [os.path.join(lowerCAmelCase__, lowerCAmelCase__ ) for p in os.listdir(lowerCAmelCase__ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(lowerCAmelCase__, job_links=lowerCAmelCase__ ) ) return errors def __UpperCAmelCase ( a_: Any, a_: Union[str, Any]=None ): _UpperCAmelCase : str = Counter() counter.update([x[1] for x in logs] ) _UpperCAmelCase : Dict = counter.most_common() _UpperCAmelCase : str = {} for error, count in counts: if error_filter is None or error not in error_filter: _UpperCAmelCase : Any = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} _UpperCAmelCase : Optional[Any] = dict(sorted(r.items(), key=lambda a_ : item[1]["count"], reverse=lowerCAmelCase__ ) ) return r def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[Any] = test.split("::" )[0] if test.startswith("tests/models/" ): _UpperCAmelCase : Any = test.split("/" )[2] else: _UpperCAmelCase : int = None return test def __UpperCAmelCase ( a_: int, a_: List[Any]=None ): _UpperCAmelCase : Union[str, Any] = [(x[0], x[1], get_model(x[2] )) for x in logs] _UpperCAmelCase : int = [x for x in logs if x[2] is not None] _UpperCAmelCase : Union[str, Any] = {x[2] for x in logs} _UpperCAmelCase : List[str] = {} for test in tests: _UpperCAmelCase : Dict = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _UpperCAmelCase : int = counter.most_common() _UpperCAmelCase : Optional[int] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _UpperCAmelCase : int = sum(error_counts.values() ) if n_errors > 0: _UpperCAmelCase : Optional[Any] = {"count": n_errors, "errors": error_counts} _UpperCAmelCase : Optional[int] = dict(sorted(r.items(), key=lambda a_ : item[1]["count"], reverse=lowerCAmelCase__ ) ) return r def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[Any] = "| no. | error | status |" _UpperCAmelCase : Optional[Any] = "|-:|:-|:-|" _UpperCAmelCase : Optional[int] = [header, sep] for error in reduced_by_error: _UpperCAmelCase : Any = reduced_by_error[error]["count"] _UpperCAmelCase : int = f"""| {count} | {error[:100]} | |""" lines.append(lowerCAmelCase__ ) return "\n".join(lowerCAmelCase__ ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Dict = "| model | no. of errors | major error | count |" _UpperCAmelCase : Optional[int] = "|-:|-:|-:|-:|" _UpperCAmelCase : List[str] = [header, sep] for model in reduced_by_model: _UpperCAmelCase : List[Any] = reduced_by_model[model]["count"] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = list(reduced_by_model[model]["errors"].items() )[0] _UpperCAmelCase : List[str] = f"""| {model} | {count} | {error[:60]} | {_count} |""" lines.append(lowerCAmelCase__ ) return "\n".join(lowerCAmelCase__ ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') __a = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __a = get_job_links(args.workflow_run_id, token=args.token) __a = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __a = k.find(' / ') __a = k[index + len(' / ') :] __a = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __a = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __a = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __a = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __a = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __a = reduce_by_error(errors) __a = reduce_by_model(errors) __a = make_github_table(reduced_by_error) __a = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
361
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a = datasets.utils.logging.get_logger(__name__) __a = ['names', 'prefix'] __a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __a = ['encoding_errors', 'on_bad_lines'] __a = ['date_format'] @dataclass class A__ ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_00_00 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase : Any = self.delimiter if self.column_names is not None: _UpperCAmelCase : List[Any] = self.column_names @property def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase_ : int = CsvConfig def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : str = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase : Tuple = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): _UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
17
0
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __UpperCAmelCase ( a_: str ): if is_torch_version("<", "2.0.0" ) or not hasattr(lowercase__, "_dynamo" ): return False return isinstance(lowercase__, torch._dynamo.eval_frame.OptimizedModule ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple = True ): _UpperCAmelCase : Optional[int] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCAmelCase : Optional[int] = is_compiled_module(lowercase__ ) if is_compiled: _UpperCAmelCase : Optional[int] = model _UpperCAmelCase : int = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowercase__, lowercase__ ): _UpperCAmelCase : Union[str, Any] = model.module if not keep_fpaa_wrapper: _UpperCAmelCase : Any = getattr(lowercase__, "forward" ) _UpperCAmelCase : Tuple = model.__dict__.pop("_original_forward", lowercase__ ) if original_forward is not None: while hasattr(lowercase__, "__wrapped__" ): _UpperCAmelCase : List[Any] = forward.__wrapped__ if forward == original_forward: break _UpperCAmelCase : Optional[Any] = forward if getattr(lowercase__, "_converted_to_transformer_engine", lowercase__ ): convert_model(lowercase__, to_transformer_engine=lowercase__ ) if is_compiled: _UpperCAmelCase : List[Any] = model _UpperCAmelCase : str = compiled_model return model def __UpperCAmelCase ( ): PartialState().wait_for_everyone() def __UpperCAmelCase ( a_: List[Any], a_: Optional[Any] ): if PartialState().distributed_type == DistributedType.TPU: xm.save(lowercase__, lowercase__ ) elif PartialState().local_process_index == 0: torch.save(lowercase__, lowercase__ ) @contextmanager def __UpperCAmelCase ( **a_: str ): for key, value in kwargs.items(): _UpperCAmelCase : List[str] = str(lowercase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __UpperCAmelCase ( a_: Union[str, Any] ): if not hasattr(lowercase__, "__qualname__" ) and not hasattr(lowercase__, "__name__" ): _UpperCAmelCase : List[Any] = getattr(lowercase__, "__class__", lowercase__ ) if hasattr(lowercase__, "__qualname__" ): return obj.__qualname__ if hasattr(lowercase__, "__name__" ): return obj.__name__ return str(lowercase__ ) def __UpperCAmelCase ( a_: Tuple, a_: Union[str, Any] ): for key, value in source.items(): if isinstance(lowercase__, lowercase__ ): _UpperCAmelCase : List[Any] = destination.setdefault(lowercase__, {} ) merge_dicts(lowercase__, lowercase__ ) else: _UpperCAmelCase : Union[str, Any] = value return destination def __UpperCAmelCase ( a_: Union[str, Any] = None ): if port is None: _UpperCAmelCase : List[str] = 29_500 with socket.socket(socket.AF_INET, socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
362
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: list[int] ): if not nums: return 0 _UpperCAmelCase : int = nums[0] _UpperCAmelCase : Dict = 0 for num in nums[1:]: _UpperCAmelCase , _UpperCAmelCase : Any = ( max_excluding + num, max(a_, a_ ), ) return max(a_, a_ ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = """laion/clap-htsat-unfused""" _UpperCAmelCase : Dict = tempfile.mkdtemp() def _lowerCAmelCase ( self : Union[str, Any] , **lowerCAmelCase__ : List[str] ) -> str: """simple docstring""" return RobertaTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] , **lowerCAmelCase__ : List[Any] ) -> Optional[int]: """simple docstring""" return ClapFeatureExtractor.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" _UpperCAmelCase : List[str] = self.get_tokenizer() _UpperCAmelCase : Tuple = self.get_feature_extractor() _UpperCAmelCase : Any = ClapProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Optional[Any] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[int] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : List[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _UpperCAmelCase : List[Any] = self.get_feature_extractor(do_normalize=lowerCAmelCase__ , padding_value=1.0 ) _UpperCAmelCase : Any = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = self.get_feature_extractor() _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : List[Any] = ClapProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = floats_list((3, 1_0_0_0) ) _UpperCAmelCase : Union[str, Any] = feature_extractor(lowerCAmelCase__ , return_tensors="np" ) _UpperCAmelCase : str = processor(audios=lowerCAmelCase__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : str = self.get_feature_extractor() _UpperCAmelCase : Any = self.get_tokenizer() _UpperCAmelCase : List[Any] = ClapProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) _UpperCAmelCase : int = """This is a test string""" _UpperCAmelCase : List[Any] = processor(text=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = tokenizer(lowerCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : str = self.get_feature_extractor() _UpperCAmelCase : Optional[Any] = self.get_tokenizer() _UpperCAmelCase : List[Any] = ClapProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) _UpperCAmelCase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase : Optional[int] = processor.batch_decode(lowerCAmelCase__ ) _UpperCAmelCase : int = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Dict = self.get_feature_extractor() _UpperCAmelCase : List[Any] = self.get_tokenizer() _UpperCAmelCase : Dict = ClapProcessor(tokenizer=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , )
363
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): _UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" ) if key.startswith("module.decoder" ): _UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] _UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )] _UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" ) if "attn.q" in key: _UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Dict = key.replace("attn", "attention.self" ) if "fc1" in key: _UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" ) if "fc2" in key: _UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Any = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" ) _UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: _UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" ) if "skip_conv1" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" ) if "skip_conv2" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" ) if "fusion1" in key: _UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" ) if "fusion2" in key: _UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" ) if "fusion3" in key: _UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" ) if "fusion" in key and "conv" in key: _UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): _UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" ) _UpperCAmelCase : int = value return new_state_dict def __UpperCAmelCase ( a_: str, a_: List[Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ): _UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _UpperCAmelCase : Dict = GLPNImageProcessor() # prepare image _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) ) # rename keys _UpperCAmelCase : List[str] = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict _UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _UpperCAmelCase : Dict = model(a_ ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _UpperCAmelCase : Optional[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _UpperCAmelCase : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) _UpperCAmelCase : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
17
0
'''simple docstring''' def __UpperCAmelCase ( a_: List[Any], a_: str ): _UpperCAmelCase : str = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __UpperCAmelCase ( a_: Optional[int], a_: Tuple, a_: Any ): _UpperCAmelCase : Any = 0 while b > 0: if b & 1: _UpperCAmelCase : int = ((res % c) + (a % c)) % c a += a b >>= 1 return res
364
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : int = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _UpperCAmelCase : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(a_ ) ), }, features=a_, ) return dataset @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=a_ ) return filename # FILE_CONTENT + files __a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt" _UpperCAmelCase : Tuple = FILE_CONTENT with open(a_, "w" ) as f: f.write(a_ ) return filename @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" ) with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import gzip _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _UpperCAmelCase : Any = bytes(a_, "utf-8" ) with gzip.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _UpperCAmelCase : str = bytes(a_, "utf-8" ) with lza.frame.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Any ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(a_, "w" ) as archive: archive.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: List[str] ): import tarfile _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): import lzma _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _UpperCAmelCase : List[str] = bytes(a_, "utf-8" ) with lzma.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: Tuple ): import zipfile _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _UpperCAmelCase : int = bytes(a_, "utf-8" ) with zstd.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml" _UpperCAmelCase : Tuple = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(a_, "w" ) as f: f.write(a_ ) return filename __a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : str = datasets.Dataset.from_dict(a_ ) _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(a_ ) ) as con: _UpperCAmelCase : List[Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str, a_: str ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(a_, "rb" ) as f: _UpperCAmelCase : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ): _UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) ) f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ): _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _UpperCAmelCase : Dict = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(a_, "wb" ) as f: _UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ ) _UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ ) writer.write_table(a_ ) writer.close() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : str = {"data": DATA} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(a_, "w" ) as f: for item in DATA_312: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(a_, "w" ) as f: for item in DATA_STR: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ): import gzip _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ): import gzip _UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ): _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : List[str] = ["0", "1", "2", "3"] _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Dict = ["0", "1", "2", "3"] _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = ["0", "1", "2", "3"] _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename("unsupported.ext" ) ) f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) return data_dir
17
0
'''simple docstring''' from math import factorial def __UpperCAmelCase ( a_: int, a_: int ): if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k" ) return factorial(__a ) // (factorial(__a ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', f'fifty-two card deck is: {combinations(52, 5)}\n', ) print( 'If a class of 40 students must be arranged into groups of', f'4 for group projects, there are {combinations(40, 4)} ways', 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', f'are {combinations(10, 3)} ways that first, second and', 'third place can be awarded.', )
365
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = BarthezTokenizer UpperCamelCase_ : List[Any] = BarthezTokenizerFast UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : Optional[int] = True def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" super().setUp() _UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = "<pad>" _UpperCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] _UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] _UpperCAmelCase : int = self.tokenizer( lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() _UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé." _UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase : Tuple = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , )
17
0
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') __a = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) __a = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) __a = BeautifulSoup(res.text, 'html.parser') __a = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f'https://google.com{link.get("href")}')
366
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0} _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : str = max_resolution _UpperCAmelCase : List[Any] = size _UpperCAmelCase : Union[str, Any] = do_normalize _UpperCAmelCase : Optional[Any] = do_convert_rgb _UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] _UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image() _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : str = 2_0_4_8 _UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Union[str, Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _UpperCAmelCase : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches _UpperCAmelCase : Any = "Hello" _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : List[Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) _UpperCAmelCase : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Union[str, Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCAmelCase : List[Any] = 3 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Tuple = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
17
0
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: list[list[int]] ): # preprocessing the first row for i in range(1, len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1, len(_UpperCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1, len(_UpperCamelCase ) ): for j in range(1, len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j], matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
367
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''time_series_transformer''' UpperCamelCase_ : Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = prediction_length _UpperCAmelCase : Optional[Any] = context_length or prediction_length _UpperCAmelCase : Optional[Any] = distribution_output _UpperCAmelCase : Union[str, Any] = loss _UpperCAmelCase : Dict = input_size _UpperCAmelCase : int = num_time_features _UpperCAmelCase : Any = lags_sequence _UpperCAmelCase : Dict = scaling _UpperCAmelCase : Tuple = num_dynamic_real_features _UpperCAmelCase : Dict = num_static_real_features _UpperCAmelCase : Union[str, Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Optional[int] = cardinality else: _UpperCAmelCase : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : List[Any] = embedding_dimension else: _UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : str = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features _UpperCAmelCase : str = d_model _UpperCAmelCase : Optional[Any] = encoder_attention_heads _UpperCAmelCase : Dict = decoder_attention_heads _UpperCAmelCase : List[Any] = encoder_ffn_dim _UpperCAmelCase : str = decoder_ffn_dim _UpperCAmelCase : Dict = encoder_layers _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : Any = dropout _UpperCAmelCase : str = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : Dict = encoder_layerdrop _UpperCAmelCase : Any = decoder_layerdrop _UpperCAmelCase : Optional[Any] = activation_function _UpperCAmelCase : Tuple = init_std _UpperCAmelCase : List[str] = use_cache super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class A__ ( a__ ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = 'philschmid/bart-large-cnn-samsum' UpperCamelCase_ : Optional[Any] = ( 'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ' 'and returns a summary of the text.' ) UpperCamelCase_ : Tuple = 'summarizer' UpperCamelCase_ : int = AutoTokenizer UpperCamelCase_ : int = AutoModelForSeqaSeqLM UpperCamelCase_ : List[Any] = ['text'] UpperCamelCase_ : Optional[Any] = ['text'] def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Any ) -> Tuple: """simple docstring""" return self.pre_processor(_lowerCamelCase , return_tensors="pt" , truncation=_lowerCamelCase ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Tuple ) -> List[Any]: """simple docstring""" return self.model.generate(**_lowerCamelCase )[0] def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Tuple ) -> Tuple: """simple docstring""" return self.pre_processor.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase )
368
'''simple docstring''' import baseaa def __UpperCAmelCase ( a_: str ): return baseaa.baaencode(string.encode("utf-8" ) ) def __UpperCAmelCase ( a_: bytes ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": __a = 'Hello World!' __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
17
0
'''simple docstring''' def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[Any], a_: List[str], a_: int, a_: Tuple, a_: Any ): if index == r: for j in range(__SCREAMING_SNAKE_CASE ): print(data[j], end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location _UpperCAmelCase : List[Any] = arr[i] combination_util(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, index + 1, __SCREAMING_SNAKE_CASE, i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def __UpperCAmelCase ( a_: List[Any], a_: List[str], a_: Optional[Any] ): _UpperCAmelCase : str = [0] * r # Print all combination using temporary array 'data[]' combination_util(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, 0, __SCREAMING_SNAKE_CASE, 0 ) if __name__ == "__main__": # Driver code to check the function above __a = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
369
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" UpperCamelCase_ : Any = XGLMConfig UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Dict = '''gelu''' def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : str = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : int = d_model _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Tuple = ffn_dim _UpperCAmelCase : Any = activation_function _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Any = None _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Tuple = 1 def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _UpperCAmelCase : Any = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[Any] = self.get_config() _UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : Dict = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Tuple = False def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = TFXGLMModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on _UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) _UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" ) _UpperCAmelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): _UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) _UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[int] = "left" # use different length sentences to test batching _UpperCAmelCase : Tuple = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = inputs["input_ids"] _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 ) _UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
17
0
'''simple docstring''' import math def __UpperCAmelCase ( a_: int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCAmelCase ( a_: int = 10_001 ): try: _UpperCAmelCase : Any = int(UpperCAmelCase__ ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) _UpperCAmelCase : list[int] = [] _UpperCAmelCase : List[str] = 2 while len(UpperCAmelCase__ ) < nth: if is_prime(UpperCAmelCase__ ): primes.append(UpperCAmelCase__ ) num += 1 else: num += 1 return primes[len(UpperCAmelCase__ ) - 1] if __name__ == "__main__": print(f'{solution() = }')
370
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def __UpperCAmelCase ( a_: Tuple, a_: Any ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ), ], ) def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ): _UpperCAmelCase : Tuple = str(a_ ) dataset_info.write_to_directory(a_ ) _UpperCAmelCase : Any = DatasetInfo.from_directory(a_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a_, "dataset_info.json" ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, ) _UpperCAmelCase : Tuple = dataset_info._to_yaml_dict() assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) _UpperCAmelCase : List[Any] = yaml.safe_dump(a_ ) _UpperCAmelCase : Optional[int] = yaml.safe_load(a_ ) assert dataset_info_yaml_dict == reloaded def __UpperCAmelCase ( ): _UpperCAmelCase : str = DatasetInfo() _UpperCAmelCase : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1_337 ), } ), ], ) def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ): _UpperCAmelCase : Union[str, Any] = str(a_ ) dataset_infos_dict.write_to_directory(a_ ) _UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a_, "README.md" ) )
17
0
'''simple docstring''' def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Union[str, Any] = int(__a ) if n_element < 1: _UpperCAmelCase : Dict = ValueError("a should be a positive number" ) raise my_error _UpperCAmelCase : Dict = [1] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = (0, 0, 0) _UpperCAmelCase : List[str] = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2, hamming_list[j] * 3, hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": __a = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') __a = hamming(int(n)) print('-----------------------------------------------------') print(f'The list with nth numbers is: {hamming_numbers}') print('-----------------------------------------------------')
371
'''simple docstring''' from math import factorial def __UpperCAmelCase ( a_: int = 100 ): return sum(map(a_, str(factorial(a_ ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
17
0
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __a = 'http://www.mocksite.com/file1.txt' __a = '"text": ["foo", "foo"]' __a = '6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8' class A__ : """simple docstring""" UpperCamelCase_ : Tuple = 2_00 UpperCamelCase_ : Dict = {"""Content-Length""": """100"""} UpperCamelCase_ : Dict = {} def _lowerCAmelCase ( self : List[Any] , **lowerCAmelCase__ : Tuple ) -> Optional[int]: """simple docstring""" return [bytes(lowercase_ , "utf-8" )] def __UpperCAmelCase ( *a_: Union[str, Any], **a_: Tuple ): return MockResponse() @pytest.mark.parametrize("urls_type", [str, list, dict] ) def __UpperCAmelCase ( a_: List[Any], a_: Union[str, Any], a_: List[str] ): import requests monkeypatch.setattr(__lowerCamelCase, "request", __lowerCamelCase ) _UpperCAmelCase : Tuple = URL if issubclass(__lowerCamelCase, __lowerCamelCase ): _UpperCAmelCase : Union[str, Any] = url elif issubclass(__lowerCamelCase, __lowerCamelCase ): _UpperCAmelCase : Tuple = [url] elif issubclass(__lowerCamelCase, __lowerCamelCase ): _UpperCAmelCase : List[str] = {"train": url} _UpperCAmelCase : Union[str, Any] = "dummy" _UpperCAmelCase : Optional[Any] = "downloads" _UpperCAmelCase : Optional[int] = tmp_path _UpperCAmelCase : List[str] = DownloadConfig( cache_dir=os.path.join(__lowerCamelCase, __lowerCamelCase ), use_etag=__lowerCamelCase, ) _UpperCAmelCase : List[Any] = DownloadManager(dataset_name=__lowerCamelCase, download_config=__lowerCamelCase ) _UpperCAmelCase : List[Any] = dl_manager.download(__lowerCamelCase ) _UpperCAmelCase : List[Any] = urls for downloaded_paths in [downloaded_paths]: if isinstance(__lowerCamelCase, __lowerCamelCase ): _UpperCAmelCase : str = [downloaded_paths] _UpperCAmelCase : int = [urls] elif isinstance(__lowerCamelCase, __lowerCamelCase ): assert "train" in downloaded_paths.keys() _UpperCAmelCase : Tuple = downloaded_paths.values() _UpperCAmelCase : str = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__lowerCamelCase, __lowerCamelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _UpperCAmelCase : List[str] = Path(__lowerCamelCase ) _UpperCAmelCase : List[str] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _UpperCAmelCase : Union[str, Any] = downloaded_path.read_text() assert content == CONTENT _UpperCAmelCase : str = downloaded_path.with_suffix(".json" ) assert metadata_downloaded_path.exists() _UpperCAmelCase : Dict = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("paths_type", [str, list, dict] ) def __UpperCAmelCase ( a_: Optional[int], a_: Tuple, a_: int ): _UpperCAmelCase : Dict = str(__lowerCamelCase ) if issubclass(__lowerCamelCase, __lowerCamelCase ): _UpperCAmelCase : List[str] = filename elif issubclass(__lowerCamelCase, __lowerCamelCase ): _UpperCAmelCase : Optional[int] = [filename] elif issubclass(__lowerCamelCase, __lowerCamelCase ): _UpperCAmelCase : Optional[Any] = {"train": filename} _UpperCAmelCase : Optional[int] = "dummy" _UpperCAmelCase : List[Any] = xz_file.parent _UpperCAmelCase : List[Any] = "extracted" _UpperCAmelCase : Tuple = DownloadConfig( cache_dir=__lowerCamelCase, use_etag=__lowerCamelCase, ) _UpperCAmelCase : Any = DownloadManager(dataset_name=__lowerCamelCase, download_config=__lowerCamelCase ) _UpperCAmelCase : List[str] = dl_manager.extract(__lowerCamelCase ) _UpperCAmelCase : Dict = paths for extracted_paths in [extracted_paths]: if isinstance(__lowerCamelCase, __lowerCamelCase ): _UpperCAmelCase : Optional[int] = [extracted_paths] _UpperCAmelCase : str = [paths] elif isinstance(__lowerCamelCase, __lowerCamelCase ): assert "train" in extracted_paths.keys() _UpperCAmelCase : str = extracted_paths.values() _UpperCAmelCase : Tuple = paths.values() assert extracted_paths for extracted_path, input_path in zip(__lowerCamelCase, __lowerCamelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] _UpperCAmelCase : Union[str, Any] = Path(__lowerCamelCase ) _UpperCAmelCase : List[str] = extracted_path.parts assert parts[-1] == hash_url_to_filename(__lowerCamelCase, etag=__lowerCamelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _UpperCAmelCase : List[str] = extracted_path.read_text() _UpperCAmelCase : str = text_file.read_text() assert extracted_file_content == expected_file_content def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any] ): assert path.endswith(".jsonl" ) for num_items, line in enumerate(__lowerCamelCase, start=1 ): _UpperCAmelCase : Any = json.loads(line.decode("utf-8" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl", ["tar_jsonl_path", "zip_jsonl_path"] ) def __UpperCAmelCase ( a_: int, a_: Union[str, Any] ): _UpperCAmelCase : int = request.getfixturevalue(__lowerCamelCase ) _UpperCAmelCase : Dict = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ), start=1 ): _test_jsonl(__lowerCamelCase, __lowerCamelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl", ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] ) def __UpperCAmelCase ( a_: Any, a_: Tuple ): _UpperCAmelCase : Optional[int] = request.getfixturevalue(__lowerCamelCase ) _UpperCAmelCase : int = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCamelCase ), start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCamelCase ), start=1 ): _test_jsonl(__lowerCamelCase, __lowerCamelCase ) assert num_tar == 1 assert num_jsonl == 2 def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[Any] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__lowerCamelCase ), start=1 ): assert os.path.basename(__lowerCamelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
350
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __a = (3, 9, -11, 0, 7, 5, 1, -1) __a = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : int UpperCamelCase_ : Node | None class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None: """simple docstring""" _UpperCAmelCase : Node | None = None for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ): _UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" _UpperCAmelCase : List[Any] = self.head while node: yield node.data _UpperCAmelCase : List[str] = node.next_node def __len__( self : Any ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return " -> ".join([str(lowerCAmelCase__ ) for node in self] ) def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ): return SortedLinkedList(list(a_ ) + list(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() __a = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
17
0
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class A__ ( __snake_case ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any]=1_3 , lowerCAmelCase__ : Optional[int]=7 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : str=False , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Union[str, Any]=9_9 , lowerCAmelCase__ : Tuple=3_2 , lowerCAmelCase__ : Dict=5 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : List[str]=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : str=5_1_2 , lowerCAmelCase__ : int=1_6 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : List[Any]=0.02 , lowerCAmelCase__ : List[str]=3 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : str=None , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : str = seq_length _UpperCAmelCase : Any = is_training _UpperCAmelCase : Any = use_input_mask _UpperCAmelCase : str = use_token_type_ids _UpperCAmelCase : Dict = use_labels _UpperCAmelCase : int = vocab_size _UpperCAmelCase : Union[str, Any] = hidden_size _UpperCAmelCase : List[str] = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : Optional[int] = intermediate_size _UpperCAmelCase : str = hidden_act _UpperCAmelCase : Union[str, Any] = hidden_dropout_prob _UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob _UpperCAmelCase : str = max_position_embeddings _UpperCAmelCase : Dict = type_vocab_size _UpperCAmelCase : List[Any] = type_sequence_label_size _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : str = num_labels _UpperCAmelCase : Dict = num_choices _UpperCAmelCase : Optional[int] = scope def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Dict = None if self.use_input_mask: _UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Tuple = None _UpperCAmelCase : List[str] = None _UpperCAmelCase : Dict = None if self.use_labels: _UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : List[str] = DistilBertModel(config=a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : int = model(a_ , a_ ) _UpperCAmelCase : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[Any] = DistilBertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Tuple = DistilBertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : Optional[Any] = model( a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase : Any = self.num_labels _UpperCAmelCase : Optional[int] = DistilBertForSequenceClassification(a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.num_labels _UpperCAmelCase : Optional[int] = DistilBertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[Any] = self.num_choices _UpperCAmelCase : Any = DistilBertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Optional[int] = model( a_ , attention_mask=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() (_UpperCAmelCase) : str = config_and_inputs _UpperCAmelCase : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class A__ ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase_ : Optional[Any] = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : Tuple = True UpperCamelCase_ : Any = True UpperCamelCase_ : List[Any] = True UpperCamelCase_ : Any = True def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" _UpperCAmelCase : Any = DistilBertModelTester(self ) _UpperCAmelCase : List[str] = ConfigTester(self , config_class=a_ , dim=3_7 ) def _lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a_ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ ) def _lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a_ ) def _lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ ) def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a_ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Tuple = DistilBertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _UpperCAmelCase : List[str] = True _UpperCAmelCase : Tuple = model_class(config=a_ ) _UpperCAmelCase : Any = self._prepare_for_class(a_ , a_ ) _UpperCAmelCase : Dict = torch.jit.trace( a_ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , "traced_model.pt" ) ) _UpperCAmelCase : int = torch.jit.load(os.path.join(a_ , "traced_model.pt" ) , map_location=a_ ) loaded(inputs_dict["input_ids"].to(a_ ) , inputs_dict["attention_mask"].to(a_ ) ) @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) _UpperCAmelCase : List[Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _UpperCAmelCase : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(a_ , attention_mask=a_ )[0] _UpperCAmelCase : Tuple = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a_ ) _UpperCAmelCase : Optional[int] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1e-4 ) )
