code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int: return x if y == 0 else greatest_common_divisor(UpperCAmelCase__ , x % y ) def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int: return (x * y) // greatest_common_divisor(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int = 20 ) -> int: lowercase_ : Dict = 1 for i in range(1 , n + 1 ): lowercase_ : Optional[int] = lcm(UpperCAmelCase__ , UpperCAmelCase__ ) return g if __name__ == "__main__": print(f"""{solution() = }""")
21
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : Dict , **lowercase_ : List[Any] ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None ): lowercase_ : Optional[Any] = {} lowercase_ : Tuple = {} if prompt is not None: lowercase_ : Tuple = prompt if generate_kwargs is not None: lowercase_ : List[str] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase_ : List[Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase_ : str = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[Any] , lowercase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ : Optional[int] ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[Any] , lowercase_ : Tuple=None ): lowercase_ : List[Any] = load_image(lowercase_ ) if prompt is not None: if not isinstance(lowercase_ , lowercase_ ): raise ValueError( f'''Received an invalid text input, got - {type(lowercase_ )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase_ : List[Any] = self.model.config.model_type if model_type == "git": lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : Union[str, Any] = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_ ).input_ids lowercase_ : int = [self.tokenizer.cls_token_id] + input_ids lowercase_ : List[Any] = torch.tensor(lowercase_ ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase_ : Union[str, Any] = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : List[str] = self.tokenizer(lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: lowercase_ : List[str] = self.image_processor(images=lowercase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase_ : str = None return model_inputs def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Dict , lowercase_ : Optional[Any]=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , lowercase_ ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase_ : Any = None if generate_kwargs is None: lowercase_ : Optional[Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase_ : Dict = model_inputs.pop(self.model.main_input_name ) lowercase_ : Any = self.model.generate(lowercase_ , **lowercase_ , **lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[Any] ): lowercase_ : List[str] = [] for output_ids in model_outputs: lowercase_ : Union[str, Any] = { """generated_text""": self.tokenizer.decode( lowercase_ , skip_special_tokens=lowercase_ , ) } records.append(lowercase_ ) return records
21
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : List[Any] = 1 lowercase_ : str = 3 lowercase_ : Dict = (32, 32) lowercase_ : Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase_ ) return image @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): torch.manual_seed(0 ) lowercase_ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): torch.manual_seed(0 ) lowercase_ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): torch.manual_seed(0 ) lowercase_ : Optional[int] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(lowercase_ ) @property def SCREAMING_SNAKE_CASE_ ( self : Dict ): def extract(*lowercase_ : Optional[int] , **lowercase_ : Optional[int] ): class __magic_name__ : def __init__( self : Any ): lowercase_ : Optional[int] = torch.ones([0] ) def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : List[Any] ): self.pixel_values.to(lowercase_ ) return self return Out() return extract def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase_ : Any = self.dummy_cond_unet lowercase_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowercase_ ) lowercase_ : Optional[Any] = self.dummy_vae lowercase_ : int = self.dummy_text_encoder lowercase_ : Any = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowercase_ : List[Any] = 77 lowercase_ : List[str] = self.dummy_image.to(lowercase_ ) lowercase_ : List[str] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase_ : List[Any] = AltDiffusionImgaImgPipeline( unet=lowercase_ , scheduler=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , safety_checker=lowercase_ , feature_extractor=self.dummy_extractor , ) lowercase_ : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase_ ) lowercase_ : Any = alt_pipe.to(lowercase_ ) alt_pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : int = """A painting of a squirrel eating a burger""" lowercase_ : Any = torch.Generator(device=lowercase_ ).manual_seed(0 ) lowercase_ : Optional[Any] = alt_pipe( [prompt] , generator=lowercase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=lowercase_ , ) lowercase_ : Optional[int] = output.images lowercase_ : Any = torch.Generator(device=lowercase_ ).manual_seed(0 ) lowercase_ : List[Any] = alt_pipe( [prompt] , generator=lowercase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=lowercase_ , return_dict=lowercase_ , )[0] lowercase_ : int = image[0, -3:, -3:, -1] lowercase_ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ : List[str] = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : str = self.dummy_cond_unet lowercase_ : Any = PNDMScheduler(skip_prk_steps=lowercase_ ) lowercase_ : Tuple = self.dummy_vae lowercase_ : List[Any] = self.dummy_text_encoder lowercase_ : Any = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowercase_ : Tuple = 77 lowercase_ : Any = self.dummy_image.to(lowercase_ ) # put models in fp16 lowercase_ : List[Any] = unet.half() lowercase_ : str = vae.half() lowercase_ : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk lowercase_ : Tuple = AltDiffusionImgaImgPipeline( unet=lowercase_ , scheduler=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , safety_checker=lowercase_ , feature_extractor=self.dummy_extractor , ) lowercase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase_ ) lowercase_ : Union[str, Any] = alt_pipe.to(lowercase_ ) alt_pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : Dict = """A painting of a squirrel eating a burger""" lowercase_ : Any = torch.manual_seed(0 ) lowercase_ : int = alt_pipe( [prompt] , generator=lowercase_ , num_inference_steps=2 , output_type="""np""" , image=lowercase_ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase_ : int = init_image.resize((760, 504) ) lowercase_ : int = """BAAI/AltDiffusion""" lowercase_ : int = AltDiffusionImgaImgPipeline.from_pretrained( lowercase_ , safety_checker=lowercase_ , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowercase_ : Any = """A fantasy landscape, trending on artstation""" lowercase_ : Any = torch.manual_seed(0 ) lowercase_ : List[str] = pipe( prompt=lowercase_ , image=lowercase_ , strength=0.75 , guidance_scale=7.5 , generator=lowercase_ , output_type="""np""" , ) lowercase_ : List[str] = output.images[0] lowercase_ : Optional[int] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase_ : List[str] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowercase_ : List[Any] = init_image.resize((768, 512) ) lowercase_ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) lowercase_ : Union[str, Any] = """BAAI/AltDiffusion""" lowercase_ : int = AltDiffusionImgaImgPipeline.from_pretrained( lowercase_ , safety_checker=lowercase_ , ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() lowercase_ : str = """A fantasy landscape, trending on artstation""" lowercase_ : int = torch.manual_seed(0 ) lowercase_ : Optional[int] = pipe( prompt=lowercase_ , image=lowercase_ , strength=0.75 , guidance_scale=7.5 , generator=lowercase_ , output_type="""np""" , ) lowercase_ : Optional[int] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
21
'''simple docstring''' class __magic_name__ : def __init__( self : int , lowercase_ : list ): lowercase_ : Dict = set_counts lowercase_ : List[Any] = max(lowercase_ ) lowercase_ : str = len(lowercase_ ) lowercase_ : str = [1] * num_sets lowercase_ : Dict = list(range(lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : int ): lowercase_ : List[Any] = self.get_parent(lowercase_ ) lowercase_ : Union[str, Any] = self.get_parent(lowercase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : List[str] = 0 lowercase_ : Optional[int] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : int = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : int = 0 lowercase_ : List[Any] = src_parent lowercase_ : List[Any] = self.set_counts[src_parent] lowercase_ : Tuple = max(self.max_set , lowercase_ ) return True def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : int ): if self.parents[disj_set] == disj_set: return disj_set lowercase_ : int = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
21
1
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _lowercase : List[str] = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" _lowercase : str = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" _lowercase : List[Any] = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class __magic_name__ ( datasets.Metric): def SCREAMING_SNAKE_CASE_ ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Any , lowercase_ : int , lowercase_ : Tuple=4 , lowercase_ : Tuple=False ): lowercase_ : int = compute_bleu( reference_corpus=lowercase_ , translation_corpus=lowercase_ , max_order=lowercase_ , smooth=lowercase_ ) ((lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_)) : Optional[int] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
21
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : int , **lowercase_ : Any ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """decord""" ) self.check_model_type(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None ): lowercase_ : Union[str, Any] = {} if frame_sampling_rate is not None: lowercase_ : Any = frame_sampling_rate if num_frames is not None: lowercase_ : Optional[Any] = num_frames lowercase_ : Union[str, Any] = {} if top_k is not None: lowercase_ : Optional[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : str , lowercase_ : Union[str, List[str]] , **lowercase_ : str ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None , lowercase_ : Optional[int]=1 ): if num_frames is None: lowercase_ : List[Any] = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): lowercase_ : Union[str, Any] = BytesIO(requests.get(lowercase_ ).content ) lowercase_ : Optional[Any] = VideoReader(lowercase_ ) videoreader.seek(0 ) lowercase_ : Tuple = 0 lowercase_ : List[Any] = num_frames * frame_sampling_rate - 1 lowercase_ : Optional[int] = np.linspace(lowercase_ , lowercase_ , num=lowercase_ , dtype=np.intaa ) lowercase_ : Optional[int] = videoreader.get_batch(lowercase_ ).asnumpy() lowercase_ : Union[str, Any] = list(lowercase_ ) lowercase_ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : str ): lowercase_ : int = self.model(**lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Dict=5 ): if top_k > self.model.config.num_labels: lowercase_ : List[Any] = self.model.config.num_labels if self.framework == "pt": lowercase_ : str = model_outputs.logits.softmax(-1 )[0] lowercase_ , lowercase_ : Optional[Any] = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowercase_ : Union[str, Any] = scores.tolist() lowercase_ : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
21
1
'''simple docstring''' from __future__ import annotations class __magic_name__ : def __init__( self : Optional[int] , lowercase_ : int=None ): lowercase_ : Any = data lowercase_ : str = None def __repr__( self : str ): lowercase_ : Any = [] lowercase_ : Optional[int] = self while temp: string_rep.append(f'''{temp.data}''' ) lowercase_ : Optional[int] = temp.next return "->".join(lowercase_ ) def lowerCamelCase ( UpperCAmelCase__ : list ) -> Tuple: if not elements_list: raise Exception("""The Elements List is empty""" ) lowercase_ : str = Node(elements_list[0] ) for i in range(1 , len(UpperCAmelCase__ ) ): lowercase_ : List[str] = Node(elements_list[i] ) lowercase_ : int = current.next return head def lowerCamelCase ( UpperCAmelCase__ : Node ) -> None: if head_node is not None and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): print_reverse(head_node.next ) print(head_node.data ) def lowerCamelCase ( ) -> Union[str, Any]: from doctest import testmod testmod() lowercase_ : Any = make_linked_list([14, 52, 14, 12, 43] ) print("""Linked List:""" ) print(UpperCAmelCase__ ) print("""Elements in Reverse:""" ) print_reverse(UpperCAmelCase__ ) if __name__ == "__main__": main()
21
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> List[str]: if isinstance(UpperCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class __magic_name__ : def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Any , lowercase_ : str ): pass def SCREAMING_SNAKE_CASE_ ( self : str ): pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : np.ndarray , lowercase_ : float ): lowercase_ : Optional[Any] = np.abs((a - b) ).max() self.assertLessEqual(lowercase_ , lowercase_ , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple=None , **lowercase_ : Optional[int] ): lowercase_ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : Any = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : List[Any]=None , **lowercase_ : Tuple ): lowercase_ , lowercase_ : Any = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[int] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=None , **lowercase_ : int ): lowercase_ , lowercase_ : Union[str, Any] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Tuple = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Union[str, Any] = after_output[0] lowercase_ : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-3 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Dict=None , **lowercase_ : Optional[Any] ): lowercase_ , lowercase_ : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Dict = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Optional[int] = model( input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ ) lowercase_ : Tuple = output.vision_model_output.attentions self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ : List[str] = to_atuple(vision_model.config.image_size ) lowercase_ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowercase_ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase_ : Optional[Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowercase_ : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int ): pt_model.to(lowercase_ ) pt_model.eval() # prepare inputs lowercase_ : int = inputs_dict lowercase_ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowercase_ : str = pt_model(**lowercase_ ).to_tuple() lowercase_ : Optional[Any] = fx_model(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowercase_ ) lowercase_ : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ , from_pt=lowercase_ ) lowercase_ : Dict = fx_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowercase_ ) lowercase_ : Union[str, Any] = VisionTextDualEncoderModel.from_pretrained(lowercase_ , from_flax=lowercase_ ) pt_model_loaded.to(lowercase_ ) pt_model_loaded.eval() with torch.no_grad(): lowercase_ : List[Any] = pt_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowercase_ , pt_output_loaded.numpy() , 4E-2 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : List[Any] = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ ) lowercase_ : Tuple = fx_state self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[Any] ): lowercase_ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : int = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Dict = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params ) self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Tuple = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_save_load(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase_ ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = self.prepare_config_and_inputs() lowercase_ : List[Any] = config_inputs_dict.pop("""vision_config""" ) lowercase_ : int = config_inputs_dict.pop("""text_config""" ) lowercase_ : Optional[int] = config_inputs_dict self.check_equivalence_pt_to_flax(lowercase_ , lowercase_ , lowercase_ ) self.check_equivalence_flax_to_pt(lowercase_ , lowercase_ , lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ , lowercase_ : str = self.get_pretrained_model_and_inputs() lowercase_ : Dict = model_a(**lowercase_ ) lowercase_ : str = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : str = model_a(**lowercase_ ) lowercase_ : Union[str, Any] = after_outputs[0] lowercase_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-5 ) @require_flax class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : str = random_attention_mask([batch_size, 4] ) lowercase_ : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Tuple ): lowercase_ : Union[str, Any] = FlaxViTModel(lowercase_ ) lowercase_ : Dict = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Any = FlaxViTModelTester(self ) lowercase_ : Optional[Any] = FlaxBertModelTester(self ) lowercase_ : Dict = vit_model_tester.prepare_config_and_inputs() lowercase_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : List[str] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : Tuple = random_attention_mask([batch_size, 4] ) lowercase_ : Union[str, Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = FlaxCLIPVisionModel(lowercase_ ) lowercase_ : Any = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = FlaxCLIPVisionModelTester(self ) lowercase_ : Tuple = FlaxBertModelTester(self ) lowercase_ : Union[str, Any] = clip_model_tester.prepare_config_and_inputs() lowercase_ : Any = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : Optional[Any] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : str = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) lowercase_ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) lowercase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : Optional[int] = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowercase_ , padding=lowercase_ , return_tensors="""np""" ) lowercase_ : List[str] = model(**lowercase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowercase_ : Optional[Any] = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowercase_ , atol=1E-3 ) )
21
1
'''simple docstring''' from collections import defaultdict from math import gcd def lowerCamelCase ( UpperCAmelCase__ : int = 1500000 ) -> int: lowercase_ : defaultdict = defaultdict(UpperCAmelCase__ ) lowercase_ : Any = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase__ , 2 ): if gcd(UpperCAmelCase__ , UpperCAmelCase__ ) > 1: continue lowercase_ : Tuple = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCAmelCase__ , limit + 1 , UpperCAmelCase__ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f"""{solution() = }""")
21
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __magic_name__ ( unittest.TestCase): def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int=7 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[Any]=18 , lowercase_ : List[Any]=30 , lowercase_ : int=400 , lowercase_ : Dict=True , lowercase_ : List[Any]=None , lowercase_ : Dict=True , ): lowercase_ : Tuple = size if size is not None else {"""height""": 18, """width""": 18} lowercase_ : List[str] = parent lowercase_ : Any = batch_size lowercase_ : Optional[Any] = num_channels lowercase_ : Tuple = image_size lowercase_ : Optional[Any] = min_resolution lowercase_ : Dict = max_resolution lowercase_ : Optional[int] = do_resize lowercase_ : Optional[Any] = size lowercase_ : Union[str, Any] = do_normalize def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ImageGPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = ImageGPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """clusters""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) lowercase_ : Union[str, Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , obj[key] ) ) else: self.assertEqual(obj[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Union[str, Any] = os.path.join(lowercase_ , """image_processor.json""" ) image_processor_first.to_json_file(lowercase_ ) lowercase_ : Optional[Any] = self.image_processing_class.from_json_file(lowercase_ ).to_dict() lowercase_ : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase_ ) lowercase_ : Any = self.image_processing_class.from_pretrained(lowercase_ ).to_dict() lowercase_ : List[str] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass def lowerCamelCase ( ) -> Any: lowercase_ : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) lowercase_ : Any = Image.open(dataset[4]["""file"""] ) lowercase_ : Dict = Image.open(dataset[5]["""file"""] ) lowercase_ : int = [imagea, imagea] return images @require_vision @require_torch class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Optional[Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) lowercase_ : Optional[int] = prepare_images() # test non-batched lowercase_ : str = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) lowercase_ : Tuple = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase_ ) # test batched lowercase_ : List[str] = image_processing(lowercase_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) lowercase_ : Union[str, Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase_ )
21
1
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Path , UpperCAmelCase__ : str = None , UpperCAmelCase__ : str = None , UpperCAmelCase__ : str = None , ) -> int: if config_name_or_path is None: lowercase_ : int = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: lowercase_ : Optional[Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowercase_ : str = question_encoder_name_or_path lowercase_ : Tuple = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. lowercase_ : List[Any] = RagConfig.from_pretrained(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase__ ) lowercase_ : str = AutoConfig.from_pretrained(UpperCAmelCase__ ) lowercase_ : str = gen_config lowercase_ : Union[str, Any] = question_encoder_config lowercase_ : Any = model_class.from_pretrained_question_encoder_generator( UpperCAmelCase__ , UpperCAmelCase__ , config=UpperCAmelCase__ ) rag_model.save_pretrained(UpperCAmelCase__ ) # Sanity check. model_class.from_pretrained(UpperCAmelCase__ ) # Save tokenizers. lowercase_ : int = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) lowercase_ : List[Any] = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) _lowercase : Any = parser.parse_args() _lowercase : Optional[Any] = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
21
'''simple docstring''' def lowerCamelCase ( ) -> Dict: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = 1 while len(UpperCAmelCase__ ) < 1e6: constant.append(str(UpperCAmelCase__ ) ) i += 1 lowercase_ : int = """""".join(UpperCAmelCase__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
21
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> Tuple: lowercase_ : Optional[int] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any ) -> Optional[int]: lowercase_ , lowercase_ : Tuple = emb.weight.shape lowercase_ : int = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ ) lowercase_ : Any = emb.weight.data return lin_layer def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: lowercase_ : str = torch.load(UpperCAmelCase__ , map_location="""cpu""" ) lowercase_ : Dict = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] lowercase_ : str = mam_aaa["""model"""] remove_ignore_keys_(UpperCAmelCase__ ) lowercase_ : List[str] = state_dict["""encoder.embed_tokens.weight"""].shape[0] lowercase_ : List[str] = MaMaaaConfig( vocab_size=UpperCAmelCase__ , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) lowercase_ : Dict = state_dict["""decoder.embed_tokens.weight"""] lowercase_ : Optional[int] = MaMaaaForConditionalGeneration(UpperCAmelCase__ ) model.model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) lowercase_ : Dict = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _lowercase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") _lowercase : Optional[int] = parser.parse_args() _lowercase : Optional[int] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
21
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _lowercase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( _UpperCAmelCase): def __init__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str ): super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : List[str] , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ): if audio_length_in_s is None: lowercase_ : List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate lowercase_ : Dict = audio_length_in_s * self.unet.config.sample_rate lowercase_ : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowercase_ : List[Any] = int(lowercase_ ) if sample_size % down_scale_factor != 0: lowercase_ : int = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) lowercase_ : Any = int(lowercase_ ) lowercase_ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowercase_ : List[str] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowercase_ : Any = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) # set step values self.scheduler.set_timesteps(lowercase_ , device=audio.device ) lowercase_ : Optional[Any] = self.scheduler.timesteps.to(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase_ : Dict = self.unet(lowercase_ , lowercase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowercase_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowercase_ : str = audio.clamp(-1 , 1 ).float().cpu().numpy() lowercase_ : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase_ )
21
1
'''simple docstring''' from sklearn.metrics import fa_score import datasets _lowercase : Any = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" _lowercase : Optional[Any] = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" _lowercase : List[Any] = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class __magic_name__ ( datasets.Metric): def SCREAMING_SNAKE_CASE_ ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : str=None , lowercase_ : Any=1 , lowercase_ : str="binary" , lowercase_ : Union[str, Any]=None ): lowercase_ : Optional[int] = fa_score( lowercase_ , lowercase_ , labels=lowercase_ , pos_label=lowercase_ , average=lowercase_ , sample_weight=lowercase_ ) return {"f1": float(lowercase_ ) if score.size == 1 else score}
21
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _lowercase : Union[str, Any] = "src/transformers" _lowercase : str = "docs/source/en" _lowercase : Union[str, Any] = "." def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int: with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ : Union[str, Any] = f.readlines() # Find the start prompt. lowercase_ : Optional[Any] = 0 while not lines[start_index].startswith(UpperCAmelCase__ ): start_index += 1 start_index += 1 lowercase_ : int = start_index while not lines[end_index].startswith(UpperCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. _lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any: lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ ) return [m.group(0 ) for m in matches] def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]: lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ ) lowercase_ : List[str] = (width - text_length) // 2 lowercase_ : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase ( ) -> Any: lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase_ : Any = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = None if attr_name.endswith("""Tokenizer""" ): lowercase_ : Optional[int] = slow_tokenizers lowercase_ : Union[str, Any] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowercase_ : Optional[Any] = fast_tokenizers lowercase_ : Dict = attr_name[:-13] elif _re_tf_models.match(UpperCAmelCase__ ) is not None: lowercase_ : str = tf_models lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0] elif _re_flax_models.match(UpperCAmelCase__ ) is not None: lowercase_ : List[str] = flax_models lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0] elif _re_pt_models.match(UpperCAmelCase__ ) is not None: lowercase_ : Tuple = pt_models lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): lowercase_ : int = True break # Try again after removing the last word in the name lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] ) # Let's build that table! lowercase_ : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns] lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowercase_ : int = {True: """✅""", False: """❌"""} for name in model_names: lowercase_ : str = model_name_to_prefix[name] lowercase_ : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n" return table def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str: lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = _find_text_in_file( filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowercase_ : Dict = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowercase : Optional[Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
21
1
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = DistilBertTokenizer UpperCamelCase__ = DistilBertTokenizerFast UpperCamelCase__ = True @slow def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) lowercase_ : str = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ ) lowercase_ : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ ) lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
21
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __magic_name__ ( ctypes.Structure): # _fields is a specific attr expected by ctypes UpperCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def lowerCamelCase ( ) -> List[Any]: if os.name == "nt": lowercase_ : List[Any] = CursorInfo() lowercase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def lowerCamelCase ( ) -> str: if os.name == "nt": lowercase_ : int = CursorInfo() lowercase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : Optional[int] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def lowerCamelCase ( ) -> Any: try: hide_cursor() yield finally: show_cursor()
21
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''openai/whisper-base''' UpperCamelCase__ = ( '''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ''' '''transcribed text.''' ) UpperCamelCase__ = '''transcriber''' UpperCamelCase__ = WhisperProcessor UpperCamelCase__ = WhisperForConditionalGeneration UpperCamelCase__ = ['''audio'''] UpperCamelCase__ = ['''text'''] def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : Tuple ): return self.pre_processor(lowercase_ , return_tensors="""pt""" ).input_features def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : Optional[Any] ): return self.model.generate(inputs=lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Union[str, Any] ): return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
21
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowercase : int = logging.get_logger(__name__) @dataclass class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : Optional[Any] , **lowercase_ : int ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase_ : Optional[int] = deprecated_arg[3:] setattr(self , lowercase_ , not kwargs.pop(lowercase_ ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase_ : Tuple = kwargs.pop("""torchscript""" , self.torchscript ) lowercase_ : List[Any] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) lowercase_ : List[Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**lowercase_ ) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Trace the models using torchscript'''}) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''}) UpperCamelCase__ = field( default='''O1''', metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) }, ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: lowercase_ : Optional[Any] = torch.device("""cpu""" ) lowercase_ : Tuple = 0 elif is_torch_tpu_available(): lowercase_ : Optional[int] = xm.xla_device() lowercase_ : str = 0 else: lowercase_ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) lowercase_ : str = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE_ ( self : int ): requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE_ ( self : int ): return self.n_gpu > 0
21
1
'''simple docstring''' import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): # TODO: is there an appropriate internal test set? UpperCamelCase__ = '''ssube/stable-diffusion-x4-upscaler-onnx''' def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Optional[Any]=0 ): lowercase_ : Any = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowercase_ ) ) lowercase_ : List[str] = torch.manual_seed(lowercase_ ) lowercase_ : str = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : List[str] = self.get_dummy_inputs() lowercase_ : Dict = pipe(**lowercase_ ).images lowercase_ : Any = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) lowercase_ : Optional[int] = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : List[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : Optional[Any] = self.get_dummy_inputs() lowercase_ : int = pipe(**lowercase_ ).images lowercase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase_ : Dict = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : Optional[int] = self.get_dummy_inputs() lowercase_ : Any = pipe(**lowercase_ ).images lowercase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase_ : str = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : Optional[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : Any = self.get_dummy_inputs() lowercase_ : List[Any] = pipe(**lowercase_ ).images lowercase_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase_ : Any = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : Optional[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : int = self.get_dummy_inputs() lowercase_ : List[str] = pipe(**lowercase_ ).images lowercase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase_ : Optional[int] = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class __magic_name__ ( unittest.TestCase): @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[Any] = ort.SessionOptions() lowercase_ : List[Any] = False return options def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowercase_ : Optional[Any] = init_image.resize((128, 128) ) # using the PNDM scheduler by default lowercase_ : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : List[str] = """A fantasy landscape, trending on artstation""" lowercase_ : List[str] = torch.manual_seed(0 ) lowercase_ : str = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type="""np""" , ) lowercase_ : Optional[Any] = output.images lowercase_ : List[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) lowercase_ : Optional[Any] = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowercase_ : Tuple = init_image.resize((128, 128) ) lowercase_ : Any = LMSDiscreteScheduler.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , subfolder="""scheduler""" ) lowercase_ : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , scheduler=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : int = """A fantasy landscape, trending on artstation""" lowercase_ : Optional[Any] = torch.manual_seed(0 ) lowercase_ : Any = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase_ , output_type="""np""" , ) lowercase_ : Dict = output.images lowercase_ : Union[str, Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) lowercase_ : Union[str, Any] = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
21
'''simple docstring''' from __future__ import annotations from typing import Any def lowerCamelCase ( UpperCAmelCase__ : list ) -> int: if not postfix_notation: return 0 lowercase_ : Any = {"""+""", """-""", """*""", """/"""} lowercase_ : list[Any] = [] for token in postfix_notation: if token in operations: lowercase_ , lowercase_ : Dict = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
21
1
'''simple docstring''' import os import string import sys _lowercase : Any = 1 << 8 _lowercase : Optional[Any] = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } _lowercase : Union[str, Any] = KEYMAP["up"] _lowercase : int = KEYMAP["left"] if sys.platform == "win32": _lowercase : Tuple = [] _lowercase : List[Any] = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): _lowercase : Any = ord(str(i)) def lowerCamelCase ( ) -> List[str]: if os.name == "nt": import msvcrt lowercase_ : Optional[Any] = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(UpperCAmelCase__ ) == 0: # Read the keystroke lowercase_ : Dict = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowercase_ : int = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowercase_ : str = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(UpperCAmelCase__ ) if ord(UpperCAmelCase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowercase_ : Tuple = chr(KEYMAP["""esc"""] ) except KeyError: lowercase_ : Optional[Any] = cha[1] else: lowercase_ : Dict = ch.decode(UpperCAmelCase__ ) else: lowercase_ : List[str] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowercase_ : Optional[Any] = sys.stdin.fileno() lowercase_ : str = termios.tcgetattr(UpperCAmelCase__ ) try: tty.setraw(UpperCAmelCase__ ) lowercase_ : Tuple = sys.stdin.read(1 ) finally: termios.tcsetattr(UpperCAmelCase__ , termios.TCSADRAIN , UpperCAmelCase__ ) return ch def lowerCamelCase ( ) -> Union[str, Any]: lowercase_ : str = get_raw_chars() if ord(UpperCAmelCase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(UpperCAmelCase__ ) == KEYMAP["esc"]: lowercase_ : str = get_raw_chars() if ord(UpperCAmelCase__ ) == KEYMAP["mod_int"]: lowercase_ : Any = get_raw_chars() if ord(UpperCAmelCase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(UpperCAmelCase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(UpperCAmelCase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
21
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase : List[Any] = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : Union[tf.Tensor, np.ndarray] ) -> List[int]: if isinstance(UpperCAmelCase__ , np.ndarray ): return list(tensor.shape ) lowercase_ : Tuple = tf.shape(UpperCAmelCase__ ) if tensor.shape == tf.TensorShape(UpperCAmelCase__ ): return dynamic lowercase_ : Dict = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase__ )] def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[str] = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCAmelCase__ , name=UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=1e-5 , UpperCAmelCase__ : List[str]=-1 ) -> List[str]: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized lowercase_ , lowercase_ : List[str] = tf.nn.moments(UpperCAmelCase__ , axes=[axis] , keepdims=UpperCAmelCase__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase_ : List[Any] = [1] * inputs.shape.rank lowercase_ : List[str] = shape_list(UpperCAmelCase__ )[axis] lowercase_ : List[str] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : List[Any] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) # Compute layer normalization using the batch_normalization # function. lowercase_ : str = tf.nn.batch_normalization( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , offset=UpperCAmelCase__ , scale=UpperCAmelCase__ , variance_epsilon=UpperCAmelCase__ , ) return outputs def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Any=-1 ) -> Dict: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase_ : List[Any] = tf.shape(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase_ : Dict = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor ) -> tf.Tensor: if not isinstance(UpperCAmelCase__ , tf.Tensor ): lowercase_ : List[Any] = tf.convert_to_tensor(UpperCAmelCase__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase_ : Any = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase_ : List[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase_ : Optional[Any] = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : int , UpperCAmelCase__ : str = "input_ids" ) -> None: tf.debugging.assert_less( UpperCAmelCase__ , tf.cast(UpperCAmelCase__ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase__ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> Any: lowercase_ : int = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase_ : Optional[Any] = [x for x in data if len(UpperCAmelCase__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) lowercase_ : Any = np.asarray(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = 1 lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = chunk_data else: lowercase_ : Any = data def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] ) -> str: if name in group.attrs: lowercase_ : Optional[Any] = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs[name]] else: lowercase_ : int = [] lowercase_ : Optional[int] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> Any: def _expand_single_ad_tensor(UpperCAmelCase__ : Optional[Any] ): if isinstance(UpperCAmelCase__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase__ )
21
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = KandinskyImgaImgPipeline UpperCamelCase__ = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] UpperCamelCase__ = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] UpperCamelCase__ = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCamelCase__ = False @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): return 32 @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): return 32 @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): return self.time_input_dim @property def SCREAMING_SNAKE_CASE_ ( self : Any ): return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE_ ( self : int ): return 100 @property def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Union[str, Any] = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def SCREAMING_SNAKE_CASE_ ( self : int ): torch.manual_seed(0 ) lowercase_ : Optional[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowercase_ : Any = MultilingualCLIP(lowercase_ ) lowercase_ : int = text_encoder.eval() return text_encoder @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): torch.manual_seed(0 ) lowercase_ : str = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase_ : Optional[int] = UNetaDConditionModel(**lowercase_ ) return model @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE_ ( self : str ): torch.manual_seed(0 ) lowercase_ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : str = self.dummy_text_encoder lowercase_ : List[str] = self.dummy_tokenizer lowercase_ : Union[str, Any] = self.dummy_unet lowercase_ : str = self.dummy_movq lowercase_ : Tuple = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } lowercase_ : Tuple = DDIMScheduler(**lowercase_ ) lowercase_ : Any = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : Union[str, Any]=0 ): lowercase_ : Tuple = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowercase_ : Any = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowercase_ ) # create init_image lowercase_ : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowercase_ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ : Optional[Any] = Image.fromarray(np.uinta(lowercase_ ) ).convert("""RGB""" ).resize((256, 256) ) if str(lowercase_ ).startswith("""mps""" ): lowercase_ : int = torch.manual_seed(lowercase_ ) else: lowercase_ : Dict = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase_ : Dict = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : str = """cpu""" lowercase_ : Any = self.get_dummy_components() lowercase_ : Optional[Any] = self.pipeline_class(**lowercase_ ) lowercase_ : int = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : Union[str, Any] = pipe(**self.get_dummy_inputs(lowercase_ ) ) lowercase_ : int = output.images lowercase_ : Optional[Any] = pipe( **self.get_dummy_inputs(lowercase_ ) , return_dict=lowercase_ , )[0] lowercase_ : Union[str, Any] = image[0, -3:, -3:, -1] lowercase_ : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ : str = np.array( [0.61_47_49_43, 0.6_07_35_39, 0.43_30_85_44, 0.5_92_82_69, 0.47_49_35_95, 0.46_75_59_73, 0.4_61_38_38, 0.45_36_87_97, 0.50_11_92_33] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) lowercase_ : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase_ : List[Any] = """A red cartoon frog, 4k""" lowercase_ : Optional[Any] = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(lowercase_ ) lowercase_ : Tuple = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) lowercase_ : Dict = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) lowercase_ : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase_ , lowercase_ : int = pipe_prior( lowercase_ , generator=lowercase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase_ : Dict = pipeline( lowercase_ , image=lowercase_ , image_embeds=lowercase_ , negative_image_embeds=lowercase_ , generator=lowercase_ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) lowercase_ : Optional[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ )
21
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: lowercase_ : Any = prime_factors(UpperCAmelCase__ ) if is_square_free(UpperCAmelCase__ ): return -1 if len(UpperCAmelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
21
1
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer _lowercase : Optional[int] = "bart" _lowercase : str = True @st.cache(allow_output_mutation=UpperCAmelCase__ ) def lowerCamelCase ( ) -> Union[str, Any]: if LOAD_DENSE_INDEX: lowercase_ : List[str] = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) lowercase_ : str = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) lowercase_ : Dict = qar_model.eval() else: lowercase_ , lowercase_ : Optional[int] = (None, None) if MODEL_TYPE == "bart": lowercase_ : List[Any] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) lowercase_ : Any = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) lowercase_ : str = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) lowercase_ : Optional[Any] = sas_model.eval() else: lowercase_ , lowercase_ : List[Any] = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=UpperCAmelCase__ ) def lowerCamelCase ( ) -> List[Any]: if LOAD_DENSE_INDEX: lowercase_ : List[Any] = faiss.StandardGpuResources() lowercase_ : List[str] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] lowercase_ : Optional[Any] = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) lowercase_ : Dict = faiss.IndexFlatIP(128 ) lowercase_ : int = faiss.index_cpu_to_gpu(UpperCAmelCase__ , 1 , UpperCAmelCase__ ) wikiaab_gpu_index_flat.add(UpperCAmelCase__ ) # TODO fix for larger GPU else: lowercase_ , lowercase_ : str = (None, None) lowercase_ : Union[str, Any] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=UpperCAmelCase__ ) def lowerCamelCase ( ) -> str: lowercase_ : Optional[Any] = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) lowercase_ : Union[str, Any] = elia["""train_eli5"""] lowercase_ : Union[str, Any] = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) lowercase_ : Union[str, Any] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(UpperCAmelCase__ ) return (elia_train, eli5_train_q_index) _lowercase , _lowercase , _lowercase : Dict = load_indexes() _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = load_models() _lowercase , _lowercase : Tuple = load_train_data() def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any]=10 ) -> Optional[int]: lowercase_ : Tuple = embed_questions_for_retrieval([question] , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ , lowercase_ : int = eli5_train_q_index.search(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Union[str, Any] = [elia_train[int(UpperCAmelCase__ )] for i in I[0]] return nn_examples def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any]="wiki40b" , UpperCAmelCase__ : Optional[int]="dense" , UpperCAmelCase__ : int=10 ) -> Tuple: if source == "none": lowercase_ , lowercase_ : Any = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": lowercase_ , lowercase_ : Optional[int] = query_qa_dense_index( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) else: lowercase_ , lowercase_ : Tuple = query_es_index( UpperCAmelCase__ , UpperCAmelCase__ , index_name="""english_wiki40b_snippets_100w""" , n_results=UpperCAmelCase__ , ) lowercase_ : int = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] lowercase_ : Union[str, Any] = """question: {} context: {}""".format(UpperCAmelCase__ , UpperCAmelCase__ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda UpperCAmelCase__ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda UpperCAmelCase__ : None), } ) def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any]=64 , UpperCAmelCase__ : Any=256 , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : Tuple=0.95 , UpperCAmelCase__ : str=0.8 ) -> List[Any]: with torch.no_grad(): lowercase_ : List[Any] = qa_sas_generate( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , num_answers=1 , num_beams=UpperCAmelCase__ , min_len=UpperCAmelCase__ , max_len=UpperCAmelCase__ , do_sample=UpperCAmelCase__ , temp=UpperCAmelCase__ , top_p=UpperCAmelCase__ , top_k=UpperCAmelCase__ , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar _lowercase : Union[str, Any] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" _lowercase : Dict = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia _lowercase : str = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) _lowercase : List[str] = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] _lowercase : List[str] = st.sidebar.checkbox("Demo options") if demo_options: _lowercase : Dict = st.sidebar.selectbox( "", action_list, index=3, ) _lowercase : str = action_list.index(action_st) _lowercase : List[Any] = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) _lowercase : str = show_type == "Show full text of passages" else: _lowercase : Tuple = 3 _lowercase : Optional[int] = True _lowercase : Union[str, Any] = st.sidebar.checkbox("Retrieval options") if retrieval_options: _lowercase : List[Any] = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) _lowercase : List[str] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) _lowercase : Optional[int] = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: _lowercase : List[Any] = "wiki40b" _lowercase : Dict = "dense" _lowercase : Union[str, Any] = "beam" _lowercase : Dict = 2 _lowercase : Dict = 64 _lowercase : Any = 256 _lowercase : List[str] = None _lowercase : Any = None _lowercase : int = st.sidebar.checkbox("Generation options") if generate_options: _lowercase : Union[str, Any] = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) _lowercase : Dict = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) _lowercase : Any = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) _lowercase : Tuple = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": _lowercase : Tuple = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: _lowercase : List[str] = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) _lowercase : Any = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) _lowercase : List[Any] = None # start main text _lowercase : Optional[Any] = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] _lowercase : Tuple = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": _lowercase : Union[str, Any] = st.text_input("Enter your question here:", "") else: _lowercase : int = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": _lowercase , _lowercase : List[str] = make_support(question, source=wiki_source, method="dense", n_results=10) _lowercase , _lowercase : Any = make_support(question, source=wiki_source, method="sparse", n_results=10) _lowercase : Dict = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] _lowercase : List[Any] = support_list[:10] _lowercase : Dict = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: _lowercase , _lowercase : Union[str, Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: _lowercase , _lowercase : Any = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): _lowercase : Tuple = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) _lowercase : Dict = res[1].strip() if sec_titles == "": _lowercase : Tuple = "[{}]({})".format(res[0], wiki_url) else: _lowercase : List[Any] = sec_titles.split(" & ") _lowercase : Any = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: _lowercase : List[Any] = find_nearest_training(question) _lowercase : Tuple = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) _lowercase : Dict = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) _lowercase : Optional[int] = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
21
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int = 1000000 ) -> int: lowercase_ : List[Any] = limit + 1 lowercase_ : Optional[Any] = [0] * limit for first_term in range(1 , UpperCAmelCase__ ): for n in range(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : List[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowercase_ : List[Any] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
21
1
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def lowerCamelCase ( UpperCAmelCase__ : Dict ) -> List[str]: lowercase_ : Tuple = args.pruning_method lowercase_ : Dict = args.threshold lowercase_ : Tuple = args.model_name_or_path.rstrip("""/""" ) lowercase_ : int = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''' ) lowercase_ : int = torch.load(os.path.join(UpperCAmelCase__ , """pytorch_model.bin""" ) ) lowercase_ : Dict = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowercase_ : Optional[Any] = tensor print(F'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: lowercase_ : Any = tensor print(F'''Copied layer {name}''' ) elif "bias" in name: lowercase_ : int = tensor print(F'''Copied layer {name}''' ) else: if pruning_method == "magnitude": lowercase_ : List[Any] = MagnitudeBinarizer.apply(inputs=UpperCAmelCase__ , threshold=UpperCAmelCase__ ) lowercase_ : int = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue lowercase_ : List[str] = name[:-6] lowercase_ : str = model[F'''{prefix_}mask_scores'''] lowercase_ : List[Any] = TopKBinarizer.apply(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : str = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowercase_ : int = name[:-6] lowercase_ : List[str] = model[F'''{prefix_}mask_scores'''] lowercase_ : Optional[int] = ThresholdBinarizer.apply(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : List[Any] = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue lowercase_ : Tuple = name[:-6] lowercase_ : List[Any] = model[F'''{prefix_}mask_scores'''] lowercase_ , lowercase_ : List[str] = -0.1, 1.1 lowercase_ : Optional[Any] = torch.sigmoid(UpperCAmelCase__ ) lowercase_ : int = s * (r - l) + l lowercase_ : Dict = s_bar.clamp(min=0.0 , max=1.0 ) lowercase_ : Union[str, Any] = tensor * mask print(F'''Pruned layer {name}''' ) else: raise ValueError("""Unknown pruning method""" ) if target_model_path is None: lowercase_ : Optional[int] = os.path.join( os.path.dirname(UpperCAmelCase__ ) , F'''bertarized_{os.path.basename(UpperCAmelCase__ )}''' ) if not os.path.isdir(UpperCAmelCase__ ): shutil.copytree(UpperCAmelCase__ , UpperCAmelCase__ ) print(F'''\nCreated folder {target_model_path}''' ) torch.save(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , """pytorch_model.bin""" ) ) print("""\nPruned model saved! See you later!""" ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) _lowercase : str = parser.parse_args() main(args)
21
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __magic_name__ ( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str ): lowercase_ : Union[str, Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , config_name=lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = AutoConfig.from_pretrained("""gpt2""" ) lowercase_ : List[Any] = GenerationConfig.from_model_config(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowercase_ , lowercase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = GenerationConfig() lowercase_ : int = { """max_new_tokens""": 1024, """foo""": """bar""", } lowercase_ : List[str] = copy.deepcopy(lowercase_ ) lowercase_ : Tuple = generation_config.update(**lowercase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(lowercase_ , lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowercase_ , {"""foo""": """bar"""} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Dict = GenerationConfig() lowercase_ : int = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) lowercase_ : List[str] = GenerationConfig.from_model_config(lowercase_ ) assert not hasattr(lowercase_ , """foo""" ) # no new kwargs should be initialized if from config def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[int] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , lowercase_ ) self.assertEqual(default_config.num_beams , 1 ) lowercase_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , lowercase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ ) lowercase_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __magic_name__ ( unittest.TestCase): @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any ): lowercase_ : int = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) lowercase_ : List[Any] = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""test-generation-config""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) lowercase_ : Optional[Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
21
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase : Any = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys _lowercase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] ) -> List[Any]: # Initialise PyTorch model lowercase_ : List[str] = FunnelConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) lowercase_ : Dict = FunnelBaseModel(UpperCAmelCase__ ) if base_model else FunnelModel(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase__ ) if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _lowercase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
21
1
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __magic_name__ ( _UpperCAmelCase): def __init__( self : List[Any] , lowercase_ : NestedDataStructureLike[PathLike] , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[str] = None , lowercase_ : Optional[int] = None , **lowercase_ : Union[str, Any] , ): super().__init__( lowercase_ , split=lowercase_ , features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , ) lowercase_ : Optional[int] = field lowercase_ : Dict = path_or_paths if isinstance(lowercase_ , lowercase_ ) else {self.split: path_or_paths} lowercase_ : int = Json( cache_dir=lowercase_ , data_files=lowercase_ , features=lowercase_ , field=lowercase_ , **lowercase_ , ) def SCREAMING_SNAKE_CASE_ ( self : int ): # Build iterable dataset if self.streaming: lowercase_ : Optional[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase_ : str = None lowercase_ : Dict = None lowercase_ : str = None lowercase_ : List[str] = None self.builder.download_and_prepare( download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , ) lowercase_ : Any = self.builder.as_dataset( split=self.split , verification_mode=lowercase_ , in_memory=self.keep_in_memory ) return dataset class __magic_name__ : def __init__( self : List[Any] , lowercase_ : Dataset , lowercase_ : Union[PathLike, BinaryIO] , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , **lowercase_ : List[Any] , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) lowercase_ : int = dataset lowercase_ : Tuple = path_or_buf lowercase_ : Dict = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowercase_ : List[str] = num_proc lowercase_ : Optional[Any] = """utf-8""" lowercase_ : Dict = to_json_kwargs def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Dict = self.to_json_kwargs.pop("""path_or_buf""" , lowercase_ ) lowercase_ : Dict = self.to_json_kwargs.pop("""orient""" , """records""" ) lowercase_ : Tuple = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False ) lowercase_ : Any = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True ) lowercase_ : Optional[Any] = self.to_json_kwargs.pop("""compression""" , lowercase_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , """wb""" , compression=lowercase_ ) as buffer: lowercase_ : Optional[Any] = self._write(file_obj=lowercase_ , orient=lowercase_ , lines=lowercase_ , index=lowercase_ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""" ) lowercase_ : List[Any] = self._write( file_obj=self.path_or_buf , orient=lowercase_ , lines=lowercase_ , index=lowercase_ , **self.to_json_kwargs ) return written def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : Union[str, Any] ): lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[int] = args lowercase_ : List[str] = query_table( table=self.dataset.data , key=slice(lowercase_ , offset + self.batch_size ) , indices=self.dataset._indices , ) lowercase_ : str = batch.to_pandas().to_json( path_or_buf=lowercase_ , orient=lowercase_ , lines=lowercase_ , index=lowercase_ , **lowercase_ ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : BinaryIO , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : Tuple , **lowercase_ : str , ): lowercase_ : Dict = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): lowercase_ : List[str] = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowercase_ ) else: lowercase_ , lowercase_ : Any = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowercase_ , lowercase_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowercase_ ) return written
21
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _lowercase : Optional[List[str]] = None _lowercase : str = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _lowercase : Optional[int] = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class __magic_name__ : UpperCamelCase__ = True UpperCamelCase__ = None # Automatically constructed UpperCamelCase__ = "PIL.Image.Image" UpperCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()}) UpperCamelCase__ = field(default='''Image''', init=_UpperCAmelCase, repr=_UpperCAmelCase) def __call__( self : Tuple ): return self.pa_type def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(lowercase_ , lowercase_ ): lowercase_ : int = np.array(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): return {"path": value, "bytes": None} elif isinstance(lowercase_ , lowercase_ ): return {"path": None, "bytes": value} elif isinstance(lowercase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowercase_ ) elif isinstance(lowercase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowercase_ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : dict , lowercase_ : List[str]=None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: lowercase_ : Union[str, Any] = {} lowercase_ , lowercase_ : List[Any] = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowercase_ ): lowercase_ : int = PIL.Image.open(lowercase_ ) else: lowercase_ : str = path.split("""::""" )[-1] try: lowercase_ : Any = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""] lowercase_ : Optional[Any] = token_per_repo_id.get(lowercase_ ) except ValueError: lowercase_ : str = None with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f: lowercase_ : Dict = BytesIO(f.read() ) lowercase_ : Optional[Any] = PIL.Image.open(bytes_ ) else: lowercase_ : Any = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def SCREAMING_SNAKE_CASE_ ( self : int ): from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) lowercase_ : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Any = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowercase_ : Optional[int] = storage.field("""bytes""" ) else: lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowercase_ : Dict = storage.field("""path""" ) else: lowercase_ : int = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowercase_ : Optional[int] = pa.array( [encode_np_array(np.array(lowercase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowercase_ : Tuple = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Tuple = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(lowercase_ : Optional[Any] ): with xopen(lowercase_ , """rb""" ) as f: lowercase_ : int = f.read() return bytes_ lowercase_ : Optional[Any] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase_ : Any = pa.array( [os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def lowerCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowercase_ : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> bytes: lowercase_ : Tuple = BytesIO() if image.format in list_image_compression_formats(): lowercase_ : int = image.format else: lowercase_ : int = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(UpperCAmelCase__ , format=UpperCAmelCase__ ) return buffer.getvalue() def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> dict: if hasattr(UpperCAmelCase__ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : np.ndarray ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) lowercase_ : List[Any] = array.dtype lowercase_ : int = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER lowercase_ : Dict = dtype.kind lowercase_ : List[Any] = dtype.itemsize lowercase_ : Any = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowercase_ : int = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowercase_ : str = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowercase_ : str = dtype_byteorder + dtype_kind + str(UpperCAmelCase__ ) lowercase_ : Optional[Any] = np.dtype(UpperCAmelCase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) lowercase_ : Optional[int] = PIL.Image.fromarray(array.astype(UpperCAmelCase__ ) ) return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: lowercase_ , lowercase_ : Dict = first_non_null_value(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(UpperCAmelCase__ , np.ndarray ): lowercase_ : Union[str, Any] = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowercase_ : int = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] else: return objs else: return objs
21
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowercase : Dict = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
'''simple docstring''' import colorsys from PIL import Image # type: ignore def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : float , UpperCAmelCase__ : int ) -> float: lowercase_ : List[Any] = x lowercase_ : Any = y for step in range(UpperCAmelCase__ ): # noqa: B007 lowercase_ : Dict = a * a - b * b + x lowercase_ : str = 2 * a * b + y lowercase_ : Optional[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCAmelCase__ , 1 , 1 ) ) def lowerCamelCase ( UpperCAmelCase__ : int = 800 , UpperCAmelCase__ : int = 600 , UpperCAmelCase__ : float = -0.6 , UpperCAmelCase__ : float = 0 , UpperCAmelCase__ : float = 3.2 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : bool = True , ) -> Image.Image: lowercase_ : Union[str, Any] = Image.new("""RGB""" , (image_width, image_height) ) lowercase_ : Tuple = img.load() # loop through the image-coordinates for image_x in range(UpperCAmelCase__ ): for image_y in range(UpperCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates lowercase_ : Any = figure_width / image_width * image_height lowercase_ : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width lowercase_ : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height lowercase_ : str = get_distance(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowercase_ : List[Any] = get_color_coded_rgb(UpperCAmelCase__ ) else: lowercase_ : Dict = get_black_and_white_rgb(UpperCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _lowercase : List[str] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
21
1
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class __magic_name__ ( unittest.TestCase): UpperCamelCase__ = JukeboxTokenizer UpperCamelCase__ = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def SCREAMING_SNAKE_CASE_ ( self : int ): import torch lowercase_ : Any = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) lowercase_ : Any = tokenizer(**self.metas )["""input_ids"""] # fmt: off lowercase_ : str = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : List[str] ): import torch lowercase_ : int = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) lowercase_ : List[str] = tokenizer(**self.metas )["""input_ids"""] # fmt: off lowercase_ : Dict = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
21
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = DistilBertTokenizer UpperCamelCase__ = DistilBertTokenizerFast UpperCamelCase__ = True @slow def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) lowercase_ : str = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ ) lowercase_ : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ ) lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
21
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = torch.device("cpu") def lowerCamelCase ( ) -> Union[str, Any]: lowercase_ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase_ : int = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ) return im def lowerCamelCase ( UpperCAmelCase__ : Any ) -> List[str]: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] ) -> Dict: lowercase_ : int = dct.pop(UpperCAmelCase__ ) lowercase_ : str = val def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> Any: lowercase_ : int = [] for k in state_dict.keys(): lowercase_ : Union[str, Any] = k if ".pwconv" in k: lowercase_ : Optional[Any] = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: lowercase_ : Union[str, Any] = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: lowercase_ : Any = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: lowercase_ : Union[str, Any] = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: lowercase_ : List[str] = k_new.split(""".""" ) if ls[2].isdigit(): lowercase_ : Tuple = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: lowercase_ : List[str] = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] ) -> Tuple: lowercase_ : Optional[Any] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size lowercase_ : Any = 1000 lowercase_ : List[str] = """huggingface/label-files""" lowercase_ : Union[str, Any] = """imagenet-1k-id2label.json""" lowercase_ : Any = json.load(open(hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__ , repo_type="""dataset""" ) , """r""" ) ) lowercase_ : Optional[Any] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} lowercase_ : Optional[Any] = idalabel lowercase_ : List[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": lowercase_ : List[Any] = [3, 3, 6, 4] lowercase_ : Dict = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": lowercase_ : Tuple = [3, 3, 9, 6] lowercase_ : Optional[int] = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": lowercase_ : str = [4, 3, 10, 5] lowercase_ : Union[str, Any] = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": lowercase_ : Tuple = [4, 4, 12, 6] lowercase_ : List[Any] = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): lowercase_ : Optional[int] = torch.hub.load_state_dict_from_url(UpperCAmelCase__ , map_location="""cpu""" , check_hash=UpperCAmelCase__ ) else: lowercase_ : Optional[int] = torch.load(UpperCAmelCase__ , map_location="""cpu""" ) lowercase_ : Any = checkpoint lowercase_ : Optional[Any] = create_rename_keys(UpperCAmelCase__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # load HuggingFace model lowercase_ : Tuple = SwiftFormerForImageClassification(UpperCAmelCase__ ).eval() hf_model.load_state_dict(UpperCAmelCase__ ) # prepare test inputs lowercase_ : List[str] = prepare_img() lowercase_ : List[str] = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) lowercase_ : Tuple = processor(images=UpperCAmelCase__ , return_tensors="""pt""" ) # compare outputs from both models lowercase_ : List[Any] = get_expected_output(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , UpperCAmelCase__ , atol=1e-3 ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(F'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") _lowercase : Optional[int] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