351
'''simple docstring''' def __UpperCAmelCase ( a_: str ): if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) _UpperCAmelCase : Optional[Any] = "" while len(a_ ) % 3 != 0: _UpperCAmelCase : List[Any] = "0" + bin_string _UpperCAmelCase : Dict = [ bin_string[index : index + 3] for index in range(len(a_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _UpperCAmelCase : Optional[Any] = 0 for index, val in enumerate(a_ ): oct_val += int(2 ** (2 - index) * int(a_ ) ) oct_string += str(a_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
17
0
'''simple docstring''' from math import sqrt def __UpperCAmelCase ( a_: str ) -> Any: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(sqrt(_A ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCAmelCase ( a_: Tuple = 10_001 ) -> Dict: _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : Optional[Any] = 1 while count != nth and number < 3: number += 1 if is_prime(_A ): count += 1 while count != nth: number += 2 if is_prime(_A ): count += 1 return number if __name__ == "__main__": print(f'{solution() = }')
352
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCAmelCase ( a_: str ): for param in module.parameters(): _UpperCAmelCase : Any = False def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : int = plt.imshow(a_ ) fig.axes.get_xaxis().set_visible(a_ ) fig.axes.get_yaxis().set_visible(a_ ) plt.show() def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = datetime.now() _UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" ) return timestamp
17
0
'''simple docstring''' import enum import shutil import sys __a , __a = shutil.get_terminal_size() __a = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class A__ ( enum.Enum ): """simple docstring""" UpperCamelCase_ : Tuple = 0 UpperCamelCase_ : List[str] = 1 def __UpperCAmelCase ( a_: Dict, a_: Any="" ): sys.stdout.write(str(a_ ) + end ) sys.stdout.flush() def __UpperCAmelCase ( a_: str, a_: List[Any], a_: str="" ): forceWrite(f"""\u001b[{color}m{content}\u001b[0m""", a_ ) def __UpperCAmelCase ( ): forceWrite("\r" ) def __UpperCAmelCase ( a_: int, a_: str ): forceWrite(f"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def __UpperCAmelCase ( ): forceWrite(" " * TERMINAL_WIDTH ) reset_cursor() def __UpperCAmelCase ( ): reset_cursor() forceWrite("-" * TERMINAL_WIDTH )
353
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = (EulerDiscreteScheduler,) UpperCamelCase_ : Tuple = 10 def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : str = { "num_train_timesteps": 1_1_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : Any = self.dummy_model() _UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = output.prev_sample _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = self.dummy_model() _UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : Tuple = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = output.prev_sample _UpperCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : str = self.dummy_model() _UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : str = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : int = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : Optional[int] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
17
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['''YolosFeatureExtractor'''] __a = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
354
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' def __UpperCAmelCase ( ): _UpperCAmelCase : List[str] = 0 for i in range(1, 1_001 ): total += i**i return str(lowercase__ )[-10:] if __name__ == "__main__": print(solution())
355
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( a_: int ): # A local function to see if a dot lands in the circle. def is_in_circle(a_: float, a_: float ) -> bool: _UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase : str = mean( int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) ) for _ in range(a_ ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase : Optional[int] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ): return mean( function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value) def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ): def identity_function(a_: float ) -> float: return x _UpperCAmelCase : Union[str, Any] = area_under_curve_estimator( a_, a_, a_, a_ ) _UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def __UpperCAmelCase ( a_: int ): def function_to_integrate(a_: float ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase : List[str] = area_under_curve_estimator( a_, a_, 0.0, 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class A__ ( __lowerCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = 'efficientformer' def __init__( self : str , lowerCAmelCase__ : List[int] = [3, 2, 6, 4] , lowerCAmelCase__ : List[int] = [4_8, 9_6, 2_2_4, 4_4_8] , lowerCAmelCase__ : List[bool] = [True, True, True, True] , lowerCAmelCase__ : int = 4_4_8 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 4 , lowerCAmelCase__ : int = 7 , lowerCAmelCase__ : int = 5 , lowerCAmelCase__ : int = 8 , lowerCAmelCase__ : int = 4 , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : int = 1_6 , lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : float = 1e-5 , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : float = 1e-12 , lowerCAmelCase__ : int = 2_2_4 , lowerCAmelCase__ : float = 1e-05 , **lowerCAmelCase__ : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**UpperCamelCase_ ) _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : Dict = hidden_sizes _UpperCAmelCase : Dict = num_hidden_layers _UpperCAmelCase : List[str] = num_attention_heads _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Optional[Any] = layer_norm_eps _UpperCAmelCase : List[str] = patch_size _UpperCAmelCase : Optional[Any] = num_channels _UpperCAmelCase : List[str] = depths _UpperCAmelCase : int = mlp_expansion_ratio _UpperCAmelCase : List[str] = downsamples _UpperCAmelCase : List[str] = dim _UpperCAmelCase : List[str] = key_dim _UpperCAmelCase : Optional[Any] = attention_ratio _UpperCAmelCase : Tuple = resolution _UpperCAmelCase : List[Any] = pool_size _UpperCAmelCase : int = downsample_patch_size _UpperCAmelCase : Tuple = downsample_stride _UpperCAmelCase : Optional[int] = downsample_pad _UpperCAmelCase : Union[str, Any] = drop_path_rate _UpperCAmelCase : List[Any] = num_metaad_blocks _UpperCAmelCase : Union[str, Any] = distillation _UpperCAmelCase : int = use_layer_scale _UpperCAmelCase : Optional[int] = layer_scale_init_value _UpperCAmelCase : Any = image_size _UpperCAmelCase : Tuple = batch_norm_eps
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __a = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2FeatureExtractor'] __a = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
0
'''simple docstring''' def __UpperCAmelCase ( a_: str = 10, a_: Optional[Any] = 22 ): _UpperCAmelCase : Optional[Any] = range(1, a_ ) _UpperCAmelCase : List[str] = range(1, a_ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'{solution(10, 22) = }')
357
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if not isinstance(a_, a_ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(a_, a_ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) _UpperCAmelCase : List[str] = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(a_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __a = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
358
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') __a = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" if self.train_file is not None: _UpperCAmelCase : List[Any] = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCAmelCase : List[str] = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A__ : """simple docstring""" UpperCamelCase_ : PreTrainedTokenizerBase UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[int] = None def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels" _UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features] _UpperCAmelCase : str = len(lowerCAmelCase__ ) _UpperCAmelCase : int = len(features[0]["input_ids"] ) _UpperCAmelCase : str = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features ] _UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) ) _UpperCAmelCase : Any = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) return batch def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag", a_, a_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCAmelCase : Union[str, Any] = {} if data_args.train_file is not None: _UpperCAmelCase : str = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase : Optional[Any] = data_args.validation_file _UpperCAmelCase : Dict = data_args.train_file.split("." )[-1] _UpperCAmelCase : Optional[int] = load_dataset( a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: # Downloading and loading the swag dataset from the hub. _UpperCAmelCase : Dict = load_dataset( "swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )] _UpperCAmelCase : List[Any] = "sent1" _UpperCAmelCase : Optional[int] = "sent2" if data_args.max_seq_length is None: _UpperCAmelCase : List[str] = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _UpperCAmelCase : Dict = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]] _UpperCAmelCase : Tuple = examples[question_header_name] _UpperCAmelCase : Optional[Any] = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ ) ] # Flatten out _UpperCAmelCase : List[str] = list(chain(*a_ ) ) _UpperCAmelCase : Dict = list(chain(*a_ ) ) # Tokenize _UpperCAmelCase : List[Any] = tokenizer( a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _UpperCAmelCase : int = raw_datasets["train"] if data_args.max_train_samples is not None: _UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples ) _UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _UpperCAmelCase : Union[str, Any] = train_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _UpperCAmelCase : Dict = raw_datasets["validation"] if data_args.max_eval_samples is not None: _UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples ) _UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _UpperCAmelCase : Optional[int] = eval_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator _UpperCAmelCase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a_: Tuple ): _UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions _UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCAmelCase : Any = Trainer( model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, ) # Training if training_args.do_train: _UpperCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : List[str] = last_checkpoint _UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase : str = train_result.metrics _UpperCAmelCase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) _UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) ) trainer.log_metrics("train", a_ ) trainer.save_metrics("train", a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase : List[Any] = trainer.evaluate() _UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) _UpperCAmelCase : Tuple = min(a_, len(a_ ) ) trainer.log_metrics("eval", a_ ) trainer.save_metrics("eval", a_ ) _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __UpperCAmelCase ( a_: int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
17
0
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __a = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class A__ : """simple docstring""" UpperCamelCase_ : Union[str, Any] = PegasusConfig UpperCamelCase_ : Any = {} UpperCamelCase_ : Optional[Any] = 'gelu' def __init__( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str]=1_3 , lowerCAmelCase__ : Dict=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : str=9_9 , lowerCAmelCase__ : Optional[Any]=3_2 , lowerCAmelCase__ : str=5 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : Union[str, Any]=3_7 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Optional[int]=2_0 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : List[str]=1 , lowerCAmelCase__ : Dict=0 , ) -> Any: """simple docstring""" _UpperCAmelCase : Dict = parent _UpperCAmelCase : Optional[int] = batch_size _UpperCAmelCase : int = seq_length _UpperCAmelCase : Any = is_training _UpperCAmelCase : Dict = use_labels _UpperCAmelCase : Tuple = vocab_size _UpperCAmelCase : int = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : Dict = num_attention_heads _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : Optional[int] = hidden_dropout_prob _UpperCAmelCase : Tuple = attention_probs_dropout_prob _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : Any = eos_token_id _UpperCAmelCase : List[str] = pad_token_id _UpperCAmelCase : int = bos_token_id def _lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) _UpperCAmelCase : Tuple = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCAmelCase : Optional[Any] = np.concatenate([input_ids, eos_tensor] , axis=1 ) _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCAmelCase : Tuple = prepare_pegasus_inputs_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, inputs_dict def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Any = 2_0 _UpperCAmelCase : str = model_class_name(__lowerCAmelCase ) _UpperCAmelCase : Tuple = model.encode(inputs_dict["input_ids"] ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _UpperCAmelCase : Dict = model.init_cache(decoder_input_ids.shape[0] , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Optional[int] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) _UpperCAmelCase : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCAmelCase : List[str] = model.decode( decoder_input_ids[:, :-1] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) _UpperCAmelCase : Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) _UpperCAmelCase : List[Any] = model.decode( decoder_input_ids[:, -1:] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__lowerCAmelCase , ) _UpperCAmelCase : int = model.decode(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] ) -> Any: """simple docstring""" _UpperCAmelCase : Tuple = 2_0 _UpperCAmelCase : List[str] = model_class_name(__lowerCAmelCase ) _UpperCAmelCase : Tuple = model.encode(inputs_dict["input_ids"] ) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _UpperCAmelCase : int = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _UpperCAmelCase : str = model.init_cache(decoder_input_ids.shape[0] , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCAmelCase : str = model.decode( decoder_input_ids[:, :-1] , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) _UpperCAmelCase : Union[str, Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) _UpperCAmelCase : List[str] = model.decode( decoder_input_ids[:, -1:] , __lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__lowerCAmelCase , decoder_position_ids=__lowerCAmelCase , ) _UpperCAmelCase : List[Any] = model.decode(__lowerCAmelCase , __lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase ) _UpperCAmelCase : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" ) def __UpperCAmelCase ( a_: List[str], a_: str, a_: Tuple, a_: Tuple=None, a_: Any=None, ): if attention_mask is None: _UpperCAmelCase : Optional[int] = np.not_equal(lowerCAmelCase__, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCAmelCase : Tuple = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) UpperCamelCase_ : Tuple = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () UpperCamelCase_ : List[str] = True UpperCamelCase_ : int = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : List[str] = False def _lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Union[str, Any] = FlaxPegasusModelTester(self ) _UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__lowerCAmelCase ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase : List[str] = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase : str = model_class(__lowerCAmelCase ) @jax.jit def encode_jitted(lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any]=None , **lowerCAmelCase__ : str ): return model.encode(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase ) with self.subTest("JIT Enabled" ): _UpperCAmelCase : Optional[Any] = encode_jitted(**__lowerCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _UpperCAmelCase : str = encode_jitted(**__lowerCAmelCase ).to_tuple() self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for jitted_output, output in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase : str = model_class(__lowerCAmelCase ) _UpperCAmelCase : List[str] = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) _UpperCAmelCase : List[Any] = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] ): return model.decode( decoder_input_ids=__lowerCAmelCase , decoder_attention_mask=__lowerCAmelCase , encoder_outputs=__lowerCAmelCase , ) with self.subTest("JIT Enabled" ): _UpperCAmelCase : int = decode_jitted(**__lowerCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _UpperCAmelCase : str = decode_jitted(**__lowerCAmelCase ).to_tuple() self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for jitted_output, output in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" for model_class_name in self.all_model_classes: _UpperCAmelCase : str = model_class_name.from_pretrained("google/pegasus-large" , from_pt=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = np.ones((1, 1) ) _UpperCAmelCase : List[Any] = model(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @slow def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) _UpperCAmelCase : Tuple = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) _UpperCAmelCase : Dict = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] _UpperCAmelCase : Optional[int] = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] _UpperCAmelCase : List[Any] = tokenizer(__lowerCAmelCase , return_tensors="np" , truncation=__lowerCAmelCase , max_length=5_1_2 , padding=__lowerCAmelCase ) _UpperCAmelCase : Optional[int] = model.generate(**__lowerCAmelCase , num_beams=2 ).sequences _UpperCAmelCase : int = tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) assert tgt_text == decoded
359
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str: """simple docstring""" super().__init__() _UpperCAmelCase : List[str] = model _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass def __UpperCAmelCase ( a_: str, a_: str, a_: str ): # load longformer model from model identifier _UpperCAmelCase : int = LongformerModel.from_pretrained(a_ ) _UpperCAmelCase : Any = LightningModel(a_ ) _UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model _UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(a_ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
0
'''simple docstring''' from functools import reduce __a = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def __UpperCAmelCase ( a_: List[str] = N ): return max( # mypy cannot properly interpret reduce int(reduce(lambda a_, a_ : str(int(a__ ) * int(a__ ) ), n[i : i + 13] ) ) for i in range(len(a__ ) - 12 ) ) if __name__ == "__main__": print(f'{solution() = }')
360
'''simple docstring''' from importlib import import_module from .logging import get_logger __a = get_logger(__name__) class A__ : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class A__ : """simple docstring""" UpperCamelCase_ : Union[str, Any] = [] def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = obj _UpperCAmelCase : int = target _UpperCAmelCase : Optional[int] = new _UpperCAmelCase : Any = target.split("." )[0] _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : Dict = attrs or [] def __enter__( self : List[str] ) -> int: """simple docstring""" *_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: _UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCAmelCase : Tuple = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) _UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: _UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCAmelCase : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.__enter__() self._active_patches.append(self ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
17
0
'''simple docstring''' import qiskit def __UpperCAmelCase ( a_: List[str], a_: Tuple ): _UpperCAmelCase : Union[str, Any] = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase : List[str] = qiskit.QuantumCircuit(lowercase_, lowercase_ ) # Map the quantum measurement to the classical bits circuit.measure([0], [0] ) # Execute the circuit on the simulator _UpperCAmelCase : List[str] = qiskit.execute(lowercase_, lowercase_, shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase_ ) if __name__ == "__main__": print(f'Total count for various states are: {single_qubit_measure(1, 1)}')
361
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a = datasets.utils.logging.get_logger(__name__) __a = ['names', 'prefix'] __a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __a = ['encoding_errors', 'on_bad_lines'] __a = ['date_format'] @dataclass class A__ ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_00_00 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase : Any = self.delimiter if self.column_names is not None: _UpperCAmelCase : List[Any] = self.column_names @property def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase_ : int = CsvConfig def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : str = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase : Tuple = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): _UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
17
0
'''simple docstring''' import os def __UpperCAmelCase ( ): with open(os.path.dirname(UpperCamelCase__ ) + "/p022_names.txt" ) as file: _UpperCAmelCase : Tuple = str(file.readlines()[0] ) _UpperCAmelCase : Dict = names.replace("\"", "" ).split("," ) names.sort() _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : Tuple = 0 for i, name in enumerate(UpperCamelCase__ ): for letter in name: name_score += ord(UpperCamelCase__ ) - 64 total_score += (i + 1) * name_score _UpperCAmelCase : Optional[int] = 0 return total_score if __name__ == "__main__": print(solution())
362
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: list[int] ): if not nums: return 0 _UpperCAmelCase : int = nums[0] _UpperCAmelCase : Dict = 0 for num in nums[1:]: _UpperCAmelCase , _UpperCAmelCase : Any = ( max_excluding + num, max(a_, a_ ), ) return max(a_, a_ ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __a = 16 __a = 32 def __UpperCAmelCase ( a_: str ): return int(x / 2**20 ) class A__ : """simple docstring""" def __enter__( self : str ) -> Optional[Any]: """simple docstring""" gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero _UpperCAmelCase : List[Any] = torch.cuda.memory_allocated() return self def __exit__( self : int , *lowerCAmelCase__ : Optional[int] ) -> List[str]: """simple docstring""" gc.collect() torch.cuda.empty_cache() _UpperCAmelCase : List[Any] = torch.cuda.memory_allocated() _UpperCAmelCase : List[Any] = torch.cuda.max_memory_allocated() _UpperCAmelCase : str = bamb(self.end - self.begin ) _UpperCAmelCase : Tuple = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def __UpperCAmelCase ( a_: Accelerator, a_: int = 16, a_: str = "bert-base-cased", a_: int = 320, a_: int = 160, ): _UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(_a ) _UpperCAmelCase : Optional[int] = load_dataset( "glue", "mrpc", split={"train": f"""train[:{n_train}]""", "validation": f"""validation[:{n_val}]"""} ) def tokenize_function(a_: Optional[int] ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : str = tokenizer(examples["sentence1"], examples["sentence2"], truncation=_a, max_length=_a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _UpperCAmelCase : int = datasets.map( _a, batched=_a, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=_a ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : Dict = tokenized_datasets.rename_column("label", "labels" ) def collate_fn(a_: Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_a, padding="max_length", max_length=128, return_tensors="pt" ) return tokenizer.pad(_a, padding="longest", return_tensors="pt" ) # Instantiate dataloaders. _UpperCAmelCase : str = DataLoader( tokenized_datasets["train"], shuffle=_a, collate_fn=_a, batch_size=_a ) _UpperCAmelCase : int = DataLoader( tokenized_datasets["validation"], shuffle=_a, collate_fn=_a, batch_size=_a ) return train_dataloader, eval_dataloader def __UpperCAmelCase ( a_: int, a_: Any ): # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Optional[Any] = config["lr"] _UpperCAmelCase : List[str] = int(config["num_epochs"] ) _UpperCAmelCase : List[Any] = int(config["seed"] ) _UpperCAmelCase : List[str] = int(config["batch_size"] ) _UpperCAmelCase : Dict = args.model_name_or_path set_seed(_a ) _UpperCAmelCase : List[Any] = get_dataloaders(_a, _a, _a, args.n_train, args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : int = AutoModelForSequenceClassification.from_pretrained(_a, return_dict=_a ) # Instantiate optimizer _UpperCAmelCase : Optional[int] = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _UpperCAmelCase : int = optimizer_cls(params=model.parameters(), lr=_a ) if accelerator.state.deepspeed_plugin is not None: _UpperCAmelCase : Any = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Any = (len(_a ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _UpperCAmelCase : int = get_linear_schedule_with_warmup( optimizer=_a, num_warmup_steps=0, num_training_steps=_a, ) else: _UpperCAmelCase : Union[str, Any] = DummyScheduler(_a, total_num_steps=_a, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase : List[Any] = accelerator.prepare( _a, _a, _a, _a, _a ) # We need to keep track of how many total steps we have iterated over _UpperCAmelCase : Tuple = 0 # We also need to keep track of the stating epoch so files are named properly _UpperCAmelCase : Tuple = 0 # Now we train the model _UpperCAmelCase : Tuple = {} for epoch in range(_a, _a ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_a ): _UpperCAmelCase : int = model(**_a ) _UpperCAmelCase : str = outputs.loss _UpperCAmelCase : str = loss / gradient_accumulation_steps accelerator.backward(_a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("Memory before entering the train : {}".format(bamb(tracemalloc.begin ) ) ) accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used ) ) accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked ) ) accelerator.print( "Total Peak Memory consumed during the train (max): {}".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) _UpperCAmelCase : Union[str, Any] = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, "peak_memory_utilization.json" ), "w" ) as f: json.dump(_a, _a ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path", type=_a, default="bert-base-cased", help="Path to pretrained model or model identifier from huggingface.co/models.", required=_a, ) parser.add_argument( "--output_dir", type=_a, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--peak_memory_upper_bound", type=_a, default=_a, help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.", ) parser.add_argument( "--n_train", type=_a, default=320, help="Number of training examples to use.", ) parser.add_argument( "--n_val", type=_a, default=160, help="Number of validation examples to use.", ) parser.add_argument( "--num_epochs", type=_a, default=1, help="Number of train epochs.", ) _UpperCAmelCase : Any = parser.parse_args() _UpperCAmelCase : int = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(_a, _a ) if __name__ == "__main__": main()
363
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): _UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" ) if key.startswith("module.decoder" ): _UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] _UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )] _UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" ) if "attn.q" in key: _UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Dict = key.replace("attn", "attention.self" ) if "fc1" in key: _UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" ) if "fc2" in key: _UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Any = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" ) _UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: _UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" ) if "skip_conv1" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" ) if "skip_conv2" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" ) if "fusion1" in key: _UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" ) if "fusion2" in key: _UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" ) if "fusion3" in key: _UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" ) if "fusion" in key and "conv" in key: _UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): _UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" ) _UpperCAmelCase : int = value return new_state_dict def __UpperCAmelCase ( a_: str, a_: List[Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ): _UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _UpperCAmelCase : Dict = GLPNImageProcessor() # prepare image _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) ) # rename keys _UpperCAmelCase : List[str] = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict _UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _UpperCAmelCase : Dict = model(a_ ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _UpperCAmelCase : Optional[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _UpperCAmelCase : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) _UpperCAmelCase : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
17
0
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( snake_case__ ): """simple docstring""" UpperCamelCase_ : int = (DDPMScheduler,) def _lowerCAmelCase ( self : Union[str, Any] , **lowerCAmelCase__ : Dict ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**UpperCAmelCase_ ) return config def _lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ ) def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase_ , beta_end=UpperCAmelCase_ ) def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_ ) def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase_ ) def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_ ) def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" self.check_over_configs(thresholding=UpperCAmelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase_ , prediction_type=UpperCAmelCase_ , sample_max_value=UpperCAmelCase_ , ) def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_ ) def _lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCAmelCase_ ) def _lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[int] = self.scheduler_classes[0] _UpperCAmelCase : List[str] = self.get_scheduler_config() _UpperCAmelCase : Union[str, Any] = scheduler_class(**UpperCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] _UpperCAmelCase : Dict = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**UpperCAmelCase_ ) _UpperCAmelCase : List[Any] = len(UpperCAmelCase_ ) _UpperCAmelCase : str = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter _UpperCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase_ ) ): # 1. predict noise residual _UpperCAmelCase : Any = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase : Union[str, Any] = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCAmelCase : List[Any] = pred_prev_sample _UpperCAmelCase : Dict = torch.sum(torch.abs(UpperCAmelCase_ ) ) _UpperCAmelCase : List[Any] = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = self.scheduler_classes[0] _UpperCAmelCase : Optional[int] = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase : Optional[int] = scheduler_class(**UpperCAmelCase_ ) _UpperCAmelCase : List[Any] = len(UpperCAmelCase_ ) _UpperCAmelCase : Dict = self.dummy_model() _UpperCAmelCase : Any = self.dummy_sample_deter _UpperCAmelCase : str = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase_ ) ): # 1. predict noise residual _UpperCAmelCase : Tuple = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase : Optional[int] = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _UpperCAmelCase : Optional[int] = pred_prev_sample _UpperCAmelCase : str = torch.sum(torch.abs(UpperCAmelCase_ ) ) _UpperCAmelCase : Optional[int] = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] _UpperCAmelCase : Any = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**UpperCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_ ) _UpperCAmelCase : List[Any] = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase_ ): if i == len(UpperCAmelCase_ ) - 1: _UpperCAmelCase : str = -1 else: _UpperCAmelCase : List[Any] = timesteps[i + 1] _UpperCAmelCase : int = scheduler.previous_timestep(UpperCAmelCase_ ) _UpperCAmelCase : Dict = prev_t.item() self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" _UpperCAmelCase : str = self.scheduler_classes[0] _UpperCAmelCase : Optional[Any] = self.get_scheduler_config() _UpperCAmelCase : Tuple = scheduler_class(**UpperCAmelCase_ ) _UpperCAmelCase : Dict = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCAmelCase_ , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=UpperCAmelCase_ ) def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Dict = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Optional[Any] = scheduler_class(**UpperCAmelCase_ ) _UpperCAmelCase : Optional[int] = [1_0_0, 8_7, 5_0, 1, 0] _UpperCAmelCase : Optional[Any] = len(UpperCAmelCase_ ) with self.assertRaises(UpperCAmelCase_ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_ ) def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] _UpperCAmelCase : Union[str, Any] = self.get_scheduler_config() _UpperCAmelCase : Dict = scheduler_class(**UpperCAmelCase_ ) _UpperCAmelCase : Any = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_ )
364