21
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowercase : Union[str, Any] = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
1
'''simple docstring''' _lowercase : Dict = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } _lowercase : int = {value: key for key, value in encode_dict.items()} def lowerCamelCase ( UpperCAmelCase__ : str ) -> str: lowercase_ : int = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""" ) return encoded def lowerCamelCase ( UpperCAmelCase__ : str ) -> str: if set(UpperCAmelCase__ ) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only 'A', 'B' and spaces""" ) lowercase_ : str = """""" for word in coded.split(): while len(UpperCAmelCase__ ) != 0: decoded += decode_dict[word[:5]] lowercase_ : List[Any] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
21
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Union[str, Any] = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
1
'''simple docstring''' from math import factorial, pi def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : int = 30 ) -> float: if not isinstance(UpperCAmelCase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowercase_ : Optional[int] = float(UpperCAmelCase__ ) lowercase_ : int = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(UpperCAmelCase__ ) ) def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : int = 30 ) -> float: if not isinstance(UpperCAmelCase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowercase_ : List[str] = float(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(UpperCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
21
'''simple docstring''' import os import numpy import onnx def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ) -> Tuple: lowercase_ : Tuple = a.name lowercase_ : Tuple = b.name lowercase_ : Any = """""" lowercase_ : List[Any] = """""" lowercase_ : List[Any] = a == b lowercase_ : Union[str, Any] = name_a lowercase_ : Optional[Any] = name_b return res def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase__ , UpperCAmelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase__ , UpperCAmelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) -> int: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ) -> List[str]: lowercase_ : int = list(model.graph.initializer ) lowercase_ : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase_ : Optional[Any] = inits[i].name lowercase_ : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int ) -> List[str]: lowercase_ : Dict = os.path.dirname(UpperCAmelCase__ ) lowercase_ : Optional[Any] = os.path.basename(UpperCAmelCase__ ) lowercase_ : str = onnx.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowercase_ : List[Any] = list(model.graph.initializer ) lowercase_ : int = set() lowercase_ : int = {} lowercase_ : str = [] lowercase_ : int = 0 for i in range(len(UpperCAmelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase__ ) dup_set.add(UpperCAmelCase__ ) lowercase_ : Dict = inits[j].data_type lowercase_ : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , UpperCAmelCase__ ) total_reduced_size += mem_size lowercase_ : int = inits[i].name lowercase_ : List[str] = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase__ ) else: lowercase_ : Optional[int] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) lowercase_ : Tuple = sorted(UpperCAmelCase__ ) _remove_dup_initializers_from_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Union[str, Any] = """optimized_""" + model_file_name lowercase_ : Optional[int] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) onnx.save(UpperCAmelCase__ , UpperCAmelCase__ ) return new_model
21
1
'''simple docstring''' from __future__ import annotations import pandas as pd def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int ) -> list[int]: lowercase_ : Tuple = [0] * no_of_processes lowercase_ : Optional[Any] = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(UpperCAmelCase__ ): lowercase_ : Tuple = burst_time[i] lowercase_ : Dict = 0 lowercase_ : List[str] = 0 lowercase_ : Optional[int] = 999999999 lowercase_ : Optional[int] = 0 lowercase_ : Optional[Any] = False # Process until all processes are completed while complete != no_of_processes: for j in range(UpperCAmelCase__ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: lowercase_ : Any = remaining_time[j] lowercase_ : List[str] = j lowercase_ : Union[str, Any] = True if not check: increment_time += 1 continue remaining_time[short] -= 1 lowercase_ : str = remaining_time[short] if minm == 0: lowercase_ : Tuple = 999999999 if remaining_time[short] == 0: complete += 1 lowercase_ : Dict = False # Find finish time of current process lowercase_ : Optional[int] = increment_time + 1 # Calculate waiting time lowercase_ : Any = finish_time - arrival_time[short] lowercase_ : Optional[Any] = finar - burst_time[short] if waiting_time[short] < 0: lowercase_ : List[str] = 0 # Increment time increment_time += 1 return waiting_time def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : list[int] ) -> list[int]: lowercase_ : Any = [0] * no_of_processes for i in range(UpperCAmelCase__ ): lowercase_ : int = burst_time[i] + waiting_time[i] return turn_around_time def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int ) -> None: lowercase_ : List[str] = 0 lowercase_ : int = 0 for i in range(UpperCAmelCase__ ): lowercase_ : Optional[int] = total_waiting_time + waiting_time[i] lowercase_ : Any = total_turn_around_time + turn_around_time[i] print(F'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print("""Average turn around time =""" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("Enter how many process you want to analyze") _lowercase : Any = int(input()) _lowercase : List[str] = [0] * no_of_processes _lowercase : str = [0] * no_of_processes _lowercase : Union[str, Any] = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("Enter the arrival time and burst time for process:--" + str(i + 1)) _lowercase , _lowercase : str = map(int, input().split()) _lowercase : List[str] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _lowercase : Dict = burst_time _lowercase : Optional[int] = no_of_processes _lowercase : Union[str, Any] = waiting_time _lowercase : Optional[int] = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) _lowercase : Union[str, Any] = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ "Process", "BurstTime", "ArrivalTime", "WaitingTime", "TurnAroundTime", ], ) # Printing the dataFrame pd.set_option("display.max_rows", fcfs.shape[0] + 1) print(fcfs)
21
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : Dict , **lowercase_ : List[Any] ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None ): lowercase_ : Optional[Any] = {} lowercase_ : Tuple = {} if prompt is not None: lowercase_ : Tuple = prompt if generate_kwargs is not None: lowercase_ : List[str] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase_ : List[Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase_ : str = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[Any] , lowercase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ : Optional[int] ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[Any] , lowercase_ : Tuple=None ): lowercase_ : List[Any] = load_image(lowercase_ ) if prompt is not None: if not isinstance(lowercase_ , lowercase_ ): raise ValueError( f'''Received an invalid text input, got - {type(lowercase_ )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase_ : List[Any] = self.model.config.model_type if model_type == "git": lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : Union[str, Any] = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_ ).input_ids lowercase_ : int = [self.tokenizer.cls_token_id] + input_ids lowercase_ : List[Any] = torch.tensor(lowercase_ ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase_ : Union[str, Any] = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : List[str] = self.tokenizer(lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: lowercase_ : List[str] = self.image_processor(images=lowercase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase_ : str = None return model_inputs def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Dict , lowercase_ : Optional[Any]=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , lowercase_ ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase_ : Any = None if generate_kwargs is None: lowercase_ : Optional[Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase_ : Dict = model_inputs.pop(self.model.main_input_name ) lowercase_ : Any = self.model.generate(lowercase_ , **lowercase_ , **lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[Any] ): lowercase_ : List[str] = [] for output_ids in model_outputs: lowercase_ : Union[str, Any] = { """generated_text""": self.tokenizer.decode( lowercase_ , skip_special_tokens=lowercase_ , ) } records.append(lowercase_ ) return records
21
1
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Optional[int]: lowercase_ : List[Any] = [] for part_id in partition_order: lowercase_ : Optional[int] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(UpperCAmelCase__ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ) -> Union[str, Any]: lowercase_ : List[str] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() lowercase_ : Any = spark.range(100 ).repartition(1 ) lowercase_ : Optional[int] = Spark(UpperCAmelCase__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ) -> int: lowercase_ : List[Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() lowercase_ : List[str] = spark.range(10 ).repartition(2 ) lowercase_ : int = [1, 0] lowercase_ : Any = _generate_iterable_examples(UpperCAmelCase__ , UpperCAmelCase__ ) # Reverse the partitions. lowercase_ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCAmelCase__ , UpperCAmelCase__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): lowercase_ , lowercase_ : Union[str, Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ) -> Union[str, Any]: lowercase_ : Union[str, Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() lowercase_ : Dict = spark.range(10 ).repartition(1 ) lowercase_ : List[Any] = SparkExamplesIterable(UpperCAmelCase__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(UpperCAmelCase__ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ) -> Tuple: lowercase_ : Union[str, Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() lowercase_ : int = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: lowercase_ : Tuple = lambda UpperCAmelCase__ : x.reverse() lowercase_ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCAmelCase__ , [2, 1, 0] ) lowercase_ : Union[str, Any] = SparkExamplesIterable(UpperCAmelCase__ ).shuffle_data_sources(UpperCAmelCase__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(UpperCAmelCase__ ): lowercase_ , lowercase_ : Any = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ) -> List[Any]: lowercase_ : Dict = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() lowercase_ : int = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 lowercase_ : Union[str, Any] = SparkExamplesIterable(UpperCAmelCase__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowercase_ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCAmelCase__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(UpperCAmelCase__ ): lowercase_ , lowercase_ : Any = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 lowercase_ : Optional[Any] = SparkExamplesIterable(UpperCAmelCase__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowercase_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCAmelCase__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(UpperCAmelCase__ ): lowercase_ , lowercase_ : Tuple = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ) -> Union[str, Any]: lowercase_ : Union[str, Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() lowercase_ : Dict = spark.range(100 ).repartition(1 ) lowercase_ : str = Spark(UpperCAmelCase__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
21
'''simple docstring''' class __magic_name__ : def __init__( self : int , lowercase_ : list ): lowercase_ : Dict = set_counts lowercase_ : List[Any] = max(lowercase_ ) lowercase_ : str = len(lowercase_ ) lowercase_ : str = [1] * num_sets lowercase_ : Dict = list(range(lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : int ): lowercase_ : List[Any] = self.get_parent(lowercase_ ) lowercase_ : Union[str, Any] = self.get_parent(lowercase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : List[str] = 0 lowercase_ : Optional[int] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : int = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : int = 0 lowercase_ : List[Any] = src_parent lowercase_ : List[Any] = self.set_counts[src_parent] lowercase_ : Tuple = max(self.max_set , lowercase_ ) return True def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : int ): if self.parents[disj_set] == disj_set: return disj_set lowercase_ : int = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
21
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowercase : int = logging.get_logger(__name__) _lowercase : Any = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''blip_2_vision_model''' def __init__( self : Optional[int] , lowercase_ : Union[str, Any]=1408 , lowercase_ : List[str]=6144 , lowercase_ : Union[str, Any]=39 , lowercase_ : List[str]=16 , lowercase_ : Optional[Any]=224 , lowercase_ : int=14 , lowercase_ : str="gelu" , lowercase_ : int=0.0_00_01 , lowercase_ : List[Any]=0.0 , lowercase_ : int=1E-10 , lowercase_ : int=True , **lowercase_ : Tuple , ): super().__init__(**lowercase_ ) lowercase_ : Any = hidden_size lowercase_ : Union[str, Any] = intermediate_size lowercase_ : Dict = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : Optional[Any] = patch_size lowercase_ : Tuple = image_size lowercase_ : List[Any] = initializer_range lowercase_ : Any = attention_dropout lowercase_ : str = layer_norm_eps lowercase_ : List[Any] = hidden_act lowercase_ : Optional[Any] = qkv_bias @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : int ): cls._set_token_in_kwargs(lowercase_ ) lowercase_ , lowercase_ : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": lowercase_ : str = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowercase_ , **lowercase_ ) class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''blip_2_qformer''' def __init__( self : Optional[Any] , lowercase_ : Any=30522 , lowercase_ : Union[str, Any]=768 , lowercase_ : Any=12 , lowercase_ : str=12 , lowercase_ : List[str]=3072 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.1 , lowercase_ : int=0.1 , lowercase_ : List[str]=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : int=2 , lowercase_ : Any=1408 , **lowercase_ : Any , ): super().__init__(pad_token_id=lowercase_ , **lowercase_ ) lowercase_ : Dict = vocab_size lowercase_ : List[Any] = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : List[str] = hidden_act lowercase_ : Any = intermediate_size lowercase_ : Dict = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : Dict = max_position_embeddings lowercase_ : Tuple = initializer_range lowercase_ : str = layer_norm_eps lowercase_ : int = position_embedding_type lowercase_ : List[str] = cross_attention_frequency lowercase_ : int = encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Union[str, Any] ): cls._set_token_in_kwargs(lowercase_ ) lowercase_ , lowercase_ : Dict = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": lowercase_ : Union[str, Any] = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowercase_ , **lowercase_ ) class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''blip-2''' UpperCamelCase__ = True def __init__( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None , lowercase_ : Any=32 , **lowercase_ : Any ): super().__init__(**lowercase_ ) if vision_config is None: lowercase_ : Any = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: lowercase_ : str = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: lowercase_ : int = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) lowercase_ : List[Any] = BlipaVisionConfig(**lowercase_ ) lowercase_ : List[str] = BlipaQFormerConfig(**lowercase_ ) lowercase_ : int = text_config["""model_type"""] if """model_type""" in text_config else """opt""" lowercase_ : Tuple = CONFIG_MAPPING[text_model_type](**lowercase_ ) lowercase_ : Dict = self.text_config.tie_word_embeddings lowercase_ : Tuple = self.text_config.is_encoder_decoder lowercase_ : Any = num_query_tokens lowercase_ : Tuple = self.vision_config.hidden_size lowercase_ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowercase_ : Optional[int] = 1.0 lowercase_ : Dict = 0.02 @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[str] , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Any = copy.deepcopy(self.__dict__ ) lowercase_ : List[str] = self.vision_config.to_dict() lowercase_ : Optional[Any] = self.qformer_config.to_dict() lowercase_ : List[Any] = self.text_config.to_dict() lowercase_ : List[str] = self.__class__.model_type return output
21
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : int , **lowercase_ : Any ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """decord""" ) self.check_model_type(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None ): lowercase_ : Union[str, Any] = {} if frame_sampling_rate is not None: lowercase_ : Any = frame_sampling_rate if num_frames is not None: lowercase_ : Optional[Any] = num_frames lowercase_ : Union[str, Any] = {} if top_k is not None: lowercase_ : Optional[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : str , lowercase_ : Union[str, List[str]] , **lowercase_ : str ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None , lowercase_ : Optional[int]=1 ): if num_frames is None: lowercase_ : List[Any] = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): lowercase_ : Union[str, Any] = BytesIO(requests.get(lowercase_ ).content ) lowercase_ : Optional[Any] = VideoReader(lowercase_ ) videoreader.seek(0 ) lowercase_ : Tuple = 0 lowercase_ : List[Any] = num_frames * frame_sampling_rate - 1 lowercase_ : Optional[int] = np.linspace(lowercase_ , lowercase_ , num=lowercase_ , dtype=np.intaa ) lowercase_ : Optional[int] = videoreader.get_batch(lowercase_ ).asnumpy() lowercase_ : Union[str, Any] = list(lowercase_ ) lowercase_ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : str ): lowercase_ : int = self.model(**lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Dict=5 ): if top_k > self.model.config.num_labels: lowercase_ : List[Any] = self.model.config.num_labels if self.framework == "pt": lowercase_ : str = model_outputs.logits.softmax(-1 )[0] lowercase_ , lowercase_ : Optional[Any] = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowercase_ : Union[str, Any] = scores.tolist() lowercase_ : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
21
1
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = None UpperCamelCase__ = BloomTokenizerFast UpperCamelCase__ = BloomTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = False UpperCamelCase__ = '''tokenizer_file''' UpperCamelCase__ = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def SCREAMING_SNAKE_CASE_ ( self : Tuple ): super().setUp() lowercase_ : Tuple = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , **lowercase_ : Dict ): kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = self.get_rust_tokenizer() lowercase_ : Any = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] lowercase_ : Union[str, Any] = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] lowercase_ : Dict = tokenizer.batch_encode_plus(lowercase_ )["""input_ids"""] self.assertListEqual(lowercase_ , lowercase_ ) lowercase_ : Union[str, Any] = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Tuple=6 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase_ : List[str] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase_ : Union[str, Any] = """This is a simple input""" lowercase_ : Dict = ["""This is a simple input 1""", """This is a simple input 2"""] lowercase_ : Any = ("""This is a simple input""", """This is a pair""") lowercase_ : Optional[Any] = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(lowercase_ , max_length=lowercase_ ) tokenizer_r.encode_plus(lowercase_ , max_length=lowercase_ ) tokenizer_r.batch_encode_plus(lowercase_ , max_length=lowercase_ ) tokenizer_r.encode(lowercase_ , max_length=lowercase_ ) tokenizer_r.batch_encode_plus(lowercase_ , max_length=lowercase_ ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) lowercase_ : Optional[Any] = None # Hotfixing padding = None self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="""max_length""" ) # Simple input self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="""max_length""" ) # Simple input self.assertRaises( lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="""max_length""" , ) # Pair input self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="""max_length""" ) # Pair input self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="""max_length""" ) # Pair input self.assertRaises( lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="""max_length""" , ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Optional[int] = self.get_rust_tokenizer() lowercase_ : Optional[int] = load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=lowercase_ ) lowercase_ : List[str] = next(iter(lowercase_ ) )["""premise"""] # pick up one data lowercase_ : str = list(sample_data.values() ) lowercase_ : Tuple = list(map(tokenizer.encode , lowercase_ ) ) lowercase_ : List[str] = [tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_ ) for x in output_tokens] self.assertListEqual(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
21
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> List[str]: if isinstance(UpperCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class __magic_name__ : def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Any , lowercase_ : str ): pass def SCREAMING_SNAKE_CASE_ ( self : str ): pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : np.ndarray , lowercase_ : float ): lowercase_ : Optional[Any] = np.abs((a - b) ).max() self.assertLessEqual(lowercase_ , lowercase_ , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple=None , **lowercase_ : Optional[int] ): lowercase_ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : Any = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : List[Any]=None , **lowercase_ : Tuple ): lowercase_ , lowercase_ : Any = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[int] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=None , **lowercase_ : int ): lowercase_ , lowercase_ : Union[str, Any] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Tuple = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Union[str, Any] = after_output[0] lowercase_ : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-3 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Dict=None , **lowercase_ : Optional[Any] ): lowercase_ , lowercase_ : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Dict = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Optional[int] = model( input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ ) lowercase_ : Tuple = output.vision_model_output.attentions self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ : List[str] = to_atuple(vision_model.config.image_size ) lowercase_ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowercase_ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase_ : Optional[Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowercase_ : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int ): pt_model.to(lowercase_ ) pt_model.eval() # prepare inputs lowercase_ : int = inputs_dict lowercase_ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowercase_ : str = pt_model(**lowercase_ ).to_tuple() lowercase_ : Optional[Any] = fx_model(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowercase_ ) lowercase_ : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ , from_pt=lowercase_ ) lowercase_ : Dict = fx_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowercase_ ) lowercase_ : Union[str, Any] = VisionTextDualEncoderModel.from_pretrained(lowercase_ , from_flax=lowercase_ ) pt_model_loaded.to(lowercase_ ) pt_model_loaded.eval() with torch.no_grad(): lowercase_ : List[Any] = pt_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowercase_ , pt_output_loaded.numpy() , 4E-2 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : List[Any] = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ ) lowercase_ : Tuple = fx_state self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[Any] ): lowercase_ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : int = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Dict = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params ) self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Tuple = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_save_load(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase_ ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = self.prepare_config_and_inputs() lowercase_ : List[Any] = config_inputs_dict.pop("""vision_config""" ) lowercase_ : int = config_inputs_dict.pop("""text_config""" ) lowercase_ : Optional[int] = config_inputs_dict self.check_equivalence_pt_to_flax(lowercase_ , lowercase_ , lowercase_ ) self.check_equivalence_flax_to_pt(lowercase_ , lowercase_ , lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ , lowercase_ : str = self.get_pretrained_model_and_inputs() lowercase_ : Dict = model_a(**lowercase_ ) lowercase_ : str = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : str = model_a(**lowercase_ ) lowercase_ : Union[str, Any] = after_outputs[0] lowercase_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-5 ) @require_flax class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : str = random_attention_mask([batch_size, 4] ) lowercase_ : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Tuple ): lowercase_ : Union[str, Any] = FlaxViTModel(lowercase_ ) lowercase_ : Dict = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Any = FlaxViTModelTester(self ) lowercase_ : Optional[Any] = FlaxBertModelTester(self ) lowercase_ : Dict = vit_model_tester.prepare_config_and_inputs() lowercase_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : List[str] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : Tuple = random_attention_mask([batch_size, 4] ) lowercase_ : Union[str, Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = FlaxCLIPVisionModel(lowercase_ ) lowercase_ : Any = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = FlaxCLIPVisionModelTester(self ) lowercase_ : Tuple = FlaxBertModelTester(self ) lowercase_ : Union[str, Any] = clip_model_tester.prepare_config_and_inputs() lowercase_ : Any = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : Optional[Any] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : str = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) lowercase_ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) lowercase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : Optional[int] = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowercase_ , padding=lowercase_ , return_tensors="""np""" ) lowercase_ : List[str] = model(**lowercase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowercase_ : Optional[Any] = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowercase_ , atol=1E-3 ) )
21
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = IFInpaintingSuperResolutionPipeline UpperCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} UpperCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''}) UpperCamelCase__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def SCREAMING_SNAKE_CASE_ ( self : Tuple ): return self._get_superresolution_dummy_components() def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str , lowercase_ : List[Any]=0 ): if str(lowercase_ ).startswith("""mps""" ): lowercase_ : List[str] = torch.manual_seed(lowercase_ ) else: lowercase_ : int = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase_ : List[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowercase_ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowercase_ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowercase_ : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def SCREAMING_SNAKE_CASE_ ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def SCREAMING_SNAKE_CASE_ ( self : str ): self._test_save_load_local() def SCREAMING_SNAKE_CASE_ ( self : Tuple ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
21
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __magic_name__ ( unittest.TestCase): def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int=7 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[Any]=18 , lowercase_ : List[Any]=30 , lowercase_ : int=400 , lowercase_ : Dict=True , lowercase_ : List[Any]=None , lowercase_ : Dict=True , ): lowercase_ : Tuple = size if size is not None else {"""height""": 18, """width""": 18} lowercase_ : List[str] = parent lowercase_ : Any = batch_size lowercase_ : Optional[Any] = num_channels lowercase_ : Tuple = image_size lowercase_ : Optional[Any] = min_resolution lowercase_ : Dict = max_resolution lowercase_ : Optional[int] = do_resize lowercase_ : Optional[Any] = size lowercase_ : Union[str, Any] = do_normalize def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ImageGPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = ImageGPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """clusters""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) lowercase_ : Union[str, Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , obj[key] ) ) else: self.assertEqual(obj[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Union[str, Any] = os.path.join(lowercase_ , """image_processor.json""" ) image_processor_first.to_json_file(lowercase_ ) lowercase_ : Optional[Any] = self.image_processing_class.from_json_file(lowercase_ ).to_dict() lowercase_ : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase_ ) lowercase_ : Any = self.image_processing_class.from_pretrained(lowercase_ ).to_dict() lowercase_ : List[str] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass def lowerCamelCase ( ) -> Any: lowercase_ : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) lowercase_ : Any = Image.open(dataset[4]["""file"""] ) lowercase_ : Dict = Image.open(dataset[5]["""file"""] ) lowercase_ : int = [imagea, imagea] return images @require_vision @require_torch class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Optional[Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) lowercase_ : Optional[int] = prepare_images() # test non-batched lowercase_ : str = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) lowercase_ : Tuple = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase_ ) # test batched lowercase_ : List[str] = image_processing(lowercase_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) lowercase_ : Union[str, Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase_ )
21
1
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int = 100 ) -> int: lowercase_ : Dict = set() lowercase_ : List[str] = 0 lowercase_ : Optional[Any] = n + 1 # maximum limit for a in range(2 , UpperCAmelCase__ ): for b in range(2 , UpperCAmelCase__ ): lowercase_ : int = a**b # calculates the current power collect_powers.add(UpperCAmelCase__ ) # adds the result to the set return len(UpperCAmelCase__ ) if __name__ == "__main__": print("Number of terms ", solution(int(str(input()).strip())))
21
'''simple docstring''' def lowerCamelCase ( ) -> Dict: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = 1 while len(UpperCAmelCase__ ) < 1e6: constant.append(str(UpperCAmelCase__ ) ) i += 1 lowercase_ : int = """""".join(UpperCAmelCase__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
21
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __magic_name__ ( unittest.TestCase): UpperCamelCase__ = ViTImageProcessor if is_vision_available() else None @property def SCREAMING_SNAKE_CASE_ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Any = (3, 32, 128) lowercase_ : List[Any] = tempfile.mkdtemp() # fmt: off lowercase_ : Tuple = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on lowercase_ : int = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowercase_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase_ ) + """\n""" ) lowercase_ : List[str] = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } lowercase_ : int = os.path.join(self.tmpdirname , lowercase_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , **lowercase_ : Optional[int] ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **lowercase_ : Union[str, Any] ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) lowercase_ : Any = Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) return image_input def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Any = self.get_tokenizer() lowercase_ : List[Any] = self.get_image_processor() lowercase_ : Optional[int] = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor.save_pretrained(self.tmpdirname ) lowercase_ : Optional[Any] = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , lowercase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : Dict = self.get_image_processor() lowercase_ : Tuple = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor.save_pretrained(self.tmpdirname ) lowercase_ : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase_ : Optional[Any] = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 ) lowercase_ : Optional[Any] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , lowercase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = self.get_image_processor() lowercase_ : List[str] = self.get_tokenizer() lowercase_ : int = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowercase_ : Any = self.prepare_image_inputs() lowercase_ : Any = image_processor(lowercase_ , return_tensors="""np""" ) lowercase_ : Tuple = processor(images=lowercase_ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : List[Any] = self.get_image_processor() lowercase_ : Any = self.get_tokenizer() lowercase_ : Any = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowercase_ : int = """test""" lowercase_ : Optional[Any] = processor(text=lowercase_ ) lowercase_ : Optional[Any] = tokenizer(lowercase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Optional[Any] = self.get_image_processor() lowercase_ : Any = self.get_tokenizer() lowercase_ : Tuple = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowercase_ : List[Any] = """test""" lowercase_ : List[Any] = self.prepare_image_inputs() lowercase_ : List[Any] = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : str = self.get_image_processor() lowercase_ : Tuple = self.get_tokenizer() lowercase_ : int = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowercase_ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase_ : Union[str, Any] = processor.char_decode(lowercase_ ) lowercase_ : int = tokenizer.batch_decode(lowercase_ ) lowercase_ : Optional[Any] = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = self.get_image_processor() lowercase_ : str = self.get_tokenizer() lowercase_ : Union[str, Any] = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowercase_ : List[Any] = None lowercase_ : Optional[Any] = self.prepare_image_inputs() lowercase_ : str = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : int = self.get_image_processor() lowercase_ : Union[str, Any] = self.get_tokenizer() lowercase_ : Optional[int] = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowercase_ : str = torch.randn(1 , 27 , 38 ) lowercase_ : Optional[Any] = torch.randn(1 , 27 , 50257 ) lowercase_ : str = torch.randn(1 , 27 , 30522 ) lowercase_ : str = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