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : int = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _UpperCAmelCase : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(a_ ) ), }, features=a_, ) return dataset @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=a_ ) return filename # FILE_CONTENT + files __a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt" _UpperCAmelCase : Tuple = FILE_CONTENT with open(a_, "w" ) as f: f.write(a_ ) return filename @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" ) with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import gzip _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _UpperCAmelCase : Any = bytes(a_, "utf-8" ) with gzip.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _UpperCAmelCase : str = bytes(a_, "utf-8" ) with lza.frame.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Any ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(a_, "w" ) as archive: archive.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: List[str] ): import tarfile _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): import lzma _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _UpperCAmelCase : List[str] = bytes(a_, "utf-8" ) with lzma.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: Tuple ): import zipfile _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _UpperCAmelCase : int = bytes(a_, "utf-8" ) with zstd.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml" _UpperCAmelCase : Tuple = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(a_, "w" ) as f: f.write(a_ ) return filename __a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : str = datasets.Dataset.from_dict(a_ ) _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(a_ ) ) as con: _UpperCAmelCase : List[Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str, a_: str ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(a_, "rb" ) as f: _UpperCAmelCase : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ): _UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) ) f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ): _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _UpperCAmelCase : Dict = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(a_, "wb" ) as f: _UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ ) _UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ ) writer.write_table(a_ ) writer.close() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : str = {"data": DATA} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(a_, "w" ) as f: for item in DATA_312: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(a_, "w" ) as f: for item in DATA_STR: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ): import gzip _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ): import gzip _UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ): _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : List[str] = ["0", "1", "2", "3"] _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Dict = ["0", "1", "2", "3"] _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = ["0", "1", "2", "3"] _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename("unsupported.ext" ) ) f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) return data_dir
17
0
'''simple docstring''' from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A__ ( lowerCamelCase_ ): """simple docstring""" UpperCamelCase_ : List[Any] = """openai/whisper-base""" UpperCamelCase_ : int = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCamelCase_ : List[Any] = """transcriber""" UpperCamelCase_ : Optional[int] = WhisperProcessor UpperCamelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCamelCase_ : Any = ["""audio"""] UpperCamelCase_ : Any = ["""text"""] def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Dict ) -> List[Any]: """simple docstring""" return self.pre_processor(lowerCAmelCase__ , return_tensors="pt" ).input_features def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Any ) -> Tuple: """simple docstring""" return self.model.generate(inputs=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" return self.pre_processor.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )[0]
365
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = BarthezTokenizer UpperCamelCase_ : List[Any] = BarthezTokenizerFast UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : Optional[int] = True def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" super().setUp() _UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = "<pad>" _UpperCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] _UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] _UpperCAmelCase : int = self.tokenizer( lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() _UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé." _UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase : Tuple = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , )
17
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" _UpperCAmelCase : List[str] = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) _UpperCAmelCase : List[str] = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler("sample_euler" ) _UpperCAmelCase : List[Any] = "A painting of a squirrel eating a burger" _UpperCAmelCase : Dict = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = sd_pipe([prompt] , generator=__lowerCamelCase , guidance_scale=9.0 , num_inference_steps=2_0 , output_type="np" ) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Tuple = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) _UpperCAmelCase : str = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler("sample_euler" ) _UpperCAmelCase : Dict = "A painting of a squirrel eating a burger" _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : Dict = sd_pipe([prompt] , generator=__lowerCamelCase , guidance_scale=9.0 , num_inference_steps=2_0 , output_type="np" ) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : str = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : Tuple = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) _UpperCAmelCase : Optional[int] = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) _UpperCAmelCase : Tuple = "A painting of a squirrel eating a burger" _UpperCAmelCase : List[Any] = torch.manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=1_5 , output_type="np" , use_karras_sigmas=__lowerCamelCase , ) _UpperCAmelCase : str = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : str = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
366
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0} _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : str = max_resolution _UpperCAmelCase : List[Any] = size _UpperCAmelCase : Union[str, Any] = do_normalize _UpperCAmelCase : Optional[Any] = do_convert_rgb _UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] _UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image() _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : str = 2_0_4_8 _UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Union[str, Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _UpperCAmelCase : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches _UpperCAmelCase : Any = "Hello" _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : List[Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) _UpperCAmelCase : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Union[str, Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCAmelCase : List[Any] = 3 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Tuple = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
17
0
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): return 1 if input_a == input_a else 0 def __UpperCAmelCase ( ): assert xnor_gate(0, 0 ) == 1 assert xnor_gate(0, 1 ) == 0 assert xnor_gate(1, 0 ) == 0 assert xnor_gate(1, 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
367
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''time_series_transformer''' UpperCamelCase_ : Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = prediction_length _UpperCAmelCase : Optional[Any] = context_length or prediction_length _UpperCAmelCase : Optional[Any] = distribution_output _UpperCAmelCase : Union[str, Any] = loss _UpperCAmelCase : Dict = input_size _UpperCAmelCase : int = num_time_features _UpperCAmelCase : Any = lags_sequence _UpperCAmelCase : Dict = scaling _UpperCAmelCase : Tuple = num_dynamic_real_features _UpperCAmelCase : Dict = num_static_real_features _UpperCAmelCase : Union[str, Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Optional[int] = cardinality else: _UpperCAmelCase : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : List[Any] = embedding_dimension else: _UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : str = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features _UpperCAmelCase : str = d_model _UpperCAmelCase : Optional[Any] = encoder_attention_heads _UpperCAmelCase : Dict = decoder_attention_heads _UpperCAmelCase : List[Any] = encoder_ffn_dim _UpperCAmelCase : str = decoder_ffn_dim _UpperCAmelCase : Dict = encoder_layers _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : Any = dropout _UpperCAmelCase : str = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : Dict = encoder_layerdrop _UpperCAmelCase : Any = decoder_layerdrop _UpperCAmelCase : Optional[Any] = activation_function _UpperCAmelCase : Tuple = init_std _UpperCAmelCase : List[str] = use_cache super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
0
'''simple docstring''' import os import string import sys __a = 1 << 8 __a = { "tab": ord('\t'), "newline": ord('\r'), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } __a = KEYMAP["up"] __a = KEYMAP["left"] if sys.platform == "win32": __a = [] __a = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): __a = ord(str(i)) def __UpperCAmelCase ( ): if os.name == "nt": import msvcrt _UpperCAmelCase : str = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_snake_case ) == 0: # Read the keystroke _UpperCAmelCase : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _UpperCAmelCase : int = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _UpperCAmelCase : Optional[int] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(_snake_case ) if ord(_snake_case ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _UpperCAmelCase : str = chr(KEYMAP["esc"] ) except KeyError: _UpperCAmelCase : str = cha[1] else: _UpperCAmelCase : Optional[int] = ch.decode(_snake_case ) else: _UpperCAmelCase : int = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _UpperCAmelCase : int = sys.stdin.fileno() _UpperCAmelCase : str = termios.tcgetattr(_snake_case ) try: tty.setraw(_snake_case ) _UpperCAmelCase : Optional[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(_snake_case, termios.TCSADRAIN, _snake_case ) return ch def __UpperCAmelCase ( ): _UpperCAmelCase : Tuple = get_raw_chars() if ord(_snake_case ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_snake_case ) == KEYMAP["esc"]: _UpperCAmelCase : str = get_raw_chars() if ord(_snake_case ) == KEYMAP["mod_int"]: _UpperCAmelCase : Optional[Any] = get_raw_chars() if ord(_snake_case ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_snake_case ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_snake_case ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
368
'''simple docstring''' import baseaa def __UpperCAmelCase ( a_: str ): return baseaa.baaencode(string.encode("utf-8" ) ) def __UpperCAmelCase ( a_: bytes ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": __a = 'Hello World!' __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
17
0
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __a = logging.get_logger(__name__) class A__ : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = question_encoder _UpperCAmelCase : Any = generator _UpperCAmelCase : Union[str, Any] = self.question_encoder def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Union[str, Any] ) -> Any: """simple docstring""" if os.path.isfile(_a ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(_a , exist_ok=_a ) _UpperCAmelCase : Optional[Any] = os.path.join(_a , "question_encoder_tokenizer" ) _UpperCAmelCase : Dict = os.path.join(_a , "generator_tokenizer" ) self.question_encoder.save_pretrained(_a ) self.generator.save_pretrained(_a ) @classmethod def _lowerCAmelCase ( cls : Any , lowerCAmelCase__ : Any , **lowerCAmelCase__ : Union[str, Any] ) -> Any: """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer _UpperCAmelCase : Any = kwargs.pop("config" , _a ) if config is None: _UpperCAmelCase : str = RagConfig.from_pretrained(_a ) _UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained( _a , config=config.question_encoder , subfolder="question_encoder_tokenizer" ) _UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained( _a , config=config.generator , subfolder="generator_tokenizer" ) return cls(question_encoder=_a , generator=_a ) def __call__( self : str , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Union[str, Any] ) -> int: """simple docstring""" return self.current_tokenizer(*_a , **_a ) def _lowerCAmelCase ( self : List[str] , *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : List[str] ) -> str: """simple docstring""" return self.generator.batch_decode(*_a , **_a ) def _lowerCAmelCase ( self : Tuple , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Optional[int] ) -> List[Any]: """simple docstring""" return self.generator.decode(*_a , **_a ) def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" _UpperCAmelCase : Optional[int] = self.question_encoder def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.generator def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[List[str]] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "longest" , lowerCAmelCase__ : str = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : List[Any] , ) -> Tuple: """simple docstring""" warnings.warn( "`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the " "regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` " "context manager to prepare your targets. See the documentation of your specific tokenizer for more " "details" , _a , ) if max_length is None: _UpperCAmelCase : int = self.current_tokenizer.model_max_length _UpperCAmelCase : Tuple = self( _a , add_special_tokens=_a , return_tensors=_a , max_length=_a , padding=_a , truncation=_a , **_a , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _UpperCAmelCase : List[Any] = self.current_tokenizer.model_max_length _UpperCAmelCase : Union[str, Any] = self( text_target=_a , add_special_tokens=_a , return_tensors=_a , padding=_a , max_length=_a , truncation=_a , **_a , ) _UpperCAmelCase : Dict = labels["input_ids"] return model_inputs
369
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" UpperCamelCase_ : Any = XGLMConfig UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Dict = '''gelu''' def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : str = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : int = d_model _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Tuple = ffn_dim _UpperCAmelCase : Any = activation_function _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Any = None _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Tuple = 1 def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _UpperCAmelCase : Any = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[Any] = self.get_config() _UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : Dict = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Tuple = False def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = TFXGLMModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on _UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) _UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" ) _UpperCAmelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): _UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) _UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[int] = "left" # use different length sentences to test batching _UpperCAmelCase : Tuple = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = inputs["input_ids"] _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 ) _UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
17
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __a = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2FeatureExtractor'] __a = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
370
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def __UpperCAmelCase ( a_: Tuple, a_: Any ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ), ], ) def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ): _UpperCAmelCase : Tuple = str(a_ ) dataset_info.write_to_directory(a_ ) _UpperCAmelCase : Any = DatasetInfo.from_directory(a_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a_, "dataset_info.json" ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, ) _UpperCAmelCase : Tuple = dataset_info._to_yaml_dict() assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) _UpperCAmelCase : List[Any] = yaml.safe_dump(a_ ) _UpperCAmelCase : Optional[int] = yaml.safe_load(a_ ) assert dataset_info_yaml_dict == reloaded def __UpperCAmelCase ( ): _UpperCAmelCase : str = DatasetInfo() _UpperCAmelCase : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1_337 ), } ), ], ) def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ): _UpperCAmelCase : Union[str, Any] = str(a_ ) dataset_infos_dict.write_to_directory(a_ ) _UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a_, "README.md" ) )
17
0
'''simple docstring''' from collections import Counter from timeit import timeit def __UpperCAmelCase ( a_: Tuple = "", ): return sum(c % 2 for c in Counter(input_str.replace(" ", "" ).lower() ).values() ) < 2 def __UpperCAmelCase ( a_: List[str] = "" ): if len(__lowerCAmelCase ) == 0: return True _UpperCAmelCase : List[str] = input_str.replace(" ", "" ).lower() # character_freq_dict: Stores the frequency of every character in the input string _UpperCAmelCase : dict[str, int] = {} for character in lower_case_input_str: _UpperCAmelCase : Optional[Any] = character_freq_dict.get(__lowerCAmelCase, 0 ) + 1 _UpperCAmelCase : Tuple = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def __UpperCAmelCase ( a_: str = "" ): print("\nFor string = ", __lowerCAmelCase, ":" ) print( "> can_string_be_rearranged_as_palindrome_counter()", "\tans =", can_string_be_rearranged_as_palindrome_counter(__lowerCAmelCase ), "\ttime =", timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)", setup="import __main__ as z", ), "seconds", ) print( "> can_string_be_rearranged_as_palindrome()", "\tans =", can_string_be_rearranged_as_palindrome(__lowerCAmelCase ), "\ttime =", timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)", setup="import __main__ as z", ), "seconds", ) if __name__ == "__main__": __a = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) __a = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
371
'''simple docstring''' from math import factorial def __UpperCAmelCase ( a_: int = 100 ): return sum(map(a_, str(factorial(a_ ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
17
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
350
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __a = (3, 9, -11, 0, 7, 5, 1, -1) __a = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : int UpperCamelCase_ : Node | None class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None: """simple docstring""" _UpperCAmelCase : Node | None = None for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ): _UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" _UpperCAmelCase : List[Any] = self.head while node: yield node.data _UpperCAmelCase : List[str] = node.next_node def __len__( self : Any ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return " -> ".join([str(lowerCAmelCase__ ) for node in self] ) def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ): return SortedLinkedList(list(a_ ) + list(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() __a = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
17
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: _UpperCAmelCase : Dict = 192 _UpperCAmelCase : Any = 768 _UpperCAmelCase : Dict = 12 _UpperCAmelCase : Any = 3 _UpperCAmelCase : Tuple = [800, 1_333] _UpperCAmelCase : str = False elif yolos_name == "yolos_s_dWr": _UpperCAmelCase : Dict = 330 _UpperCAmelCase : Union[str, Any] = 14 _UpperCAmelCase : Dict = 6 _UpperCAmelCase : Union[str, Any] = 1_320 elif "yolos_s" in yolos_name: _UpperCAmelCase : Tuple = 384 _UpperCAmelCase : List[str] = 1_536 _UpperCAmelCase : Optional[int] = 12 _UpperCAmelCase : List[Any] = 6 elif "yolos_b" in yolos_name: _UpperCAmelCase : Any = [800, 1_344] _UpperCAmelCase : Union[str, Any] = 91 _UpperCAmelCase : str = "huggingface/label-files" _UpperCAmelCase : Tuple = "coco-detection-id2label.json" _UpperCAmelCase : Union[str, Any] = json.load(open(hf_hub_download(a_, a_, repo_type="dataset" ), "r" ) ) _UpperCAmelCase : Any = {int(a_ ): v for k, v in idalabel.items()} _UpperCAmelCase : str = idalabel _UpperCAmelCase : int = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Tuple = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : Dict = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) _UpperCAmelCase : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : List[str] = in_proj_weight[: config.hidden_size, :] _UpperCAmelCase : Dict = in_proj_bias[: config.hidden_size] _UpperCAmelCase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : List[str] = in_proj_weight[-config.hidden_size :, :] _UpperCAmelCase : Optional[int] = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( a_: Optional[int] ): if "backbone" in name: _UpperCAmelCase : Tuple = name.replace("backbone", "vit" ) if "cls_token" in name: _UpperCAmelCase : int = name.replace("cls_token", "embeddings.cls_token" ) if "det_token" in name: _UpperCAmelCase : List[Any] = name.replace("det_token", "embeddings.detection_tokens" ) if "mid_pos_embed" in name: _UpperCAmelCase : Dict = name.replace("mid_pos_embed", "encoder.mid_position_embeddings" ) if "pos_embed" in name: _UpperCAmelCase : Union[str, Any] = name.replace("pos_embed", "embeddings.position_embeddings" ) if "patch_embed.proj" in name: _UpperCAmelCase : List[Any] = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection" ) if "blocks" in name: _UpperCAmelCase : Any = name.replace("blocks", "encoder.layer" ) if "attn.proj" in name: _UpperCAmelCase : Dict = name.replace("attn.proj", "attention.output.dense" ) if "attn" in name: _UpperCAmelCase : Optional[Any] = name.replace("attn", "attention.self" ) if "norm1" in name: _UpperCAmelCase : Dict = name.replace("norm1", "layernorm_before" ) if "norm2" in name: _UpperCAmelCase : List[str] = name.replace("norm2", "layernorm_after" ) if "mlp.fc1" in name: _UpperCAmelCase : List[str] = name.replace("mlp.fc1", "intermediate.dense" ) if "mlp.fc2" in name: _UpperCAmelCase : Optional[int] = name.replace("mlp.fc2", "output.dense" ) if "class_embed" in name: _UpperCAmelCase : int = name.replace("class_embed", "class_labels_classifier" ) if "bbox_embed" in name: _UpperCAmelCase : Union[str, Any] = name.replace("bbox_embed", "bbox_predictor" ) if "vit.norm" in name: _UpperCAmelCase : Any = name.replace("vit.norm", "vit.layernorm" ) return name def __UpperCAmelCase ( a_: int, a_: Union[str, Any] ): for key in orig_state_dict.copy().keys(): _UpperCAmelCase : Dict = orig_state_dict.pop(a_ ) if "qkv" in key: _UpperCAmelCase : int = key.split("." ) _UpperCAmelCase : Dict = int(key_split[2] ) _UpperCAmelCase : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: _UpperCAmelCase : Optional[int] = val[:dim, :] _UpperCAmelCase : Optional[Any] = val[ dim : dim * 2, : ] _UpperCAmelCase : Optional[int] = val[-dim:, :] else: _UpperCAmelCase : Any = val[:dim] _UpperCAmelCase : Optional[Any] = val[dim : dim * 2] _UpperCAmelCase : Union[str, Any] = val[-dim:] else: _UpperCAmelCase : List[Any] = val return orig_state_dict def __UpperCAmelCase ( ): _UpperCAmelCase : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Optional[int] = Image.open(requests.get(a_, stream=a_ ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( a_: Optional[Any], a_: List[str], a_: Union[str, Any], a_: Tuple = False ): _UpperCAmelCase : Union[str, Any] = get_yolos_config(a_ ) # load original state_dict _UpperCAmelCase : int = torch.load(a_, map_location="cpu" )["model"] # load 🤗 model _UpperCAmelCase : Optional[int] = YolosForObjectDetection(a_ ) model.eval() _UpperCAmelCase : Tuple = convert_state_dict(a_, a_ ) model.load_state_dict(a_ ) # Check outputs on an image, prepared by YolosImageProcessor _UpperCAmelCase : Optional[Any] = 800 if yolos_name != "yolos_ti" else 512 _UpperCAmelCase : List[str] = YolosImageProcessor(format="coco_detection", size=a_ ) _UpperCAmelCase : List[str] = image_processor(images=prepare_img(), return_tensors="pt" ) _UpperCAmelCase : Tuple = model(**a_ ) _UpperCAmelCase , _UpperCAmelCase : int = outputs.logits, outputs.pred_boxes _UpperCAmelCase , _UpperCAmelCase : Dict = None, None if yolos_name == "yolos_ti": _UpperCAmelCase : str = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) _UpperCAmelCase : Union[str, Any] = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": _UpperCAmelCase : Any = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) _UpperCAmelCase : Any = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": _UpperCAmelCase : Dict = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) _UpperCAmelCase : List[Any] = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": _UpperCAmelCase : Optional[Any] = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) _UpperCAmelCase : Any = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": _UpperCAmelCase : List[str] = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) _UpperCAmelCase : str = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(f"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3], a_, atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3], a_, atol=1e-4 ) Path(a_ ).mkdir(exist_ok=a_ ) print(f"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a_ ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a_ ) if push_to_hub: _UpperCAmelCase : Dict = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) _UpperCAmelCase : List[Any] = model_mapping[yolos_name] image_processor.push_to_hub(a_, organization="hustvl" ) model.push_to_hub(a_, organization="hustvl" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __a = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
351
'''simple docstring''' def __UpperCAmelCase ( a_: str ): if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) _UpperCAmelCase : Optional[Any] = "" while len(a_ ) % 3 != 0: _UpperCAmelCase : List[Any] = "0" + bin_string _UpperCAmelCase : Dict = [ bin_string[index : index + 3] for index in range(len(a_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _UpperCAmelCase : Optional[Any] = 0 for index, val in enumerate(a_ ): oct_val += int(2 ** (2 - index) * int(a_ ) ) oct_string += str(a_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
17
0
'''simple docstring''' def __UpperCAmelCase ( a_: List[str] = 1_000 ) -> Optional[Any]: _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = 1, 1 _UpperCAmelCase : str = [] for i in range(1, n + 1 ): _UpperCAmelCase : List[str] = prev_numerator + 2 * prev_denominator _UpperCAmelCase : Dict = prev_numerator + prev_denominator if len(str(lowerCamelCase__ ) ) > len(str(lowerCamelCase__ ) ): result.append(lowerCamelCase__ ) _UpperCAmelCase : int = numerator _UpperCAmelCase : List[str] = denominator return len(lowerCamelCase__ ) if __name__ == "__main__": print(f'{solution() = }')
352
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCAmelCase ( a_: str ): for param in module.parameters(): _UpperCAmelCase : Any = False def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : int = plt.imshow(a_ ) fig.axes.get_xaxis().set_visible(a_ ) fig.axes.get_yaxis().set_visible(a_ ) plt.show() def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = datetime.now() _UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" ) return timestamp
17
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = {'vocab_file': 'spm_char.model'} __a = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } __a = { 'microsoft/speecht5_asr': 1_024, 'microsoft/speecht5_tts': 1_024, 'microsoft/speecht5_vc': 1_024, } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Any = VOCAB_FILES_NAMES UpperCamelCase_ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]="<s>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : Any="<unk>" , lowerCAmelCase__ : int="<pad>" , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : List[Any] , ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) _UpperCAmelCase : Tuple = vocab_file _UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @property def _lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return self.sp_model.get_piece_size() def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : int = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : Dict = self.__dict__.copy() _UpperCAmelCase : Optional[int] = None return state def __setstate__( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase : List[str] = {} _UpperCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : str ) -> Union[str, Any]: """simple docstring""" return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" return self.sp_model.piece_to_id(_lowerCAmelCase ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : int ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = self.sp_model.IdToPiece(_lowerCAmelCase ) return token def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[str] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Tuple = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCAmelCase ) + token _UpperCAmelCase : str = [] else: current_sub_tokens.append(_lowerCAmelCase ) out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any=None ) -> Union[str, Any]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _lowerCAmelCase ( self : str , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> Union[str, Any]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) _UpperCAmelCase : str = [1] if token_ids_a is None: return ([0] * len(_lowerCAmelCase )) + suffix_ones return ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> List[Any]: """simple docstring""" if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : List[Any] = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , "wb" ) as fi: _UpperCAmelCase : int = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
353
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = (EulerDiscreteScheduler,) UpperCamelCase_ : Tuple = 10 def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : str = { "num_train_timesteps": 1_1_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : Any = self.dummy_model() _UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = output.prev_sample _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = self.dummy_model() _UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : Tuple = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = output.prev_sample _UpperCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : str = self.dummy_model() _UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : str = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : int = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : Optional[int] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
17
0
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class A__ ( lowerCAmelCase__ ): """simple docstring""" UpperCamelCase_ : List[Any] = "mvp" UpperCamelCase_ : Dict = ["past_key_values"] UpperCamelCase_ : Any = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[str] , lowerCAmelCase__ : Any=5_0_2_6_7 , lowerCAmelCase__ : List[Any]=1_0_2_4 , lowerCAmelCase__ : Any=1_2 , lowerCAmelCase__ : Any=4_0_9_6 , lowerCAmelCase__ : Dict=1_6 , lowerCAmelCase__ : List[Any]=1_2 , lowerCAmelCase__ : Dict=4_0_9_6 , lowerCAmelCase__ : Dict=1_6 , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Optional[Any]=1_0_2_4 , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : int=0.0 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=1 , lowerCAmelCase__ : Optional[int]=0 , lowerCAmelCase__ : Any=2 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Union[str, Any]=2 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Any=1_0_0 , lowerCAmelCase__ : List[Any]=8_0_0 , **lowerCAmelCase__ : Optional[int] , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = vocab_size _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : List[str] = d_model _UpperCAmelCase : Optional[Any] = encoder_ffn_dim _UpperCAmelCase : Optional[Any] = encoder_layers _UpperCAmelCase : int = encoder_attention_heads _UpperCAmelCase : Dict = decoder_ffn_dim _UpperCAmelCase : List[Any] = decoder_layers _UpperCAmelCase : Union[str, Any] = decoder_attention_heads _UpperCAmelCase : Optional[Any] = dropout _UpperCAmelCase : Tuple = attention_dropout _UpperCAmelCase : Optional[Any] = activation_dropout _UpperCAmelCase : str = activation_function _UpperCAmelCase : str = init_std _UpperCAmelCase : Optional[int] = encoder_layerdrop _UpperCAmelCase : List[Any] = decoder_layerdrop _UpperCAmelCase : Tuple = classifier_dropout _UpperCAmelCase : int = use_cache _UpperCAmelCase : List[Any] = encoder_layers _UpperCAmelCase : str = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : str = use_prompt _UpperCAmelCase : Tuple = prompt_length _UpperCAmelCase : int = prompt_mid_dim super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , forced_eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase : List[str] = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ "The config can simply be saved and uploaded again to be fixed." )
354