21
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _lowercase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( _UpperCAmelCase): def __init__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str ): super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : List[str] , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ): if audio_length_in_s is None: lowercase_ : List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate lowercase_ : Dict = audio_length_in_s * self.unet.config.sample_rate lowercase_ : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowercase_ : List[Any] = int(lowercase_ ) if sample_size % down_scale_factor != 0: lowercase_ : int = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) lowercase_ : Any = int(lowercase_ ) lowercase_ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowercase_ : List[str] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowercase_ : Any = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) # set step values self.scheduler.set_timesteps(lowercase_ , device=audio.device ) lowercase_ : Optional[Any] = self.scheduler.timesteps.to(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase_ : Dict = self.unet(lowercase_ , lowercase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowercase_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowercase_ : str = audio.clamp(-1 , 1 ).float().cpu().numpy() lowercase_ : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase_ )
21
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowercase : Union[str, Any] = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _lowercase : Union[str, Any] = "src/transformers" _lowercase : str = "docs/source/en" _lowercase : Union[str, Any] = "." def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int: with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ : Union[str, Any] = f.readlines() # Find the start prompt. lowercase_ : Optional[Any] = 0 while not lines[start_index].startswith(UpperCAmelCase__ ): start_index += 1 start_index += 1 lowercase_ : int = start_index while not lines[end_index].startswith(UpperCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. _lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any: lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ ) return [m.group(0 ) for m in matches] def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]: lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ ) lowercase_ : List[str] = (width - text_length) // 2 lowercase_ : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase ( ) -> Any: lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase_ : Any = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = None if attr_name.endswith("""Tokenizer""" ): lowercase_ : Optional[int] = slow_tokenizers lowercase_ : Union[str, Any] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowercase_ : Optional[Any] = fast_tokenizers lowercase_ : Dict = attr_name[:-13] elif _re_tf_models.match(UpperCAmelCase__ ) is not None: lowercase_ : str = tf_models lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0] elif _re_flax_models.match(UpperCAmelCase__ ) is not None: lowercase_ : List[str] = flax_models lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0] elif _re_pt_models.match(UpperCAmelCase__ ) is not None: lowercase_ : Tuple = pt_models lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): lowercase_ : int = True break # Try again after removing the last word in the name lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] ) # Let's build that table! lowercase_ : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns] lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowercase_ : int = {True: """✅""", False: """❌"""} for name in model_names: lowercase_ : str = model_name_to_prefix[name] lowercase_ : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n" return table def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str: lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = _find_text_in_file( filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowercase_ : Dict = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowercase : Optional[Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
21
1
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class __magic_name__ : def __init__( self : Union[str, Any] , lowercase_ : list[tuple[float, float]] ): lowercase_ : int = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowercase_ : Dict = len(lowercase_ ) - 1 def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase_ : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , lowercase_ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(lowercase_ ) , 5 ) == 1 return output_values def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase_ : List[str] = self.basis_function(lowercase_ ) lowercase_ : Tuple = 0.0 lowercase_ : Dict = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore lowercase_ : list[float] = [] # x coordinates of points to plot lowercase_ : list[float] = [] # y coordinates of points to plot lowercase_ : Tuple = 0.0 while t <= 1: lowercase_ : Any = self.bezier_curve_function(lowercase_ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowercase_ : Any = [i[0] for i in self.list_of_points] lowercase_ : List[str] = [i[1] for i in self.list_of_points] plt.plot( lowercase_ , lowercase_ , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(lowercase_ , lowercase_ , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
21
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __magic_name__ ( ctypes.Structure): # _fields is a specific attr expected by ctypes UpperCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def lowerCamelCase ( ) -> List[Any]: if os.name == "nt": lowercase_ : List[Any] = CursorInfo() lowercase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def lowerCamelCase ( ) -> str: if os.name == "nt": lowercase_ : int = CursorInfo() lowercase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : Optional[int] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def lowerCamelCase ( ) -> Any: try: hide_cursor() yield finally: show_cursor()
21
1
'''simple docstring''' import torch from diffusers import StableDiffusionPipeline _lowercase : List[str] = "path-to-your-trained-model" _lowercase : Any = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("cuda") _lowercase : Union[str, Any] = "A photo of sks dog in a bucket" _lowercase : Dict = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png")
21
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowercase : int = logging.get_logger(__name__) @dataclass class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : Optional[Any] , **lowercase_ : int ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase_ : Optional[int] = deprecated_arg[3:] setattr(self , lowercase_ , not kwargs.pop(lowercase_ ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase_ : Tuple = kwargs.pop("""torchscript""" , self.torchscript ) lowercase_ : List[Any] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) lowercase_ : List[Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**lowercase_ ) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Trace the models using torchscript'''}) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''}) UpperCamelCase__ = field( default='''O1''', metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) }, ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: lowercase_ : Optional[Any] = torch.device("""cpu""" ) lowercase_ : Tuple = 0 elif is_torch_tpu_available(): lowercase_ : Optional[int] = xm.xla_device() lowercase_ : str = 0 else: lowercase_ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) lowercase_ : str = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE_ ( self : int ): requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE_ ( self : int ): return self.n_gpu > 0
21
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _lowercase : Dict = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ["ViTFeatureExtractor"] _lowercase : Optional[int] = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
'''simple docstring''' from __future__ import annotations from typing import Any def lowerCamelCase ( UpperCAmelCase__ : list ) -> int: if not postfix_notation: return 0 lowercase_ : Any = {"""+""", """-""", """*""", """/"""} lowercase_ : list[Any] = [] for token in postfix_notation: if token in operations: lowercase_ , lowercase_ : Dict = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
21
1
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _lowercase : Tuple = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Tuple=None , ) -> Optional[Any]: if attention_mask is None: lowercase_ : Optional[Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowercase_ : int = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowercase_ : str = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase_ : Tuple = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase_ : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __magic_name__ : def __init__( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Dict=13 , lowercase_ : int=7 , lowercase_ : str=True , lowercase_ : List[str]=False , lowercase_ : int=99 , lowercase_ : str=16 , lowercase_ : Dict=2 , lowercase_ : str=4 , lowercase_ : List[Any]=4 , lowercase_ : List[str]="gelu" , lowercase_ : Any=0.1 , lowercase_ : Any=0.1 , lowercase_ : Union[str, Any]=32 , lowercase_ : Optional[int]=2 , lowercase_ : Optional[Any]=1 , lowercase_ : Optional[int]=0 , lowercase_ : Dict=0.02 , ): lowercase_ : List[Any] = parent lowercase_ : str = batch_size lowercase_ : List[str] = seq_length lowercase_ : Any = is_training lowercase_ : Union[str, Any] = use_labels lowercase_ : Tuple = vocab_size lowercase_ : Dict = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : Optional[Any] = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : List[str] = max_position_embeddings lowercase_ : Dict = eos_token_id lowercase_ : Dict = pad_token_id lowercase_ : Dict = bos_token_id lowercase_ : Dict = initializer_range def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Tuple = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowercase_ : List[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowercase_ : str = shift_tokens_right(lowercase_ , 1 , 2 ) lowercase_ : Optional[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowercase_ , ) lowercase_ : List[str] = prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ , lowercase_ : Optional[Any] = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : int , lowercase_ : Dict , lowercase_ : List[Any] ): lowercase_ : str = 20 lowercase_ : Optional[int] = model_class_name(lowercase_ ) lowercase_ : str = model.encode(inputs_dict["""input_ids"""] ) lowercase_ , lowercase_ : Any = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ : Any = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) lowercase_ : int = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowercase_ : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ : List[str] = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) lowercase_ : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowercase_ : Tuple = model.decode( decoder_input_ids[:, -1:] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase_ , ) lowercase_ : Dict = model.decode(lowercase_ , lowercase_ ) lowercase_ : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : List[Any] ): lowercase_ : List[str] = 20 lowercase_ : Union[str, Any] = model_class_name(lowercase_ ) lowercase_ : Dict = model.encode(inputs_dict["""input_ids"""] ) lowercase_ , lowercase_ : Optional[int] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ : List[str] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowercase_ : Dict = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) lowercase_ : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ : Union[str, Any] = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) lowercase_ : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowercase_ : Optional[int] = model.decode( decoder_input_ids[:, -1:] , lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase_ , decoder_position_ids=lowercase_ , ) lowercase_ : Tuple = model.decode(lowercase_ , lowercase_ , decoder_attention_mask=lowercase_ ) lowercase_ : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) @require_flax class __magic_name__ ( unittest.TestCase): UpperCamelCase__ = 99 def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowercase_ : List[str] = input_ids.shape[0] lowercase_ : List[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ , lowercase_ , lowercase_ : List[Any] = self._get_config_and_data() lowercase_ : int = FlaxBlenderbotForConditionalGeneration(lowercase_ ) lowercase_ : Any = lm_model(input_ids=lowercase_ ) lowercase_ : Union[str, Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowercase_ : Any = FlaxBlenderbotForConditionalGeneration(lowercase_ ) lowercase_ : Tuple = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowercase_ : Union[str, Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowercase_ : str = lm_model(input_ids=lowercase_ , decoder_input_ids=lowercase_ ) lowercase_ : List[Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Dict = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowercase_ : int = shift_tokens_right(lowercase_ , 1 , 2 ) lowercase_ : Any = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() lowercase_ : Any = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowercase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __magic_name__ ( _UpperCAmelCase, unittest.TestCase, _UpperCAmelCase): UpperCamelCase__ = True UpperCamelCase__ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) UpperCamelCase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : int = FlaxBlenderbotModelTester(self ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ , lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ , lowercase_ : Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase_ : Tuple = self._prepare_for_class(lowercase_ , lowercase_ ) lowercase_ : str = model_class(lowercase_ ) @jax.jit def encode_jitted(lowercase_ : str , lowercase_ : Tuple=None , **lowercase_ : str ): return model.encode(input_ids=lowercase_ , attention_mask=lowercase_ ) with self.subTest("""JIT Enabled""" ): lowercase_ : Optional[Any] = encode_jitted(**lowercase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowercase_ : Optional[int] = encode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ , lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase_ : Tuple = model_class(lowercase_ ) lowercase_ : Dict = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) lowercase_ : str = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Optional[int] ): return model.decode( decoder_input_ids=lowercase_ , decoder_attention_mask=lowercase_ , encoder_outputs=lowercase_ , ) with self.subTest("""JIT Enabled""" ): lowercase_ : Union[str, Any] = decode_jitted(**lowercase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowercase_ : str = decode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ): for model_class_name in self.all_model_classes: lowercase_ : Any = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowercase_ : Tuple = np.ones((1, 1) ) * model.config.eos_token_id lowercase_ : List[Any] = model(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : int = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} lowercase_ : List[Any] = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} lowercase_ : Optional[Any] = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=lowercase_ ) lowercase_ : Optional[int] = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" ) lowercase_ : List[str] = ["""Sam"""] lowercase_ : Any = tokenizer(lowercase_ , return_tensors="""jax""" ) lowercase_ : Union[str, Any] = model.generate(**lowercase_ , **lowercase_ ) lowercase_ : Tuple = """Sam is a great name. It means \"sun\" in Gaelic.""" lowercase_ : Tuple = tokenizer.batch_decode(lowercase_ , **lowercase_ ) assert generated_txt[0].strip() == tgt_text
21
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase : List[Any] = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : Union[tf.Tensor, np.ndarray] ) -> List[int]: if isinstance(UpperCAmelCase__ , np.ndarray ): return list(tensor.shape ) lowercase_ : Tuple = tf.shape(UpperCAmelCase__ ) if tensor.shape == tf.TensorShape(UpperCAmelCase__ ): return dynamic lowercase_ : Dict = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase__ )] def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[str] = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCAmelCase__ , name=UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=1e-5 , UpperCAmelCase__ : List[str]=-1 ) -> List[str]: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized lowercase_ , lowercase_ : List[str] = tf.nn.moments(UpperCAmelCase__ , axes=[axis] , keepdims=UpperCAmelCase__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase_ : List[Any] = [1] * inputs.shape.rank lowercase_ : List[str] = shape_list(UpperCAmelCase__ )[axis] lowercase_ : List[str] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : List[Any] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) # Compute layer normalization using the batch_normalization # function. lowercase_ : str = tf.nn.batch_normalization( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , offset=UpperCAmelCase__ , scale=UpperCAmelCase__ , variance_epsilon=UpperCAmelCase__ , ) return outputs def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Any=-1 ) -> Dict: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase_ : List[Any] = tf.shape(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase_ : Dict = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor ) -> tf.Tensor: if not isinstance(UpperCAmelCase__ , tf.Tensor ): lowercase_ : List[Any] = tf.convert_to_tensor(UpperCAmelCase__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase_ : Any = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase_ : List[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase_ : Optional[Any] = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : int , UpperCAmelCase__ : str = "input_ids" ) -> None: tf.debugging.assert_less( UpperCAmelCase__ , tf.cast(UpperCAmelCase__ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase__ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> Any: lowercase_ : int = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase_ : Optional[Any] = [x for x in data if len(UpperCAmelCase__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) lowercase_ : Any = np.asarray(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = 1 lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = chunk_data else: lowercase_ : Any = data def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] ) -> str: if name in group.attrs: lowercase_ : Optional[Any] = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs[name]] else: lowercase_ : int = [] lowercase_ : Optional[int] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> Any: def _expand_single_ad_tensor(UpperCAmelCase__ : Optional[Any] ): if isinstance(UpperCAmelCase__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase__ )
21
1
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : int , **lowercase_ : Any ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """decord""" ) self.check_model_type(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None ): lowercase_ : Union[str, Any] = {} if frame_sampling_rate is not None: lowercase_ : Any = frame_sampling_rate if num_frames is not None: lowercase_ : Optional[Any] = num_frames lowercase_ : Union[str, Any] = {} if top_k is not None: lowercase_ : Optional[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : str , lowercase_ : Union[str, List[str]] , **lowercase_ : str ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None , lowercase_ : Optional[int]=1 ): if num_frames is None: lowercase_ : List[Any] = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): lowercase_ : Union[str, Any] = BytesIO(requests.get(lowercase_ ).content ) lowercase_ : Optional[Any] = VideoReader(lowercase_ ) videoreader.seek(0 ) lowercase_ : Tuple = 0 lowercase_ : List[Any] = num_frames * frame_sampling_rate - 1 lowercase_ : Optional[int] = np.linspace(lowercase_ , lowercase_ , num=lowercase_ , dtype=np.intaa ) lowercase_ : Optional[int] = videoreader.get_batch(lowercase_ ).asnumpy() lowercase_ : Union[str, Any] = list(lowercase_ ) lowercase_ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : str ): lowercase_ : int = self.model(**lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Dict=5 ): if top_k > self.model.config.num_labels: lowercase_ : List[Any] = self.model.config.num_labels if self.framework == "pt": lowercase_ : str = model_outputs.logits.softmax(-1 )[0] lowercase_ , lowercase_ : Optional[Any] = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowercase_ : Union[str, Any] = scores.tolist() lowercase_ : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
21
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: lowercase_ : Any = prime_factors(UpperCAmelCase__ ) if is_square_free(UpperCAmelCase__ ): return -1 if len(UpperCAmelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
21
1
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , ) -> Tuple: lowercase_ : Union[str, Any] = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } lowercase_ , lowercase_ : int = input_paths_and_base_extractors[compression_format] if input_path is None: lowercase_ : Optional[Any] = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCAmelCase__ ) assert base_extractor.is_extractable(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(UpperCAmelCase__ , UpperCAmelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase_ : Optional[int] = file_path.read_text(encoding="""utf-8""" ) else: lowercase_ : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) lowercase_ : int = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , ) -> Dict: lowercase_ : str = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } lowercase_ : List[Any] = input_paths[compression_format] if input_path is None: lowercase_ : Any = F'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCAmelCase__ ) lowercase_ : str = Extractor.infer_extractor_format(UpperCAmelCase__ ) assert extractor_format is not None lowercase_ : Optional[Any] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name lowercase_ : Dict = file_path.read_text(encoding="""utf-8""" ) else: lowercase_ : List[Any] = output_path.read_text(encoding="""utf-8""" ) lowercase_ : Optional[int] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : Any ) -> Optional[int]: import tarfile lowercase_ : List[Any] = tmp_path / """data_dot_dot""" directory.mkdir() lowercase_ : Any = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(UpperCAmelCase__ , """w""" ) as f: f.add(UpperCAmelCase__ , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> Any: import tarfile lowercase_ : Dict = tmp_path / """data_sym_link""" directory.mkdir() lowercase_ : List[Any] = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=UpperCAmelCase__ ) with tarfile.TarFile(UpperCAmelCase__ , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] ) -> Tuple: lowercase_ : List[Any] = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } lowercase_ : Union[str, Any] = insecure_tar_files[insecure_tar_file] lowercase_ : List[str] = tmp_path / """extracted""" TarExtractor.extract(UpperCAmelCase__ , UpperCAmelCase__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowerCamelCase ( UpperCAmelCase__ : str ) -> List[Any]: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number lowercase_ : List[str] = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 lowercase_ : Union[str, Any] = ( b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(UpperCAmelCase__ ) assert zipfile.is_zipfile(str(UpperCAmelCase__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(UpperCAmelCase__ ) # but we're right
21
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int = 1000000 ) -> int: lowercase_ : List[Any] = limit + 1 lowercase_ : Optional[Any] = [0] * limit for first_term in range(1 , UpperCAmelCase__ ): for n in range(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : List[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowercase_ : List[Any] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
21
1
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( UpperCAmelCase__ : list[float] ) -> bool: if len(UpperCAmelCase__ ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) lowercase_ : List[Any] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
21
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __magic_name__ ( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str ): lowercase_ : Union[str, Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , config_name=lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = AutoConfig.from_pretrained("""gpt2""" ) lowercase_ : List[Any] = GenerationConfig.from_model_config(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowercase_ , lowercase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = GenerationConfig() lowercase_ : int = { """max_new_tokens""": 1024, """foo""": """bar""", } lowercase_ : List[str] = copy.deepcopy(lowercase_ ) lowercase_ : Tuple = generation_config.update(**lowercase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(lowercase_ , lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowercase_ , {"""foo""": """bar"""} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Dict = GenerationConfig() lowercase_ : int = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) lowercase_ : List[str] = GenerationConfig.from_model_config(lowercase_ ) assert not hasattr(lowercase_ , """foo""" ) # no new kwargs should be initialized if from config def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[int] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , lowercase_ ) self.assertEqual(default_config.num_beams , 1 ) lowercase_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , lowercase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ ) lowercase_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __magic_name__ ( unittest.TestCase): @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any ): lowercase_ : int = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) lowercase_ : List[Any] = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""test-generation-config""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) lowercase_ : Optional[Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
21
1
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _lowercase : Any = "<<<<<<< This should probably be modified because it mentions: " _lowercase : Any = "=======\n>>>>>>>\n" _lowercase : Dict = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] _lowercase : List[str] = [ # (pattern, replacement) # Order is important here for some replacements (r"tfds\.core", r"datasets"), (r"tf\.io\.gfile\.GFile", r"open"), (r"tf\.([\w\d]+)", r"datasets.Value('\1')"), (r"tfds\.features\.Text\(\)", r"datasets.Value('string')"), (r"tfds\.features\.Text\(", r"datasets.Value('string'),"), (r"features\s*=\s*tfds.features.FeaturesDict\(", r"features=datasets.Features("), (r"tfds\.features\.FeaturesDict\(", r"dict("), (r"The TensorFlow Datasets Authors", r"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (r"tfds\.", r"datasets."), (r"dl_manager\.manual_dir", r"self.config.data_dir"), (r"self\.builder_config", r"self.config"), ] def lowerCamelCase ( UpperCAmelCase__ : Namespace ) -> Dict: return ConvertCommand(args.tfds_path , args.datasets_directory ) class __magic_name__ ( _UpperCAmelCase): @staticmethod def SCREAMING_SNAKE_CASE_ ( lowercase_ : ArgumentParser ): lowercase_ : List[Any] = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=lowercase_ , required=lowercase_ , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=lowercase_ , required=lowercase_ , help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=lowercase_ ) def __init__( self : Tuple , lowercase_ : str , lowercase_ : str , *lowercase_ : Tuple ): lowercase_ : Optional[int] = get_logger("""datasets-cli/converting""" ) lowercase_ : List[Any] = tfds_path lowercase_ : Any = datasets_directory def SCREAMING_SNAKE_CASE_ ( self : int ): if os.path.isdir(self._tfds_path ): lowercase_ : Dict = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase_ : List[str] = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) lowercase_ : Any = os.path.abspath(self._datasets_directory ) self._logger.info(f'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) lowercase_ : Union[str, Any] = [] lowercase_ : List[str] = [] lowercase_ : Union[str, Any] = {} if os.path.isdir(self._tfds_path ): lowercase_ : Dict = os.listdir(lowercase_ ) else: lowercase_ : List[Any] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'''Looking at file {f_name}''' ) lowercase_ : Dict = os.path.join(lowercase_ , lowercase_ ) lowercase_ : List[Any] = os.path.join(lowercase_ , lowercase_ ) if not os.path.isfile(lowercase_ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(lowercase_ , encoding="""utf-8""" ) as f: lowercase_ : str = f.readlines() lowercase_ : Any = [] lowercase_ : List[Any] = False lowercase_ : Any = False lowercase_ : str = [] for line in lines: lowercase_ : Dict = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase_ : int = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here lowercase_ : Dict = """""" continue elif "from absl import logging" in out_line: lowercase_ : int = """from datasets import logging\n""" elif "getLogger" in out_line: lowercase_ : Dict = out_line.replace("""getLogger""" , """get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase_ : Optional[int] = True lowercase_ : List[Any] = list(filter(lambda lowercase_ : e in out_line , lowercase_ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowercase_ ) + """\n""" ) out_lines.append(lowercase_ ) out_lines.append(lowercase_ ) continue else: for pattern, replacement in TO_CONVERT: lowercase_ : Union[str, Any] = re.sub(lowercase_ , lowercase_ , lowercase_ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase_ : Dict = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , lowercase_ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) lowercase_ : Tuple = """from . import """ + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase_ : Optional[int] = True out_lines.append(lowercase_ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase_ : int = f_name.replace(""".py""" , """""" ) lowercase_ : int = os.path.join(lowercase_ , lowercase_ ) lowercase_ : Union[str, Any] = os.path.join(lowercase_ , lowercase_ ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) self._logger.info(f'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowercase_ ) if needs_manual_update: with_manual_update.append(lowercase_ ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f: f.writelines(lowercase_ ) self._logger.info(f'''Converted in {output_file}''' ) for utils_file in utils_files: try: lowercase_ : str = os.path.basename(lowercase_ ) lowercase_ : List[str] = imports_to_builder_map[f_name.replace(""".py""" , """""" )] self._logger.info(f'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(lowercase_ , lowercase_ ) except KeyError: self._logger.error(f'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
21
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] ) -> List[Any]: # Initialise PyTorch model lowercase_ : List[str] = FunnelConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) lowercase_ : Dict = FunnelBaseModel(UpperCAmelCase__ ) if base_model else FunnelModel(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase__ ) if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _lowercase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
21
1
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( UpperCAmelCase__ : list[float] , UpperCAmelCase__ : list[float] ) -> float: lowercase_ : Tuple = sorted(numsa + numsa ) lowercase_ , lowercase_ : Optional[Any] = divmod(len(UpperCAmelCase__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowercase : List[str] = [float(x) for x in input("Enter the elements of first array: ").split()] _lowercase : Tuple = [float(x) for x in input("Enter the elements of second array: ").split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
21