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } __a = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } __a = { 'ctrl': 256, } __a = { 'Pregnancy': 168_629, 'Christianity': 7_675, 'Explain': 106_423, 'Fitness': 63_440, 'Saving': 63_163, 'Ask': 27_171, 'Ass': 95_985, 'Joke': 163_509, 'Questions': 45_622, 'Thoughts': 49_605, 'Retail': 52_342, 'Feminism': 164_338, 'Writing': 11_992, 'Atheism': 192_263, 'Netflix': 48_616, 'Computing': 39_639, 'Opinion': 43_213, 'Alone': 44_967, 'Funny': 58_917, 'Gaming': 40_358, 'Human': 4_088, 'India': 1_331, 'Joker': 77_138, 'Diet': 36_206, 'Legal': 11_859, 'Norman': 4_939, 'Tip': 72_689, 'Weight': 52_343, 'Movies': 46_273, 'Running': 23_425, 'Science': 2_090, 'Horror': 37_793, 'Confession': 60_572, 'Finance': 12_250, 'Politics': 16_360, 'Scary': 191_985, 'Support': 12_654, 'Technologies': 32_516, 'Teenage': 66_160, 'Event': 32_769, 'Learned': 67_460, 'Notion': 182_770, 'Wikipedia': 37_583, 'Books': 6_665, 'Extract': 76_050, 'Confessions': 102_701, 'Conspiracy': 75_932, 'Links': 63_674, 'Narcissus': 150_425, 'Relationship': 54_766, 'Relationships': 134_796, 'Reviews': 41_671, 'News': 4_256, 'Translation': 26_820, 'multilingual': 128_406, } def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Optional[int] = set() _UpperCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase : Any = char _UpperCAmelCase : Any = set(a_ ) return pairs class A__ ( snake_case_ ): """simple docstring""" UpperCamelCase_ : List[Any] = VOCAB_FILES_NAMES UpperCamelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Union[str, Any] = CONTROL_CODES def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple="<unk>" , **lowerCAmelCase__ : List[Any] ) -> List[str]: """simple docstring""" super().__init__(unk_token=lowerCAmelCase__ , **lowerCAmelCase__ ) with open(lowerCAmelCase__ , encoding="utf-8" ) as vocab_handle: _UpperCAmelCase : Optional[Any] = json.load(lowerCAmelCase__ ) _UpperCAmelCase : Any = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase__ , encoding="utf-8" ) as merges_handle: _UpperCAmelCase : str = merges_handle.read().split("\n" )[1:-1] _UpperCAmelCase : Any = [tuple(merge.split() ) for merge in merges] _UpperCAmelCase : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) _UpperCAmelCase : Union[str, Any] = {} @property def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" return len(self.encoder ) def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if token in self.cache: return self.cache[token] _UpperCAmelCase : List[Any] = tuple(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) _UpperCAmelCase : Optional[Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: _UpperCAmelCase : Any = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break _UpperCAmelCase : Optional[int] = bigram _UpperCAmelCase : Any = [] _UpperCAmelCase : Dict = 0 while i < len(lowerCAmelCase__ ): try: _UpperCAmelCase : Optional[int] = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCAmelCase : Tuple = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCAmelCase : int = tuple(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: _UpperCAmelCase : str = get_pairs(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = '@@ '.join(lowerCAmelCase__ ) _UpperCAmelCase : int = word[:-4] _UpperCAmelCase : List[Any] = word return word def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : int ) -> Dict: """simple docstring""" _UpperCAmelCase : Tuple = [] _UpperCAmelCase : str = re.findall(R"\S+\n?" , lowerCAmelCase__ ) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase__ ).split(" " ) ) ) return split_tokens def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Dict ) -> Any: """simple docstring""" return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : int ) -> Dict: """simple docstring""" return self.decoder.get(lowerCAmelCase__ , self.unk_token ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : Tuple ) -> int: """simple docstring""" _UpperCAmelCase : str = ' '.join(lowerCAmelCase__ ).replace("@@ " , "" ).strip() return out_string def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase : int = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : Optional[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + "\n" ) _UpperCAmelCase : Tuple = 0 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) _UpperCAmelCase : Dict = token_index writer.write(" ".join(lowerCAmelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
355
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( a_: int ): # A local function to see if a dot lands in the circle. def is_in_circle(a_: float, a_: float ) -> bool: _UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase : str = mean( int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) ) for _ in range(a_ ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase : Optional[int] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ): return mean( function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value) def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ): def identity_function(a_: float ) -> float: return x _UpperCAmelCase : Union[str, Any] = area_under_curve_estimator( a_, a_, a_, a_ ) _UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def __UpperCAmelCase ( a_: int ): def function_to_integrate(a_: float ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase : List[str] = area_under_curve_estimator( a_, a_, 0.0, 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class A__ ( __lowerCAmelCase ): """simple docstring""" def __init__( self : str , *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : Optional[Any] ) -> Any: """simple docstring""" super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : Any = {} def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Dict , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = super().add_tokens(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" " `placeholder_token` that is not already in the tokenizer." ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Tuple , *lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple=1 , **lowerCAmelCase__ : Union[str, Any] ) -> Any: """simple docstring""" _UpperCAmelCase : str = [] if num_vec_per_token == 1: self.try_adding_tokens(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) output.append(lowerCamelCase__ ) else: _UpperCAmelCase : int = [] for i in range(lowerCamelCase__ ): _UpperCAmelCase : Tuple = placeholder_token + F"""_{i}""" self.try_adding_tokens(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) output.append(lowerCamelCase__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""" ) _UpperCAmelCase : int = output def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]=False , lowerCAmelCase__ : Optional[int]=1.0 ) -> Optional[int]: """simple docstring""" if isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : int = [] for i in range(len(lowerCamelCase__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=lowerCamelCase__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _UpperCAmelCase : Any = self.token_map[placeholder_token] _UpperCAmelCase : Union[str, Any] = tokens[: 1 + int(len(lowerCamelCase__ ) * prop_tokens_to_load )] if vector_shuffle: _UpperCAmelCase : List[str] = copy.copy(lowerCamelCase__ ) random.shuffle(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = text.replace(lowerCamelCase__ , " ".join(lowerCamelCase__ ) ) return text def __call__( self : Dict , lowerCAmelCase__ : Tuple , *lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : List[str]=1.0 , **lowerCAmelCase__ : Dict ) -> Dict: """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( lowerCamelCase__ , vector_shuffle=lowerCamelCase__ , prop_tokens_to_load=lowerCamelCase__ ) , *lowerCamelCase__ , **lowerCamelCase__ , ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Optional[Any] , *lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : str=1.0 , **lowerCAmelCase__ : Any ) -> int: """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( lowerCamelCase__ , vector_shuffle=lowerCamelCase__ , prop_tokens_to_load=lowerCamelCase__ ) , *lowerCamelCase__ , **lowerCamelCase__ , )
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __a = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2FeatureExtractor'] __a = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
0
'''simple docstring''' def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : List[str] = int(A__ ) if decimal in (0, 1): # Exit cases for the recursion return str(A__ ) _UpperCAmelCase , _UpperCAmelCase : List[str] = divmod(A__, 2 ) return binary_recursive(A__ ) + str(A__ ) def __UpperCAmelCase ( a_: List[Any] ): _UpperCAmelCase : str = str(A__ ).strip() if not number: raise ValueError("No input value was provided" ) _UpperCAmelCase : str = "-" if number.startswith("-" ) else "" _UpperCAmelCase : List[Any] = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return f"""{negative}0b{binary_recursive(int(A__ ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
357
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if not isinstance(a_, a_ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(a_, a_ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) _UpperCAmelCase : List[str] = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(a_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" @register_to_config def __init__( self : List[Any] , lowerCAmelCase__ : int = 7_6_8 , ) -> int: """simple docstring""" super().__init__() _UpperCAmelCase : int = nn.Parameter(torch.zeros(1 , lowerCAmelCase__ ) ) _UpperCAmelCase : str = nn.Parameter(torch.ones(1 , lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Optional[Union[str, torch.device]] = None , lowerCAmelCase__ : Optional[torch.dtype] = None , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = nn.Parameter(self.mean.to(lowerCAmelCase__ ).to(lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[Any] = nn.Parameter(self.std.to(lowerCAmelCase__ ).to(lowerCAmelCase__ ) ) return self def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Union[str, Any] ) -> int: """simple docstring""" _UpperCAmelCase : str = (embeds - self.mean) * 1.0 / self.std return embeds def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Any = (embeds * self.std) + self.mean return embeds
358
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') __a = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" if self.train_file is not None: _UpperCAmelCase : List[Any] = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCAmelCase : List[str] = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A__ : """simple docstring""" UpperCamelCase_ : PreTrainedTokenizerBase UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[int] = None def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels" _UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features] _UpperCAmelCase : str = len(lowerCAmelCase__ ) _UpperCAmelCase : int = len(features[0]["input_ids"] ) _UpperCAmelCase : str = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features ] _UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) ) _UpperCAmelCase : Any = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) return batch def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag", a_, a_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCAmelCase : Union[str, Any] = {} if data_args.train_file is not None: _UpperCAmelCase : str = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase : Optional[Any] = data_args.validation_file _UpperCAmelCase : Dict = data_args.train_file.split("." )[-1] _UpperCAmelCase : Optional[int] = load_dataset( a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: # Downloading and loading the swag dataset from the hub. _UpperCAmelCase : Dict = load_dataset( "swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )] _UpperCAmelCase : List[Any] = "sent1" _UpperCAmelCase : Optional[int] = "sent2" if data_args.max_seq_length is None: _UpperCAmelCase : List[str] = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _UpperCAmelCase : Dict = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]] _UpperCAmelCase : Tuple = examples[question_header_name] _UpperCAmelCase : Optional[Any] = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ ) ] # Flatten out _UpperCAmelCase : List[str] = list(chain(*a_ ) ) _UpperCAmelCase : Dict = list(chain(*a_ ) ) # Tokenize _UpperCAmelCase : List[Any] = tokenizer( a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _UpperCAmelCase : int = raw_datasets["train"] if data_args.max_train_samples is not None: _UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples ) _UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _UpperCAmelCase : Union[str, Any] = train_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _UpperCAmelCase : Dict = raw_datasets["validation"] if data_args.max_eval_samples is not None: _UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples ) _UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _UpperCAmelCase : Optional[int] = eval_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator _UpperCAmelCase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a_: Tuple ): _UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions _UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCAmelCase : Any = Trainer( model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, ) # Training if training_args.do_train: _UpperCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : List[str] = last_checkpoint _UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase : str = train_result.metrics _UpperCAmelCase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) _UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) ) trainer.log_metrics("train", a_ ) trainer.save_metrics("train", a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase : List[Any] = trainer.evaluate() _UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) _UpperCAmelCase : Tuple = min(a_, len(a_ ) ) trainer.log_metrics("eval", a_ ) trainer.save_metrics("eval", a_ ) _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __UpperCAmelCase ( a_: int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
17
0
'''simple docstring''' def __UpperCAmelCase ( ): return 1 def __UpperCAmelCase ( a_: int ): return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def __UpperCAmelCase ( a_: int ): return 0 if x < 0 else five_pence(x - 5 ) + two_pence(a__ ) def __UpperCAmelCase ( a_: int ): return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(a__ ) def __UpperCAmelCase ( a_: int ): return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(a__ ) def __UpperCAmelCase ( a_: int ): return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(a__ ) def __UpperCAmelCase ( a_: int ): return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(a__ ) def __UpperCAmelCase ( a_: int ): return 0 if x < 0 else two_pound(x - 200 ) + one_pound(a__ ) def __UpperCAmelCase ( a_: int = 200 ): return two_pound(a__ ) if __name__ == "__main__": print(solution(int(input().strip())))
359
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str: """simple docstring""" super().__init__() _UpperCAmelCase : List[str] = model _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass def __UpperCAmelCase ( a_: str, a_: str, a_: str ): # load longformer model from model identifier _UpperCAmelCase : int = LongformerModel.from_pretrained(a_ ) _UpperCAmelCase : Any = LightningModel(a_ ) _UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model _UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(a_ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __a = logging.get_logger(__name__) class A__ ( __lowercase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = ['''pixel_values'''] def __init__( self : int , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ : Any , ) -> None: """simple docstring""" super().__init__(**UpperCAmelCase__ ) _UpperCAmelCase : Optional[Any] = size if size is not None else {"shortest_edge": 2_5_6} _UpperCAmelCase : Union[str, Any] = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) _UpperCAmelCase : List[str] = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} _UpperCAmelCase : Optional[Any] = get_size_dict(UpperCAmelCase__ ) _UpperCAmelCase : str = do_resize _UpperCAmelCase : List[Any] = size _UpperCAmelCase : Any = resample _UpperCAmelCase : Dict = do_center_crop _UpperCAmelCase : Any = crop_size _UpperCAmelCase : Dict = do_rescale _UpperCAmelCase : Optional[Any] = rescale_factor _UpperCAmelCase : List[str] = do_normalize _UpperCAmelCase : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase : Optional[Any] = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _UpperCAmelCase : List[str] = get_resize_output_image_size(UpperCAmelCase__ , size=size["shortest_edge"] , default_to_square=UpperCAmelCase__ ) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : int , ) -> np.ndarray: """simple docstring""" _UpperCAmelCase : Optional[int] = get_size_dict(UpperCAmelCase__ ) return center_crop(UpperCAmelCase__ , size=(size["height"], size["width"]) , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[int] ) -> np.ndarray: """simple docstring""" return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ : List[Any] , ) -> Dict: """simple docstring""" _UpperCAmelCase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : Tuple = size if size is not None else self.size _UpperCAmelCase : List[Any] = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = resample if resample is not None else self.resample _UpperCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase : List[str] = get_size_dict(UpperCAmelCase__ ) _UpperCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : Tuple = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : Any = image_std if image_std is not None else self.image_std _UpperCAmelCase : Optional[int] = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _UpperCAmelCase : Optional[Any] = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: _UpperCAmelCase : Optional[Any] = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_center_crop: _UpperCAmelCase : Union[str, Any] = [self.center_crop(image=UpperCAmelCase__ , size=UpperCAmelCase__ ) for image in images] if do_rescale: _UpperCAmelCase : Tuple = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] if do_normalize: _UpperCAmelCase : Optional[int] = [self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) for image in images] _UpperCAmelCase : Tuple = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] _UpperCAmelCase : Optional[int] = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
360
'''simple docstring''' from importlib import import_module from .logging import get_logger __a = get_logger(__name__) class A__ : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class A__ : """simple docstring""" UpperCamelCase_ : Union[str, Any] = [] def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = obj _UpperCAmelCase : int = target _UpperCAmelCase : Optional[int] = new _UpperCAmelCase : Any = target.split("." )[0] _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : Dict = attrs or [] def __enter__( self : List[str] ) -> int: """simple docstring""" *_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: _UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCAmelCase : Tuple = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) _UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: _UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCAmelCase : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.__enter__() self._active_patches.append(self ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
17
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __a = ["gpt2"] __a = "gpt2" if is_tf_available(): class A__ ( tf.Module ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Any ) -> Optional[Any]: """simple docstring""" super().__init__() _UpperCAmelCase : Dict = tokenizer _UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(_a ) _UpperCAmelCase : str = TFGPTaLMHeadModel.from_config(_a ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : str = self.tokenizer(_a ) _UpperCAmelCase : List[Any] = tokenized["""input_ids"""].to_tensor() _UpperCAmelCase : List[Any] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _UpperCAmelCase : int = self.model(input_ids=_a , attention_mask=_a )["""logits"""] return outputs @require_tf @require_keras_nlp class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" super().setUp() _UpperCAmelCase : Optional[Any] = [GPTaTokenizer.from_pretrained(_a ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _UpperCAmelCase : Tuple = [TFGPTaTokenizer.from_pretrained(_a ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _UpperCAmelCase : List[Any] = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] _UpperCAmelCase : List[str] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _UpperCAmelCase : Union[str, Any] = tokenizer([test_inputs] , return_tensors="tf" ) _UpperCAmelCase : Optional[int] = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _UpperCAmelCase : List[str] = python_outputs[key].numpy() _UpperCAmelCase : Tuple = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(_a , tf.intaa ) == tf_outputs_values ) ) @slow def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _UpperCAmelCase : str = tf.function(_a ) for test_inputs in self.test_sentences: _UpperCAmelCase : Optional[int] = tf.constant(_a ) _UpperCAmelCase : Tuple = compiled_tokenizer(_a ) _UpperCAmelCase : Dict = tf_tokenizer(_a ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _UpperCAmelCase : Tuple = ModelToSave(tokenizer=_a ) _UpperCAmelCase : str = tf.convert_to_tensor([self.test_sentences[0]] ) _UpperCAmelCase : Tuple = model.serving(_a ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _UpperCAmelCase : List[str] = Path(_a ) / """saved.model""" tf.saved_model.save(_a , _a , signatures={"serving_default": model.serving} ) _UpperCAmelCase : Any = tf.saved_model.load(_a ) _UpperCAmelCase : int = loaded_model.signatures["""serving_default"""](_a )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: _UpperCAmelCase : Dict = tf.convert_to_tensor([self.test_sentences[0]] ) _UpperCAmelCase : Union[str, Any] = tf_tokenizer(_a ) # Build model with some sample inputs _UpperCAmelCase : str = tf_tokenizer.get_config() _UpperCAmelCase : str = TFGPTaTokenizer.from_config(_a ) _UpperCAmelCase : List[Any] = model_from_config(_a ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run _UpperCAmelCase : Optional[Any] = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: _UpperCAmelCase : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) _UpperCAmelCase : Dict = tf_tokenizer(_a , max_length=_a ) _UpperCAmelCase : Dict = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
361
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a = datasets.utils.logging.get_logger(__name__) __a = ['names', 'prefix'] __a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __a = ['encoding_errors', 'on_bad_lines'] __a = ['date_format'] @dataclass class A__ ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_00_00 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase : Any = self.delimiter if self.column_names is not None: _UpperCAmelCase : List[Any] = self.column_names @property def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase_ : int = CsvConfig def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : str = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase : Tuple = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): _UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
17
0
'''simple docstring''' import os import string import sys __a = 1 << 8 __a = { 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } __a = KEYMAP['up'] __a = KEYMAP['left'] if sys.platform == "win32": __a = [] __a = { b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): __a = ord(str(i)) def __UpperCAmelCase ( ): if os.name == "nt": import msvcrt _UpperCAmelCase : Tuple = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowercase__ ) == 0: # Read the keystroke _UpperCAmelCase : List[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _UpperCAmelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _UpperCAmelCase : Any = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(lowercase__ ) if ord(lowercase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _UpperCAmelCase : List[str] = chr(KEYMAP["esc"] ) except KeyError: _UpperCAmelCase : Tuple = cha[1] else: _UpperCAmelCase : Union[str, Any] = ch.decode(lowercase__ ) else: _UpperCAmelCase : Optional[Any] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _UpperCAmelCase : List[str] = sys.stdin.fileno() _UpperCAmelCase : List[str] = termios.tcgetattr(lowercase__ ) try: tty.setraw(lowercase__ ) _UpperCAmelCase : Tuple = sys.stdin.read(1 ) finally: termios.tcsetattr(lowercase__, termios.TCSADRAIN, lowercase__ ) return ch def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = get_raw_chars() if ord(lowercase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowercase__ ) == KEYMAP["esc"]: _UpperCAmelCase : Any = get_raw_chars() if ord(lowercase__ ) == KEYMAP["mod_int"]: _UpperCAmelCase : Optional[Any] = get_raw_chars() if ord(lowercase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowercase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowercase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
362
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: list[int] ): if not nums: return 0 _UpperCAmelCase : int = nums[0] _UpperCAmelCase : Dict = 0 for num in nums[1:]: _UpperCAmelCase , _UpperCAmelCase : Any = ( max_excluding + num, max(a_, a_ ), ) return max(a_, a_ ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import random def __UpperCAmelCase ( a_: Optional[Any], a_: Optional[Any], a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = a[left_index] _UpperCAmelCase : Union[str, Any] = left_index + 1 for j in range(left_index + 1, __snake_case ): if a[j] < pivot: _UpperCAmelCase : Any = a[i], a[j] i += 1 _UpperCAmelCase : Any = a[i - 1], a[left_index] return i - 1 def __UpperCAmelCase ( a_: int, a_: str, a_: Any ): if left < right: _UpperCAmelCase : List[Any] = random.randint(__snake_case, right - 1 ) _UpperCAmelCase : List[Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound _UpperCAmelCase : Tuple = partition(__snake_case, __snake_case, __snake_case ) quick_sort_random( __snake_case, __snake_case, __snake_case ) # recursive quicksort to the left of the pivot point quick_sort_random( __snake_case, pivot_index + 1, __snake_case ) # recursive quicksort to the right of the pivot point def __UpperCAmelCase ( ): _UpperCAmelCase : Any = input("Enter numbers separated by a comma:\n" ).strip() _UpperCAmelCase : List[Any] = [int(__snake_case ) for item in user_input.split("," )] quick_sort_random(__snake_case, 0, len(__snake_case ) ) print(__snake_case ) if __name__ == "__main__": main()
363
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): _UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" ) if key.startswith("module.decoder" ): _UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] _UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )] _UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" ) if "attn.q" in key: _UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Dict = key.replace("attn", "attention.self" ) if "fc1" in key: _UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" ) if "fc2" in key: _UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Any = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" ) _UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: _UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" ) if "skip_conv1" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" ) if "skip_conv2" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" ) if "fusion1" in key: _UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" ) if "fusion2" in key: _UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" ) if "fusion3" in key: _UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" ) if "fusion" in key and "conv" in key: _UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): _UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" ) _UpperCAmelCase : int = value return new_state_dict def __UpperCAmelCase ( a_: str, a_: List[Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ): _UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _UpperCAmelCase : Dict = GLPNImageProcessor() # prepare image _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) ) # rename keys _UpperCAmelCase : List[str] = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict _UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _UpperCAmelCase : Dict = model(a_ ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _UpperCAmelCase : Optional[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _UpperCAmelCase : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) _UpperCAmelCase : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
17
0
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME __a = ['small', 'medium', 'large'] __a = 'lm_head.decoder.weight' __a = 'lm_head.weight' def __UpperCAmelCase ( a_: str, a_: str ): _UpperCAmelCase : Union[str, Any] = torch.load(_a ) _UpperCAmelCase : Tuple = d.pop(_a ) os.makedirs(_a, exist_ok=_a ) torch.save(_a, os.path.join(_a, _a ) ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) __a = parser.parse_args() for MODEL in DIALOGPT_MODELS: __a = os.path.join(args.dialogpt_path, f'{MODEL}_ft.pkl') __a = f'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
364
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : int = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _UpperCAmelCase : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(a_ ) ), }, features=a_, ) return dataset @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=a_ ) return filename # FILE_CONTENT + files __a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt" _UpperCAmelCase : Tuple = FILE_CONTENT with open(a_, "w" ) as f: f.write(a_ ) return filename @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" ) with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import gzip _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _UpperCAmelCase : Any = bytes(a_, "utf-8" ) with gzip.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _UpperCAmelCase : str = bytes(a_, "utf-8" ) with lza.frame.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Any ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(a_, "w" ) as archive: archive.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: List[str] ): import tarfile _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): import lzma _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _UpperCAmelCase : List[str] = bytes(a_, "utf-8" ) with lzma.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: Tuple ): import zipfile _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _UpperCAmelCase : int = bytes(a_, "utf-8" ) with zstd.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml" _UpperCAmelCase : Tuple = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(a_, "w" ) as f: f.write(a_ ) return filename __a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : str = datasets.Dataset.from_dict(a_ ) _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(a_ ) ) as con: _UpperCAmelCase : List[Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str, a_: str ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(a_, "rb" ) as f: _UpperCAmelCase : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ): _UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) ) f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ): _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _UpperCAmelCase : Dict = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(a_, "wb" ) as f: _UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ ) _UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ ) writer.write_table(a_ ) writer.close() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : str = {"data": DATA} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(a_, "w" ) as f: for item in DATA_312: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(a_, "w" ) as f: for item in DATA_STR: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ): import gzip _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ): import gzip _UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ): _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : List[str] = ["0", "1", "2", "3"] _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Dict = ["0", "1", "2", "3"] _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = ["0", "1", "2", "3"] _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename("unsupported.ext" ) ) f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) return data_dir
17
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Dict , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Any ) -> None: """simple docstring""" warnings.warn( "The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DeiTImageProcessor instead." , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
365
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = BarthezTokenizer UpperCamelCase_ : List[Any] = BarthezTokenizerFast UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : Optional[int] = True def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" super().setUp() _UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = "<pad>" _UpperCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] _UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] _UpperCAmelCase : int = self.tokenizer( lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() _UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé." _UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase : Tuple = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , )
17
0
'''simple docstring''' def __UpperCAmelCase ( a_: list[int], a_: list[int] ): if not len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) == 3: raise ValueError("Please enter a valid equation." ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("Both a & b of two equations can't be zero." ) # Extract the coefficients _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = equationa _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = equationa # Calculate the determinants of the matrices _UpperCAmelCase : List[str] = aa * ba - aa * ba _UpperCAmelCase : Optional[Any] = ca * ba - ca * ba _UpperCAmelCase : Optional[Any] = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("Infinite solutions. (Consistent system)" ) else: raise ValueError("No solution. (Inconsistent system)" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _UpperCAmelCase : List[str] = determinant_x / determinant _UpperCAmelCase : Optional[Any] = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
366
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0} _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : str = max_resolution _UpperCAmelCase : List[Any] = size _UpperCAmelCase : Union[str, Any] = do_normalize _UpperCAmelCase : Optional[Any] = do_convert_rgb _UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] _UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image() _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : str = 2_0_4_8 _UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Union[str, Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _UpperCAmelCase : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches _UpperCAmelCase : Any = "Hello" _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : List[Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) _UpperCAmelCase : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Union[str, Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCAmelCase : List[Any] = 3 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Tuple = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
17
0
'''simple docstring''' import functools from typing import Any def __UpperCAmelCase ( a_: str, a_: list[str] ): if not isinstance(a_, a_ ) or len(a_ ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(a_, a_ ) or not all( isinstance(a_, a_ ) and len(a_ ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie _UpperCAmelCase : dict[str, Any] = {} _UpperCAmelCase : Tuple = """WORD_KEEPER""" for word in words: _UpperCAmelCase : List[str] = trie for c in word: if c not in trie_node: _UpperCAmelCase : Tuple = {} _UpperCAmelCase : Dict = trie_node[c] _UpperCAmelCase : Any = True _UpperCAmelCase : str = len(a_ ) # Dynamic programming method @functools.cache def is_breakable(a_: int ) -> bool: if index == len_string: return True _UpperCAmelCase : Optional[int] = trie for i in range(a_, a_ ): _UpperCAmelCase : Tuple = trie_node.get(string[i], a_ ) if trie_node is None: return False if trie_node.get(a_, a_ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
367
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''time_series_transformer''' UpperCamelCase_ : Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = prediction_length _UpperCAmelCase : Optional[Any] = context_length or prediction_length _UpperCAmelCase : Optional[Any] = distribution_output _UpperCAmelCase : Union[str, Any] = loss _UpperCAmelCase : Dict = input_size _UpperCAmelCase : int = num_time_features _UpperCAmelCase : Any = lags_sequence _UpperCAmelCase : Dict = scaling _UpperCAmelCase : Tuple = num_dynamic_real_features _UpperCAmelCase : Dict = num_static_real_features _UpperCAmelCase : Union[str, Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Optional[int] = cardinality else: _UpperCAmelCase : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : List[Any] = embedding_dimension else: _UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : str = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features _UpperCAmelCase : str = d_model _UpperCAmelCase : Optional[Any] = encoder_attention_heads _UpperCAmelCase : Dict = decoder_attention_heads _UpperCAmelCase : List[Any] = encoder_ffn_dim _UpperCAmelCase : str = decoder_ffn_dim _UpperCAmelCase : Dict = encoder_layers _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : Any = dropout _UpperCAmelCase : str = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : Dict = encoder_layerdrop _UpperCAmelCase : Any = decoder_layerdrop _UpperCAmelCase : Optional[Any] = activation_function _UpperCAmelCase : Tuple = init_std _UpperCAmelCase : List[str] = use_cache super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
0
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __UpperCAmelCase ( a_: Optional[Any], a_: Dict, a_: Dict=1_024, a_: Tuple=1_024, a_: Tuple=False, **a_: Dict ): _UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(a__ ) _UpperCAmelCase : Union[str, Any] = SeqaSeqDataset(a__, a__, a__, a__, type_path="train", **a__ ) _UpperCAmelCase : Optional[Any] = tok.pad_token_id def get_lens(a_: Tuple ): _UpperCAmelCase : List[str] = tqdm( DataLoader(a__, batch_size=512, num_workers=8, shuffle=a__, collate_fn=ds.collate_fn ), desc=str(ds.len_file ), ) _UpperCAmelCase : Tuple = [] for batch in dl: _UpperCAmelCase : Optional[Any] = batch["input_ids"].ne(a__ ).sum(1 ).tolist() _UpperCAmelCase : List[str] = batch["labels"].ne(a__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(a__, a__ ): max_lens.append(max(a__, a__ ) ) else: max_lens.extend(a__ ) return max_lens _UpperCAmelCase : Union[str, Any] = get_lens(a__ ) _UpperCAmelCase : Union[str, Any] = SeqaSeqDataset(a__, a__, a__, a__, type_path="val", **a__ ) _UpperCAmelCase : List[Any] = get_lens(a__ ) pickle_save(a__, train_ds.len_file ) pickle_save(a__, val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
368
'''simple docstring''' import baseaa def __UpperCAmelCase ( a_: str ): return baseaa.baaencode(string.encode("utf-8" ) ) def __UpperCAmelCase ( a_: bytes ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": __a = 'Hello World!' __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
17
0
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : List[str] = inspect.getfile(accelerate.test_utils ) _UpperCAmelCase : List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) _UpperCAmelCase : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) _UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def _lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" print(F"""Found {torch.cuda.device_count()} devices.""" ) _UpperCAmelCase : Union[str, Any] = ["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" print(F"""Found {torch.cuda.device_count()} devices.""" ) _UpperCAmelCase : str = ["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(F"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[Any] = ["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) @require_multi_gpu def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" print(F"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) _UpperCAmelCase : Tuple = ["torchrun", F"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) if __name__ == "__main__": __a = Accelerator() __a = (accelerator.state.process_index + 2, 10) __a = torch.randint(0, 10, shape).to(accelerator.device) __a = '' __a = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __a = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __a = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
369
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" UpperCamelCase_ : Any = XGLMConfig UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Dict = '''gelu''' def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : str = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : int = d_model _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Tuple = ffn_dim _UpperCAmelCase : Any = activation_function _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Any = None _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Tuple = 1 def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _UpperCAmelCase : Any = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[Any] = self.get_config() _UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : Dict = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Tuple = False def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = TFXGLMModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on _UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) _UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" ) _UpperCAmelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): _UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) _UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[int] = "left" # use different length sentences to test batching _UpperCAmelCase : Tuple = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = inputs["input_ids"] _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 ) _UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
17
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
370
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def __UpperCAmelCase ( a_: Tuple, a_: Any ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ), ], ) def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ): _UpperCAmelCase : Tuple = str(a_ ) dataset_info.write_to_directory(a_ ) _UpperCAmelCase : Any = DatasetInfo.from_directory(a_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a_, "dataset_info.json" ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, ) _UpperCAmelCase : Tuple = dataset_info._to_yaml_dict() assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) _UpperCAmelCase : List[Any] = yaml.safe_dump(a_ ) _UpperCAmelCase : Optional[int] = yaml.safe_load(a_ ) assert dataset_info_yaml_dict == reloaded def __UpperCAmelCase ( ): _UpperCAmelCase : str = DatasetInfo() _UpperCAmelCase : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1_337 ), } ), ], ) def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ): _UpperCAmelCase : Union[str, Any] = str(a_ ) dataset_infos_dict.write_to_directory(a_ ) _UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a_, "README.md" ) )
17
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { "configuration_bert": ["BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BertConfig", "BertOnnxConfig"], "tokenization_bert": ["BasicTokenizer", "BertTokenizer", "WordpieceTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["BertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "BertForMaskedLM", "BertForMultipleChoice", "BertForNextSentencePrediction", "BertForPreTraining", "BertForQuestionAnswering", "BertForSequenceClassification", "BertForTokenClassification", "BertLayer", "BertLMHeadModel", "BertModel", "BertPreTrainedModel", "load_tf_weights_in_bert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBertEmbeddings", "TFBertForMaskedLM", "TFBertForMultipleChoice", "TFBertForNextSentencePrediction", "TFBertForPreTraining", "TFBertForQuestionAnswering", "TFBertForSequenceClassification", "TFBertForTokenClassification", "TFBertLMHeadModel", "TFBertMainLayer", "TFBertModel", "TFBertPreTrainedModel", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["TFBertTokenizer"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "FlaxBertForCausalLM", "FlaxBertForMaskedLM", "FlaxBertForMultipleChoice", "FlaxBertForNextSentencePrediction", "FlaxBertForPreTraining", "FlaxBertForQuestionAnswering", "FlaxBertForSequenceClassification", "FlaxBertForTokenClassification", "FlaxBertModel", "FlaxBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
'''simple docstring''' from math import factorial def __UpperCAmelCase ( a_: int = 100 ): return sum(map(a_, str(factorial(a_ ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
17
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
350
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __a = (3, 9, -11, 0, 7, 5, 1, -1) __a = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : int UpperCamelCase_ : Node | None class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None: """simple docstring""" _UpperCAmelCase : Node | None = None for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ): _UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" _UpperCAmelCase : List[Any] = self.head while node: yield node.data _UpperCAmelCase : List[str] = node.next_node def __len__( self : Any ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return " -> ".join([str(lowerCAmelCase__ ) for node in self] ) def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ): return SortedLinkedList(list(a_ ) + list(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() __a = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
17
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = KandinskyVaaImgaImgPipeline UpperCamelCase_ : Any = ['''image_embeds''', '''negative_image_embeds''', '''image'''] UpperCamelCase_ : Optional[Any] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', ] UpperCamelCase_ : List[Any] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCamelCase_ : Optional[int] = False @property def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" return 3_2 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return 3_2 @property def _lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.time_input_dim @property def _lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" return self.time_input_dim * 4 @property def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" return 1_0_0 @property def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : Any = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _UpperCAmelCase : str = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : int = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.dummy_unet _UpperCAmelCase : Tuple = self.dummy_movq _UpperCAmelCase : Optional[int] = { '''num_train_timesteps''': 1_0_0_0, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } _UpperCAmelCase : Optional[int] = DDIMScheduler(**lowerCAmelCase__ ) _UpperCAmelCase : Tuple = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=0 ) -> int: """simple docstring""" _UpperCAmelCase : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCAmelCase__ ) # create init_image _UpperCAmelCase : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) _UpperCAmelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : Optional[int] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) if str(lowerCAmelCase__ ).startswith("mps" ): _UpperCAmelCase : Tuple = torch.manual_seed(lowerCAmelCase__ ) else: _UpperCAmelCase : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 1_0, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = '''cpu''' _UpperCAmelCase : List[Any] = self.get_dummy_components() _UpperCAmelCase : Any = self.pipeline_class(**lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) _UpperCAmelCase : List[Any] = output.images _UpperCAmelCase : Dict = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _UpperCAmelCase : Tuple = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) _UpperCAmelCase : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) _UpperCAmelCase : List[Any] = '''A red cartoon frog, 4k''' _UpperCAmelCase : Dict = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) _UpperCAmelCase : Dict = KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) _UpperCAmelCase : str = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCAmelCase : Dict = torch.Generator(device="cpu" ).manual_seed(0 ) _UpperCAmelCase : Tuple = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() _UpperCAmelCase : List[Any] = pipeline( image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type="np" , ) _UpperCAmelCase : Any = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
351
'''simple docstring''' def __UpperCAmelCase ( a_: str ): if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) _UpperCAmelCase : Optional[Any] = "" while len(a_ ) % 3 != 0: _UpperCAmelCase : List[Any] = "0" + bin_string _UpperCAmelCase : Dict = [ bin_string[index : index + 3] for index in range(len(a_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _UpperCAmelCase : Optional[Any] = 0 for index, val in enumerate(a_ ): oct_val += int(2 ** (2 - index) * int(a_ ) ) oct_string += str(a_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
17
0
'''simple docstring''' from typing import Any class A__ : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Any ) -> str: """simple docstring""" _UpperCAmelCase : Any = data _UpperCAmelCase : List[str] = None class A__ : """simple docstring""" def __init__( self : List[str] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Union[str, Any] = None def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = self.head while temp is not None: print(temp.data , end=" " ) _UpperCAmelCase : List[Any] = temp.next print() def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Any ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Dict = Node(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = self.head _UpperCAmelCase : Any = new_node def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if node_data_a == node_data_a: return else: _UpperCAmelCase : str = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase : Optional[Any] = node_a.next _UpperCAmelCase : Optional[int] = self.head while node_a is not None and node_a.data != node_data_a: _UpperCAmelCase : List[str] = node_a.next if node_a is None or node_a is None: return _UpperCAmelCase , _UpperCAmelCase : Tuple = node_a.data, node_a.data if __name__ == "__main__": __a = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
352
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCAmelCase ( a_: str ): for param in module.parameters(): _UpperCAmelCase : Any = False def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : int = plt.imshow(a_ ) fig.axes.get_xaxis().set_visible(a_ ) fig.axes.get_yaxis().set_visible(a_ ) plt.show() def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = datetime.now() _UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" ) return timestamp
17
0
'''simple docstring''' __a = '''Alexander Joslin''' import operator as op from .stack import Stack def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : Optional[Any] = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} _UpperCAmelCase : Stack[int] = Stack() _UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_lowerCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(_lowerCAmelCase ) elif i == ")": # RULE 4 _UpperCAmelCase : List[str] = operator_stack.peek() operator_stack.pop() _UpperCAmelCase : Dict = operand_stack.peek() operand_stack.pop() _UpperCAmelCase : Optional[int] = operand_stack.peek() operand_stack.pop() _UpperCAmelCase : int = operators[opr](_lowerCAmelCase, _lowerCAmelCase ) operand_stack.push(_lowerCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __a = '''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(f'{equation} = {dijkstras_two_stack_algorithm(equation)}')
353
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = (EulerDiscreteScheduler,) UpperCamelCase_ : Tuple = 10 def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : str = { "num_train_timesteps": 1_1_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : Any = self.dummy_model() _UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = output.prev_sample _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = self.dummy_model() _UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : Tuple = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = output.prev_sample _UpperCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : str = self.dummy_model() _UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : str = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : int = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : Optional[int] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
17
0
'''simple docstring''' import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration __a = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Tuple = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(a_, a_ ) __a = { "blocks": "layers", "mlp.0": "fc1", "mlp.2": "fc2", "mlp_ln": "final_layer_norm", ".attn.query": ".self_attn.q_proj", ".attn.key": ".self_attn.k_proj", ".attn.value": ".self_attn.v_proj", ".attn_ln": ".self_attn_layer_norm", ".attn.out": ".self_attn.out_proj", ".cross_attn.query": ".encoder_attn.q_proj", ".cross_attn.key": ".encoder_attn.k_proj", ".cross_attn.value": ".encoder_attn.v_proj", ".cross_attn_ln": ".encoder_attn_layer_norm", ".cross_attn.out": ".encoder_attn.out_proj", "decoder.ln.": "decoder.layer_norm.", "encoder.ln.": "encoder.layer_norm.", "token_embedding": "embed_tokens", "encoder.positional_embedding": "encoder.embed_positions.weight", "decoder.positional_embedding": "decoder.embed_positions.weight", "ln_post": "layer_norm", } def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : List[Any] = list(s_dict.keys() ) for key in keys: _UpperCAmelCase : str = key for k, v in WHISPER_MAPPING.items(): if k in key: _UpperCAmelCase : Optional[Any] = new_key.replace(a_, a_ ) print(f"""{key} -> {new_key}""" ) _UpperCAmelCase : List[str] = s_dict.pop(a_ ) return s_dict def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase , _UpperCAmelCase : str = emb.weight.shape _UpperCAmelCase : Tuple = nn.Linear(a_, a_, bias=a_ ) _UpperCAmelCase : Optional[int] = emb.weight.data return lin_layer def __UpperCAmelCase ( a_: str, a_: str ): os.makedirs(a_, exist_ok=a_ ) _UpperCAmelCase : Dict = os.path.basename(a_ ) _UpperCAmelCase : Tuple = url.split("/" )[-2] _UpperCAmelCase : Optional[int] = os.path.join(a_, a_ ) if os.path.exists(a_ ) and not os.path.isfile(a_ ): raise RuntimeError(f"""{download_target} exists and is not a regular file""" ) if os.path.isfile(a_ ): _UpperCAmelCase : str = open(a_, "rb" ).read() if hashlib.shaaaa(a_ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(a_ ) as source, open(a_, "wb" ) as output: with tqdm( total=int(source.info().get("Content-Length" ) ), ncols=80, unit="iB", unit_scale=a_, unit_divisor=1_024 ) as loop: while True: _UpperCAmelCase : int = source.read(8_192 ) if not buffer: break output.write(a_ ) loop.update(len(a_ ) ) _UpperCAmelCase : Any = open(a_, "rb" ).read() if hashlib.shaaaa(a_ ).hexdigest() != expected_shaaaa: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." ) return model_bytes def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any] ): if ".pt" not in checkpoint_path: _UpperCAmelCase : Tuple = _download(_MODELS[checkpoint_path] ) else: _UpperCAmelCase : Tuple = torch.load(a_, map_location="cpu" ) _UpperCAmelCase : List[Any] = original_checkpoint["dims"] _UpperCAmelCase : Any = original_checkpoint["model_state_dict"] _UpperCAmelCase : Dict = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(a_ ) rename_keys(a_ ) _UpperCAmelCase : str = True _UpperCAmelCase : Tuple = state_dict["decoder.layers.0.fc1.weight"].shape[0] _UpperCAmelCase : str = WhisperConfig( vocab_size=dimensions["n_vocab"], encoder_ffn_dim=a_, decoder_ffn_dim=a_, num_mel_bins=dimensions["n_mels"], d_model=dimensions["n_audio_state"], max_target_positions=dimensions["n_text_ctx"], encoder_layers=dimensions["n_audio_layer"], encoder_attention_heads=dimensions["n_audio_head"], decoder_layers=dimensions["n_text_layer"], decoder_attention_heads=dimensions["n_text_state"], max_source_positions=dimensions["n_audio_ctx"], ) _UpperCAmelCase : int = WhisperForConditionalGeneration(a_ ) _UpperCAmelCase , _UpperCAmelCase : Dict = model.model.load_state_dict(a_, strict=a_ ) if len(a_ ) > 0 and not set(a_ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," f""" but all the following weights are missing {missing}""" ) if tie_embeds: _UpperCAmelCase : str = make_linear_from_emb(model.model.decoder.embed_tokens ) else: _UpperCAmelCase : Tuple = proj_out_weights model.save_pretrained(a_ ) if __name__ == "__main__": __a = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') __a = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
354
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset __a = 'bert-base-cased' __a = 'google/pegasus-xsum' __a = [' Sam ate lunch today.', 'Sams lunch ingredients.'] __a = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] __a = 'patrickvonplaten/t5-tiny-random' __a = 'sshleifer/bart-tiny-random' __a = 'sshleifer/tiny-mbart' __a = 'sshleifer/tiny-marian-en-de' def __UpperCAmelCase ( a_: Optional[int], a_: List[str] ): _UpperCAmelCase : Optional[Any] = "\n".join(__UpperCAmelCase ) Path(__UpperCAmelCase ).open("w" ).writelines(__UpperCAmelCase ) def __UpperCAmelCase ( a_: Dict ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__UpperCAmelCase, f"""{split}.source""" ), __UpperCAmelCase ) _dump_articles(os.path.join(__UpperCAmelCase, f"""{split}.target""" ), __UpperCAmelCase ) return tmp_dir class A__ ( _lowerCamelCase ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(lowercase_ ) _UpperCAmelCase : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _UpperCAmelCase : List[Any] = max(len(tokenizer.encode(lowercase_ ) ) for a in ARTICLES ) _UpperCAmelCase : Any = max(len(tokenizer.encode(lowercase_ ) ) for a in SUMMARIES ) _UpperCAmelCase : Dict = 4 _UpperCAmelCase : int = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _UpperCAmelCase , _UpperCAmelCase : List[str] = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. _UpperCAmelCase : List[Any] = SeqaSeqDataset( lowercase_ , data_dir=lowercase_ , type_path="train" , max_source_length=lowercase_ , max_target_length=lowercase_ , src_lang=lowercase_ , tgt_lang=lowercase_ , ) _UpperCAmelCase : Dict = DataLoader(lowercase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowercase_ , lowercase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _UpperCAmelCase : Union[str, Any] = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Dict ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(lowercase_ ) _UpperCAmelCase : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _UpperCAmelCase : Optional[int] = max(len(tokenizer.encode(lowercase_ ) ) for a in ARTICLES ) _UpperCAmelCase : Any = max(len(tokenizer.encode(lowercase_ ) ) for a in SUMMARIES ) _UpperCAmelCase : Optional[int] = 4 _UpperCAmelCase : int = LegacySeqaSeqDataset( lowercase_ , data_dir=lowercase_ , type_path="train" , max_source_length=2_0 , max_target_length=lowercase_ , ) _UpperCAmelCase : Optional[int] = DataLoader(lowercase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 2_0 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : int = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) _UpperCAmelCase : Any = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _UpperCAmelCase : Union[str, Any] = tmp_dir.joinpath("train.source" ).open().readlines() _UpperCAmelCase : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowercase_ , lowercase_ , 1_2_8 , lowercase_ ) _UpperCAmelCase : Tuple = {x.name for x in tmp_dir.iterdir()} _UpperCAmelCase : List[str] = {x.name for x in save_dir.iterdir()} _UpperCAmelCase : Dict = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowercase_ ) < len(lowercase_ ) assert len(lowercase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowercase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" if not FAIRSEQ_AVAILABLE: return _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = self._get_dataset(max_len=6_4 ) _UpperCAmelCase : Tuple = 6_4 _UpperCAmelCase : List[str] = ds.make_dynamic_sampler(lowercase_ , required_batch_size_multiple=lowercase_ ) _UpperCAmelCase : Tuple = [len(lowercase_ ) for x in batch_sampler] assert len(set(lowercase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowercase_ ) == len(lowercase_ ) # no dropped or added examples _UpperCAmelCase : List[Any] = DataLoader(lowercase_ , batch_sampler=lowercase_ , collate_fn=ds.collate_fn , num_workers=2 ) _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Optional[int] = [] for batch in data_loader: _UpperCAmelCase : List[Any] = batch["input_ids"].shape _UpperCAmelCase : Tuple = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _UpperCAmelCase : Union[str, Any] = np.product(batch["input_ids"].shape ) num_src_per_batch.append(lowercase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowercase_ ) assert num_src_per_batch[0] == max(lowercase_ ) if failures: raise AssertionError(F"""too many tokens in {len(lowercase_ )} batches""" ) def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = self._get_dataset(max_len=5_1_2 ) _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Optional[int] = ds.make_sortish_sampler(lowercase_ , shuffle=lowercase_ ) _UpperCAmelCase : Tuple = DataLoader(lowercase_ , batch_size=lowercase_ , collate_fn=ds.collate_fn , num_workers=2 ) _UpperCAmelCase : List[Any] = DataLoader(lowercase_ , batch_size=lowercase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowercase_ ) _UpperCAmelCase : Any = tokenizer.pad_token_id def count_pad_tokens(lowerCAmelCase__ : Any , lowerCAmelCase__ : int="input_ids" ): return [batch[k].eq(lowercase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowercase_ , k="labels" ) ) < sum(count_pad_tokens(lowercase_ , k="labels" ) ) assert sum(count_pad_tokens(lowercase_ ) ) < sum(count_pad_tokens(lowercase_ ) ) assert len(lowercase_ ) == len(lowercase_ ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Tuple=1_0_0_0 , lowerCAmelCase__ : Optional[Any]=1_2_8 ) -> List[str]: """simple docstring""" if os.getenv("USE_REAL_DATA" , lowercase_ ): _UpperCAmelCase : List[str] = "examples/seq2seq/wmt_en_ro" _UpperCAmelCase : Any = max_len * 2 * 6_4 if not Path(lowercase_ ).joinpath("train.len" ).exists(): save_len_file(lowercase_ , lowercase_ ) else: _UpperCAmelCase : Any = "examples/seq2seq/test_data/wmt_en_ro" _UpperCAmelCase : Union[str, Any] = max_len * 4 save_len_file(lowercase_ , lowercase_ ) _UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(lowercase_ ) _UpperCAmelCase : Any = SeqaSeqDataset( lowercase_ , data_dir=lowercase_ , type_path="train" , max_source_length=lowercase_ , max_target_length=lowercase_ , n_obs=lowercase_ , ) return ds, max_tokens, tokenizer def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = self._get_dataset() _UpperCAmelCase : List[str] = set(DistributedSortishSampler(lowercase_ , 2_5_6 , num_replicas=2 , rank=0 , add_extra_examples=lowercase_ ) ) _UpperCAmelCase : List[str] = set(DistributedSortishSampler(lowercase_ , 2_5_6 , num_replicas=2 , rank=1 , add_extra_examples=lowercase_ ) ) assert idsa.intersection(lowercase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Optional[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Tuple = AutoTokenizer.from_pretrained(lowercase_ , use_fast=lowercase_ ) if tok_name == MBART_TINY: _UpperCAmelCase : List[str] = SeqaSeqDataset( lowercase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) _UpperCAmelCase : List[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _UpperCAmelCase : Optional[Any] = SeqaSeqDataset( lowercase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) _UpperCAmelCase : List[str] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowercase_ ) == 1 if tok_name == BART_TINY else len(lowercase_ ) == 0
355
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( a_: int ): # A local function to see if a dot lands in the circle. def is_in_circle(a_: float, a_: float ) -> bool: _UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase : str = mean( int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) ) for _ in range(a_ ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase : Optional[int] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ): return mean( function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value) def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ): def identity_function(a_: float ) -> float: return x _UpperCAmelCase : Union[str, Any] = area_under_curve_estimator( a_, a_, a_, a_ ) _UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def __UpperCAmelCase ( a_: int ): def function_to_integrate(a_: float ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase : List[str] = area_under_curve_estimator( a_, a_, 0.0, 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __UpperCAmelCase ( a_: str ): _UpperCAmelCase , _UpperCAmelCase : Dict = analyze_text(lowercase_ ) _UpperCAmelCase : List[str] = list(" " + ascii_lowercase ) # what is our total sum of probabilities. _UpperCAmelCase : List[Any] = sum(single_char_strings.values() ) # one length string _UpperCAmelCase : List[str] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _UpperCAmelCase : Union[str, Any] = single_char_strings[ch] _UpperCAmelCase : List[Any] = my_str / all_sum my_fir_sum += prob * math.loga(lowercase_ ) # entropy formula. # print entropy print(f"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string _UpperCAmelCase : Optional[Any] = sum(two_char_strings.values() ) _UpperCAmelCase : Dict = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _UpperCAmelCase : Optional[int] = cha + cha if sequence in two_char_strings: _UpperCAmelCase : List[Any] = two_char_strings[sequence] _UpperCAmelCase : List[str] = int(lowercase_ ) / all_sum my_sec_sum += prob * math.loga(lowercase_ ) # print second entropy print(f"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(f"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : Dict = Counter() # type: ignore _UpperCAmelCase : Optional[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(lowercase_ ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __UpperCAmelCase ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __a = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2FeatureExtractor'] __a = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
0
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class A__ ( a_ ): """simple docstring""" UpperCamelCase_ : Any = '''efficientnet''' def __init__( self : Union[str, Any] , lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 6_0_0 , lowerCAmelCase__ : float = 2.0 , lowerCAmelCase__ : float = 3.1 , lowerCAmelCase__ : int = 8 , lowerCAmelCase__ : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase__ : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , lowerCAmelCase__ : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , lowerCAmelCase__ : List[int] = [] , lowerCAmelCase__ : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase__ : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase__ : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase__ : float = 0.25 , lowerCAmelCase__ : str = "swish" , lowerCAmelCase__ : int = 2_5_6_0 , lowerCAmelCase__ : str = "mean" , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : float = 0.001 , lowerCAmelCase__ : float = 0.99 , lowerCAmelCase__ : float = 0.5 , lowerCAmelCase__ : float = 0.2 , **lowerCAmelCase__ : str , ) -> List[Any]: """simple docstring""" super().__init__(**lowercase_ ) _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : str = image_size _UpperCAmelCase : Union[str, Any] = width_coefficient _UpperCAmelCase : Any = depth_coefficient _UpperCAmelCase : Optional[int] = depth_divisor _UpperCAmelCase : Union[str, Any] = kernel_sizes _UpperCAmelCase : int = in_channels _UpperCAmelCase : int = out_channels _UpperCAmelCase : Tuple = depthwise_padding _UpperCAmelCase : Dict = strides _UpperCAmelCase : int = num_block_repeats _UpperCAmelCase : str = expand_ratios _UpperCAmelCase : Union[str, Any] = squeeze_expansion_ratio _UpperCAmelCase : List[Any] = hidden_act _UpperCAmelCase : Any = hidden_dim _UpperCAmelCase : List[Any] = pooling_type _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : Tuple = batch_norm_eps _UpperCAmelCase : Tuple = batch_norm_momentum _UpperCAmelCase : str = dropout_rate _UpperCAmelCase : str = drop_connect_rate _UpperCAmelCase : Optional[Any] = sum(lowercase_ ) * 4 class A__ ( a_ ): """simple docstring""" UpperCamelCase_ : Any = version.parse('''1.11''' ) @property def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" return 1e-5
357
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if not isinstance(a_, a_ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(a_, a_ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) _UpperCAmelCase : List[str] = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(a_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from typing import Any class A__ : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Any ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Tuple = data _UpperCAmelCase : Tuple = None def __repr__( self : List[Any] ) -> str: """simple docstring""" return F"""Node({self.data})""" class A__ : """simple docstring""" def __init__( self : Tuple ) -> List[Any]: """simple docstring""" _UpperCAmelCase : str = None def __iter__( self : Optional[int] ) -> Any: """simple docstring""" _UpperCAmelCase : Optional[int] = self.head while node: yield node.data _UpperCAmelCase : int = node.next def __len__( self : Optional[int] ) -> int: """simple docstring""" return sum(1 for _ in self ) def __repr__( self : Union[str, Any] ) -> str: """simple docstring""" return "->".join([str(__A ) for item in self] ) def __getitem__( self : List[Any] , lowerCAmelCase__ : int ) -> Any: """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Any ) -> None: """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) _UpperCAmelCase : Optional[int] = self.head for _ in range(__A ): _UpperCAmelCase : List[str] = current.next _UpperCAmelCase : Optional[int] = data def _lowerCAmelCase ( self : int , lowerCAmelCase__ : Any ) -> None: """simple docstring""" self.insert_nth(len(self ) , __A ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Any ) -> None: """simple docstring""" self.insert_nth(0 , __A ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Any ) -> None: """simple docstring""" if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) _UpperCAmelCase : Optional[Any] = Node(__A ) if self.head is None: _UpperCAmelCase : str = new_node elif index == 0: _UpperCAmelCase : List[Any] = self.head # link new_node to head _UpperCAmelCase : Dict = new_node else: _UpperCAmelCase : Union[str, Any] = self.head for _ in range(index - 1 ): _UpperCAmelCase : Tuple = temp.next _UpperCAmelCase : List[str] = temp.next _UpperCAmelCase : List[str] = new_node def _lowerCAmelCase ( self : Union[str, Any] ) -> None: # print every node data """simple docstring""" print(self ) def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" return self.delete_nth(0 ) def _lowerCAmelCase ( self : Dict ) -> Any: # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : int = 0 ) -> Any: """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) _UpperCAmelCase : List[Any] = self.head # default first node if index == 0: _UpperCAmelCase : List[str] = self.head.next else: _UpperCAmelCase : int = self.head for _ in range(index - 1 ): _UpperCAmelCase : Tuple = temp.next _UpperCAmelCase : Optional[int] = temp.next _UpperCAmelCase : Optional[Any] = temp.next.next return delete_node.data def _lowerCAmelCase ( self : Tuple ) -> bool: """simple docstring""" return self.head is None def _lowerCAmelCase ( self : Union[str, Any] ) -> None: """simple docstring""" _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : str = self.head while current: # Store the current node's next node. _UpperCAmelCase : List[Any] = current.next # Make the current node's next point backwards _UpperCAmelCase : Optional[int] = prev # Make the previous node be the current node _UpperCAmelCase : Any = current # Make the current node the next node (to progress iteration) _UpperCAmelCase : Dict = next_node # Return prev in order to put the head at the end _UpperCAmelCase : Tuple = prev def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = LinkedList() assert linked_list.is_empty() is True assert str(_lowercase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_lowercase ) == i linked_list.insert_nth(_lowercase, i + 1 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1, 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0, 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_lowercase ) == 9 assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1, 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0, 9 ) ) is True for i in range(0, 9 ): _UpperCAmelCase : int = -i assert all(linked_list[i] == -i for i in range(0, 9 ) ) is True linked_list.reverse() assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8, 1 ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : List[Any] = [ -9, 100, Node(77_345_112 ), "dlrow olleH", 7, 5_555, 0, -192.55_555, "Hello, world!", 77.9, Node(10 ), None, None, 12.20, ] _UpperCAmelCase : Dict = LinkedList() for i in test_input: linked_list.insert_tail(_lowercase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head _UpperCAmelCase : Union[str, Any] = linked_list.delete_head() assert result == -9 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail _UpperCAmelCase : List[str] = linked_list.delete_tail() assert result == 12.2 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list _UpperCAmelCase : Optional[int] = linked_list.delete_nth(10 ) assert result is None assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_lowercase ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_lowercase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCAmelCase ( ): from doctest import testmod testmod() _UpperCAmelCase : Optional[int] = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(_lowercase ) print("\nReading/changing Node data using indexing:" ) print(f"""Element at Position 1: {linked_list[1]}""" ) _UpperCAmelCase : int = input("Enter New Value: " ).strip() print("New list:" ) print(_lowercase ) print(f"""length of linked_list is : {len(_lowercase )}""" ) if __name__ == "__main__": main()