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _lowercase : Optional[List[str]] = None _lowercase : str = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _lowercase : Optional[int] = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class __magic_name__ : UpperCamelCase__ = True UpperCamelCase__ = None # Automatically constructed UpperCamelCase__ = "PIL.Image.Image" UpperCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()}) UpperCamelCase__ = field(default='''Image''', init=_UpperCAmelCase, repr=_UpperCAmelCase) def __call__( self : Tuple ): return self.pa_type def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(lowercase_ , lowercase_ ): lowercase_ : int = np.array(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): return {"path": value, "bytes": None} elif isinstance(lowercase_ , lowercase_ ): return {"path": None, "bytes": value} elif isinstance(lowercase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowercase_ ) elif isinstance(lowercase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowercase_ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : dict , lowercase_ : List[str]=None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: lowercase_ : Union[str, Any] = {} lowercase_ , lowercase_ : List[Any] = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowercase_ ): lowercase_ : int = PIL.Image.open(lowercase_ ) else: lowercase_ : str = path.split("""::""" )[-1] try: lowercase_ : Any = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""] lowercase_ : Optional[Any] = token_per_repo_id.get(lowercase_ ) except ValueError: lowercase_ : str = None with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f: lowercase_ : Dict = BytesIO(f.read() ) lowercase_ : Optional[Any] = PIL.Image.open(bytes_ ) else: lowercase_ : Any = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def SCREAMING_SNAKE_CASE_ ( self : int ): from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) lowercase_ : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Any = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowercase_ : Optional[int] = storage.field("""bytes""" ) else: lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowercase_ : Dict = storage.field("""path""" ) else: lowercase_ : int = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowercase_ : Optional[int] = pa.array( [encode_np_array(np.array(lowercase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowercase_ : Tuple = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Tuple = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(lowercase_ : Optional[Any] ): with xopen(lowercase_ , """rb""" ) as f: lowercase_ : int = f.read() return bytes_ lowercase_ : Optional[Any] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase_ : Any = pa.array( [os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def lowerCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowercase_ : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> bytes: lowercase_ : Tuple = BytesIO() if image.format in list_image_compression_formats(): lowercase_ : int = image.format else: lowercase_ : int = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(UpperCAmelCase__ , format=UpperCAmelCase__ ) return buffer.getvalue() def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> dict: if hasattr(UpperCAmelCase__ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : np.ndarray ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) lowercase_ : List[Any] = array.dtype lowercase_ : int = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER lowercase_ : Dict = dtype.kind lowercase_ : List[Any] = dtype.itemsize lowercase_ : Any = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowercase_ : int = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowercase_ : str = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowercase_ : str = dtype_byteorder + dtype_kind + str(UpperCAmelCase__ ) lowercase_ : Optional[Any] = np.dtype(UpperCAmelCase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) lowercase_ : Optional[int] = PIL.Image.fromarray(array.astype(UpperCAmelCase__ ) ) return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: lowercase_ , lowercase_ : Dict = first_non_null_value(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(UpperCAmelCase__ , np.ndarray ): lowercase_ : Union[str, Any] = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowercase_ : int = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] else: return objs else: return objs
21
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __magic_name__ : UpperCamelCase__ = XGLMConfig UpperCamelCase__ = {} UpperCamelCase__ = '''gelu''' def __init__( self : List[Any] , lowercase_ : List[Any] , lowercase_ : List[str]=14 , lowercase_ : Tuple=7 , lowercase_ : Any=True , lowercase_ : Tuple=True , lowercase_ : List[str]=True , lowercase_ : Any=99 , lowercase_ : Dict=32 , lowercase_ : List[Any]=2 , lowercase_ : Dict=4 , lowercase_ : Union[str, Any]=37 , lowercase_ : List[str]="gelu" , lowercase_ : Dict=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : Union[str, Any]=512 , lowercase_ : Tuple=0.02 , ): lowercase_ : List[Any] = parent lowercase_ : Optional[Any] = batch_size lowercase_ : Dict = seq_length lowercase_ : int = is_training lowercase_ : Dict = use_input_mask lowercase_ : Optional[int] = use_labels lowercase_ : str = vocab_size lowercase_ : int = d_model lowercase_ : Any = num_hidden_layers lowercase_ : Tuple = num_attention_heads lowercase_ : Optional[Any] = ffn_dim lowercase_ : List[str] = activation_function lowercase_ : Any = activation_dropout lowercase_ : List[str] = attention_dropout lowercase_ : int = max_position_embeddings lowercase_ : Optional[int] = initializer_range lowercase_ : int = None lowercase_ : Any = 0 lowercase_ : Union[str, Any] = 2 lowercase_ : Optional[int] = 1 def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Union[str, Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) lowercase_ : Tuple = None if self.use_input_mask: lowercase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : str = self.get_config() lowercase_ : Union[str, Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowercase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowercase_ , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : str = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : List[str] = config_and_inputs lowercase_ : str = { """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase__ = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase__ = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : str = TFXGLMModelTester(self ) lowercase_ : List[str] = ConfigTester(self , config_class=lowercase_ , n_embd=37 ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): self.config_tester.run_common_tests() @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Optional[int] = TFXGLMModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): super().test_resize_token_embeddings() @require_tf class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : int=True ): lowercase_ : Optional[int] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) lowercase_ : Optional[Any] = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowercase_ : Optional[Any] = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on lowercase_ : List[str] = model.generate(lowercase_ , do_sample=lowercase_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Optional[int] = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) lowercase_ : Any = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) lowercase_ : Union[str, Any] = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) lowercase_ : Optional[Any] = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): lowercase_ : Any = model.generate(lowercase_ , do_sample=lowercase_ , seed=[7, 0] ) lowercase_ : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase_ ) lowercase_ : Any = ( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(lowercase_ , lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Optional[int] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) lowercase_ : Tuple = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) lowercase_ : int = """left""" # use different length sentences to test batching lowercase_ : str = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] lowercase_ : Tuple = tokenizer(lowercase_ , return_tensors="""tf""" , padding=lowercase_ ) lowercase_ : Dict = inputs["""input_ids"""] lowercase_ : Any = model.generate(input_ids=lowercase_ , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) lowercase_ : Optional[Any] = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids lowercase_ : Union[str, Any] = model.generate(input_ids=lowercase_ , max_new_tokens=12 ) lowercase_ : Dict = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids lowercase_ : Optional[Any] = model.generate(input_ids=lowercase_ , max_new_tokens=12 ) lowercase_ : Optional[Any] = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowercase_ : Optional[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) lowercase_ : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) lowercase_ : Dict = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] )
21
'''simple docstring''' import colorsys from PIL import Image # type: ignore def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : float , UpperCAmelCase__ : int ) -> float: lowercase_ : List[Any] = x lowercase_ : Any = y for step in range(UpperCAmelCase__ ): # noqa: B007 lowercase_ : Dict = a * a - b * b + x lowercase_ : str = 2 * a * b + y lowercase_ : Optional[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCAmelCase__ , 1 , 1 ) ) def lowerCamelCase ( UpperCAmelCase__ : int = 800 , UpperCAmelCase__ : int = 600 , UpperCAmelCase__ : float = -0.6 , UpperCAmelCase__ : float = 0 , UpperCAmelCase__ : float = 3.2 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : bool = True , ) -> Image.Image: lowercase_ : Union[str, Any] = Image.new("""RGB""" , (image_width, image_height) ) lowercase_ : Tuple = img.load() # loop through the image-coordinates for image_x in range(UpperCAmelCase__ ): for image_y in range(UpperCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates lowercase_ : Any = figure_width / image_width * image_height lowercase_ : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width lowercase_ : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height lowercase_ : str = get_distance(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowercase_ : List[Any] = get_color_coded_rgb(UpperCAmelCase__ ) else: lowercase_ : Dict = get_black_and_white_rgb(UpperCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _lowercase : List[str] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
21
1
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __magic_name__ ( ctypes.Structure): # _fields is a specific attr expected by ctypes UpperCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def lowerCamelCase ( ) -> List[Any]: if os.name == "nt": lowercase_ : List[Any] = CursorInfo() lowercase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def lowerCamelCase ( ) -> str: if os.name == "nt": lowercase_ : int = CursorInfo() lowercase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : Optional[int] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def lowerCamelCase ( ) -> Any: try: hide_cursor() yield finally: show_cursor()
21
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = DistilBertTokenizer UpperCamelCase__ = DistilBertTokenizerFast UpperCamelCase__ = True @slow def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) lowercase_ : str = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ ) lowercase_ : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ ) lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
21
1
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType _lowercase , _lowercase , _lowercase : Tuple = False, False, False @dataclass class __magic_name__ : UpperCamelCase__ = None UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = None # Automatically constructed UpperCamelCase__ = "dict" UpperCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()}) UpperCamelCase__ = field(default='''Audio''', init=_UpperCAmelCase, repr=_UpperCAmelCase) def __call__( self : List[Any] ): return self.pa_type def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(lowercase_ , lowercase_ ): return {"bytes": None, "path": value} elif isinstance(lowercase_ , lowercase_ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowercase_ : List[str] = BytesIO() sf.write(lowercase_ , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowercase_ : int = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 32767 else: lowercase_ : Tuple = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 32767 lowercase_ : Tuple = BytesIO(bytes() ) sf.write(lowercase_ , lowercase_ , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : dict , lowercase_ : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) lowercase_ , lowercase_ : str = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err lowercase_ : str = xsplitext(lowercase_ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: lowercase_ : Union[str, Any] = token_per_repo_id or {} lowercase_ : Optional[Any] = path.split("""::""" )[-1] try: lowercase_ : Optional[int] = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""] lowercase_ : Optional[Any] = token_per_repo_id[repo_id] except (ValueError, KeyError): lowercase_ : int = None with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f: lowercase_ , lowercase_ : Optional[int] = sf.read(lowercase_ ) else: lowercase_ , lowercase_ : List[str] = sf.read(lowercase_ ) lowercase_ : int = array.T if self.mono: lowercase_ : List[Any] = librosa.to_mono(lowercase_ ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowercase_ : Any = librosa.resample(lowercase_ , orig_sr=lowercase_ , target_sr=self.sampling_rate ) lowercase_ : List[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) lowercase_ : List[Any] = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Dict = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): lowercase_ : Optional[Any] = pa.array([Audio().encode_example(lowercase_ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowercase_ : Optional[int] = storage.field("""bytes""" ) else: lowercase_ : int = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowercase_ : Any = storage.field("""path""" ) else: lowercase_ : List[str] = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(lowercase_ , self.pa_type ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(lowercase_ : str ): with xopen(lowercase_ , """rb""" ) as f: lowercase_ : Optional[Any] = f.read() return bytes_ lowercase_ : Any = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase_ : Any = pa.array( [os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowercase_ : List[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type )
21
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowercase : Union[str, Any] = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowerCamelCase ( ) -> List[Any]: lowercase_ : Tuple = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=UpperCAmelCase__ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=UpperCAmelCase__ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=UpperCAmelCase__ ) return parser.parse_args() def lowerCamelCase ( ) -> Optional[int]: lowercase_ : Any = parse_args() # Import training_script as a module. lowercase_ : int = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase_ : List[Any] = script_fpath.stem lowercase_ : str = importlib.import_module(UpperCAmelCase__ ) # Patch sys.argv lowercase_ : int = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
21
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Union[str, Any] = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
1
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowercase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name _lowercase : Tuple = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str=8 ) -> Dict: lowercase_ : Tuple = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : Optional[int] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __magic_name__ ( _UpperCAmelCase): def __init__( self : Tuple , lowercase_ : UNetaDConditionModel , lowercase_ : DDPMScheduler , lowercase_ : VQModel , ): super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Tuple ): if latents is None: lowercase_ : Optional[int] = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) lowercase_ : int = latents.to(lowercase_ ) lowercase_ : List[Any] = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[str]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowercase_ : Tuple = torch.device(f'''cuda:{gpu_id}''' ) lowercase_ : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : Dict=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) lowercase_ : Union[str, Any] = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Optional[int] = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Any = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. lowercase_ : Union[str, Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE_ ( self : Dict ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self : int , lowercase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ : int = 512 , lowercase_ : int = 512 , lowercase_ : int = 100 , lowercase_ : float = 4.0 , lowercase_ : int = 1 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , ): lowercase_ : List[str] = self._execution_device lowercase_ : Union[str, Any] = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): lowercase_ : Any = torch.cat(lowercase_ , dim=0 ) lowercase_ : Dict = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): lowercase_ : List[str] = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: lowercase_ : Union[str, Any] = image_embeds.repeat_interleave(lowercase_ , dim=0 ) lowercase_ : Union[str, Any] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) lowercase_ : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) lowercase_ : Optional[int] = self.scheduler.timesteps lowercase_ : Union[str, Any] = self.unet.config.in_channels lowercase_ , lowercase_ : Optional[int] = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent lowercase_ : List[str] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance lowercase_ : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : Any = {"""image_embeds""": image_embeds} lowercase_ : Any = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Dict = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Any = variance_pred.chunk(2 ) lowercase_ : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : int = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing lowercase_ : Optional[Any] = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: lowercase_ : str = image * 0.5 + 0.5 lowercase_ : Any = image.clamp(0 , 1 ) lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : int = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
21
'''simple docstring''' import os import numpy import onnx def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ) -> Tuple: lowercase_ : Tuple = a.name lowercase_ : Tuple = b.name lowercase_ : Any = """""" lowercase_ : List[Any] = """""" lowercase_ : List[Any] = a == b lowercase_ : Union[str, Any] = name_a lowercase_ : Optional[Any] = name_b return res def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase__ , UpperCAmelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase__ , UpperCAmelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) -> int: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ) -> List[str]: lowercase_ : int = list(model.graph.initializer ) lowercase_ : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase_ : Optional[Any] = inits[i].name lowercase_ : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int ) -> List[str]: lowercase_ : Dict = os.path.dirname(UpperCAmelCase__ ) lowercase_ : Optional[Any] = os.path.basename(UpperCAmelCase__ ) lowercase_ : str = onnx.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowercase_ : List[Any] = list(model.graph.initializer ) lowercase_ : int = set() lowercase_ : int = {} lowercase_ : str = [] lowercase_ : int = 0 for i in range(len(UpperCAmelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase__ ) dup_set.add(UpperCAmelCase__ ) lowercase_ : Dict = inits[j].data_type lowercase_ : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , UpperCAmelCase__ ) total_reduced_size += mem_size lowercase_ : int = inits[i].name lowercase_ : List[str] = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase__ ) else: lowercase_ : Optional[int] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) lowercase_ : Tuple = sorted(UpperCAmelCase__ ) _remove_dup_initializers_from_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Union[str, Any] = """optimized_""" + model_file_name lowercase_ : Optional[int] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) onnx.save(UpperCAmelCase__ , UpperCAmelCase__ ) return new_model
21
1
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : def __init__( self : Union[str, Any] , lowercase_ : Any , lowercase_ : List[str]=13 , lowercase_ : str=30 , lowercase_ : List[str]=2 , lowercase_ : str=3 , lowercase_ : Dict=True , lowercase_ : int=True , lowercase_ : List[str]=32 , lowercase_ : List[str]=5 , lowercase_ : Dict=4 , lowercase_ : Optional[int]=37 , lowercase_ : Dict="gelu" , lowercase_ : Optional[Any]=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : Dict=10 , lowercase_ : Optional[int]=0.02 , lowercase_ : List[Any]=3 , lowercase_ : Union[str, Any]=0.6 , lowercase_ : Dict=None , ): lowercase_ : Any = parent lowercase_ : Tuple = batch_size lowercase_ : List[Any] = image_size lowercase_ : Dict = patch_size lowercase_ : Dict = num_channels lowercase_ : Dict = is_training lowercase_ : Any = use_labels lowercase_ : Optional[int] = hidden_size lowercase_ : List[str] = num_hidden_layers lowercase_ : Optional[Any] = num_attention_heads lowercase_ : Dict = intermediate_size lowercase_ : Dict = hidden_act lowercase_ : int = hidden_dropout_prob lowercase_ : Dict = attention_probs_dropout_prob lowercase_ : Union[str, Any] = type_sequence_label_size lowercase_ : Union[str, Any] = initializer_range lowercase_ : Tuple = mask_ratio lowercase_ : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase_ : str = (image_size // patch_size) ** 2 lowercase_ : Tuple = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : List[Any] = None if self.use_labels: lowercase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Tuple ): lowercase_ : Union[str, Any] = ViTMAEModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Union[str, Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : int , lowercase_ : Tuple , lowercase_ : List[Any] ): lowercase_ : Any = ViTMAEForPreTraining(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Any = model(lowercase_ ) lowercase_ : Union[str, Any] = (self.image_size // self.patch_size) ** 2 lowercase_ : Union[str, Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase_ : Dict = 1 lowercase_ : Union[str, Any] = ViTMAEForPreTraining(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : Union[str, Any] = model(lowercase_ ) lowercase_ : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : str = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ : List[str] = config_and_inputs lowercase_ : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () UpperCamelCase__ = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : List[Any] = ViTMAEModelTester(self ) lowercase_ : List[str] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ , lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[int] = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ , lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Tuple = model_class(lowercase_ ) lowercase_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : List[Any] = [*signature.parameters.keys()] lowercase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : int , lowercase_ : str , lowercase_ : Dict ): # make masks reproducible np.random.seed(2 ) lowercase_ : Optional[int] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) lowercase_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase_ : Optional[int] = torch.from_numpy(lowercase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase_ : List[Any] = pt_noise super().check_pt_tf_models(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ , lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : List[Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowercase_ : str = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) lowercase_ : Dict = outputs[0].cpu().numpy() lowercase_ : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = model_class.from_pretrained(lowercase_ ) model.to(lowercase_ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): lowercase_ : Optional[int] = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) # Make sure we don't have nans lowercase_ : Optional[int] = after_outputs[0].cpu().numpy() lowercase_ : Any = 0 lowercase_ : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def SCREAMING_SNAKE_CASE_ ( self : str ): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def SCREAMING_SNAKE_CASE_ ( self : str ): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): pass @slow def SCREAMING_SNAKE_CASE_ ( self : int ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Any = ViTMAEModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def lowerCamelCase ( ) -> List[str]: lowercase_ : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : int ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) lowercase_ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(lowercase_ ) lowercase_ : Dict = self.default_image_processor lowercase_ : int = prepare_img() lowercase_ : List[str] = image_processor(images=lowercase_ , return_tensors="""pt""" ).to(lowercase_ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase_ : Union[str, Any] = ViTMAEConfig() lowercase_ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase_ : List[str] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): lowercase_ : Union[str, Any] = model(**lowercase_ , noise=torch.from_numpy(lowercase_ ).to(device=lowercase_ ) ) # verify the logits lowercase_ : int = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , lowercase_ ) lowercase_ : int = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowercase_ ) , atol=1E-4 ) )
21
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : Dict , **lowercase_ : List[Any] ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None ): lowercase_ : Optional[Any] = {} lowercase_ : Tuple = {} if prompt is not None: lowercase_ : Tuple = prompt if generate_kwargs is not None: lowercase_ : List[str] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase_ : List[Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase_ : str = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[Any] , lowercase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ : Optional[int] ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[Any] , lowercase_ : Tuple=None ): lowercase_ : List[Any] = load_image(lowercase_ ) if prompt is not None: if not isinstance(lowercase_ , lowercase_ ): raise ValueError( f'''Received an invalid text input, got - {type(lowercase_ )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase_ : List[Any] = self.model.config.model_type if model_type == "git": lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : Union[str, Any] = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_ ).input_ids lowercase_ : int = [self.tokenizer.cls_token_id] + input_ids lowercase_ : List[Any] = torch.tensor(lowercase_ ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase_ : Union[str, Any] = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : List[str] = self.tokenizer(lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: lowercase_ : List[str] = self.image_processor(images=lowercase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase_ : str = None return model_inputs def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Dict , lowercase_ : Optional[Any]=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , lowercase_ ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase_ : Any = None if generate_kwargs is None: lowercase_ : Optional[Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase_ : Dict = model_inputs.pop(self.model.main_input_name ) lowercase_ : Any = self.model.generate(lowercase_ , **lowercase_ , **lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[Any] ): lowercase_ : List[str] = [] for output_ids in model_outputs: lowercase_ : Union[str, Any] = { """generated_text""": self.tokenizer.decode( lowercase_ , skip_special_tokens=lowercase_ , ) } records.append(lowercase_ ) return records
21
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase : Optional[Any] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _lowercase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
'''simple docstring''' class __magic_name__ : def __init__( self : int , lowercase_ : list ): lowercase_ : Dict = set_counts lowercase_ : List[Any] = max(lowercase_ ) lowercase_ : str = len(lowercase_ ) lowercase_ : str = [1] * num_sets lowercase_ : Dict = list(range(lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : int ): lowercase_ : List[Any] = self.get_parent(lowercase_ ) lowercase_ : Union[str, Any] = self.get_parent(lowercase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : List[str] = 0 lowercase_ : Optional[int] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : int = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : int = 0 lowercase_ : List[Any] = src_parent lowercase_ : List[Any] = self.set_counts[src_parent] lowercase_ : Tuple = max(self.max_set , lowercase_ ) return True def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : int ): if self.parents[disj_set] == disj_set: return disj_set lowercase_ : int = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
21
1
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> str: if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) lowercase_ : List[str] = str(bin(UpperCAmelCase__ ) )[2:] # remove the leading "0b" lowercase_ : Union[str, Any] = str(bin(UpperCAmelCase__ ) )[2:] lowercase_ : Tuple = max(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(UpperCAmelCase__ ) , b_binary.zfill(UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : int , **lowercase_ : Any ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """decord""" ) self.check_model_type(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None ): lowercase_ : Union[str, Any] = {} if frame_sampling_rate is not None: lowercase_ : Any = frame_sampling_rate if num_frames is not None: lowercase_ : Optional[Any] = num_frames lowercase_ : Union[str, Any] = {} if top_k is not None: lowercase_ : Optional[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : str , lowercase_ : Union[str, List[str]] , **lowercase_ : str ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None , lowercase_ : Optional[int]=1 ): if num_frames is None: lowercase_ : List[Any] = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): lowercase_ : Union[str, Any] = BytesIO(requests.get(lowercase_ ).content ) lowercase_ : Optional[Any] = VideoReader(lowercase_ ) videoreader.seek(0 ) lowercase_ : Tuple = 0 lowercase_ : List[Any] = num_frames * frame_sampling_rate - 1 lowercase_ : Optional[int] = np.linspace(lowercase_ , lowercase_ , num=lowercase_ , dtype=np.intaa ) lowercase_ : Optional[int] = videoreader.get_batch(lowercase_ ).asnumpy() lowercase_ : Union[str, Any] = list(lowercase_ ) lowercase_ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : str ): lowercase_ : int = self.model(**lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Dict=5 ): if top_k > self.model.config.num_labels: lowercase_ : List[Any] = self.model.config.num_labels if self.framework == "pt": lowercase_ : str = model_outputs.logits.softmax(-1 )[0] lowercase_ , lowercase_ : Optional[Any] = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowercase_ : Union[str, Any] = scores.tolist() lowercase_ : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
21
1
'''simple docstring''' import heapq def lowerCamelCase ( UpperCAmelCase__ : dict ) -> set[int]: lowercase_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(UpperCAmelCase__ , [-1 * len(UpperCAmelCase__ ), (key, value)] ) # chosen_vertices = set of chosen vertices lowercase_ : List[Any] = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowercase_ : Tuple = heapq.heappop(UpperCAmelCase__ )[1][0] chosen_vertices.add(UpperCAmelCase__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowercase_ : Union[str, Any] = elem[1][1].index(UpperCAmelCase__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(UpperCAmelCase__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
21
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> List[str]: if isinstance(UpperCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class __magic_name__ : def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Any , lowercase_ : str ): pass def SCREAMING_SNAKE_CASE_ ( self : str ): pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : np.ndarray , lowercase_ : float ): lowercase_ : Optional[Any] = np.abs((a - b) ).max() self.assertLessEqual(lowercase_ , lowercase_ , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple=None , **lowercase_ : Optional[int] ): lowercase_ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : Any = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : List[Any]=None , **lowercase_ : Tuple ): lowercase_ , lowercase_ : Any = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[int] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=None , **lowercase_ : int ): lowercase_ , lowercase_ : Union[str, Any] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Tuple = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Union[str, Any] = after_output[0] lowercase_ : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-3 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Dict=None , **lowercase_ : Optional[Any] ): lowercase_ , lowercase_ : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Dict = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Optional[int] = model( input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ ) lowercase_ : Tuple = output.vision_model_output.attentions self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ : List[str] = to_atuple(vision_model.config.image_size ) lowercase_ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowercase_ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase_ : Optional[Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowercase_ : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int ): pt_model.to(lowercase_ ) pt_model.eval() # prepare inputs lowercase_ : int = inputs_dict lowercase_ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowercase_ : str = pt_model(**lowercase_ ).to_tuple() lowercase_ : Optional[Any] = fx_model(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowercase_ ) lowercase_ : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ , from_pt=lowercase_ ) lowercase_ : Dict = fx_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowercase_ ) lowercase_ : Union[str, Any] = VisionTextDualEncoderModel.from_pretrained(lowercase_ , from_flax=lowercase_ ) pt_model_loaded.to(lowercase_ ) pt_model_loaded.eval() with torch.no_grad(): lowercase_ : List[Any] = pt_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowercase_ , pt_output_loaded.numpy() , 4E-2 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : List[Any] = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ ) lowercase_ : Tuple = fx_state self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[Any] ): lowercase_ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : int = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Dict = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params ) self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Tuple = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_save_load(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase_ ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = self.prepare_config_and_inputs() lowercase_ : List[Any] = config_inputs_dict.pop("""vision_config""" ) lowercase_ : int = config_inputs_dict.pop("""text_config""" ) lowercase_ : Optional[int] = config_inputs_dict self.check_equivalence_pt_to_flax(lowercase_ , lowercase_ , lowercase_ ) self.check_equivalence_flax_to_pt(lowercase_ , lowercase_ , lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ , lowercase_ : str = self.get_pretrained_model_and_inputs() lowercase_ : Dict = model_a(**lowercase_ ) lowercase_ : str = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : str = model_a(**lowercase_ ) lowercase_ : Union[str, Any] = after_outputs[0] lowercase_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-5 ) @require_flax class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : str = random_attention_mask([batch_size, 4] ) lowercase_ : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Tuple ): lowercase_ : Union[str, Any] = FlaxViTModel(lowercase_ ) lowercase_ : Dict = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Any = FlaxViTModelTester(self ) lowercase_ : Optional[Any] = FlaxBertModelTester(self ) lowercase_ : Dict = vit_model_tester.prepare_config_and_inputs() lowercase_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : List[str] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : Tuple = random_attention_mask([batch_size, 4] ) lowercase_ : Union[str, Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = FlaxCLIPVisionModel(lowercase_ ) lowercase_ : Any = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = FlaxCLIPVisionModelTester(self ) lowercase_ : Tuple = FlaxBertModelTester(self ) lowercase_ : Union[str, Any] = clip_model_tester.prepare_config_and_inputs() lowercase_ : Any = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : Optional[Any] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : str = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) lowercase_ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) lowercase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : Optional[int] = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowercase_ , padding=lowercase_ , return_tensors="""np""" ) lowercase_ : List[str] = model(**lowercase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowercase_ : Optional[Any] = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowercase_ , atol=1E-3 ) )