358
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') __a = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" if self.train_file is not None: _UpperCAmelCase : List[Any] = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCAmelCase : List[str] = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A__ : """simple docstring""" UpperCamelCase_ : PreTrainedTokenizerBase UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[int] = None def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels" _UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features] _UpperCAmelCase : str = len(lowerCAmelCase__ ) _UpperCAmelCase : int = len(features[0]["input_ids"] ) _UpperCAmelCase : str = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features ] _UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) ) _UpperCAmelCase : Any = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) return batch def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag", a_, a_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCAmelCase : Union[str, Any] = {} if data_args.train_file is not None: _UpperCAmelCase : str = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase : Optional[Any] = data_args.validation_file _UpperCAmelCase : Dict = data_args.train_file.split("." )[-1] _UpperCAmelCase : Optional[int] = load_dataset( a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: # Downloading and loading the swag dataset from the hub. _UpperCAmelCase : Dict = load_dataset( "swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )] _UpperCAmelCase : List[Any] = "sent1" _UpperCAmelCase : Optional[int] = "sent2" if data_args.max_seq_length is None: _UpperCAmelCase : List[str] = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _UpperCAmelCase : Dict = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]] _UpperCAmelCase : Tuple = examples[question_header_name] _UpperCAmelCase : Optional[Any] = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ ) ] # Flatten out _UpperCAmelCase : List[str] = list(chain(*a_ ) ) _UpperCAmelCase : Dict = list(chain(*a_ ) ) # Tokenize _UpperCAmelCase : List[Any] = tokenizer( a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _UpperCAmelCase : int = raw_datasets["train"] if data_args.max_train_samples is not None: _UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples ) _UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _UpperCAmelCase : Union[str, Any] = train_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _UpperCAmelCase : Dict = raw_datasets["validation"] if data_args.max_eval_samples is not None: _UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples ) _UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _UpperCAmelCase : Optional[int] = eval_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator _UpperCAmelCase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a_: Tuple ): _UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions _UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCAmelCase : Any = Trainer( model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, ) # Training if training_args.do_train: _UpperCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : List[str] = last_checkpoint _UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase : str = train_result.metrics _UpperCAmelCase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) _UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) ) trainer.log_metrics("train", a_ ) trainer.save_metrics("train", a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase : List[Any] = trainer.evaluate() _UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) _UpperCAmelCase : Tuple = min(a_, len(a_ ) ) trainer.log_metrics("eval", a_ ) trainer.save_metrics("eval", a_ ) _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __UpperCAmelCase ( a_: int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
17
0
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str]=1_3 , lowerCAmelCase__ : int=7 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : int=9_9 , lowerCAmelCase__ : List[str]=0 , lowerCAmelCase__ : int=3_2 , lowerCAmelCase__ : Dict=5 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Any=5_1_2 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : str=0.02 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : Optional[int]=4 , lowerCAmelCase__ : Optional[Any]="last" , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Optional[Any]=0 , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Optional[int] = parent _UpperCAmelCase : List[str] = batch_size _UpperCAmelCase : str = seq_length _UpperCAmelCase : List[Any] = is_training _UpperCAmelCase : Optional[int] = use_input_lengths _UpperCAmelCase : List[Any] = use_token_type_ids _UpperCAmelCase : List[Any] = use_labels _UpperCAmelCase : List[Any] = gelu_activation _UpperCAmelCase : Union[str, Any] = sinusoidal_embeddings _UpperCAmelCase : List[Any] = causal _UpperCAmelCase : List[Any] = asm _UpperCAmelCase : Union[str, Any] = n_langs _UpperCAmelCase : Optional[int] = vocab_size _UpperCAmelCase : Dict = n_special _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Union[str, Any] = hidden_dropout_prob _UpperCAmelCase : Tuple = attention_probs_dropout_prob _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : Optional[Any] = type_sequence_label_size _UpperCAmelCase : Optional[int] = initializer_range _UpperCAmelCase : List[Any] = num_labels _UpperCAmelCase : Any = num_choices _UpperCAmelCase : Any = summary_type _UpperCAmelCase : Union[str, Any] = use_proj _UpperCAmelCase : int = scope _UpperCAmelCase : Optional[Any] = bos_token_id def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : str = None if self.use_input_lengths: _UpperCAmelCase : str = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCAmelCase : int = None if self.use_token_type_ids: _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCAmelCase : Any = None _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : List[str] = None if self.use_labels: _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Any = ids_tensor([self.batch_size] , 2 ).float() _UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : int = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , ) -> Any: """simple docstring""" _UpperCAmelCase : Union[str, Any] = XLMModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase : int = model(_SCREAMING_SNAKE_CASE , lengths=_SCREAMING_SNAKE_CASE , langs=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[Any] = model(_SCREAMING_SNAKE_CASE , langs=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : int = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] , ) -> Dict: """simple docstring""" _UpperCAmelCase : Dict = XLMWithLMHeadModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase : str = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , ) -> str: """simple docstring""" _UpperCAmelCase : List[Any] = XLMForQuestionAnsweringSimple(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Tuple = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = XLMForQuestionAnswering(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase : int = model(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Any = model( _SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , cls_index=_SCREAMING_SNAKE_CASE , is_impossible=_SCREAMING_SNAKE_CASE , p_mask=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase : List[str] = model( _SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , cls_index=_SCREAMING_SNAKE_CASE , is_impossible=_SCREAMING_SNAKE_CASE , ) (_UpperCAmelCase ) : Optional[Any] = result_with_labels.to_tuple() _UpperCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) (_UpperCAmelCase ) : Dict = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : str = XLMForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase : List[str] = model(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : int = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , ) -> List[str]: """simple docstring""" _UpperCAmelCase : Dict = self.num_labels _UpperCAmelCase : Any = XLMForTokenClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase : Union[str, Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.num_choices _UpperCAmelCase : Tuple = XLMForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Any = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( _UpperCAmelCase ) : Any = config_and_inputs _UpperCAmelCase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class A__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase_ : Optional[int] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase_ : Dict = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] ) -> int: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple=False ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[int] = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _UpperCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def _lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = XLMModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , emb_dim=3_7 ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" self.config_tester.run_common_tests() def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str=False , lowerCAmelCase__ : List[str]=1 ) -> int: """simple docstring""" self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertListEqual( [isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iter_attentions in attentions] , [True] * len(_SCREAMING_SNAKE_CASE ) ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_SCREAMING_SNAKE_CASE ): # adds PAD dummy token _UpperCAmelCase : Optional[int] = min_length + idx + 1 _UpperCAmelCase : Union[str, Any] = min_length + idx + 1 _UpperCAmelCase : str = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_SCREAMING_SNAKE_CASE ) ) def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : Optional[int]=1 ) -> Union[str, Any]: """simple docstring""" self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertListEqual( [isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for iter_hidden_states in hidden_states] , [True] * len(_SCREAMING_SNAKE_CASE ) , ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_SCREAMING_SNAKE_CASE ): # adds PAD dummy token _UpperCAmelCase : int = min_length + idx + 1 _UpperCAmelCase : Optional[int] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_SCREAMING_SNAKE_CASE ) , ) pass @slow def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : List[Any] = XLMModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Any = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : List[str] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) # the president _UpperCAmelCase : Any = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _UpperCAmelCase : Optional[Any] = model.generate(_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _SCREAMING_SNAKE_CASE )
359
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str: """simple docstring""" super().__init__() _UpperCAmelCase : List[str] = model _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass def __UpperCAmelCase ( a_: str, a_: str, a_: str ): # load longformer model from model identifier _UpperCAmelCase : int = LongformerModel.from_pretrained(a_ ) _UpperCAmelCase : Any = LightningModel(a_ ) _UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model _UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(a_ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
0
'''simple docstring''' import os from collections.abc import Iterator def __UpperCAmelCase ( a_: str = "." ): for dir_path, dir_names, filenames in os.walk(_a ): _UpperCAmelCase : Any = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_a )[1] in (".py", ".ipynb"): yield os.path.join(_a, _a ).lstrip("./" ) def __UpperCAmelCase ( a_: Dict ): return f"""{i * ' '}*""" if i else "\n##" def __UpperCAmelCase ( a_: str, a_: str ): _UpperCAmelCase : str = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_a ) or old_parts[i] != new_part) and new_part: print(f"""{md_prefix(_a )} {new_part.replace('_', ' ' ).title()}""" ) return new_path def __UpperCAmelCase ( a_: str = "." ): _UpperCAmelCase : List[str] = "" for filepath in sorted(good_file_paths(_a ) ): _UpperCAmelCase , _UpperCAmelCase : Dict = os.path.split(_a ) if filepath != old_path: _UpperCAmelCase : List[Any] = print_path(_a, _a ) _UpperCAmelCase : int = (filepath.count(os.sep ) + 1) if filepath else 0 _UpperCAmelCase : Optional[int] = f"""{filepath}/{filename}""".replace(" ", "%20" ) _UpperCAmelCase : Optional[Any] = os.path.splitext(filename.replace("_", " " ).title() )[0] print(f"""{md_prefix(_a )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('.')
360
'''simple docstring''' from importlib import import_module from .logging import get_logger __a = get_logger(__name__) class A__ : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class A__ : """simple docstring""" UpperCamelCase_ : Union[str, Any] = [] def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = obj _UpperCAmelCase : int = target _UpperCAmelCase : Optional[int] = new _UpperCAmelCase : Any = target.split("." )[0] _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : Dict = attrs or [] def __enter__( self : List[str] ) -> int: """simple docstring""" *_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: _UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCAmelCase : Tuple = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) _UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: _UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCAmelCase : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.__enter__() self._active_patches.append(self ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
17
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin __a = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __a = 250_004 __a = 250_020 @require_sentencepiece @require_tokenizers class A__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = MBartaaTokenizer UpperCamelCase_ : List[Any] = MBartaaTokenizerFast UpperCamelCase_ : Union[str, Any] = True UpperCamelCase_ : Optional[Any] = True def _lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : Union[str, Any] = MBartaaTokenizer(snake_case__ , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = '''<s>''' _UpperCAmelCase : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(snake_case__ ) , 1_0_5_4 ) def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_5_4 ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = MBartaaTokenizer(snake_case__ , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=snake_case__ ) _UpperCAmelCase : int = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _UpperCAmelCase : Tuple = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) _UpperCAmelCase : Union[str, Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) _UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def _lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[str] = {'''input_ids''': [[2_5_0_0_0_4, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [2_5_0_0_0_4, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_0_0_0_4, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="facebook/mbart-large-50" , revision="d3913889c59cd5c9e456b269c376325eabad57e2" , ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _UpperCAmelCase : Optional[int] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _UpperCAmelCase : str = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _UpperCAmelCase : Optional[int] = tempfile.mkdtemp() _UpperCAmelCase : Tuple = tokenizer_r.save_pretrained(snake_case__ ) _UpperCAmelCase : Tuple = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) _UpperCAmelCase : Any = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _UpperCAmelCase : List[str] = tokenizer_r.from_pretrained(snake_case__ ) _UpperCAmelCase : str = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=True _UpperCAmelCase : Dict = tempfile.mkdtemp() _UpperCAmelCase : Any = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _UpperCAmelCase : int = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _UpperCAmelCase : str = tokenizer_r.from_pretrained(snake_case__ ) _UpperCAmelCase : Optional[int] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=False _UpperCAmelCase : List[str] = tempfile.mkdtemp() _UpperCAmelCase : Any = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _UpperCAmelCase : List[str] = tokenizer_p.save_pretrained(snake_case__ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _UpperCAmelCase : Union[str, Any] = tokenizer_r.from_pretrained(snake_case__ ) _UpperCAmelCase : Dict = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = """facebook/mbart-large-50-one-to-many-mmt""" UpperCamelCase_ : str = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] UpperCamelCase_ : int = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] UpperCamelCase_ : str = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def _lowerCAmelCase ( cls : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) _UpperCAmelCase : List[Any] = 1 return cls def _lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 2_5_0_0_2_0 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"] , 2_5_0_0_3_8 ) def _lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) _UpperCAmelCase : Optional[int] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] _UpperCAmelCase : str = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) _UpperCAmelCase : Any = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : int = ['''this is gunna be a long sentence ''' * 2_0] assert isinstance(src_text[0] , snake_case__ ) _UpperCAmelCase : Optional[int] = 1_0 _UpperCAmelCase : Optional[int] = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0] self.assertEqual(ids[0] , snake_case__ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [2_5_0_0_5_3, 2_5_0_0_0_1] ) def _lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = tempfile.mkdtemp() _UpperCAmelCase : int = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case__ ) _UpperCAmelCase : Optional[Any] = MBartaaTokenizer.from_pretrained(snake_case__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ ) @require_torch def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors="pt" ) _UpperCAmelCase : Dict = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" _UpperCAmelCase : int = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) _UpperCAmelCase : Union[str, Any] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) _UpperCAmelCase : Any = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" _UpperCAmelCase : str = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors="pt" ) _UpperCAmelCase : List[str] = self.tokenizer( text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=1_0 , return_tensors="pt" ) _UpperCAmelCase : Any = targets['''input_ids'''] _UpperCAmelCase : str = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def _lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(snake_case__ ) , { # en_XX, A, test, EOS "input_ids": [[2_5_0_0_0_4, 6_2, 3_0_3_4, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 2_5_0_0_0_1, } , )
361
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a = datasets.utils.logging.get_logger(__name__) __a = ['names', 'prefix'] __a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __a = ['encoding_errors', 'on_bad_lines'] __a = ['date_format'] @dataclass class A__ ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_00_00 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase : Any = self.delimiter if self.column_names is not None: _UpperCAmelCase : List[Any] = self.column_names @property def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase_ : int = CsvConfig def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : str = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase : Tuple = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): _UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
17
0
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( a__ ): """simple docstring""" UpperCamelCase_ : Optional[int] = ["""image_processor""", """tokenizer"""] UpperCamelCase_ : Tuple = """BlipImageProcessor""" UpperCamelCase_ : Tuple = """AutoTokenizer""" def __init__( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> str: """simple docstring""" _UpperCAmelCase : int = False super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : List[str] = self.image_processor def __call__( self : int , lowerCAmelCase__ : Tuple = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : List[str] = True , lowerCAmelCase__ : Any = False , lowerCAmelCase__ : Any = None , lowerCAmelCase__ : Tuple = None , lowerCAmelCase__ : Optional[Any] = 0 , lowerCAmelCase__ : List[Any] = None , lowerCAmelCase__ : Any = None , lowerCAmelCase__ : Optional[Any] = False , lowerCAmelCase__ : Union[str, Any] = False , lowerCAmelCase__ : Optional[Any] = False , lowerCAmelCase__ : Union[str, Any] = False , lowerCAmelCase__ : int = False , lowerCAmelCase__ : List[Any] = True , lowerCAmelCase__ : int = None , **lowerCAmelCase__ : Optional[int] , ) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: _UpperCAmelCase : Optional[int] = self.tokenizer _UpperCAmelCase : Optional[Any] = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) return text_encoding # add pixel_values _UpperCAmelCase : int = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) if text is not None: _UpperCAmelCase : str = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) else: _UpperCAmelCase : Optional[Any] = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase__ ) return encoding_image_processor def _lowerCAmelCase ( self : int , *lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : str ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : List[str] ) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.tokenizer.model_input_names _UpperCAmelCase : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
362
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( a_: list[int] ): if not nums: return 0 _UpperCAmelCase : int = nums[0] _UpperCAmelCase : Dict = 0 for num in nums[1:]: _UpperCAmelCase , _UpperCAmelCase : Any = ( max_excluding + num, max(a_, a_ ), ) return max(a_, a_ ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def __UpperCAmelCase ( a_: np.ndarray, a_: np.ndarray, a_: np.ndarray, a_: int, a_: int ): _UpperCAmelCase : Optional[Any] = cva.getAffineTransform(a_, a_ ) return cva.warpAffine(a_, a_, (rows, cols) ) if __name__ == "__main__": # read original image __a = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value __a = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __a = gray_img.shape # set different points to rotate image __a = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __a = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __a = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __a = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __a = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __a = plt.figure(1) __a = ["""Original""", """Rotation 1""", """Rotation 2""", """Rotation 3"""] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.0_5, right=1.0, top=0.9_5) plt.show()
363
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): _UpperCAmelCase : Optional[int] = key.replace("module.encoder", "glpn.encoder" ) if key.startswith("module.decoder" ): _UpperCAmelCase : List[Any] = key.replace("module.decoder", "decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : int = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Union[str, Any] = key.replace(f"""patch_embed{idx}""", f"""patch_embeddings.{int(a_ )-1}""" ) if "norm" in key: _UpperCAmelCase : Union[str, Any] = key.replace("norm", "layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : str = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] _UpperCAmelCase : Optional[Any] = key.replace(f"""layer_norm{idx}""", f"""layer_norm.{int(a_ )-1}""" ) if "layer_norm1" in key: _UpperCAmelCase : Union[str, Any] = key.replace("layer_norm1", "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : List[Any] = key.replace("layer_norm2", "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Optional[Any] = key[key.find("block" ) + len("block" )] _UpperCAmelCase : List[str] = key.replace(f"""block{idx}""", f"""block.{int(a_ )-1}""" ) if "attn.q" in key: _UpperCAmelCase : Optional[int] = key.replace("attn.q", "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : List[str] = key.replace("attn.proj", "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Dict = key.replace("attn", "attention.self" ) if "fc1" in key: _UpperCAmelCase : List[Any] = key.replace("fc1", "dense1" ) if "fc2" in key: _UpperCAmelCase : List[Any] = key.replace("fc2", "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Any = key.replace("linear_pred", "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : Dict = key.replace("linear_fuse.conv", "linear_fuse" ) _UpperCAmelCase : List[str] = key.replace("linear_fuse.bn", "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : List[Any] = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : Tuple = key.replace(f"""linear_c{idx}""", f"""linear_c.{int(a_ )-1}""" ) if "bot_conv" in key: _UpperCAmelCase : Union[str, Any] = key.replace("bot_conv", "0.convolution" ) if "skip_conv1" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv1", "1.convolution" ) if "skip_conv2" in key: _UpperCAmelCase : Optional[int] = key.replace("skip_conv2", "2.convolution" ) if "fusion1" in key: _UpperCAmelCase : List[str] = key.replace("fusion1", "1.fusion" ) if "fusion2" in key: _UpperCAmelCase : List[str] = key.replace("fusion2", "2.fusion" ) if "fusion3" in key: _UpperCAmelCase : Optional[Any] = key.replace("fusion3", "3.fusion" ) if "fusion" in key and "conv" in key: _UpperCAmelCase : List[Any] = key.replace("conv", "convolutional_layer" ) if key.startswith("module.last_layer_depth" ): _UpperCAmelCase : Optional[int] = key.replace("module.last_layer_depth", "head.head" ) _UpperCAmelCase : int = value return new_state_dict def __UpperCAmelCase ( a_: str, a_: List[Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Tuple = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) _UpperCAmelCase : Union[str, Any] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : Dict = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Optional[int] = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : List[Any] = Image.open(requests.get(a_, stream=a_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( a_: Tuple, a_: Any, a_: Optional[Any]=False, a_: List[Any]=None ): _UpperCAmelCase : Optional[Any] = GLPNConfig(hidden_sizes=[64, 128, 320, 512], decoder_hidden_size=64, depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _UpperCAmelCase : Dict = GLPNImageProcessor() # prepare image _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Optional[int] = image_processor(images=a_, return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict _UpperCAmelCase : Union[str, Any] = torch.load(a_, map_location=torch.device("cpu" ) ) # rename keys _UpperCAmelCase : List[str] = rename_keys(a_ ) # key and value matrices need special treatment read_in_k_v(a_, a_ ) # create HuggingFace model and load state dict _UpperCAmelCase : List[str] = GLPNForDepthEstimation(a_ ) model.load_state_dict(a_ ) model.eval() # forward pass _UpperCAmelCase : Dict = model(a_ ) _UpperCAmelCase : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _UpperCAmelCase : Optional[Any] = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: _UpperCAmelCase : Tuple = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) _UpperCAmelCase : Dict = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3], a_, atol=1e-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add model", use_temp_dir=a_, ) image_processor.push_to_hub( repo_path_or_name=Path(a_, a_ ), organization="nielsr", commit_message="Add image processor", use_temp_dir=a_, ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __a = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
17
0
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A__ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = StableDiffusionDiffEditPipeline UpperCamelCase_ : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} UpperCamelCase_ : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} UpperCamelCase_ : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase_ : Optional[Any] = frozenset([] ) def _lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" torch.manual_seed(0 ) _UpperCAmelCase : Tuple = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , ) _UpperCAmelCase : Optional[Any] = DDIMInverseScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=lowerCAmelCase_ , set_alpha_to_zero=lowerCAmelCase_ , ) torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) _UpperCAmelCase : int = CLIPTextModel(lowerCAmelCase_ ) _UpperCAmelCase : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase : Tuple = { "unet": unet, "scheduler": scheduler, "inverse_scheduler": inverse_scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any=0 ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = floats_tensor((1, 1_6, 1_6) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = floats_tensor((1, 2, 4, 1_6, 1_6) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) if str(lowerCAmelCase_ ).startswith("mps" ): _UpperCAmelCase : Union[str, Any] = torch.manual_seed(lowerCAmelCase_ ) else: _UpperCAmelCase : Dict = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = { "prompt": "a dog and a newt", "mask_image": mask, "image_latents": latents, "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=0 ) -> List[str]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : int = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("RGB" ) if str(lowerCAmelCase_ ).startswith("mps" ): _UpperCAmelCase : Optional[Any] = torch.manual_seed(lowerCAmelCase_ ) else: _UpperCAmelCase : Optional[int] = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = { "image": image, "source_prompt": "a cat and a frog", "target_prompt": "a dog and a newt", "generator": generator, "num_inference_steps": 2, "num_maps_per_mask": 2, "mask_encode_strength": 1.0, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowerCAmelCase ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str=0 ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : List[str] = Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("RGB" ) if str(lowerCAmelCase_ ).startswith("mps" ): _UpperCAmelCase : Tuple = torch.manual_seed(lowerCAmelCase_ ) else: _UpperCAmelCase : Union[str, Any] = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = { "image": image, "prompt": "a cat and a frog", "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "decode_latents": True, "output_type": "numpy", } return inputs def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" if not hasattr(self.pipeline_class , "_optional_components" ): return _UpperCAmelCase : int = self.get_dummy_components() _UpperCAmelCase : Dict = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) _UpperCAmelCase : List[str] = self.get_dummy_inputs(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = pipe(**lowerCAmelCase_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = self.pipeline_class.from_pretrained(lowerCAmelCase_ ) pipe_loaded.to(lowerCAmelCase_ ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase_ ) for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCAmelCase_ , lowerCAmelCase_ ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) _UpperCAmelCase : str = self.get_dummy_inputs(lowerCAmelCase_ ) _UpperCAmelCase : Dict = pipe_loaded(**lowerCAmelCase_ )[0] _UpperCAmelCase : Optional[Any] = np.abs(output - output_loaded ).max() self.assertLess(lowerCAmelCase_ , 1e-4 ) def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : List[Any] = "cpu" _UpperCAmelCase : List[str] = self.get_dummy_components() _UpperCAmelCase : Dict = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _UpperCAmelCase : Dict = self.get_dummy_mask_inputs(lowerCAmelCase_ ) _UpperCAmelCase : Dict = pipe.generate_mask(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 1_6, 1_6) ) _UpperCAmelCase : Union[str, Any] = np.array([0] * 9 ) _UpperCAmelCase : Any = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase_ , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = "cpu" _UpperCAmelCase : Tuple = self.get_dummy_components() _UpperCAmelCase : Union[str, Any] = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _UpperCAmelCase : List[str] = self.get_dummy_inversion_inputs(lowerCAmelCase_ ) _UpperCAmelCase : str = pipe.invert(**lowerCAmelCase_ ).images _UpperCAmelCase : List[str] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 3_2, 3_2, 3) ) _UpperCAmelCase : Union[str, Any] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) _UpperCAmelCase : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase_ , 1e-3 ) def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = "cpu" _UpperCAmelCase : str = self.get_dummy_components() _UpperCAmelCase : Optional[Any] = {"beta_start": 0.0_0085, "beta_end": 0.012, "beta_schedule": "scaled_linear"} _UpperCAmelCase : int = DPMSolverMultistepScheduler(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = DPMSolverMultistepInverseScheduler(**lowerCAmelCase_ ) _UpperCAmelCase : Any = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _UpperCAmelCase : Dict = self.get_dummy_inversion_inputs(lowerCAmelCase_ ) _UpperCAmelCase : int = pipe.invert(**lowerCAmelCase_ ).images _UpperCAmelCase : Optional[int] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 3_2, 3_2, 3) ) _UpperCAmelCase : Optional[int] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) _UpperCAmelCase : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase_ , 1e-3 ) @require_torch_gpu @slow class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def _lowerCAmelCase ( cls : List[str] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" ) _UpperCAmelCase : Optional[int] = raw_image.convert("RGB" ).resize((7_6_8, 7_6_8) ) _UpperCAmelCase : Union[str, Any] = raw_image def _lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) _UpperCAmelCase : Optional[int] = DDIMScheduler.from_config(pipe.scheduler.config ) _UpperCAmelCase : Dict = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _UpperCAmelCase : Dict = "a bowl of fruit" _UpperCAmelCase : Union[str, Any] = "a bowl of pears" _UpperCAmelCase : Dict = pipe.generate_mask( image=self.raw_image , source_prompt=lowerCAmelCase_ , target_prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = pipe.invert( prompt=lowerCAmelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=lowerCAmelCase_ ).latents _UpperCAmelCase : Tuple = pipe( prompt=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , image_latents=lowerCAmelCase_ , generator=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , inpaint_strength=0.7 , output_type="numpy" , ).images[0] _UpperCAmelCase : Any = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((7_6_8, 7_6_8) ) ) / 2_5_5 ) assert np.abs((expected_image - image).max() ) < 5e-1 def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) _UpperCAmelCase : str = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1" , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) _UpperCAmelCase : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _UpperCAmelCase : str = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = "a bowl of fruit" _UpperCAmelCase : Optional[Any] = "a bowl of pears" _UpperCAmelCase : List[str] = pipe.generate_mask( image=self.raw_image , source_prompt=lowerCAmelCase_ , target_prompt=lowerCAmelCase_ , generator=lowerCAmelCase_ , ) _UpperCAmelCase : Dict = pipe.invert( prompt=lowerCAmelCase_ , image=self.raw_image , inpaint_strength=0.7 , generator=lowerCAmelCase_ , num_inference_steps=2_5 , ).latents _UpperCAmelCase : Optional[Any] = pipe( prompt=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , image_latents=lowerCAmelCase_ , generator=lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ , inpaint_strength=0.7 , num_inference_steps=2_5 , output_type="numpy" , ).images[0] _UpperCAmelCase : Optional[int] = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((7_6_8, 7_6_8) ) ) / 2_5_5 ) assert np.abs((expected_image - image).max() ) < 5e-1