21
1
'''simple docstring''' from __future__ import annotations from typing import Any def lowerCamelCase ( UpperCAmelCase__ : list ) -> int: if not postfix_notation: return 0 lowercase_ : Any = {"""+""", """-""", """*""", """/"""} lowercase_ : list[Any] = [] for token in postfix_notation: if token in operations: lowercase_ , lowercase_ : Dict = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
21
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __magic_name__ ( unittest.TestCase): def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int=7 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[Any]=18 , lowercase_ : List[Any]=30 , lowercase_ : int=400 , lowercase_ : Dict=True , lowercase_ : List[Any]=None , lowercase_ : Dict=True , ): lowercase_ : Tuple = size if size is not None else {"""height""": 18, """width""": 18} lowercase_ : List[str] = parent lowercase_ : Any = batch_size lowercase_ : Optional[Any] = num_channels lowercase_ : Tuple = image_size lowercase_ : Optional[Any] = min_resolution lowercase_ : Dict = max_resolution lowercase_ : Optional[int] = do_resize lowercase_ : Optional[Any] = size lowercase_ : Union[str, Any] = do_normalize def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ImageGPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = ImageGPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """clusters""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) lowercase_ : Union[str, Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , obj[key] ) ) else: self.assertEqual(obj[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Union[str, Any] = os.path.join(lowercase_ , """image_processor.json""" ) image_processor_first.to_json_file(lowercase_ ) lowercase_ : Optional[Any] = self.image_processing_class.from_json_file(lowercase_ ).to_dict() lowercase_ : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase_ ) lowercase_ : Any = self.image_processing_class.from_pretrained(lowercase_ ).to_dict() lowercase_ : List[str] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass def lowerCamelCase ( ) -> Any: lowercase_ : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) lowercase_ : Any = Image.open(dataset[4]["""file"""] ) lowercase_ : Dict = Image.open(dataset[5]["""file"""] ) lowercase_ : int = [imagea, imagea] return images @require_vision @require_torch class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Optional[Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) lowercase_ : Optional[int] = prepare_images() # test non-batched lowercase_ : str = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) lowercase_ : Tuple = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase_ ) # test batched lowercase_ : List[str] = image_processing(lowercase_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) lowercase_ : Union[str, Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase_ )
21
1
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: lowercase_ : Any = prime_factors(UpperCAmelCase__ ) if is_square_free(UpperCAmelCase__ ): return -1 if len(UpperCAmelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
21
'''simple docstring''' def lowerCamelCase ( ) -> Dict: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = 1 while len(UpperCAmelCase__ ) < 1e6: constant.append(str(UpperCAmelCase__ ) ) i += 1 lowercase_ : int = """""".join(UpperCAmelCase__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
21
1
'''simple docstring''' import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = ['''image_processor''', '''tokenizer'''] UpperCamelCase__ = '''BlipImageProcessor''' UpperCamelCase__ = '''AutoTokenizer''' def __init__( self : str , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] ): super().__init__(lowercase_ , lowercase_ ) # add QFormer tokenizer lowercase_ : Optional[int] = qformer_tokenizer def __call__( self : List[Any] , lowercase_ : ImageInput = None , lowercase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase_ : bool = True , lowercase_ : Union[bool, str, PaddingStrategy] = False , lowercase_ : Union[bool, str, TruncationStrategy] = None , lowercase_ : Optional[int] = None , lowercase_ : int = 0 , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = True , lowercase_ : Optional[Union[str, TensorType]] = None , **lowercase_ : Dict , ): if images is None and text is None: raise ValueError("""You have to specify at least images or text.""" ) lowercase_ : List[str] = BatchFeature() if text is not None: lowercase_ : Optional[Any] = self.tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) encoding.update(lowercase_ ) lowercase_ : Tuple = self.qformer_tokenizer( text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) lowercase_ : List[Any] = qformer_text_encoding.pop("""input_ids""" ) lowercase_ : List[Any] = qformer_text_encoding.pop("""attention_mask""" ) if images is not None: lowercase_ : str = self.image_processor(lowercase_ , return_tensors=lowercase_ ) encoding.update(lowercase_ ) return encoding def SCREAMING_SNAKE_CASE_ ( self : List[str] , *lowercase_ : int , **lowercase_ : Any ): return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : Optional[Any] ): return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Tuple = self.tokenizer.model_input_names lowercase_ : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[str] , **lowercase_ : Optional[int] ): if os.path.isfile(lowercase_ ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) lowercase_ : List[Any] = os.path.join(lowercase_ , """qformer_tokenizer""" ) self.qformer_tokenizer.save_pretrained(lowercase_ ) return super().save_pretrained(lowercase_ , **lowercase_ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , lowercase_ : Any , **lowercase_ : str ): lowercase_ : Tuple = AutoTokenizer.from_pretrained(lowercase_ , subfolder="""qformer_tokenizer""" ) lowercase_ : List[Any] = cls._get_arguments_from_pretrained(lowercase_ , **lowercase_ ) args.append(lowercase_ ) return cls(*lowercase_ )
21
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _lowercase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( _UpperCAmelCase): def __init__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str ): super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : List[str] , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ): if audio_length_in_s is None: lowercase_ : List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate lowercase_ : Dict = audio_length_in_s * self.unet.config.sample_rate lowercase_ : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowercase_ : List[Any] = int(lowercase_ ) if sample_size % down_scale_factor != 0: lowercase_ : int = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) lowercase_ : Any = int(lowercase_ ) lowercase_ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowercase_ : List[str] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowercase_ : Any = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) # set step values self.scheduler.set_timesteps(lowercase_ , device=audio.device ) lowercase_ : Optional[Any] = self.scheduler.timesteps.to(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase_ : Dict = self.unet(lowercase_ , lowercase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowercase_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowercase_ : str = audio.clamp(-1 , 1 ).float().cpu().numpy() lowercase_ : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase_ )
21
1
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Optional[int] = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''encodec''' def __init__( self : Optional[int] , lowercase_ : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase_ : Tuple=24000 , lowercase_ : str=1 , lowercase_ : Optional[Any]=False , lowercase_ : Optional[int]=None , lowercase_ : Union[str, Any]=None , lowercase_ : str=128 , lowercase_ : Tuple=32 , lowercase_ : Dict=1 , lowercase_ : Optional[Any]=[8, 5, 4, 2] , lowercase_ : Optional[int]="weight_norm" , lowercase_ : Tuple=7 , lowercase_ : Union[str, Any]=7 , lowercase_ : Dict=3 , lowercase_ : Union[str, Any]=2 , lowercase_ : List[Any]=True , lowercase_ : List[Any]="reflect" , lowercase_ : str=2 , lowercase_ : Any=2 , lowercase_ : Tuple=1.0 , lowercase_ : Dict=1024 , lowercase_ : List[Any]=None , lowercase_ : Dict=True , **lowercase_ : str , ): lowercase_ : Union[str, Any] = target_bandwidths lowercase_ : Optional[int] = sampling_rate lowercase_ : Union[str, Any] = audio_channels lowercase_ : str = normalize lowercase_ : Dict = chunk_length_s lowercase_ : Optional[int] = overlap lowercase_ : Any = hidden_size lowercase_ : List[Any] = num_filters lowercase_ : Tuple = num_residual_layers lowercase_ : List[Any] = upsampling_ratios lowercase_ : List[Any] = norm_type lowercase_ : List[str] = kernel_size lowercase_ : Tuple = last_kernel_size lowercase_ : Optional[Any] = residual_kernel_size lowercase_ : Any = dilation_growth_rate lowercase_ : Optional[int] = use_causal_conv lowercase_ : Optional[int] = pad_mode lowercase_ : str = compress lowercase_ : Any = num_lstm_layers lowercase_ : List[str] = trim_right_ratio lowercase_ : Optional[int] = codebook_size lowercase_ : Optional[int] = codebook_dim if codebook_dim is not None else hidden_size lowercase_ : List[Any] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**lowercase_ ) @property def SCREAMING_SNAKE_CASE_ ( self : str ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def SCREAMING_SNAKE_CASE_ ( self : str ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Union[str, Any] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
21
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _lowercase : Union[str, Any] = "src/transformers" _lowercase : str = "docs/source/en" _lowercase : Union[str, Any] = "." def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int: with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ : Union[str, Any] = f.readlines() # Find the start prompt. lowercase_ : Optional[Any] = 0 while not lines[start_index].startswith(UpperCAmelCase__ ): start_index += 1 start_index += 1 lowercase_ : int = start_index while not lines[end_index].startswith(UpperCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. _lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any: lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ ) return [m.group(0 ) for m in matches] def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]: lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ ) lowercase_ : List[str] = (width - text_length) // 2 lowercase_ : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase ( ) -> Any: lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase_ : Any = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = None if attr_name.endswith("""Tokenizer""" ): lowercase_ : Optional[int] = slow_tokenizers lowercase_ : Union[str, Any] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowercase_ : Optional[Any] = fast_tokenizers lowercase_ : Dict = attr_name[:-13] elif _re_tf_models.match(UpperCAmelCase__ ) is not None: lowercase_ : str = tf_models lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0] elif _re_flax_models.match(UpperCAmelCase__ ) is not None: lowercase_ : List[str] = flax_models lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0] elif _re_pt_models.match(UpperCAmelCase__ ) is not None: lowercase_ : Tuple = pt_models lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): lowercase_ : int = True break # Try again after removing the last word in the name lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] ) # Let's build that table! lowercase_ : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns] lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowercase_ : int = {True: """✅""", False: """❌"""} for name in model_names: lowercase_ : str = model_name_to_prefix[name] lowercase_ : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n" return table def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str: lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = _find_text_in_file( filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowercase_ : Dict = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowercase : Optional[Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
21
1
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : List[Any] ): lowercase_ : int = 3 lowercase_ : Tuple = 250 lowercase_ : Union[str, Any] = ids_tensor((batch_size, length) , lowercase_ ) lowercase_ : str = torch.ones((batch_size, length) , device=lowercase_ , dtype=torch.float ) / length return input_ids, scores def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ , lowercase_ : str = self._get_tensors(5 ) lowercase_ : int = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) lowercase_ , lowercase_ : Any = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) lowercase_ , lowercase_ : int = self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Any = MaxLengthCriteria(max_length=10 ) lowercase_ , lowercase_ : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) lowercase_ , lowercase_ : str = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) lowercase_ , lowercase_ : Dict = self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Tuple = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) lowercase_ , lowercase_ : str = self._get_tensors(5 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) lowercase_ , lowercase_ : Dict = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) lowercase_ , lowercase_ : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) lowercase_ : List[str] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ , lowercase_ : Tuple = self._get_tensors(5 ) lowercase_ : List[str] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) lowercase_ : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowercase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) lowercase_ : Dict = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowercase_ ) , 1 )
21
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __magic_name__ ( ctypes.Structure): # _fields is a specific attr expected by ctypes UpperCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def lowerCamelCase ( ) -> List[Any]: if os.name == "nt": lowercase_ : List[Any] = CursorInfo() lowercase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def lowerCamelCase ( ) -> str: if os.name == "nt": lowercase_ : int = CursorInfo() lowercase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : Optional[int] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def lowerCamelCase ( ) -> Any: try: hide_cursor() yield finally: show_cursor()
21
1
'''simple docstring''' import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def lowerCamelCase ( UpperCAmelCase__ : Any="" ) -> str: lowercase_ : Optional[int] = tempfile.mkdtemp() return os.path.join(UpperCAmelCase__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Dict = torch.rand(12 , dtype=torch.floataa ) - 0.5 lowercase_ : Optional[Any] = AgentAudio(lowercase_ ) lowercase_ : List[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase_ , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowercase_ ) ) # Ensure that the file contains the same value as the original tensor lowercase_ , lowercase_ : Tuple = sf.read(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , torch.tensor(lowercase_ ) , atol=1E-4 ) ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Any = torch.rand(12 , dtype=torch.floataa ) - 0.5 lowercase_ : Dict = get_new_path(suffix=""".wav""" ) sf.write(lowercase_ , lowercase_ , 16000 ) lowercase_ : Optional[Any] = AgentAudio(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , lowercase_ ) @require_vision @require_torch class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : int = torch.randint(0 , 256 , (64, 64, 3) ) lowercase_ : int = AgentImage(lowercase_ ) lowercase_ : List[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase_ , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Dict = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" lowercase_ : Optional[Any] = Image.open(lowercase_ ) lowercase_ : Union[str, Any] = AgentImage(lowercase_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Tuple = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" lowercase_ : Dict = Image.open(lowercase_ ) lowercase_ : Dict = AgentImage(lowercase_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_ ) ) class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : List[str] = """Hey!""" lowercase_ : Any = AgentText(lowercase_ ) self.assertEqual(lowercase_ , agent_type.to_string() ) self.assertEqual(lowercase_ , agent_type.to_raw() ) self.assertEqual(lowercase_ , lowercase_ )
21
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowercase : int = logging.get_logger(__name__) @dataclass class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : Optional[Any] , **lowercase_ : int ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase_ : Optional[int] = deprecated_arg[3:] setattr(self , lowercase_ , not kwargs.pop(lowercase_ ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase_ : Tuple = kwargs.pop("""torchscript""" , self.torchscript ) lowercase_ : List[Any] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) lowercase_ : List[Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**lowercase_ ) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Trace the models using torchscript'''}) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''}) UpperCamelCase__ = field( default='''O1''', metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) }, ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: lowercase_ : Optional[Any] = torch.device("""cpu""" ) lowercase_ : Tuple = 0 elif is_torch_tpu_available(): lowercase_ : Optional[int] = xm.xla_device() lowercase_ : str = 0 else: lowercase_ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) lowercase_ : str = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE_ ( self : int ): requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE_ ( self : int ): return self.n_gpu > 0
21
1
'''simple docstring''' import re from filelock import FileLock try: import nltk _lowercase : Any = True except (ImportError, ModuleNotFoundError): _lowercase : Union[str, Any] = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def lowerCamelCase ( UpperCAmelCase__ : str ) -> str: re.sub("""<n>""" , """""" , UpperCAmelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCAmelCase__ ) )
21
'''simple docstring''' from __future__ import annotations from typing import Any def lowerCamelCase ( UpperCAmelCase__ : list ) -> int: if not postfix_notation: return 0 lowercase_ : Any = {"""+""", """-""", """*""", """/"""} lowercase_ : list[Any] = [] for token in postfix_notation: if token in operations: lowercase_ , lowercase_ : Dict = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
21
1
'''simple docstring''' from __future__ import annotations import bisect def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = -1 ) -> int: if hi < 0: lowercase_ : int = len(UpperCAmelCase__ ) while lo < hi: lowercase_ : List[str] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: lowercase_ : Optional[Any] = mid + 1 else: lowercase_ : Dict = mid return lo def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = -1 ) -> int: if hi < 0: lowercase_ : Union[str, Any] = len(UpperCAmelCase__ ) while lo < hi: lowercase_ : Dict = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: lowercase_ : List[Any] = mid + 1 else: lowercase_ : Union[str, Any] = mid return lo def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = -1 ) -> None: sorted_collection.insert(bisect_left(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = -1 ) -> None: sorted_collection.insert(bisect_right(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int ) -> int | None: lowercase_ : Optional[int] = 0 lowercase_ : Optional[Any] = len(UpperCAmelCase__ ) - 1 while left <= right: lowercase_ : List[str] = left + (right - left) // 2 lowercase_ : Optional[int] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: lowercase_ : Union[str, Any] = midpoint - 1 else: lowercase_ : Optional[Any] = midpoint + 1 return None def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int ) -> int | None: lowercase_ : Optional[Any] = bisect.bisect_left(UpperCAmelCase__ , UpperCAmelCase__ ) if index != len(UpperCAmelCase__ ) and sorted_collection[index] == item: return index return None def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int | None: if right < left: return None lowercase_ : Any = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , midpoint - 1 ) else: return binary_search_by_recursion(UpperCAmelCase__ , UpperCAmelCase__ , midpoint + 1 , UpperCAmelCase__ ) if __name__ == "__main__": _lowercase : List[Any] = input("Enter numbers separated by comma:\n").strip() _lowercase : Optional[Any] = sorted(int(item) for item in user_input.split(",")) _lowercase : str = int(input("Enter a single number to be found in the list:\n")) _lowercase : List[Any] = binary_search(collection, target) if result is None: print(f"""{target} was not found in {collection}.""") else: print(f"""{target} was found at position {result} in {collection}.""")
21
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase : List[Any] = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : Union[tf.Tensor, np.ndarray] ) -> List[int]: if isinstance(UpperCAmelCase__ , np.ndarray ): return list(tensor.shape ) lowercase_ : Tuple = tf.shape(UpperCAmelCase__ ) if tensor.shape == tf.TensorShape(UpperCAmelCase__ ): return dynamic lowercase_ : Dict = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase__ )] def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[str] = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCAmelCase__ , name=UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=1e-5 , UpperCAmelCase__ : List[str]=-1 ) -> List[str]: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized lowercase_ , lowercase_ : List[str] = tf.nn.moments(UpperCAmelCase__ , axes=[axis] , keepdims=UpperCAmelCase__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase_ : List[Any] = [1] * inputs.shape.rank lowercase_ : List[str] = shape_list(UpperCAmelCase__ )[axis] lowercase_ : List[str] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : List[Any] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) # Compute layer normalization using the batch_normalization # function. lowercase_ : str = tf.nn.batch_normalization( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , offset=UpperCAmelCase__ , scale=UpperCAmelCase__ , variance_epsilon=UpperCAmelCase__ , ) return outputs def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Any=-1 ) -> Dict: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase_ : List[Any] = tf.shape(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase_ : Dict = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor ) -> tf.Tensor: if not isinstance(UpperCAmelCase__ , tf.Tensor ): lowercase_ : List[Any] = tf.convert_to_tensor(UpperCAmelCase__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase_ : Any = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase_ : List[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase_ : Optional[Any] = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : int , UpperCAmelCase__ : str = "input_ids" ) -> None: tf.debugging.assert_less( UpperCAmelCase__ , tf.cast(UpperCAmelCase__ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase__ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> Any: lowercase_ : int = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase_ : Optional[Any] = [x for x in data if len(UpperCAmelCase__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) lowercase_ : Any = np.asarray(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = 1 lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = chunk_data else: lowercase_ : Any = data def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] ) -> str: if name in group.attrs: lowercase_ : Optional[Any] = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs[name]] else: lowercase_ : int = [] lowercase_ : Optional[int] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> Any: def _expand_single_ad_tensor(UpperCAmelCase__ : Optional[Any] ): if isinstance(UpperCAmelCase__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase__ )
21
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _lowercase : List[str] = None _lowercase : int = logging.get_logger(__name__) _lowercase : List[str] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _lowercase : Dict = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", }, "tokenizer_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json", }, } _lowercase : Optional[Any] = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } _lowercase : Tuple = "▁" class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = AlbertTokenizer def __init__( self : Any , lowercase_ : int=None , lowercase_ : str=None , lowercase_ : Optional[int]=True , lowercase_ : Dict=True , lowercase_ : Union[str, Any]=False , lowercase_ : Optional[Any]="[CLS]" , lowercase_ : Any="[SEP]" , lowercase_ : List[str]="<unk>" , lowercase_ : Dict="[SEP]" , lowercase_ : Union[str, Any]="<pad>" , lowercase_ : List[str]="[CLS]" , lowercase_ : str="[MASK]" , **lowercase_ : Optional[Any] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowercase_ : Optional[int] = ( AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ , normalized=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token ) super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , ) lowercase_ : Union[str, Any] = do_lower_case lowercase_ : List[str] = remove_space lowercase_ : str = keep_accents lowercase_ : str = vocab_file lowercase_ : int = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): lowercase_ : List[str] = [self.sep_token_id] lowercase_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): lowercase_ : Tuple = [self.sep_token_id] lowercase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str , lowercase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowercase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : Any = os.path.join( lowercase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
21
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: lowercase_ : Any = prime_factors(UpperCAmelCase__ ) if is_square_free(UpperCAmelCase__ ): return -1 if len(UpperCAmelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
21
1
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _lowercase : Union[str, Any] = "src/transformers" _lowercase : str = "docs/source/en" _lowercase : Union[str, Any] = "." def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int: with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ : Union[str, Any] = f.readlines() # Find the start prompt. lowercase_ : Optional[Any] = 0 while not lines[start_index].startswith(UpperCAmelCase__ ): start_index += 1 start_index += 1 lowercase_ : int = start_index while not lines[end_index].startswith(UpperCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. _lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any: lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ ) return [m.group(0 ) for m in matches] def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]: lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ ) lowercase_ : List[str] = (width - text_length) // 2 lowercase_ : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase ( ) -> Any: lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase_ : Any = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = None if attr_name.endswith("""Tokenizer""" ): lowercase_ : Optional[int] = slow_tokenizers lowercase_ : Union[str, Any] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowercase_ : Optional[Any] = fast_tokenizers lowercase_ : Dict = attr_name[:-13] elif _re_tf_models.match(UpperCAmelCase__ ) is not None: lowercase_ : str = tf_models lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0] elif _re_flax_models.match(UpperCAmelCase__ ) is not None: lowercase_ : List[str] = flax_models lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0] elif _re_pt_models.match(UpperCAmelCase__ ) is not None: lowercase_ : Tuple = pt_models lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): lowercase_ : int = True break # Try again after removing the last word in the name lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] ) # Let's build that table! lowercase_ : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns] lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowercase_ : int = {True: """✅""", False: """❌"""} for name in model_names: lowercase_ : str = model_name_to_prefix[name] lowercase_ : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n" return table def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str: lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = _find_text_in_file( filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowercase_ : Dict = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowercase : Optional[Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
21
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int = 1000000 ) -> int: lowercase_ : List[Any] = limit + 1 lowercase_ : Optional[Any] = [0] * limit for first_term in range(1 , UpperCAmelCase__ ): for n in range(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : List[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowercase_ : List[Any] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
21
1
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __magic_name__ ( _UpperCAmelCase): def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase_ , """width_multiplier""" ) ) class __magic_name__ : def __init__( self : Optional[Any] , lowercase_ : Tuple , lowercase_ : List[str]=13 , lowercase_ : Optional[int]=64 , lowercase_ : int=2 , lowercase_ : Optional[int]=3 , lowercase_ : Dict="swish" , lowercase_ : Union[str, Any]=3 , lowercase_ : int=32 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.02 , lowercase_ : List[str]=True , lowercase_ : List[str]=True , lowercase_ : Optional[Any]=10 , lowercase_ : str=None , lowercase_ : Union[str, Any]=0.25 , lowercase_ : str=0.0 , lowercase_ : int=0.0 , ): lowercase_ : Optional[int] = parent lowercase_ : List[str] = batch_size lowercase_ : str = image_size lowercase_ : Dict = patch_size lowercase_ : int = num_channels lowercase_ : str = make_divisible(512 * width_multiplier , divisor=8 ) lowercase_ : Tuple = hidden_act lowercase_ : Union[str, Any] = conv_kernel_size lowercase_ : Optional[int] = output_stride lowercase_ : List[str] = classifier_dropout_prob lowercase_ : Optional[Any] = use_labels lowercase_ : List[Any] = is_training lowercase_ : List[Any] = num_labels lowercase_ : int = initializer_range lowercase_ : List[Any] = scope lowercase_ : List[str] = width_multiplier lowercase_ : Dict = ffn_dropout lowercase_ : Any = attn_dropout def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : List[str] = None lowercase_ : int = None if self.use_labels: lowercase_ : Any = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase_ : Any = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Optional[int] ): lowercase_ : Optional[int] = MobileViTVaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Any = model(lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : int , lowercase_ : Optional[Any] ): lowercase_ : Dict = self.num_labels lowercase_ : Dict = MobileViTVaForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Any = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : str , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Any ): lowercase_ : Any = self.num_labels lowercase_ : Dict = MobileViTVaForSemanticSegmentation(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Optional[int] = model(lowercase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowercase_ : Optional[Any] = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Optional[Any] = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[int] = config_and_inputs lowercase_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase__ = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[int] = MobileViTVaModelTester(self ) lowercase_ : List[str] = MobileViTVaConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE_ ( self : int ): pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def SCREAMING_SNAKE_CASE_ ( self : str ): pass def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ , lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Tuple = model_class(lowercase_ ) lowercase_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Union[str, Any] = [*signature.parameters.keys()] lowercase_ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): def check_hidden_states_output(lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Any ): lowercase_ : int = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowercase_ : Tuple = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) lowercase_ : List[str] = outputs.hidden_states lowercase_ : List[Any] = 5 self.assertEqual(len(lowercase_ ) , lowercase_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowercase_ : Optional[int] = 2 for i in range(len(lowercase_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowercase_ , lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Dict = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : int = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Tuple = MobileViTVaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def lowerCamelCase ( ) -> Union[str, Any]: lowercase_ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Dict = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( lowercase_ ) lowercase_ : List[Any] = self.default_image_processor lowercase_ : Any = prepare_img() lowercase_ : Tuple = image_processor(images=lowercase_ , return_tensors="""pt""" ).to(lowercase_ ) # forward pass with torch.no_grad(): lowercase_ : Optional[Any] = model(**lowercase_ ) # verify the logits lowercase_ : int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) lowercase_ : int = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Dict = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowercase_ : Dict = model.to(lowercase_ ) lowercase_ : Optional[Any] = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowercase_ : Dict = prepare_img() lowercase_ : Union[str, Any] = image_processor(images=lowercase_ , return_tensors="""pt""" ).to(lowercase_ ) # forward pass with torch.no_grad(): lowercase_ : List[Any] = model(**lowercase_ ) lowercase_ : Optional[int] = outputs.logits # verify the logits lowercase_ : List[str] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowercase_ ) lowercase_ : Any = torch.tensor( [ [[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]], [[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]], [[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]], ] , device=lowercase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowercase_ : Optional[Any] = model.to(lowercase_ ) lowercase_ : Optional[Any] = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowercase_ : str = prepare_img() lowercase_ : str = image_processor(images=lowercase_ , return_tensors="""pt""" ).to(lowercase_ ) # forward pass with torch.no_grad(): lowercase_ : Any = model(**lowercase_ ) lowercase_ : str = outputs.logits.detach().cpu() lowercase_ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=lowercase_ , target_sizes=[(50, 60)] ) lowercase_ : Union[str, Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowercase_ ) lowercase_ : str = image_processor.post_process_semantic_segmentation(outputs=lowercase_ ) lowercase_ : Tuple = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowercase_ )