364
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[Any] = 10 _UpperCAmelCase : int = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) _UpperCAmelCase : List[str] = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(a_ ) ), }, features=a_, ) return dataset @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=a_ ) return filename # FILE_CONTENT + files __a = '\\n Text data.\n Second line of data.' @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "file.txt" _UpperCAmelCase : Tuple = FILE_CONTENT with open(a_, "w" ) as f: f.write(a_ ) return filename @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" _UpperCAmelCase : Optional[int] = bytes(a_, "utf-8" ) with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): import gzip _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) _UpperCAmelCase : Any = bytes(a_, "utf-8" ) with gzip.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" _UpperCAmelCase : str = bytes(a_, "utf-8" ) with lza.frame.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Any ): if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(a_, "w" ) as archive: archive.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: List[str] ): import tarfile _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): import lzma _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "file.txt.xz" _UpperCAmelCase : List[str] = bytes(a_, "utf-8" ) with lzma.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: Tuple ): import zipfile _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.zst" _UpperCAmelCase : int = bytes(a_, "utf-8" ) with zstd.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("data" ) / "file.xml" _UpperCAmelCase : Tuple = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(a_, "w" ) as f: f.write(a_ ) return filename __a = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __a = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __a = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __a = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __a = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : str = datasets.Dataset.from_dict(a_ ) _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(a_ ) ) as con: _UpperCAmelCase : List[Any] = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)", tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Dict = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(a_, "w", newline="" ) as f: _UpperCAmelCase : Optional[int] = csv.DictWriter(a_, fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: str, a_: str ): import bza _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(a_, "rb" ) as f: _UpperCAmelCase : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a_, "wb" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: Dict, a_: Optional[int] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: Union[str, Any], a_: int ): _UpperCAmelCase : int = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(csv_path.replace(".csv", ".CSV" ) ) ) f.write(a_, arcname=os.path.basename(csva_path.replace(".csv", ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: Union[str, Any], a_: Tuple ): _UpperCAmelCase : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) _UpperCAmelCase : Dict = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(a_, "wb" ) as f: _UpperCAmelCase : Tuple = pq.ParquetWriter(a_, schema=a_ ) _UpperCAmelCase : Tuple = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a_ ) )] for k in DATA[0]}, schema=a_ ) writer.write_table(a_ ) writer.close() return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : str = {"data": DATA} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) _UpperCAmelCase : Dict = {"data": DATA_DICT_OF_LISTS} with open(a_, "w" ) as f: json.dump(a_, a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(a_, "w" ) as f: for item in DATA: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(a_, "w" ) as f: for item in DATA_312: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(a_, "w" ) as f: for item in DATA_STR: f.write(json.dumps(a_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Any ): import gzip _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Tuple ): import gzip _UpperCAmelCase : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(a_, "rb" ) as orig_file: with gzip.open(a_, "wb" ) as zipped_file: zipped_file.writelines(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Dict, a_: List[Any], a_: Union[str, Any] ): _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any], a_: Optional[int], a_: Optional[Any], a_: Dict ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: Optional[int], a_: List[str] ): _UpperCAmelCase : Dict = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[Any], a_: List[Any], a_: str ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.basename(a_ ) ) f.add(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str], a_: List[Any], a_: Tuple, a_: Dict ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(a_, "w" ) as f: f.add(a_, arcname=os.path.join("nested", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: List[str] ): _UpperCAmelCase : List[str] = ["0", "1", "2", "3"] _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Union[str, Any] ): _UpperCAmelCase : Dict = ["0", "1", "2", "3"] _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any ): _UpperCAmelCase : int = ["0", "1", "2", "3"] _UpperCAmelCase : str = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(a_, "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any], a_: Any, a_: Union[str, Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[int], a_: List[Any], a_: List[Any] ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) f.write(a_, arcname=os.path.join("main_dir", os.path.basename(a_ ) ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Any, a_: str, a_: Tuple ): _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename("unsupported.ext" ) ) f.write(a_, arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : List[str] = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) _UpperCAmelCase : str = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(a_, "w", encoding="utf-8" ) as f: f.write(a_ ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( ): return os.path.join("tests", "features", "data", "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(a_, "w" ) as f: f.write(a_, arcname=os.path.basename(a_ ) ) f.write(a_, arcname=os.path.basename(a_ ).replace(".jpg", "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def __UpperCAmelCase ( a_: Tuple ): _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt", "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt", "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt", "w" ) as f: f.write("bar\n" * 10 ) return data_dir
17
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __a = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
365
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = BarthezTokenizer UpperCamelCase_ : List[Any] = BarthezTokenizerFast UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : Optional[int] = True def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" super().setUp() _UpperCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = "<pad>" _UpperCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_0_1_1_2_2 ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_1_2_2 ) @require_torch def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" _UpperCAmelCase : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] _UpperCAmelCase : Optional[int] = [0, 5_7, 3_0_1_8, 7_0_3_0_7, 9_1, 2] _UpperCAmelCase : int = self.tokenizer( lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Optional[int] = self.get_rust_tokenizer() _UpperCAmelCase : Tuple = "I was born in 92000, and this is falsé." _UpperCAmelCase : Dict = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() _UpperCAmelCase : Optional[Any] = tokenizer.encode(lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = {"input_ids": [[0, 4_9_0, 1_4_3_2_8, 4_5_0_7, 3_5_4, 4_7, 4_3_6_6_9, 9_5, 2_5, 7_8_1_1_7, 2_0_2_1_5, 1_9_7_7_9, 1_9_0, 2_2, 4_0_0, 4, 3_5_3_4_3, 8_0_3_1_0, 6_0_3, 8_6, 2_4_9_3_7, 1_0_5, 3_3_4_3_8, 9_4_7_6_2, 1_9_6, 3_9_6_4_2, 7, 1_5, 1_5_9_3_3, 1_7_3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0_5_3_4, 8_7, 2_5, 6_6, 3_3_5_8, 1_9_6, 5_5_2_8_9, 8, 8_2_9_6_1, 8_1, 2_2_0_4, 7_5_2_0_3, 7, 1_5, 7_6_3, 1_2_9_5_6, 2_1_6, 1_7_8, 1_4_3_2_8, 9_5_9_5, 1_3_7_7, 6_9_6_9_3, 7, 4_4_8, 7_1_0_2_1, 1_9_6, 1_8_1_0_6, 1_4_3_7, 1_3_9_7_4, 1_0_8, 9_0_8_3, 4, 4_9_3_1_5, 7, 3_9, 8_6, 1_3_2_6, 2_7_9_3, 4_6_3_3_3, 4, 4_4_8, 1_9_6, 7_4_5_8_8, 7, 4_9_3_1_5, 7, 3_9, 2_1, 8_2_2, 3_8_4_7_0, 7_4, 2_1, 6_6_7_2_3, 6_2_4_8_0, 8, 2_2_0_5_0, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase : Tuple = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=lowerCAmelCase__ , )
17
0
'''simple docstring''' from math import sqrt def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : Tuple = 0 for i in range(1, int(sqrt(SCREAMING_SNAKE_CASE__ ) + 1 ) ): if n % i == 0 and i != sqrt(SCREAMING_SNAKE_CASE__ ): total += i + n // i elif i == sqrt(SCREAMING_SNAKE_CASE__ ): total += i return total - n def __UpperCAmelCase ( a_: str = 10_000 ): _UpperCAmelCase : Optional[Any] = sum( i for i in range(1, SCREAMING_SNAKE_CASE__ ) if sum_of_divisors(sum_of_divisors(SCREAMING_SNAKE_CASE__ ) ) == i and sum_of_divisors(SCREAMING_SNAKE_CASE__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
366
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=3 , lowerCAmelCase__ : List[Any]=1_8 , lowerCAmelCase__ : str=3_0 , lowerCAmelCase__ : str=4_0_0 , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[Any]=None , ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = size if size is not None else {"height": 2_0, "width": 2_0} _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : str = num_channels _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : str = max_resolution _UpperCAmelCase : List[Any] = size _UpperCAmelCase : Union[str, Any] = do_normalize _UpperCAmelCase : Optional[Any] = do_convert_rgb _UpperCAmelCase : str = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] _UpperCAmelCase : str = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" _UpperCAmelCase : Optional[Any] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = PixaStructImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processor_tester.prepare_dummy_image() _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : str = 2_0_4_8 _UpperCAmelCase : Any = image_processor(lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : Union[str, Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 _UpperCAmelCase : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCAmelCase__ ): _UpperCAmelCase : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches _UpperCAmelCase : Any = "Hello" _UpperCAmelCase : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : List[Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ , header_text=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) _UpperCAmelCase : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Union[str, Any] = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : str = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A__ ( UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = PixaStructImageProcessingTester(self , num_channels=4 ) _UpperCAmelCase : List[Any] = 3 @property def _lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_convert_rgb" ) ) def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _UpperCAmelCase : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _UpperCAmelCase : Tuple = image_processor( lowerCAmelCase__ , return_tensors="pt" , max_patches=lowerCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
17
0
'''simple docstring''' class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : str = arr.split("," ) def _lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : List[str] = [int(self.array[0] )] * len(self.array ) _UpperCAmelCase : str = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): _UpperCAmelCase : Optional[Any] = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) _UpperCAmelCase : Tuple = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": __a = input('please input some numbers:') __a = SubArray(whole_array) __a = array.solve_sub_array() print(('the results is:', re))
367
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''time_series_transformer''' UpperCamelCase_ : Optional[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : str = "student_t" , lowerCAmelCase__ : str = "nll" , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ : Optional[Union[str, bool]] = "mean" , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 3_2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : str = "gelu" , lowerCAmelCase__ : int = 6_4 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : float = 0.1 , lowerCAmelCase__ : int = 1_0_0 , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : Tuple , ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = prediction_length _UpperCAmelCase : Optional[Any] = context_length or prediction_length _UpperCAmelCase : Optional[Any] = distribution_output _UpperCAmelCase : Union[str, Any] = loss _UpperCAmelCase : Dict = input_size _UpperCAmelCase : int = num_time_features _UpperCAmelCase : Any = lags_sequence _UpperCAmelCase : Dict = scaling _UpperCAmelCase : Tuple = num_dynamic_real_features _UpperCAmelCase : Dict = num_static_real_features _UpperCAmelCase : Union[str, Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Optional[int] = cardinality else: _UpperCAmelCase : Optional[Any] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : List[Any] = embedding_dimension else: _UpperCAmelCase : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : str = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features _UpperCAmelCase : str = d_model _UpperCAmelCase : Optional[Any] = encoder_attention_heads _UpperCAmelCase : Dict = decoder_attention_heads _UpperCAmelCase : List[Any] = encoder_ffn_dim _UpperCAmelCase : str = decoder_ffn_dim _UpperCAmelCase : Dict = encoder_layers _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : Any = dropout _UpperCAmelCase : str = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : Dict = encoder_layerdrop _UpperCAmelCase : Any = decoder_layerdrop _UpperCAmelCase : Optional[Any] = activation_function _UpperCAmelCase : Tuple = init_std _UpperCAmelCase : List[str] = use_cache super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
17
0
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger() @dataclass class A__ : """simple docstring""" UpperCamelCase_ : Optional[Any] = 42 UpperCamelCase_ : Tuple = field(default_factory=__a ) UpperCamelCase_ : int = field(default_factory=__a ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Tensor ) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[int] = len(list(m.modules() ) ) == 1 or isinstance(UpperCamelCase__ , nn.Convad ) or isinstance(UpperCamelCase__ , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCamelCase__ ) def __call__( self : Optional[Any] , lowerCAmelCase__ : Tensor ) -> Any: """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCamelCase__ ) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return list(filter(lambda lowerCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : str = 42 UpperCamelCase_ : Union[str, Any] = 42 UpperCamelCase_ : str = 1 UpperCamelCase_ : Tuple = field(default_factory=__a ) UpperCamelCase_ : List[Any] = field(default_factory=__a ) UpperCamelCase_ : int = True def __call__( self : int , lowerCAmelCase__ : Tensor ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = Tracker(self.dest )(UpperCamelCase__ ).parametrized _UpperCAmelCase : Dict = Tracker(self.src )(UpperCamelCase__ ).parametrized _UpperCAmelCase : List[Any] = list(filter(lambda lowerCAmelCase__ : type(UpperCamelCase__ ) not in self.src_skip , UpperCamelCase__ ) ) _UpperCAmelCase : Optional[Any] = list(filter(lambda lowerCAmelCase__ : type(UpperCamelCase__ ) not in self.dest_skip , UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ) and self.raise_if_mismatch: raise Exception( F"""Numbers of operations are different. Source module has {len(UpperCamelCase__ )} operations while""" F""" destination module has {len(UpperCamelCase__ )}.""" ) for dest_m, src_m in zip(UpperCamelCase__ , UpperCamelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"""Transfered from={src_m} to={dest_m}""" ) class A__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : nn.Module ) -> Dict: """simple docstring""" super().__init__() _UpperCAmelCase : List[Any] = [] # - get the stem feature_blocks.append(("conv1", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block" ), F"""Unexpected layer name {k}""" _UpperCAmelCase : Optional[Any] = len(UpperCamelCase__ ) + 1 feature_blocks.append((F"""res{block_index}""", v) ) _UpperCAmelCase : List[str] = nn.ModuleDict(UpperCamelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Tensor ) -> Tuple: """simple docstring""" return get_trunk_forward_outputs( UpperCamelCase__ , out_feat_keys=UpperCamelCase__ , feature_blocks=self._feature_blocks , ) class A__ ( __a ): """simple docstring""" def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> str: """simple docstring""" _UpperCAmelCase : Tuple = x.split("-" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Union[str, Any] , lowerCAmelCase__ : str ) -> Callable[[], Tuple[nn.Module, Dict]]: """simple docstring""" if x not in self: _UpperCAmelCase : List[str] = self.convert_name_to_timm(UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = partial(lambda: (timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval(), None) ) else: _UpperCAmelCase : List[str] = super().__getitem__(UpperCamelCase__ ) return val class A__ ( __a ): """simple docstring""" def __getitem__( self : Optional[Any] , lowerCAmelCase__ : str ) -> Callable[[], nn.Module]: """simple docstring""" if "seer" in x and "in1k" not in x: _UpperCAmelCase : int = RegNetModel else: _UpperCAmelCase : List[str] = RegNetForImageClassification return val def __UpperCAmelCase ( a_: Union[str, Any], a_: List[str], a_: List[Tuple[str, str]] ): for from_key, to_key in keys: _UpperCAmelCase : Dict = from_state_dict[from_key].clone() print(f"""Copied key={from_key} to={to_key}""" ) return to_state_dict def __UpperCAmelCase ( a_: str, a_: Callable[[], nn.Module], a_: Callable[[], nn.Module], a_: RegNetConfig, a_: Path, a_: bool = True, ): print(f"""Converting {name}...""" ) with torch.no_grad(): _UpperCAmelCase , _UpperCAmelCase : Optional[int] = from_model_func() _UpperCAmelCase : List[str] = our_model_func(__UpperCamelCase ).eval() _UpperCAmelCase : List[Any] = ModuleTransfer(src=__UpperCamelCase, dest=__UpperCamelCase, raise_if_mismatch=__UpperCamelCase ) _UpperCAmelCase : int = torch.randn((1, 3, 224, 224) ) module_transfer(__UpperCamelCase ) if from_state_dict is not None: _UpperCAmelCase : List[Any] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: _UpperCAmelCase : Optional[Any] = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] _UpperCAmelCase : Optional[int] = manually_copy_vissl_head(__UpperCamelCase, our_model.state_dict(), __UpperCamelCase ) our_model.load_state_dict(__UpperCamelCase ) _UpperCAmelCase : Optional[Any] = our_model(__UpperCamelCase, output_hidden_states=__UpperCamelCase ) _UpperCAmelCase : int = ( our_outputs.logits if isinstance(__UpperCamelCase, __UpperCamelCase ) else our_outputs.last_hidden_state ) _UpperCAmelCase : Any = from_model(__UpperCamelCase ) _UpperCAmelCase : List[str] = from_output[-1] if type(__UpperCamelCase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: _UpperCAmelCase : Union[str, Any] = our_outputs.hidden_states[-1] assert torch.allclose(__UpperCamelCase, __UpperCamelCase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name, commit_message="Add model", use_temp_dir=__UpperCamelCase, ) _UpperCAmelCase : Union[str, Any] = 224 if "seer" not in name else 384 # we can use the convnext one _UpperCAmelCase : List[Any] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k", size=__UpperCamelCase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name, commit_message="Add image processor", use_temp_dir=__UpperCamelCase, ) print(f"""Pushed {name}""" ) def __UpperCAmelCase ( a_: Path, a_: str = None, a_: bool = True ): _UpperCAmelCase : Any = "imagenet-1k-id2label.json" _UpperCAmelCase : List[str] = 1_000 _UpperCAmelCase : Tuple = (1, num_labels) _UpperCAmelCase : Any = "huggingface/label-files" _UpperCAmelCase : Optional[Any] = num_labels _UpperCAmelCase : Tuple = json.load(open(cached_download(hf_hub_url(__UpperCamelCase, __UpperCamelCase, repo_type="dataset" ) ), "r" ) ) _UpperCAmelCase : List[Any] = {int(__UpperCamelCase ): v for k, v in idalabel.items()} _UpperCAmelCase : Optional[int] = idalabel _UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} _UpperCAmelCase : Tuple = partial(__UpperCamelCase, num_labels=__UpperCamelCase, idalabel=__UpperCamelCase, labelaid=__UpperCamelCase ) _UpperCAmelCase : Union[str, Any] = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1_008], groups_width=48, layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1_360], groups_width=40, layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1_624], groups_width=56, layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1_920], groups_width=120, layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2_240], groups_width=112, layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2_048], groups_width=128, layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1_344, 2_520], groups_width=168, layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1_512], groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1_088], groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1_296], groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2_016], groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2_240], groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1_232, 3_024], groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1_392, 3_712], groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1_392, 3_712], groups_width=232 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1_968, 4_920], groups_width=328 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1_056, 2_904, 7_392], groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1_696, 2_544, 5_088], groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2_020, 4_040, 11_110, 28_280], groups_width=1_010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1_392, 3_712], groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1_968, 4_920], groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1_056, 2_904, 7_392], groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1_696, 2_544, 5_088], groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2_020, 4_040, 11_110, 28_280], groups_width=1_010 ), } _UpperCAmelCase : List[Any] = NameToOurModelFuncMap() _UpperCAmelCase : List[Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(a_: str, a_: Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: _UpperCAmelCase : str = torch.hub.load_state_dict_from_url(__UpperCamelCase, model_dir=str(__UpperCamelCase ), map_location="cpu" ) _UpperCAmelCase : Dict = model_func() # check if we have a head, if yes add it _UpperCAmelCase : Any = files["classy_state_dict"]["base_model"]["model"] _UpperCAmelCase : str = model_state_dict["trunk"] model.load_state_dict(__UpperCamelCase ) return model.eval(), model_state_dict["heads"] # pretrained _UpperCAmelCase : Tuple = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) _UpperCAmelCase : Optional[Any] = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) _UpperCAmelCase : str = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch", lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) _UpperCAmelCase : Tuple = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch", lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1_010, w_a=1_744, w_a=620.83, w_m=2.52 ) ) ), ) # IN1K finetuned _UpperCAmelCase : Tuple = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) _UpperCAmelCase : int = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetYaagf() ), ) _UpperCAmelCase : Tuple = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ), ) _UpperCAmelCase : Optional[Any] = partial( __UpperCamelCase, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch", lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1_010, w_a=1_744, w_a=620.83, w_m=2.52 ) ) ), ) if model_name: convert_weight_and_push( __UpperCamelCase, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], __UpperCamelCase, __UpperCamelCase, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __UpperCamelCase, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, ) return config, expected_shape if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported regnet* architecture,' ' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) __a = parser.parse_args() __a = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
368
'''simple docstring''' import baseaa def __UpperCAmelCase ( a_: str ): return baseaa.baaencode(string.encode("utf-8" ) ) def __UpperCAmelCase ( a_: bytes ): return baseaa.baadecode(a_ ).decode("utf-8" ) if __name__ == "__main__": __a = 'Hello World!' __a = baseaa_encode(test) print(encoded) __a = baseaa_decode(encoded) print(decoded)
17
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : str = FlaxXLMRobertaModel.from_pretrained("xlm-roberta-base" ) _UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained("xlm-roberta-base" ) _UpperCAmelCase : Any = "The dog is cute and lives in the garden house" _UpperCAmelCase : Tuple = jnp.array([tokenizer.encode(_lowercase )] ) _UpperCAmelCase : Optional[Any] = (1, 1_2, 7_6_8) # batch_size, sequence_length, embedding_vector_dim _UpperCAmelCase : List[str] = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) _UpperCAmelCase : Tuple = model(_lowercase )["last_hidden_state"] self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , _lowercase , atol=1e-3 ) )
369
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A__ : """simple docstring""" UpperCamelCase_ : Any = XGLMConfig UpperCamelCase_ : Union[str, Any] = {} UpperCamelCase_ : Dict = '''gelu''' def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=1_4 , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=9_9 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : List[Any]=4 , lowerCAmelCase__ : Any=3_7 , lowerCAmelCase__ : List[Any]="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Optional[int]=5_1_2 , lowerCAmelCase__ : Optional[Any]=0.02 , ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : str = seq_length _UpperCAmelCase : int = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : int = d_model _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Tuple = ffn_dim _UpperCAmelCase : Any = activation_function _UpperCAmelCase : Union[str, Any] = activation_dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Any = None _UpperCAmelCase : int = 0 _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Tuple = 1 def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : int = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _UpperCAmelCase : Any = None if self.use_input_mask: _UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[Any] = self.get_config() _UpperCAmelCase : Dict = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[Any] = config_and_inputs _UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class A__ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase_ : Any = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : Dict = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Tuple = False def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : Dict = TFXGLMModelTester(self ) _UpperCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , n_embd=3_7 ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[int] = TFXGLMModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : Optional[Any]=True ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Any = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _UpperCAmelCase : int = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on _UpperCAmelCase : Dict = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) _UpperCAmelCase : Any = tokenizer("Today is a nice day and" , return_tensors="tf" ) _UpperCAmelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): _UpperCAmelCase : List[Any] = model.generate(lowerCAmelCase__ , do_sample=lowerCAmelCase__ , seed=[7, 0] ) _UpperCAmelCase : Any = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : List[Any] = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) _UpperCAmelCase : Optional[int] = "left" # use different length sentences to test batching _UpperCAmelCase : Tuple = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] _UpperCAmelCase : Dict = tokenizer(lowerCAmelCase__ , return_tensors="tf" , padding=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = inputs["input_ids"] _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs["attention_mask"] , max_new_tokens=1_2 ) _UpperCAmelCase : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _UpperCAmelCase : Dict = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : Optional[int] = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _UpperCAmelCase : List[Any] = model.generate(input_ids=lowerCAmelCase__ , max_new_tokens=1_2 ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] )
17
0
'''simple docstring''' __a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def __UpperCAmelCase ( ): _UpperCAmelCase : str = input("Enter message: " ) _UpperCAmelCase : Tuple = input("Enter key [alphanumeric]: " ) _UpperCAmelCase : List[Any] = input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): _UpperCAmelCase : Union[str, Any] = "encrypt" _UpperCAmelCase : int = encrypt_message(a__, a__ ) elif mode.lower().startswith("d" ): _UpperCAmelCase : Optional[Any] = "decrypt" _UpperCAmelCase : Tuple = decrypt_message(a__, a__ ) print(f"""\n{mode.title()}ed message:""" ) print(a__ ) def __UpperCAmelCase ( a_: str, a_: str ): return translate_message(a__, a__, "encrypt" ) def __UpperCAmelCase ( a_: str, a_: str ): return translate_message(a__, a__, "decrypt" ) def __UpperCAmelCase ( a_: str, a_: str, a_: str ): _UpperCAmelCase : str = [] _UpperCAmelCase : Dict = 0 _UpperCAmelCase : List[Any] = key.upper() for symbol in message: _UpperCAmelCase : Optional[int] = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(a__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(a__ ): _UpperCAmelCase : Any = 0 else: translated.append(a__ ) return "".join(a__ ) if __name__ == "__main__": main()
370
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def __UpperCAmelCase ( a_: Tuple, a_: Any ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ), ], ) def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ): _UpperCAmelCase : Tuple = str(a_ ) dataset_info.write_to_directory(a_ ) _UpperCAmelCase : Any = DatasetInfo.from_directory(a_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a_, "dataset_info.json" ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, ) _UpperCAmelCase : Tuple = dataset_info._to_yaml_dict() assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) _UpperCAmelCase : List[Any] = yaml.safe_dump(a_ ) _UpperCAmelCase : Optional[int] = yaml.safe_load(a_ ) assert dataset_info_yaml_dict == reloaded def __UpperCAmelCase ( ): _UpperCAmelCase : str = DatasetInfo() _UpperCAmelCase : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1_337 ), } ), ], ) def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ): _UpperCAmelCase : Union[str, Any] = str(a_ ) dataset_infos_dict.write_to_directory(a_ ) _UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a_, "README.md" ) )
17
0
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: Optional[Any] ): return "\n".join( f"""{number} * {i} = {number * i}""" for i in range(1, number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
371
'''simple docstring''' from math import factorial def __UpperCAmelCase ( a_: int = 100 ): return sum(map(a_, str(factorial(a_ ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
17