21
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __magic_name__ ( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str ): lowercase_ : Union[str, Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , config_name=lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = AutoConfig.from_pretrained("""gpt2""" ) lowercase_ : List[Any] = GenerationConfig.from_model_config(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowercase_ , lowercase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = GenerationConfig() lowercase_ : int = { """max_new_tokens""": 1024, """foo""": """bar""", } lowercase_ : List[str] = copy.deepcopy(lowercase_ ) lowercase_ : Tuple = generation_config.update(**lowercase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(lowercase_ , lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowercase_ , {"""foo""": """bar"""} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Dict = GenerationConfig() lowercase_ : int = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) lowercase_ : List[str] = GenerationConfig.from_model_config(lowercase_ ) assert not hasattr(lowercase_ , """foo""" ) # no new kwargs should be initialized if from config def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[int] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , lowercase_ ) self.assertEqual(default_config.num_beams , 1 ) lowercase_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , lowercase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ ) lowercase_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __magic_name__ ( unittest.TestCase): @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any ): lowercase_ : int = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) lowercase_ : List[Any] = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""test-generation-config""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) lowercase_ : Optional[Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
21
1
'''simple docstring''' import numpy as np def lowerCamelCase ( UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float = 1e-12 , UpperCAmelCase__ : int = 100 , ) -> tuple[float, np.ndarray]: assert np.shape(_UpperCAmelCase )[0] == np.shape(_UpperCAmelCase )[1] # Ensure proper dimensionality. assert np.shape(_UpperCAmelCase )[0] == np.shape(_UpperCAmelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(_UpperCAmelCase ) == np.iscomplexobj(_UpperCAmelCase ) lowercase_ : Dict = np.iscomplexobj(_UpperCAmelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(_UpperCAmelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. lowercase_ : Union[str, Any] = False lowercase_ : Dict = 0 lowercase_ : Any = 0 lowercase_ : List[str] = 1e12 while not convergence: # Multiple matrix by the vector. lowercase_ : Union[str, Any] = np.dot(_UpperCAmelCase , _UpperCAmelCase ) # Normalize the resulting output vector. lowercase_ : int = w / np.linalg.norm(_UpperCAmelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) lowercase_ : Dict = vector.conj().T if is_complex else vector.T lowercase_ : Optional[Any] = np.dot(_UpperCAmelCase , np.dot(_UpperCAmelCase , _UpperCAmelCase ) ) # Check convergence. lowercase_ : Any = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: lowercase_ : str = True lowercase_ : List[Any] = lambda_ if is_complex: lowercase_ : List[Any] = np.real(lambda_ ) return lambda_, vector def lowerCamelCase ( ) -> None: lowercase_ : Optional[int] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) lowercase_ : List[Any] = np.array([41, 4, 20] ) lowercase_ : str = real_input_matrix.astype(np.complexaaa ) lowercase_ : Optional[int] = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T lowercase_ : int = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": lowercase_ : List[Any] = real_input_matrix lowercase_ : Optional[int] = real_vector elif problem_type == "complex": lowercase_ : Dict = complex_input_matrix lowercase_ : Dict = complex_vector # Our implementation. lowercase_ : Any = power_iteration(_UpperCAmelCase , _UpperCAmelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). lowercase_ : List[Any] = np.linalg.eigh(_UpperCAmelCase ) # Last eigenvalue is the maximum one. lowercase_ : str = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. lowercase_ : str = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(_UpperCAmelCase ) - np.abs(_UpperCAmelCase ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
350
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] ) -> List[Any]: # Initialise PyTorch model lowercase_ : List[str] = FunnelConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) lowercase_ : Dict = FunnelBaseModel(UpperCAmelCase__ ) if base_model else FunnelModel(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase__ ) if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _lowercase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
21
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Any = """laion/clap-htsat-unfused""" lowercase_ : Optional[Any] = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE_ ( self : Tuple , **lowercase_ : int ): return RobertaTokenizer.from_pretrained(self.checkpoint , **__A ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , **lowercase_ : List[Any] ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **__A ) def SCREAMING_SNAKE_CASE_ ( self : str ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : Optional[Any] = self.get_feature_extractor() lowercase_ : Optional[int] = ClapProcessor(tokenizer=__A , feature_extractor=__A ) processor.save_pretrained(self.tmpdirname ) lowercase_ : Optional[Any] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __A ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Dict = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) lowercase_ : str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase_ : Dict = self.get_feature_extractor(do_normalize=__A , padding_value=1.0 ) lowercase_ : Union[str, Any] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __A ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Dict = self.get_feature_extractor() lowercase_ : str = self.get_tokenizer() lowercase_ : List[Any] = ClapProcessor(tokenizer=__A , feature_extractor=__A ) lowercase_ : Optional[Any] = floats_list((3, 1000) ) lowercase_ : Optional[Any] = feature_extractor(__A , return_tensors="""np""" ) lowercase_ : str = processor(audios=__A , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[Any] = self.get_feature_extractor() lowercase_ : Any = self.get_tokenizer() lowercase_ : Optional[int] = ClapProcessor(tokenizer=__A , feature_extractor=__A ) lowercase_ : List[Any] = """This is a test string""" lowercase_ : Dict = processor(text=__A ) lowercase_ : List[str] = tokenizer(__A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : int = self.get_feature_extractor() lowercase_ : Tuple = self.get_tokenizer() lowercase_ : Optional[Any] = ClapProcessor(tokenizer=__A , feature_extractor=__A ) lowercase_ : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase_ : Tuple = processor.batch_decode(__A ) lowercase_ : Optional[Any] = tokenizer.batch_decode(__A ) self.assertListEqual(__A , __A ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Optional[Any] = self.get_feature_extractor() lowercase_ : Any = self.get_tokenizer() lowercase_ : Optional[int] = ClapProcessor(tokenizer=__A , feature_extractor=__A ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
351
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _lowercase : Optional[List[str]] = None _lowercase : str = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _lowercase : Optional[int] = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class __magic_name__ : UpperCamelCase__ = True UpperCamelCase__ = None # Automatically constructed UpperCamelCase__ = "PIL.Image.Image" UpperCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()}) UpperCamelCase__ = field(default='''Image''', init=_UpperCAmelCase, repr=_UpperCAmelCase) def __call__( self : Tuple ): return self.pa_type def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(lowercase_ , lowercase_ ): lowercase_ : int = np.array(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): return {"path": value, "bytes": None} elif isinstance(lowercase_ , lowercase_ ): return {"path": None, "bytes": value} elif isinstance(lowercase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowercase_ ) elif isinstance(lowercase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowercase_ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : dict , lowercase_ : List[str]=None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: lowercase_ : Union[str, Any] = {} lowercase_ , lowercase_ : List[Any] = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowercase_ ): lowercase_ : int = PIL.Image.open(lowercase_ ) else: lowercase_ : str = path.split("""::""" )[-1] try: lowercase_ : Any = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""] lowercase_ : Optional[Any] = token_per_repo_id.get(lowercase_ ) except ValueError: lowercase_ : str = None with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f: lowercase_ : Dict = BytesIO(f.read() ) lowercase_ : Optional[Any] = PIL.Image.open(bytes_ ) else: lowercase_ : Any = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def SCREAMING_SNAKE_CASE_ ( self : int ): from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) lowercase_ : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Any = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowercase_ : Optional[int] = storage.field("""bytes""" ) else: lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowercase_ : Dict = storage.field("""path""" ) else: lowercase_ : int = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowercase_ : Optional[int] = pa.array( [encode_np_array(np.array(lowercase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowercase_ : Tuple = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Tuple = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(lowercase_ : Optional[Any] ): with xopen(lowercase_ , """rb""" ) as f: lowercase_ : int = f.read() return bytes_ lowercase_ : Optional[Any] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase_ : Any = pa.array( [os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def lowerCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowercase_ : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> bytes: lowercase_ : Tuple = BytesIO() if image.format in list_image_compression_formats(): lowercase_ : int = image.format else: lowercase_ : int = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(UpperCAmelCase__ , format=UpperCAmelCase__ ) return buffer.getvalue() def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> dict: if hasattr(UpperCAmelCase__ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : np.ndarray ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) lowercase_ : List[Any] = array.dtype lowercase_ : int = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER lowercase_ : Dict = dtype.kind lowercase_ : List[Any] = dtype.itemsize lowercase_ : Any = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowercase_ : int = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowercase_ : str = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowercase_ : str = dtype_byteorder + dtype_kind + str(UpperCAmelCase__ ) lowercase_ : Optional[Any] = np.dtype(UpperCAmelCase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) lowercase_ : Optional[int] = PIL.Image.fromarray(array.astype(UpperCAmelCase__ ) ) return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: lowercase_ , lowercase_ : Dict = first_non_null_value(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(UpperCAmelCase__ , np.ndarray ): lowercase_ : Union[str, Any] = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowercase_ : int = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] else: return objs else: return objs
21
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _lowercase : Union[str, Any] = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
352
'''simple docstring''' import colorsys from PIL import Image # type: ignore def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : float , UpperCAmelCase__ : int ) -> float: lowercase_ : List[Any] = x lowercase_ : Any = y for step in range(UpperCAmelCase__ ): # noqa: B007 lowercase_ : Dict = a * a - b * b + x lowercase_ : str = 2 * a * b + y lowercase_ : Optional[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCAmelCase__ , 1 , 1 ) ) def lowerCamelCase ( UpperCAmelCase__ : int = 800 , UpperCAmelCase__ : int = 600 , UpperCAmelCase__ : float = -0.6 , UpperCAmelCase__ : float = 0 , UpperCAmelCase__ : float = 3.2 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : bool = True , ) -> Image.Image: lowercase_ : Union[str, Any] = Image.new("""RGB""" , (image_width, image_height) ) lowercase_ : Tuple = img.load() # loop through the image-coordinates for image_x in range(UpperCAmelCase__ ): for image_y in range(UpperCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates lowercase_ : Any = figure_width / image_width * image_height lowercase_ : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width lowercase_ : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height lowercase_ : str = get_distance(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowercase_ : List[Any] = get_color_coded_rgb(UpperCAmelCase__ ) else: lowercase_ : Dict = get_black_and_white_rgb(UpperCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _lowercase : List[str] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
21
0
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __magic_name__ ( unittest.TestCase): @property def SCREAMING_SNAKE_CASE_ ( self : Any ): torch.manual_seed(0 ) lowercase_ : Dict = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): torch.manual_seed(0 ) lowercase_ : int = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): torch.manual_seed(0 ) lowercase_ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Tuple = self.dummy_uncond_unet lowercase_ : str = DDIMScheduler() lowercase_ : Optional[Any] = self.dummy_vq_model lowercase_ : Tuple = LDMPipeline(unet=__snake_case , vqvae=__snake_case , scheduler=__snake_case ) ldm.to(__snake_case ) ldm.set_progress_bar_config(disable=__snake_case ) lowercase_ : List[Any] = torch.manual_seed(0 ) lowercase_ : List[str] = ldm(generator=__snake_case , num_inference_steps=2 , output_type="""numpy""" ).images lowercase_ : Tuple = torch.manual_seed(0 ) lowercase_ : Any = ldm(generator=__snake_case , num_inference_steps=2 , output_type="""numpy""" , return_dict=__snake_case )[0] lowercase_ : int = image[0, -3:, -3:, -1] lowercase_ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase_ : Optional[int] = np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] ) lowercase_ : Optional[Any] = 1E-2 if torch_device != """mps""" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Optional[Any] = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(__snake_case ) ldm.set_progress_bar_config(disable=__snake_case ) lowercase_ : Union[str, Any] = torch.manual_seed(0 ) lowercase_ : Tuple = ldm(generator=__snake_case , num_inference_steps=5 , output_type="""numpy""" ).images lowercase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowercase_ : List[str] = np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] ) lowercase_ : int = 1E-2 if torch_device != """mps""" else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
353
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = DistilBertTokenizer UpperCamelCase__ = DistilBertTokenizerFast UpperCamelCase__ = True @slow def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) lowercase_ : str = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ ) lowercase_ : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ ) lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
21
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Dict = logging.get_logger(__name__) _lowercase : Optional[int] = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class __magic_name__ ( a__): UpperCamelCase__ = '''dpr''' def __init__( self : int , lowercase_ : int=30522 , lowercase_ : Optional[int]=768 , lowercase_ : List[str]=12 , lowercase_ : List[Any]=12 , lowercase_ : Union[str, Any]=3072 , lowercase_ : int="gelu" , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Dict=512 , lowercase_ : int=2 , lowercase_ : Tuple=0.02 , lowercase_ : Tuple=1E-12 , lowercase_ : Dict=0 , lowercase_ : List[str]="absolute" , lowercase_ : int = 0 , **lowercase_ : int , ): super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase ) lowercase_ : Union[str, Any] = vocab_size lowercase_ : Tuple = hidden_size lowercase_ : Tuple = num_hidden_layers lowercase_ : Union[str, Any] = num_attention_heads lowercase_ : List[Any] = hidden_act lowercase_ : Union[str, Any] = intermediate_size lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : Any = attention_probs_dropout_prob lowercase_ : Dict = max_position_embeddings lowercase_ : int = type_vocab_size lowercase_ : Optional[Any] = initializer_range lowercase_ : Union[str, Any] = layer_norm_eps lowercase_ : Dict = projection_dim lowercase_ : Any = position_embedding_type
354
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowercase : Union[str, Any] = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : str ) -> Optional[Any]: lowercase_ : List[Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowercase_ : Optional[int] = '' lowercase_ : List[str] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowercase_ : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i lowercase_ : Optional[Any] = [1 for i in range(len(__a ) )] # for each character in new_string find corresponding palindromic string lowercase_ : Dict = 0 for j in range(len(__a ) ): lowercase_ : Dict = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowercase_ : Optional[int] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowercase_ : str = j - k + 1 # noqa: E741 lowercase_ : Any = j + k - 1 # update max_length and start position if max_length < length[j]: lowercase_ : Union[str, Any] = length[j] lowercase_ : List[str] = j # create that string lowercase_ : Tuple = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Union[str, Any] = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _lowercase : Tuple = datasets.load_iris() _lowercase : List[str] = np.array(data["data"]) _lowercase : Union[str, Any] = np.array(data["target"]) _lowercase : int = data["""target_names"""] _lowercase : Optional[Any] = train_test_split(X, y) def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple ) -> Tuple: return np.linalg.norm(np.array(__snake_case ) - np.array(__snake_case ) ) def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple=5 ) -> Union[str, Any]: lowercase_ : List[str] = zip(__snake_case , __snake_case ) # List of distances of all points from the point to be classified lowercase_ : Optional[Any] = [] for data_point in data: lowercase_ : Optional[int] = euclidean_distance(data_point[0] , __snake_case ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. lowercase_ : Optional[Any] = [i[1] for i in sorted(__snake_case )[:k]] # Most commonly occurring class among them # is the class into which the point is classified lowercase_ : Tuple = Counter(__snake_case ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
356
'''simple docstring''' import os import numpy import onnx def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ) -> Tuple: lowercase_ : Tuple = a.name lowercase_ : Tuple = b.name lowercase_ : Any = """""" lowercase_ : List[Any] = """""" lowercase_ : List[Any] = a == b lowercase_ : Union[str, Any] = name_a lowercase_ : Optional[Any] = name_b return res def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase__ , UpperCAmelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase__ , UpperCAmelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) -> int: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ) -> List[str]: lowercase_ : int = list(model.graph.initializer ) lowercase_ : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase_ : Optional[Any] = inits[i].name lowercase_ : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int ) -> List[str]: lowercase_ : Dict = os.path.dirname(UpperCAmelCase__ ) lowercase_ : Optional[Any] = os.path.basename(UpperCAmelCase__ ) lowercase_ : str = onnx.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowercase_ : List[Any] = list(model.graph.initializer ) lowercase_ : int = set() lowercase_ : int = {} lowercase_ : str = [] lowercase_ : int = 0 for i in range(len(UpperCAmelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase__ ) dup_set.add(UpperCAmelCase__ ) lowercase_ : Dict = inits[j].data_type lowercase_ : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , UpperCAmelCase__ ) total_reduced_size += mem_size lowercase_ : int = inits[i].name lowercase_ : List[str] = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase__ ) else: lowercase_ : Optional[int] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) lowercase_ : Tuple = sorted(UpperCAmelCase__ ) _remove_dup_initializers_from_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Union[str, Any] = """optimized_""" + model_file_name lowercase_ : Optional[int] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) onnx.save(UpperCAmelCase__ , UpperCAmelCase__ ) return new_model
21
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __magic_name__ : def __init__( self : Union[str, Any] , lowercase_ : int , lowercase_ : List[str]=13 , lowercase_ : Any=7 , lowercase_ : List[Any]=True , lowercase_ : Any=True , lowercase_ : Tuple=True , lowercase_ : Any=True , lowercase_ : int=99 , lowercase_ : Dict=32 , lowercase_ : Optional[int]=2 , lowercase_ : Optional[Any]=4 , lowercase_ : str=37 , lowercase_ : Dict="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[int]=512 , lowercase_ : str=16 , lowercase_ : Union[str, Any]=2 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=3 , lowercase_ : List[str]=4 , lowercase_ : Any=None , ): lowercase_ : Dict = parent lowercase_ : Dict = 13 lowercase_ : List[str] = 7 lowercase_ : Any = True lowercase_ : Tuple = True lowercase_ : List[Any] = True lowercase_ : Any = True lowercase_ : int = 99 lowercase_ : Dict = 384 lowercase_ : Union[str, Any] = 2 lowercase_ : Optional[Any] = 4 lowercase_ : Any = 37 lowercase_ : List[Any] = """gelu""" lowercase_ : Union[str, Any] = 0.1 lowercase_ : Optional[int] = 0.1 lowercase_ : int = 512 lowercase_ : Any = 16 lowercase_ : str = 2 lowercase_ : str = 0.02 lowercase_ : str = 3 lowercase_ : str = 4 lowercase_ : Optional[int] = 128 lowercase_ : List[str] = 2 lowercase_ : Dict = 9 lowercase_ : List[str] = 1 lowercase_ : List[Any] = None def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Optional[Any] = None if self.use_input_mask: lowercase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : List[Any] = None if self.use_token_type_ids: lowercase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ : List[str] = None lowercase_ : Optional[Any] = None lowercase_ : int = None if self.use_labels: lowercase_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : List[str] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_snake_case , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : Any , lowercase_ : Dict , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Tuple ): lowercase_ : List[Any] = TFConvBertModel(config=_snake_case ) lowercase_ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase_ : List[str] = [input_ids, input_mask] lowercase_ : Dict = model(_snake_case ) lowercase_ : str = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : str ): lowercase_ : Union[str, Any] = TFConvBertForMaskedLM(config=_snake_case ) lowercase_ : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase_ : Dict = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : str , lowercase_ : Optional[int] ): lowercase_ : Tuple = self.num_labels lowercase_ : Any = TFConvBertForSequenceClassification(config=_snake_case ) lowercase_ : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase_ : int = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : Tuple ): lowercase_ : Optional[Any] = self.num_choices lowercase_ : Union[str, Any] = TFConvBertForMultipleChoice(config=_snake_case ) lowercase_ : List[str] = tf.tile(tf.expand_dims(_snake_case , 1 ) , (1, self.num_choices, 1) ) lowercase_ : Union[str, Any] = tf.tile(tf.expand_dims(_snake_case , 1 ) , (1, self.num_choices, 1) ) lowercase_ : List[Any] = tf.tile(tf.expand_dims(_snake_case , 1 ) , (1, self.num_choices, 1) ) lowercase_ : int = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowercase_ : Optional[int] = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Any , lowercase_ : str , lowercase_ : List[str] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] ): lowercase_ : str = self.num_labels lowercase_ : Union[str, Any] = TFConvBertForTokenClassification(config=_snake_case ) lowercase_ : Union[str, Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase_ : Union[str, Any] = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Union[str, Any] ): lowercase_ : Optional[int] = TFConvBertForQuestionAnswering(config=_snake_case ) lowercase_ : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase_ : List[str] = model(_snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : str = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Any = config_and_inputs lowercase_ : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : int = TFConvBertModelTester(self ) lowercase_ : Tuple = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Any = True lowercase_ : int = True if hasattr(_snake_case , """use_cache""" ): lowercase_ : List[str] = True lowercase_ : Union[str, Any] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) lowercase_ : Optional[int] = getattr(self.model_tester , """key_length""" , _snake_case ) for model_class in self.all_model_classes: lowercase_ : Any = self._prepare_for_class(_snake_case , _snake_case ) lowercase_ : str = model_class(_snake_case ) lowercase_ : Tuple = len(model(_snake_case ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case , saved_model=_snake_case ) lowercase_ : Tuple = os.path.join(_snake_case , """saved_model""" , """1""" ) lowercase_ : int = tf.keras.models.load_model(_snake_case ) lowercase_ : List[str] = model(_snake_case ) if self.is_encoder_decoder: lowercase_ : Optional[int] = outputs["""encoder_hidden_states"""] lowercase_ : Any = outputs["""encoder_attentions"""] else: lowercase_ : List[str] = outputs["""hidden_states"""] lowercase_ : Dict = outputs["""attentions"""] self.assertEqual(len(_snake_case ) , _snake_case ) lowercase_ : List[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_snake_case ) , _snake_case ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : int = True lowercase_ : Any = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) lowercase_ : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) lowercase_ : Optional[Any] = getattr(self.model_tester , """key_length""" , _snake_case ) lowercase_ : Optional[Any] = getattr(self.model_tester , """key_length""" , _snake_case ) def check_decoder_attentions_output(lowercase_ : List[str] ): lowercase_ : List[str] = len(_snake_case ) self.assertEqual(out_len % 2 , 0 ) lowercase_ : Tuple = outputs.decoder_attentions self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowercase_ : Optional[Any] ): lowercase_ : Union[str, Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowercase_ : str = True lowercase_ : Dict = False lowercase_ : List[Any] = model_class(_snake_case ) lowercase_ : Any = model(self._prepare_for_class(_snake_case , _snake_case ) ) lowercase_ : str = len(_snake_case ) self.assertEqual(config.output_hidden_states , _snake_case ) check_encoder_attentions_output(_snake_case ) if self.is_encoder_decoder: lowercase_ : Optional[int] = model_class(_snake_case ) lowercase_ : List[str] = model(self._prepare_for_class(_snake_case , _snake_case ) ) self.assertEqual(config.output_hidden_states , _snake_case ) check_decoder_attentions_output(_snake_case ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowercase_ : Optional[int] = True lowercase_ : Optional[Any] = model_class(_snake_case ) lowercase_ : Optional[int] = model(self._prepare_for_class(_snake_case , _snake_case ) ) self.assertEqual(config.output_hidden_states , _snake_case ) check_encoder_attentions_output(_snake_case ) # Check attention is always last and order is fine lowercase_ : Optional[int] = True lowercase_ : Optional[Any] = True lowercase_ : Optional[int] = model_class(_snake_case ) lowercase_ : List[str] = model(self._prepare_for_class(_snake_case , _snake_case ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_snake_case ) ) self.assertEqual(model.config.output_hidden_states , _snake_case ) check_encoder_attentions_output(_snake_case ) @require_tf class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : List[Any] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) lowercase_ : List[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase_ : Dict = model(_snake_case )[0] lowercase_ : Optional[Any] = [1, 6, 768] self.assertEqual(output.shape , _snake_case ) lowercase_ : List[str] = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _snake_case , atol=1E-4 )
357
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : Dict , **lowercase_ : List[Any] ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None ): lowercase_ : Optional[Any] = {} lowercase_ : Tuple = {} if prompt is not None: lowercase_ : Tuple = prompt if generate_kwargs is not None: lowercase_ : List[str] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase_ : List[Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase_ : str = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[Any] , lowercase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ : Optional[int] ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[Any] , lowercase_ : Tuple=None ): lowercase_ : List[Any] = load_image(lowercase_ ) if prompt is not None: if not isinstance(lowercase_ , lowercase_ ): raise ValueError( f'''Received an invalid text input, got - {type(lowercase_ )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase_ : List[Any] = self.model.config.model_type if model_type == "git": lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : Union[str, Any] = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_ ).input_ids lowercase_ : int = [self.tokenizer.cls_token_id] + input_ids lowercase_ : List[Any] = torch.tensor(lowercase_ ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase_ : Union[str, Any] = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : List[str] = self.tokenizer(lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: lowercase_ : List[str] = self.image_processor(images=lowercase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase_ : str = None return model_inputs def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Dict , lowercase_ : Optional[Any]=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , lowercase_ ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase_ : Any = None if generate_kwargs is None: lowercase_ : Optional[Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase_ : Dict = model_inputs.pop(self.model.main_input_name ) lowercase_ : Any = self.model.generate(lowercase_ , **lowercase_ , **lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[Any] ): lowercase_ : List[str] = [] for output_ids in model_outputs: lowercase_ : Union[str, Any] = { """generated_text""": self.tokenizer.decode( lowercase_ , skip_special_tokens=lowercase_ , ) } records.append(lowercase_ ) return records
21
0
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] ) -> Optional[Any]: if index == r: for j in range(lowerCamelCase_ ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowercase_ : List[str] = arr[i] combination_util(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , index + 1 , lowerCamelCase_ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict ) -> Any: lowercase_ : List[str] = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , 0 , lowerCamelCase_ , 0 ) if __name__ == "__main__": # Driver code to check the function above _lowercase : List[Any] = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
358
'''simple docstring''' class __magic_name__ : def __init__( self : int , lowercase_ : list ): lowercase_ : Dict = set_counts lowercase_ : List[Any] = max(lowercase_ ) lowercase_ : str = len(lowercase_ ) lowercase_ : str = [1] * num_sets lowercase_ : Dict = list(range(lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : int ): lowercase_ : List[Any] = self.get_parent(lowercase_ ) lowercase_ : Union[str, Any] = self.get_parent(lowercase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : List[str] = 0 lowercase_ : Optional[int] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : int = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : int = 0 lowercase_ : List[Any] = src_parent lowercase_ : List[Any] = self.set_counts[src_parent] lowercase_ : Tuple = max(self.max_set , lowercase_ ) return True def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : int ): if self.parents[disj_set] == disj_set: return disj_set lowercase_ : int = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
21
0