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict=7 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Tuple=1_8 , lowerCAmelCase__ : Optional[Any]=3_0 , lowerCAmelCase__ : Any=4_0_0 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : List[str]=True , ) -> List[str]: """simple docstring""" _UpperCAmelCase : Tuple = size if size is not None else {"""height""": 1_8, """width""": 1_8} _UpperCAmelCase : Any = parent _UpperCAmelCase : List[str] = batch_size _UpperCAmelCase : List[str] = num_channels _UpperCAmelCase : Dict = image_size _UpperCAmelCase : Dict = min_resolution _UpperCAmelCase : int = max_resolution _UpperCAmelCase : List[Any] = do_resize _UpperCAmelCase : List[str] = size _UpperCAmelCase : Tuple = apply_ocr def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A__ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : Any = LayoutLMvaImageProcessingTester(self ) @property def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "apply_ocr" ) ) def _lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 1_8, "width": 1_8} ) _UpperCAmelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"height": 4_2, "width": 4_2} ) def _lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass def _lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , lowerCAmelCase__ ) self.assertIsInstance(encoding.boxes , lowerCAmelCase__ ) # Test batched _UpperCAmelCase : Any = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input _UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched _UpperCAmelCase : Any = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched _UpperCAmelCase : str = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" _UpperCAmelCase : Tuple = LayoutLMvaImageProcessor() from datasets import load_dataset _UpperCAmelCase : List[Any] = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) _UpperCAmelCase : Optional[int] = Image.open(ds[0]["file"] ).convert("RGB" ) _UpperCAmelCase : Tuple = image_processing(lowerCAmelCase__ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _UpperCAmelCase : int = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 _UpperCAmelCase : List[str] = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , lowerCAmelCase__ ) self.assertListEqual(encoding.boxes , lowerCAmelCase__ ) # with apply_OCR = False _UpperCAmelCase : int = LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
350
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __a = (3, 9, -11, 0, 7, 5, 1, -1) __a = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : int UpperCamelCase_ : Node | None class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None: """simple docstring""" _UpperCAmelCase : Node | None = None for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ): _UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" _UpperCAmelCase : List[Any] = self.head while node: yield node.data _UpperCAmelCase : List[str] = node.next_node def __len__( self : Any ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return " -> ".join([str(lowerCAmelCase__ ) for node in self] ) def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ): return SortedLinkedList(list(a_ ) + list(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() __a = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
17
0
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( a_: int ): # A local function to see if a dot lands in the circle. def is_in_circle(a_: float, a_: float ) -> bool: _UpperCAmelCase : int = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase : List[str] = mean( int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) ) for _ in range(lowerCAmelCase__ ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase : int = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ): return mean( function_to_integrate(uniform(lowerCAmelCase__, lowerCAmelCase__ ) ) for _ in range(lowerCAmelCase__ ) ) * (max_value - min_value) def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ): def identity_function(a_: float ) -> float: return x _UpperCAmelCase : List[str] = area_under_curve_estimator( lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ) _UpperCAmelCase : Any = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def __UpperCAmelCase ( a_: int ): def function_to_integrate(a_: float ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase : int = area_under_curve_estimator( lowerCAmelCase__, lowerCAmelCase__, 0.0, 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
351
'''simple docstring''' def __UpperCAmelCase ( a_: str ): if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) _UpperCAmelCase : Optional[Any] = "" while len(a_ ) % 3 != 0: _UpperCAmelCase : List[Any] = "0" + bin_string _UpperCAmelCase : Dict = [ bin_string[index : index + 3] for index in range(len(a_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: _UpperCAmelCase : Optional[Any] = 0 for index, val in enumerate(a_ ): oct_val += int(2 ** (2 - index) * int(a_ ) ) oct_string += str(a_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
17
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = ["image_processor", "tokenizer"] UpperCamelCase_ : Any = "CLIPImageProcessor" UpperCamelCase_ : Optional[Any] = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Union[str, Any] , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Any=None , **lowerCAmelCase__ : Dict ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCAmelCase__ , ) _UpperCAmelCase : str = kwargs.pop("feature_extractor" ) _UpperCAmelCase : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __call__( self : Tuple , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : List[Any] ) -> int: """simple docstring""" if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: _UpperCAmelCase : List[str] = self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if images is not None: _UpperCAmelCase : str = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is not None and images is not None: _UpperCAmelCase : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase__ ) , tensor_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Optional[Any] ) -> Dict: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] , *lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : Optional[int] ) -> int: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" _UpperCAmelCase : List[Any] = self.tokenizer.model_input_names _UpperCAmelCase : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCAmelCase__ , ) return self.image_processor_class @property def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCAmelCase__ , ) return self.image_processor
352
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def __UpperCAmelCase ( a_: str ): for param in module.parameters(): _UpperCAmelCase : Any = False def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase : int = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def __UpperCAmelCase ( a_: Optional[Any] ): _UpperCAmelCase : int = plt.imshow(a_ ) fig.axes.get_xaxis().set_visible(a_ ) fig.axes.get_yaxis().set_visible(a_ ) plt.show() def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = datetime.now() _UpperCAmelCase : List[str] = current_time.strftime("%H:%M:%S" ) return timestamp
17
0
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): return int((input_a, input_a).count(1 ) != 0 ) def __UpperCAmelCase ( ): assert or_gate(0, 0 ) == 0 assert or_gate(0, 1 ) == 1 assert or_gate(1, 0 ) == 1 assert or_gate(1, 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
353
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = (EulerDiscreteScheduler,) UpperCamelCase_ : Tuple = 10 def _lowerCAmelCase ( self : Dict , **lowerCAmelCase__ : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : str = { "num_train_timesteps": 1_1_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : Any = self.dummy_model() _UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : List[Any] = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = output.prev_sample _UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = self.dummy_model() _UpperCAmelCase : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCAmelCase : Tuple = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : int = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = output.prev_sample _UpperCAmelCase : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _UpperCAmelCase : Optional[int] = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : str = self.dummy_model() _UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : str = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Any = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : int = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = self.scheduler_classes[0] _UpperCAmelCase : int = self.get_scheduler_config() _UpperCAmelCase : Union[str, Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = self.dummy_model() _UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() _UpperCAmelCase : Optional[int] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: _UpperCAmelCase : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = output.prev_sample _UpperCAmelCase : List[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
17
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __a = logging.get_logger(__name__) __a = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __a = { 'vocab_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json', }, 'merges_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt', }, 'tokenizer_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json', }, } __a = { 'gpt2': 1_024, 'gpt2-medium': 1_024, 'gpt2-large': 1_024, 'gpt2-xl': 1_024, 'distilgpt2': 1_024, } class A__ ( UpperCamelCase__ ): """simple docstring""" UpperCamelCase_ : List[Any] = VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : List[str] = ['''input_ids''', '''attention_mask'''] UpperCamelCase_ : Optional[int] = GPTaTokenizer def __init__( self : Any , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Dict="<|endoftext|>" , lowerCAmelCase__ : Tuple="<|endoftext|>" , lowerCAmelCase__ : List[str]="<|endoftext|>" , lowerCAmelCase__ : List[Any]=False , **lowerCAmelCase__ : str , ) -> Optional[Any]: """simple docstring""" super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , unk_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , **UpperCamelCase_ , ) _UpperCAmelCase : int = kwargs.pop("add_bos_token" , UpperCamelCase_ ) _UpperCAmelCase : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCamelCase_ ) != add_prefix_space: _UpperCAmelCase : int = getattr(UpperCamelCase_ , pre_tok_state.pop("type" ) ) _UpperCAmelCase : str = add_prefix_space _UpperCAmelCase : List[str] = pre_tok_class(**UpperCamelCase_ ) _UpperCAmelCase : Union[str, Any] = add_prefix_space def _lowerCAmelCase ( self : Dict , *lowerCAmelCase__ : int , **lowerCAmelCase__ : Optional[Any] ) -> BatchEncoding: """simple docstring""" _UpperCAmelCase : Dict = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _lowerCAmelCase ( self : Tuple , *lowerCAmelCase__ : int , **lowerCAmelCase__ : int ) -> BatchEncoding: """simple docstring""" _UpperCAmelCase : Optional[int] = kwargs.get("is_split_into_words" , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" _UpperCAmelCase : Any = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def _lowerCAmelCase ( self : int , lowerCAmelCase__ : "Conversation" ) -> List[int]: """simple docstring""" _UpperCAmelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) + [self.eos_token_id] ) if len(UpperCamelCase_ ) > self.model_max_length: _UpperCAmelCase : Union[str, Any] = input_ids[-self.model_max_length :] return input_ids
354
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCAmelCase : List[str] = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Dict = max(len(a_ ), len(a_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import heapq def __UpperCAmelCase ( a_: dict ): _UpperCAmelCase : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowerCamelCase_, [-1 * len(lowerCamelCase_ ), (key, value)] ) # chosen_vertices = set of chosen vertices _UpperCAmelCase : int = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices _UpperCAmelCase : str = heapq.heappop(lowerCamelCase_ )[1][0] chosen_vertices.add(lowerCamelCase_ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: _UpperCAmelCase : Optional[int] = elem[1][1].index(lowerCamelCase_ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowerCamelCase_ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() __a = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}')
355
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __UpperCAmelCase ( a_: int ): # A local function to see if a dot lands in the circle. def is_in_circle(a_: float, a_: float ) -> bool: _UpperCAmelCase : Optional[Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase : str = mean( int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) ) for _ in range(a_ ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase : Optional[int] = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def __UpperCAmelCase ( a_: int, a_: Callable[[float], float], a_: float = 0.0, a_: float = 1.0, ): return mean( function_to_integrate(uniform(a_, a_ ) ) for _ in range(a_ ) ) * (max_value - min_value) def __UpperCAmelCase ( a_: int, a_: float = 0.0, a_: float = 1.0 ): def identity_function(a_: float ) -> float: return x _UpperCAmelCase : Union[str, Any] = area_under_curve_estimator( a_, a_, a_, a_ ) _UpperCAmelCase : List[str] = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def __UpperCAmelCase ( a_: int ): def function_to_integrate(a_: float ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase : List[str] = area_under_curve_estimator( a_, a_, 0.0, 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def __UpperCAmelCase ( a_: int ): return DownloadCommand(args.model, args.cache_dir, args.force, args.trust_remote_code ) class A__ ( UpperCamelCase ): """simple docstring""" @staticmethod def _lowerCAmelCase ( lowerCAmelCase__ : ArgumentParser ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=_A , default=_A , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=_A , help="Name of the model to download" ) download_parser.set_defaults(func=_A ) def __init__( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : bool , lowerCAmelCase__ : bool ) -> Any: """simple docstring""" _UpperCAmelCase : int = model _UpperCAmelCase : Any = cache _UpperCAmelCase : Any = force _UpperCAmelCase : Optional[Any] = trust_remote_code def _lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
356
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __a = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['LayoutLMv2FeatureExtractor'] __a = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
17
0
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class A__ ( lowerCamelCase__ ): """simple docstring""" UpperCamelCase_ : Dict = '''xlm-prophetnet''' UpperCamelCase_ : int = ['''past_key_values'''] UpperCamelCase_ : Any = { '''num_attention_heads''': '''num_encoder_attention_heads''', } def __init__( self : Union[str, Any] , lowerCAmelCase__ : Optional[float] = 0.1 , lowerCAmelCase__ : Optional[Union[str, Callable]] = "gelu" , lowerCAmelCase__ : Optional[int] = 3_0_5_2_2 , lowerCAmelCase__ : Optional[int] = 1_0_2_4 , lowerCAmelCase__ : Optional[int] = 4_0_9_6 , lowerCAmelCase__ : Optional[int] = 1_2 , lowerCAmelCase__ : Optional[int] = 1_6 , lowerCAmelCase__ : Optional[int] = 4_0_9_6 , lowerCAmelCase__ : Optional[int] = 1_2 , lowerCAmelCase__ : Optional[int] = 1_6 , lowerCAmelCase__ : Optional[float] = 0.1 , lowerCAmelCase__ : Optional[float] = 0.1 , lowerCAmelCase__ : Optional[int] = 5_1_2 , lowerCAmelCase__ : Optional[float] = 0.02 , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[int] = 0 , lowerCAmelCase__ : Optional[int] = 2 , lowerCAmelCase__ : Optional[int] = 3_2 , lowerCAmelCase__ : Optional[int] = 1_2_8 , lowerCAmelCase__ : Optional[bool] = False , lowerCAmelCase__ : Optional[float] = 0.0 , lowerCAmelCase__ : Optional[bool] = True , lowerCAmelCase__ : Optional[int] = 0 , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : Optional[int] = 2 , **lowerCAmelCase__ : int , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = vocab_size _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : str = encoder_ffn_dim _UpperCAmelCase : Dict = num_encoder_layers _UpperCAmelCase : Dict = num_encoder_attention_heads _UpperCAmelCase : int = decoder_ffn_dim _UpperCAmelCase : List[str] = num_decoder_layers _UpperCAmelCase : Optional[int] = num_decoder_attention_heads _UpperCAmelCase : Optional[Any] = max_position_embeddings _UpperCAmelCase : List[Any] = init_std # Normal(0, this parameter) _UpperCAmelCase : Optional[Any] = activation_function # parameters for xlmprophetnet _UpperCAmelCase : str = ngram _UpperCAmelCase : Dict = num_buckets _UpperCAmelCase : str = relative_max_distance _UpperCAmelCase : Optional[Any] = disable_ngram_loss _UpperCAmelCase : str = eps # 3 Types of Dropout _UpperCAmelCase : int = attention_dropout _UpperCAmelCase : Optional[Any] = activation_dropout _UpperCAmelCase : List[str] = dropout _UpperCAmelCase : Tuple = use_cache super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , add_cross_attention=__snake_case , decoder_start_token_id=__snake_case , **__snake_case , ) @property def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : Dict ) -> Tuple: """simple docstring""" raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and" " `num_decoder_layers`." )
357
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if not isinstance(a_, a_ ): raise ValueError("iterations must be defined as integers" ) if not isinstance(a_, a_ ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) _UpperCAmelCase : List[str] = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(a_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
358
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') __a = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCamelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : Optional[str] = field(default=UpperCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase_ : Optional[str] = field( default=UpperCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" if self.train_file is not None: _UpperCAmelCase : List[Any] = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _UpperCAmelCase : List[str] = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class A__ : """simple docstring""" UpperCamelCase_ : PreTrainedTokenizerBase UpperCamelCase_ : Union[bool, str, PaddingStrategy] = True UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[int] = None def __call__( self : List[Any] , lowerCAmelCase__ : List[str] ) -> List[str]: """simple docstring""" _UpperCAmelCase : int = "label" if "label" in features[0].keys() else "labels" _UpperCAmelCase : Dict = [feature.pop(lowerCAmelCase__ ) for feature in features] _UpperCAmelCase : str = len(lowerCAmelCase__ ) _UpperCAmelCase : int = len(features[0]["input_ids"] ) _UpperCAmelCase : str = [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase__ )] for feature in features ] _UpperCAmelCase : List[str] = list(chain(*lowerCAmelCase__ ) ) _UpperCAmelCase : Any = self.tokenizer.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten _UpperCAmelCase : Any = {k: v.view(lowerCAmelCase__ , lowerCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase__ , dtype=torch.intaa ) return batch def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag", a_, a_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Optional[int] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. _UpperCAmelCase : Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _UpperCAmelCase : Union[str, Any] = {} if data_args.train_file is not None: _UpperCAmelCase : str = data_args.train_file if data_args.validation_file is not None: _UpperCAmelCase : Optional[Any] = data_args.validation_file _UpperCAmelCase : Dict = data_args.train_file.split("." )[-1] _UpperCAmelCase : Optional[int] = load_dataset( a_, data_files=a_, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: # Downloading and loading the swag dataset from the hub. _UpperCAmelCase : Dict = load_dataset( "swag", "regular", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=a_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # When using your own dataset or a different dataset from swag, you will probably need to change this. _UpperCAmelCase : Optional[Any] = [f"""ending{i}""" for i in range(4 )] _UpperCAmelCase : List[Any] = "sent1" _UpperCAmelCase : Optional[int] = "sent2" if data_args.max_seq_length is None: _UpperCAmelCase : List[str] = tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) _UpperCAmelCase : Dict = 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _UpperCAmelCase : Dict = min(data_args.max_seq_length, tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a_: Union[str, Any] ): _UpperCAmelCase : Optional[int] = [[context] * 4 for context in examples[context_name]] _UpperCAmelCase : Tuple = examples[question_header_name] _UpperCAmelCase : Optional[Any] = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(a_ ) ] # Flatten out _UpperCAmelCase : List[str] = list(chain(*a_ ) ) _UpperCAmelCase : Dict = list(chain(*a_ ) ) # Tokenize _UpperCAmelCase : List[Any] = tokenizer( a_, a_, truncation=a_, max_length=a_, padding="max_length" if data_args.pad_to_max_length else False, ) # Un-flatten return {k: [v[i : i + 4] for i in range(0, len(a_ ), 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _UpperCAmelCase : int = raw_datasets["train"] if data_args.max_train_samples is not None: _UpperCAmelCase : Optional[Any] = min(len(a_ ), data_args.max_train_samples ) _UpperCAmelCase : List[Any] = train_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): _UpperCAmelCase : Union[str, Any] = train_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _UpperCAmelCase : Dict = raw_datasets["validation"] if data_args.max_eval_samples is not None: _UpperCAmelCase : int = min(len(a_ ), data_args.max_eval_samples ) _UpperCAmelCase : List[str] = eval_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): _UpperCAmelCase : Optional[int] = eval_dataset.map( a_, batched=a_, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator _UpperCAmelCase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a_, pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a_: Tuple ): _UpperCAmelCase , _UpperCAmelCase : Tuple = eval_predictions _UpperCAmelCase : Union[str, Any] = np.argmax(a_, axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _UpperCAmelCase : Any = Trainer( model=a_, args=a_, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=a_, data_collator=a_, compute_metrics=a_, ) # Training if training_args.do_train: _UpperCAmelCase : Optional[Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : List[str] = last_checkpoint _UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=a_ ) trainer.save_model() # Saves the tokenizer too for easy upload _UpperCAmelCase : str = train_result.metrics _UpperCAmelCase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) _UpperCAmelCase : Union[str, Any] = min(a_, len(a_ ) ) trainer.log_metrics("train", a_ ) trainer.save_metrics("train", a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCAmelCase : List[Any] = trainer.evaluate() _UpperCAmelCase : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) _UpperCAmelCase : Tuple = min(a_, len(a_ ) ) trainer.log_metrics("eval", a_ ) trainer.save_metrics("eval", a_ ) _UpperCAmelCase : int = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __UpperCAmelCase ( a_: int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
17
0
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class A__ : """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple=sys.maxsize ) -> List[str]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = "bilinear" _UpperCAmelCase : Optional[Any] = max_size _UpperCAmelCase : Any = short_edge_length def __call__( self : Tuple , lowerCAmelCase__ : List[str] ) -> int: """simple docstring""" _UpperCAmelCase : int = [] for img in imgs: _UpperCAmelCase , _UpperCAmelCase : Optional[int] = img.shape[:2] # later: provide list and randomly choose index for resize _UpperCAmelCase : Tuple = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img _UpperCAmelCase : str = size * 1.0 / min(a__ , a__ ) if h < w: _UpperCAmelCase , _UpperCAmelCase : int = size, scale * w else: _UpperCAmelCase , _UpperCAmelCase : int = scale * h, size if max(a__ , a__ ) > self.max_size: _UpperCAmelCase : int = self.max_size * 1.0 / max(a__ , a__ ) _UpperCAmelCase : List[str] = newh * scale _UpperCAmelCase : Tuple = neww * scale _UpperCAmelCase : str = int(neww + 0.5 ) _UpperCAmelCase : int = int(newh + 0.5 ) if img.dtype == np.uinta: _UpperCAmelCase : int = Image.fromarray(a__ ) _UpperCAmelCase : int = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) _UpperCAmelCase : Union[str, Any] = np.asarray(a__ ) else: _UpperCAmelCase : Optional[int] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw _UpperCAmelCase : Any = nn.functional.interpolate( a__ , (newh, neww) , mode=self.interp_method , align_corners=a__ ).squeeze(0 ) img_augs.append(a__ ) return img_augs class A__ : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : Tuple = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) _UpperCAmelCase : Dict = cfg.INPUT.FORMAT _UpperCAmelCase : int = cfg.SIZE_DIVISIBILITY _UpperCAmelCase : int = cfg.PAD_VALUE _UpperCAmelCase : int = cfg.INPUT.MAX_SIZE_TEST _UpperCAmelCase : Tuple = cfg.MODEL.DEVICE _UpperCAmelCase : List[str] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _UpperCAmelCase : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _UpperCAmelCase : Dict = lambda lowerCAmelCase__ : (x - self.pixel_mean) / self.pixel_std def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Dict ) -> Tuple: """simple docstring""" _UpperCAmelCase : Dict = tuple(max(a__ ) for s in zip(*[img.shape for img in images] ) ) _UpperCAmelCase : Tuple = [im.shape[-2:] for im in images] _UpperCAmelCase : str = [ nn.functional.pad( a__ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(a__ , a__ ) ] return torch.stack(a__ ), torch.tensor(a__ ) def __call__( self : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str]=False ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): if not isinstance(a__ , a__ ): _UpperCAmelCase : str = [images] if single_image: assert len(a__ ) == 1 for i in range(len(a__ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(a__ , images.pop(a__ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( a__ , torch.as_tensor(img_tensorize(images.pop(a__ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge _UpperCAmelCase : Tuple = torch.tensor([im.shape[:2] for im in images] ) _UpperCAmelCase : Optional[int] = self.aug(a__ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic _UpperCAmelCase : List[str] = [self.normalizer(a__ ) for x in images] # now pad them to do the following operations _UpperCAmelCase , _UpperCAmelCase : Tuple = self.pad(a__ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad _UpperCAmelCase : Union[str, Any] = torch.true_divide(a__ , a__ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def __UpperCAmelCase ( a_: Optional[int], a_: Any ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def __UpperCAmelCase ( a_: Union[str, Any], a_: Tuple ): assert torch.isfinite(a_ ).all(), "Box tensor contains infinite or NaN!" _UpperCAmelCase , _UpperCAmelCase : Dict = box_size tensor[:, 0].clamp_(min=0, max=a_ ) tensor[:, 1].clamp_(min=0, max=a_ ) tensor[:, 2].clamp_(min=0, max=a_ ) tensor[:, 3].clamp_(min=0, max=a_ )
359
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A__ ( pl.LightningModule ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Optional[Any] ) -> str: """simple docstring""" super().__init__() _UpperCAmelCase : List[str] = model _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Tuple = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass def __UpperCAmelCase ( a_: str, a_: str, a_: str ): # load longformer model from model identifier _UpperCAmelCase : int = LongformerModel.from_pretrained(a_ ) _UpperCAmelCase : Any = LightningModel(a_ ) _UpperCAmelCase : int = torch.load(a_, map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model _UpperCAmelCase : List[str] = LongformerForQuestionAnswering.from_pretrained(a_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(a_ ) print(f"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
17
0
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class A__ ( lowerCamelCase__ ): """simple docstring""" def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def _lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" _UpperCAmelCase : Union[str, Any] = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(__A ) def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" _UpperCAmelCase : Union[str, Any] = self._create_example_records() _UpperCAmelCase : Dict = Dataset.from_list(__A ) self.assertListEqual(dset.column_names , ["col_1", "col_2"] ) for i, r in enumerate(__A ): self.assertDictEqual(__A , example_records[i] ) def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : int = self._create_example_records() _UpperCAmelCase : List[Any] = Dataset.from_list(__A ) _UpperCAmelCase : Any = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def _lowerCAmelCase ( self : Dict ) -> Optional[int]: # checks what happens with missing columns """simple docstring""" _UpperCAmelCase : Dict = [{'''col_1''': 1}, {'''col_2''': '''x'''}] _UpperCAmelCase : Optional[Any] = Dataset.from_list(__A ) self.assertDictEqual(dset[0] , {"col_1": 1} ) self.assertDictEqual(dset[1] , {"col_1": None} ) # NB: first record is used for columns def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: # checks if the type can be inferred from the second record """simple docstring""" _UpperCAmelCase : Union[str, Any] = [{'''col_1''': []}, {'''col_1''': [1, 2]}] _UpperCAmelCase : Optional[int] = Dataset.from_list(__A ) self.assertEqual(dset.info.features["col_1"] , Sequence(Value("int64" ) ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _UpperCAmelCase : str = Dataset.from_list([] ) self.assertEqual(len(__A ) , 0 ) self.assertListEqual(dset.column_names , [] )
360
'''simple docstring''' from importlib import import_module from .logging import get_logger __a = get_logger(__name__) class A__ : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any]=None ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : int = module._original_module if isinstance(lowerCAmelCase__ , _PatchedModuleObj ) else module class A__ : """simple docstring""" UpperCamelCase_ : Union[str, Any] = [] def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : List[Any] = obj _UpperCAmelCase : int = target _UpperCAmelCase : Optional[int] = new _UpperCAmelCase : Any = target.split("." )[0] _UpperCAmelCase : Optional[int] = {} _UpperCAmelCase : Dict = attrs or [] def __enter__( self : List[str] ) -> int: """simple docstring""" *_UpperCAmelCase , _UpperCAmelCase : List[str] = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCAmelCase__ ) ): try: _UpperCAmelCase : int = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCAmelCase__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): _UpperCAmelCase : Tuple = obj_attr # patch at top level setattr(self.obj , lowerCAmelCase__ , _PatchedModuleObj(lowerCAmelCase__ , attrs=self.attrs ) ) _UpperCAmelCase : List[Any] = getattr(self.obj , lowerCAmelCase__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCAmelCase__ , lowerCAmelCase__ , _PatchedModuleObj(getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , attrs=self.attrs ) ) _UpperCAmelCase : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) # finally set the target attribute setattr(lowerCAmelCase__ , lowerCAmelCase__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: _UpperCAmelCase : Dict = getattr(import_module(".".join(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCAmelCase__ ) is attr_value: _UpperCAmelCase : Optional[Any] = getattr(self.obj , lowerCAmelCase__ ) setattr(self.obj , lowerCAmelCase__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" _UpperCAmelCase : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCAmelCase__ , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : Optional[int] , *lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" for attr in list(self.original ): setattr(self.obj , lowerCAmelCase__ , self.original.pop(lowerCAmelCase__ ) ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.__enter__() self._active_patches.append(self ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
17
0
'''simple docstring''' import torch def __UpperCAmelCase ( ): if torch.cuda.is_available(): _UpperCAmelCase : Any = torch.cuda.device_count() else: _UpperCAmelCase : Optional[Any] = 0 print(f"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
361
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __a = datasets.utils.logging.get_logger(__name__) __a = ['names', 'prefix'] __a = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] __a = ['encoding_errors', 'on_bad_lines'] __a = ['date_format'] @dataclass class A__ ( datasets.BuilderConfig ): """simple docstring""" UpperCamelCase_ : str = "," UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[Union[int, List[int], str]] = "infer" UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[List[str]] = None UpperCamelCase_ : Optional[Union[int, str, List[int], List[str]]] = None UpperCamelCase_ : Optional[Union[List[int], List[str]]] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[Literal["c", "python", "pyarrow"]] = None UpperCamelCase_ : Dict[Union[int, str], Callable[[Any], Any]] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : Optional[list] = None UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[Union[int, List[int]]] = None UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Optional[Union[str, List[str]]] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : bool = True UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = "." UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : str = '"' UpperCamelCase_ : int = 0 UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : bool = True UpperCamelCase_ : bool = True UpperCamelCase_ : int = 0 UpperCamelCase_ : bool = True UpperCamelCase_ : bool = False UpperCamelCase_ : Optional[str] = None UpperCamelCase_ : int = 1_00_00 UpperCamelCase_ : Optional[datasets.Features] = None UpperCamelCase_ : Optional[str] = "strict" UpperCamelCase_ : Literal["error", "warn", "skip"] = "error" UpperCamelCase_ : Optional[str] = None def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase : Any = self.delimiter if self.column_names is not None: _UpperCAmelCase : List[Any] = self.column_names @property def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCamelCase_ : int = CsvConfig def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase ( self : Tuple , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): _UpperCAmelCase : int = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : Any = [files] _UpperCAmelCase : List[Any] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase : Optional[Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : str = [files] _UpperCAmelCase : Any = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase : Tuple = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase : Any = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase : int = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def _lowerCAmelCase ( self : Dict , lowerCAmelCase__ : Dict ) -> Dict: """simple docstring""" _UpperCAmelCase : int = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): _UpperCAmelCase : Optional[Any] = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): _UpperCAmelCase : Optional[int] = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
17
0