'''simple docstring''' import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets _lowercase : Tuple = """\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } """ _lowercase : Tuple = """\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. """ _lowercase : Union[str, Any] = """ Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for 'cvit-mkb-clsr' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for 'cvit-mkb-clsr' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"precision\": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'precision@10': 1.0} """ def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] ): return float((preds == labels).mean() ) def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict ): lowercase_ : Optional[int] = simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : int = float(fa_score(y_true=UpperCAmelCase__ , y_pred=UpperCAmelCase__ ) ) return { "accuracy": acc, "f1": fa, } def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple ): lowercase_ : Union[str, Any] = np.array(UpperCAmelCase__ ) lowercase_ : Optional[int] = np.array(UpperCAmelCase__ ) lowercase_ : Optional[int] = en_sentvecs.shape[0] # mean centering lowercase_ : Optional[Any] = en_sentvecs - np.mean(UpperCAmelCase__ , axis=0 ) lowercase_ : Dict = in_sentvecs - np.mean(UpperCAmelCase__ , axis=0 ) lowercase_ : List[Any] = cdist(UpperCAmelCase__ , UpperCAmelCase__ , """cosine""" ) lowercase_ : Optional[int] = np.array(range(UpperCAmelCase__ ) ) lowercase_ : Optional[int] = sim.argsort(axis=1 )[:, :10] lowercase_ : List[Any] = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class __magic_name__ ( datasets.Metric): def SCREAMING_SNAKE_CASE_ ( self : int ): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", """ """\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", """ """\"wiki-ner\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" ) if self.config_name != """cvit-mkb-clsr""" else datasets.Sequence(datasets.Value("""float32""" ) ), """references""": datasets.Value("""int64""" ) if self.config_name != """cvit-mkb-clsr""" else datasets.Sequence(datasets.Value("""float32""" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if self.config_name != """cvit-mkb-clsr""" else None , ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] ): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(__lowercase , __lowercase )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(__lowercase , __lowercase ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(__lowercase , __lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", """ """\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", """ """\"wiki-ner\"]""" )
359
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : int , **lowercase_ : Any ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """decord""" ) self.check_model_type(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None ): lowercase_ : Union[str, Any] = {} if frame_sampling_rate is not None: lowercase_ : Any = frame_sampling_rate if num_frames is not None: lowercase_ : Optional[Any] = num_frames lowercase_ : Union[str, Any] = {} if top_k is not None: lowercase_ : Optional[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : str , lowercase_ : Union[str, List[str]] , **lowercase_ : str ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None , lowercase_ : Optional[int]=1 ): if num_frames is None: lowercase_ : List[Any] = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): lowercase_ : Union[str, Any] = BytesIO(requests.get(lowercase_ ).content ) lowercase_ : Optional[Any] = VideoReader(lowercase_ ) videoreader.seek(0 ) lowercase_ : Tuple = 0 lowercase_ : List[Any] = num_frames * frame_sampling_rate - 1 lowercase_ : Optional[int] = np.linspace(lowercase_ , lowercase_ , num=lowercase_ , dtype=np.intaa ) lowercase_ : Optional[int] = videoreader.get_batch(lowercase_ ).asnumpy() lowercase_ : Union[str, Any] = list(lowercase_ ) lowercase_ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : str ): lowercase_ : int = self.model(**lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Dict=5 ): if top_k > self.model.config.num_labels: lowercase_ : List[Any] = self.model.config.num_labels if self.framework == "pt": lowercase_ : str = model_outputs.logits.softmax(-1 )[0] lowercase_ , lowercase_ : Optional[Any] = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowercase_ : Union[str, Any] = scores.tolist() lowercase_ : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
21
0
from collections import defaultdict def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : str ) -> int: lowercase_ : Union[str, Any] = first_str.lower().strip() lowercase_ : Any = second_str.lower().strip() # Remove whitespace lowercase_ : Optional[int] = first_str.replace(""" """ , """""" ) lowercase_ : Tuple = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(__lowerCamelCase ) != len(__lowerCamelCase ): return False # Default values for count should be 0 lowercase_ : defaultdict[str, int] = defaultdict(__lowerCamelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(__lowerCamelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _lowercase : Any = input("Enter the first string ").strip() _lowercase : List[str] = input("Enter the second string ").strip() _lowercase : Optional[int] = check_anagrams(input_a, input_b) print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
360
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> List[str]: if isinstance(UpperCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class __magic_name__ : def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Any , lowercase_ : str ): pass def SCREAMING_SNAKE_CASE_ ( self : str ): pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : np.ndarray , lowercase_ : float ): lowercase_ : Optional[Any] = np.abs((a - b) ).max() self.assertLessEqual(lowercase_ , lowercase_ , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple=None , **lowercase_ : Optional[int] ): lowercase_ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : Any = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : List[Any]=None , **lowercase_ : Tuple ): lowercase_ , lowercase_ : Any = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[int] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=None , **lowercase_ : int ): lowercase_ , lowercase_ : Union[str, Any] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Tuple = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Union[str, Any] = after_output[0] lowercase_ : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-3 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Dict=None , **lowercase_ : Optional[Any] ): lowercase_ , lowercase_ : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Dict = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Optional[int] = model( input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ ) lowercase_ : Tuple = output.vision_model_output.attentions self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ : List[str] = to_atuple(vision_model.config.image_size ) lowercase_ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowercase_ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase_ : Optional[Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowercase_ : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int ): pt_model.to(lowercase_ ) pt_model.eval() # prepare inputs lowercase_ : int = inputs_dict lowercase_ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowercase_ : str = pt_model(**lowercase_ ).to_tuple() lowercase_ : Optional[Any] = fx_model(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowercase_ ) lowercase_ : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ , from_pt=lowercase_ ) lowercase_ : Dict = fx_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowercase_ ) lowercase_ : Union[str, Any] = VisionTextDualEncoderModel.from_pretrained(lowercase_ , from_flax=lowercase_ ) pt_model_loaded.to(lowercase_ ) pt_model_loaded.eval() with torch.no_grad(): lowercase_ : List[Any] = pt_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowercase_ , pt_output_loaded.numpy() , 4E-2 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : List[Any] = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ ) lowercase_ : Tuple = fx_state self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[Any] ): lowercase_ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : int = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Dict = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params ) self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Tuple = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_save_load(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase_ ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = self.prepare_config_and_inputs() lowercase_ : List[Any] = config_inputs_dict.pop("""vision_config""" ) lowercase_ : int = config_inputs_dict.pop("""text_config""" ) lowercase_ : Optional[int] = config_inputs_dict self.check_equivalence_pt_to_flax(lowercase_ , lowercase_ , lowercase_ ) self.check_equivalence_flax_to_pt(lowercase_ , lowercase_ , lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ , lowercase_ : str = self.get_pretrained_model_and_inputs() lowercase_ : Dict = model_a(**lowercase_ ) lowercase_ : str = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : str = model_a(**lowercase_ ) lowercase_ : Union[str, Any] = after_outputs[0] lowercase_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-5 ) @require_flax class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : str = random_attention_mask([batch_size, 4] ) lowercase_ : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Tuple ): lowercase_ : Union[str, Any] = FlaxViTModel(lowercase_ ) lowercase_ : Dict = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Any = FlaxViTModelTester(self ) lowercase_ : Optional[Any] = FlaxBertModelTester(self ) lowercase_ : Dict = vit_model_tester.prepare_config_and_inputs() lowercase_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : List[str] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : Tuple = random_attention_mask([batch_size, 4] ) lowercase_ : Union[str, Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = FlaxCLIPVisionModel(lowercase_ ) lowercase_ : Any = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = FlaxCLIPVisionModelTester(self ) lowercase_ : Tuple = FlaxBertModelTester(self ) lowercase_ : Union[str, Any] = clip_model_tester.prepare_config_and_inputs() lowercase_ : Any = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : Optional[Any] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : str = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) lowercase_ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) lowercase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : Optional[int] = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowercase_ , padding=lowercase_ , return_tensors="""np""" ) lowercase_ : List[str] = model(**lowercase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowercase_ : Optional[Any] = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowercase_ , atol=1E-3 ) )
21
0
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _lowercase : List[str] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _lowercase : Optional[Any] = typing.Union[np.floataa, int, float] # noqa: UP007 def lowerCamelCase ( UpperCAmelCase__ : Vector , UpperCAmelCase__ : Vector ) -> VectorOut: return np.sqrt(np.sum((np.asarray(lowerCAmelCase__ ) - np.asarray(lowerCAmelCase__ )) ** 2 ) ) def lowerCamelCase ( UpperCAmelCase__ : Vector , UpperCAmelCase__ : Vector ) -> VectorOut: return sum((va - va) ** 2 for va, va in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def lowerCamelCase ( ) -> None: from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) ) benchmark()
361
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __magic_name__ ( unittest.TestCase): def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int=7 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[Any]=18 , lowercase_ : List[Any]=30 , lowercase_ : int=400 , lowercase_ : Dict=True , lowercase_ : List[Any]=None , lowercase_ : Dict=True , ): lowercase_ : Tuple = size if size is not None else {"""height""": 18, """width""": 18} lowercase_ : List[str] = parent lowercase_ : Any = batch_size lowercase_ : Optional[Any] = num_channels lowercase_ : Tuple = image_size lowercase_ : Optional[Any] = min_resolution lowercase_ : Dict = max_resolution lowercase_ : Optional[int] = do_resize lowercase_ : Optional[Any] = size lowercase_ : Union[str, Any] = do_normalize def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ImageGPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = ImageGPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """clusters""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) lowercase_ : Union[str, Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , obj[key] ) ) else: self.assertEqual(obj[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Union[str, Any] = os.path.join(lowercase_ , """image_processor.json""" ) image_processor_first.to_json_file(lowercase_ ) lowercase_ : Optional[Any] = self.image_processing_class.from_json_file(lowercase_ ).to_dict() lowercase_ : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase_ ) lowercase_ : Any = self.image_processing_class.from_pretrained(lowercase_ ).to_dict() lowercase_ : List[str] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass def lowerCamelCase ( ) -> Any: lowercase_ : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) lowercase_ : Any = Image.open(dataset[4]["""file"""] ) lowercase_ : Dict = Image.open(dataset[5]["""file"""] ) lowercase_ : int = [imagea, imagea] return images @require_vision @require_torch class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Optional[Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) lowercase_ : Optional[int] = prepare_images() # test non-batched lowercase_ : str = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) lowercase_ : Tuple = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase_ ) # test batched lowercase_ : List[str] = image_processing(lowercase_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) lowercase_ : Union[str, Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase_ )
21
0
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> Any: lowercase_ : int = tmp_path / 'file.csv' lowercase_ : int = textwrap.dedent( """\\n header1,header2\n 1,2\n 10,20\n """ ) with open(lowercase__ , """w""" ) as f: f.write(lowercase__ ) return str(lowercase__ ) @pytest.fixture def lowerCamelCase ( UpperCAmelCase__ : Any ) -> Optional[Any]: lowercase_ : Union[str, Any] = tmp_path / 'malformed_file.csv' lowercase_ : Dict = textwrap.dedent( """\\n header1,header2\n 1,2\n 10,20,\n """ ) with open(lowercase__ , """w""" ) as f: f.write(lowercase__ ) return str(lowercase__ ) @pytest.fixture def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Any ) -> Tuple: lowercase_ : Union[str, Any] = tmp_path / 'csv_with_image.csv' lowercase_ : List[Any] = textwrap.dedent( F'''\ image {image_file} ''' ) with open(lowercase__ , """w""" ) as f: f.write(lowercase__ ) return str(lowercase__ ) @pytest.fixture def lowerCamelCase ( UpperCAmelCase__ : int ) -> str: lowercase_ : Optional[int] = tmp_path / 'csv_with_label.csv' lowercase_ : int = textwrap.dedent( """\\n label\n good\n bad\n good\n """ ) with open(lowercase__ , """w""" ) as f: f.write(lowercase__ ) return str(lowercase__ ) @pytest.fixture def lowerCamelCase ( UpperCAmelCase__ : str ) -> Union[str, Any]: lowercase_ : str = tmp_path / 'csv_with_int_list.csv' lowercase_ : List[Any] = textwrap.dedent( """\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n """ ) with open(lowercase__ , """w""" ) as f: f.write(lowercase__ ) return str(lowercase__ ) def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple ) -> int: lowercase_ : Any = Csv() lowercase_ : Union[str, Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowercase__ , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(lowercase__ ) in record.message for record in caplog.records ) @require_pil def lowerCamelCase ( UpperCAmelCase__ : List[Any] ) -> Optional[int]: with open(lowercase__ , encoding="""utf-8""" ) as f: lowercase_ : Optional[int] = f.read().splitlines()[1] lowercase_ : Tuple = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowercase_ : Optional[int] = csv._generate_tables([[csv_file_with_image]] ) lowercase_ : Union[str, Any] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowercase_ : Tuple = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCamelCase ( UpperCAmelCase__ : Tuple ) -> Tuple: with open(lowercase__ , encoding="""utf-8""" ) as f: lowercase_ : Dict = f.read().splitlines()[1:] lowercase_ : Union[str, Any] = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowercase_ : Optional[Any] = csv._generate_tables([[csv_file_with_label]] ) lowercase_ : Optional[Any] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowercase_ : Union[str, Any] = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(lowercase__ ) for label in labels] def lowerCamelCase ( UpperCAmelCase__ : str ) -> Tuple: lowercase_ : List[str] = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda UpperCAmelCase__ : [int(lowercase__ ) for i in x.split()]} ) lowercase_ : List[str] = csv._generate_tables([[csv_file_with_int_list]] ) lowercase_ : str = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowercase_ : str = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
362
'''simple docstring''' def lowerCamelCase ( ) -> Dict: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = 1 while len(UpperCAmelCase__ ) < 1e6: constant.append(str(UpperCAmelCase__ ) ) i += 1 lowercase_ : int = """""".join(UpperCAmelCase__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
21
0
'''simple docstring''' class __magic_name__ : def __init__( self : Tuple , lowercase_ : Tuple , lowercase_ : Optional[Any] ): lowercase_ : Any = name lowercase_ : Dict = val def __str__( self : List[Any] ): return f'''{self.__class__.__name__}({self.name}, {self.val})''' def __lt__( self : Any , lowercase_ : Dict ): return self.val < other.val class __magic_name__ : def __init__( self : Tuple , lowercase_ : Any ): lowercase_ : Dict = {} lowercase_ : Dict = {} lowercase_ : Dict = self.build_heap(lowercase_ ) def __getitem__( self : str , lowercase_ : Tuple ): return self.get_value(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : str ): return (idx - 1) // 2 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str ): return idx * 2 + 1 def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : int ): return idx * 2 + 2 def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : Dict ): return self.heap_dict[key] def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Optional[int] ): lowercase_ : Dict = len(lowercase_ ) - 1 lowercase_ : Dict = self.get_parent_idx(lowercase_ ) for idx, i in enumerate(lowercase_ ): lowercase_ : Dict = idx lowercase_ : Tuple = i.val for i in range(lowercase_ , -1 , -1 ): self.sift_down(lowercase_ , lowercase_ ) return array def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Any , lowercase_ : Optional[Any] ): while True: lowercase_ : Tuple = self.get_left_child_idx(lowercase_ ) # noqa: E741 lowercase_ : int = self.get_right_child_idx(lowercase_ ) lowercase_ : Union[str, Any] = idx if l < len(lowercase_ ) and array[l] < array[idx]: lowercase_ : List[Any] = l if r < len(lowercase_ ) and array[r] < array[smallest]: lowercase_ : Dict = r if smallest != idx: lowercase_ : str = array[smallest], array[idx] ( lowercase_ ) : str = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowercase_ : Optional[int] = smallest else: break def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Tuple ): lowercase_ : str = self.get_parent_idx(lowercase_ ) while p >= 0 and self.heap[p] > self.heap[idx]: lowercase_ : int = self.heap[idx], self.heap[p] lowercase_ : List[Any] = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowercase_ : Any = p lowercase_ : Optional[int] = self.get_parent_idx(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): return self.heap[0] def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : List[str] = self.heap[-1], self.heap[0] lowercase_ : str = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowercase_ : str = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : Dict ): self.heap.append(lowercase_ ) lowercase_ : Dict = len(self.heap ) - 1 lowercase_ : Dict = node.val self.sift_up(len(self.heap ) - 1 ) def SCREAMING_SNAKE_CASE_ ( self : int ): return len(self.heap ) == 0 def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : int , lowercase_ : List[Any] ): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowercase_ : Tuple = new_value lowercase_ : Union[str, Any] = new_value self.sift_up(self.idx_of_element[node] ) _lowercase : str = Node("R", -1) _lowercase : List[Any] = Node("B", 6) _lowercase : str = Node("A", 3) _lowercase : Dict = Node("X", 1) _lowercase : List[str] = Node("E", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array _lowercase : List[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("Min Heap - before decrease key") for i in my_min_heap.heap: print(i) print("Min Heap - After decrease key of node [B -> -17]") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
363
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _lowercase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( _UpperCAmelCase): def __init__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str ): super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : List[str] , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ): if audio_length_in_s is None: lowercase_ : List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate lowercase_ : Dict = audio_length_in_s * self.unet.config.sample_rate lowercase_ : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowercase_ : List[Any] = int(lowercase_ ) if sample_size % down_scale_factor != 0: lowercase_ : int = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) lowercase_ : Any = int(lowercase_ ) lowercase_ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowercase_ : List[str] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowercase_ : Any = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) # set step values self.scheduler.set_timesteps(lowercase_ , device=audio.device ) lowercase_ : Optional[Any] = self.scheduler.timesteps.to(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase_ : Dict = self.unet(lowercase_ , lowercase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowercase_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowercase_ : str = audio.clamp(-1 , 1 ).float().cpu().numpy() lowercase_ : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase_ )
21
0
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate _lowercase : Dict = trt.Logger(trt.Logger.WARNING) _lowercase : int = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) _lowercase : Optional[Any] = logging.getLogger(__name__) _lowercase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--onnx_model_path", default=None, type=str, required=True, help="Path to ONNX model: ", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--tokenizer_name", default="", type=str, required=True, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--dataset_name", type=str, default=None, required=True, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision instead of 32-bit", ) parser.add_argument( "--int8", action="store_true", help="Whether to use INT8", ) _lowercase : Optional[int] = parser.parse_args() if args.tokenizer_name: _lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) logger.info("Training/evaluation parameters %s", args) _lowercase : Tuple = args.per_device_eval_batch_size _lowercase : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties _lowercase : List[str] = True _lowercase : List[str] = "temp_engine/bert-fp32.engine" if args.fpaa: _lowercase : str = "temp_engine/bert-fp16.engine" if args.inta: _lowercase : str = "temp_engine/bert-int8.engine" # import ONNX file if not os.path.exists("temp_engine"): os.makedirs("temp_engine") _lowercase : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, "rb") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network _lowercase : int = [network.get_input(i) for i in range(network.num_inputs)] _lowercase : str = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: _lowercase : List[Any] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) _lowercase : List[str] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) _lowercase : str = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, "wb") as f: f.write(engine.serialize()) def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int ) -> List[str]: lowercase_ : Dict = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) lowercase_ : int = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) lowercase_ : Union[str, Any] = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , a_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , a_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , a_ ) # start time lowercase_ : str = time.time() # Run inference context.execute_async( bindings=[int(a_ ) for d_inp in d_inputs] + [int(a_ ), int(a_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(a_ , a_ , a_ ) cuda.memcpy_dtoh_async(a_ , a_ , a_ ) # Synchronize the stream and take time stream.synchronize() # end time lowercase_ : Optional[Any] = time.time() lowercase_ : List[str] = end_time - start_time lowercase_ : Tuple = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. _lowercase : str = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. _lowercase : List[str] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("Evaluation requires a dataset name") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. _lowercase : Union[str, Any] = raw_datasets["validation"].column_names _lowercase : List[str] = "question" if "question" in column_names else column_names[0] _lowercase : List[Any] = "context" if "context" in column_names else column_names[1] _lowercase : Tuple = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). _lowercase : Dict = tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) _lowercase : List[Any] = min(args.max_seq_length, tokenizer.model_max_length) def lowerCamelCase ( UpperCAmelCase__ : List[Any] ) -> List[Any]: # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace lowercase_ : int = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowercase_ : Any = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=a_ , stride=args.doc_stride , return_overflowing_tokens=a_ , return_offsets_mapping=a_ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowercase_ : Optional[int] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowercase_ : int = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowercase_ : Tuple = tokenized_examples.sequence_ids(a_ ) lowercase_ : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowercase_ : str = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowercase_ : List[str] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples _lowercase : Tuple = raw_datasets["validation"] # Validation Feature Creation _lowercase : List[str] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) _lowercase : List[Any] = default_data_collator _lowercase : int = eval_dataset.remove_columns(["example_id", "offset_mapping"]) _lowercase : Optional[Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[Any]="eval" ) -> List[Any]: # Post-processing: we match the start logits and end logits to answers in the original context. lowercase_ : List[str] = postprocess_qa_predictions( examples=a_ , features=a_ , predictions=a_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=a_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowercase_ : Optional[int] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: lowercase_ : Dict = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] lowercase_ : List[str] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=a_ , label_ids=a_ ) _lowercase : Dict = load_metric("squad_v2" if args.version_2_with_negative else "squad") # Evaluation! logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] ) -> List[Any]: return trt.volume(engine.get_binding_shape(a_ ) ) * engine.get_binding_dtype(a_ ).itemsize # Allocate device memory for inputs and outputs. _lowercase : Optional[int] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer _lowercase : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) _lowercase : List[str] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) _lowercase : str = cuda.mem_alloc(h_outputa.nbytes) _lowercase : str = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. _lowercase : List[Any] = cuda.Stream() # Evaluation logger.info("***** Running Evaluation *****") logger.info(f""" Num examples = {len(eval_dataset)}""") logger.info(f""" Batch size = {args.per_device_eval_batch_size}""") _lowercase : List[Any] = 0.0 _lowercase : Any = 0 _lowercase : int = timeit.default_timer() _lowercase : int = None for step, batch in enumerate(eval_dataloader): _lowercase , _lowercase : List[Any] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 _lowercase , _lowercase : str = outputs _lowercase : Dict = torch.tensor(start_logits) _lowercase : Optional[Any] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered _lowercase : Union[str, Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) _lowercase : Tuple = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) _lowercase : str = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) _lowercase : Tuple = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: _lowercase : Union[str, Any] = nested_truncate(all_preds, len(eval_dataset)) _lowercase : Union[str, Any] = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("Average Inference Time = {:.3f} ms".format(total_time * 1000 / niter)) logger.info("Total Inference Time = {:.3f} ms".format(total_time * 1000)) logger.info("Total Number of Inference = %d", niter) _lowercase : Dict = post_processing_function(eval_examples, eval_dataset, all_preds) _lowercase : Optional[int] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"""Evaluation metrics: {eval_metric}""")
364
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _lowercase : Union[str, Any] = "src/transformers" _lowercase : str = "docs/source/en" _lowercase : Union[str, Any] = "." def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int: with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ : Union[str, Any] = f.readlines() # Find the start prompt. lowercase_ : Optional[Any] = 0 while not lines[start_index].startswith(UpperCAmelCase__ ): start_index += 1 start_index += 1 lowercase_ : int = start_index while not lines[end_index].startswith(UpperCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. _lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any: lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ ) return [m.group(0 ) for m in matches] def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]: lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ ) lowercase_ : List[str] = (width - text_length) // 2 lowercase_ : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase ( ) -> Any: lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase_ : Any = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = None if attr_name.endswith("""Tokenizer""" ): lowercase_ : Optional[int] = slow_tokenizers lowercase_ : Union[str, Any] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowercase_ : Optional[Any] = fast_tokenizers lowercase_ : Dict = attr_name[:-13] elif _re_tf_models.match(UpperCAmelCase__ ) is not None: lowercase_ : str = tf_models lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0] elif _re_flax_models.match(UpperCAmelCase__ ) is not None: lowercase_ : List[str] = flax_models lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0] elif _re_pt_models.match(UpperCAmelCase__ ) is not None: lowercase_ : Tuple = pt_models lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): lowercase_ : int = True break # Try again after removing the last word in the name lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] ) # Let's build that table! lowercase_ : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns] lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowercase_ : int = {True: """✅""", False: """❌"""} for name in model_names: lowercase_ : str = model_name_to_prefix[name] lowercase_ : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n" return table def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str: lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = _find_text_in_file( filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowercase_ : Dict = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowercase : Optional[Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
21
0
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _lowercase : List[Any] = logging.get_logger(__name__) class __magic_name__ ( __lowercase): UpperCamelCase__ = "AutoTokenizer" UpperCamelCase__ = ["tokenizer"] UpperCamelCase__ = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : List[Any]=None ): super().__init__(_a ) lowercase_ : List[Any] = speaker_embeddings @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , lowercase_ : Optional[Any] , lowercase_ : Dict="speaker_embeddings_path.json" , **lowercase_ : Optional[Any] ): if speaker_embeddings_dict_path is not None: lowercase_ : List[Any] = get_file_from_repo( _a , _a , subfolder=kwargs.pop("""subfolder""" , _a ) , cache_dir=kwargs.pop("""cache_dir""" , _a ) , force_download=kwargs.pop("""force_download""" , _a ) , proxies=kwargs.pop("""proxies""" , _a ) , resume_download=kwargs.pop("""resume_download""" , _a ) , local_files_only=kwargs.pop("""local_files_only""" , _a ) , use_auth_token=kwargs.pop("""use_auth_token""" , _a ) , revision=kwargs.pop("""revision""" , _a ) , ) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(_a , _a )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) lowercase_ : Optional[int] = None else: with open(_a ) as speaker_embeddings_json: lowercase_ : Tuple = json.load(_a ) else: lowercase_ : Dict = None lowercase_ : List[Any] = AutoTokenizer.from_pretrained(_a , **_a ) return cls(tokenizer=_a , speaker_embeddings=_a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Tuple , lowercase_ : Optional[Any]="speaker_embeddings_path.json" , lowercase_ : Dict="speaker_embeddings" , lowercase_ : Tuple = False , **lowercase_ : Dict , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(_a , _a , """v2""" ) , exist_ok=_a ) lowercase_ : Any = {} lowercase_ : Tuple = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": lowercase_ : Union[str, Any] = self._load_voice_preset(_a ) lowercase_ : List[Any] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] , _a , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=_a , ) lowercase_ : int = os.path.join(_a , f'''{prompt_key}_{key}.npy''' ) lowercase_ : Any = tmp_dict with open(os.path.join(_a , _a ) , """w""" ) as fp: json.dump(_a , _a ) super().save_pretrained(_a , _a , **_a ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] = None , **lowercase_ : Dict ): lowercase_ : Any = self.speaker_embeddings[voice_preset] lowercase_ : int = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) lowercase_ : Optional[int] = get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , _a ) , cache_dir=kwargs.pop("""cache_dir""" , _a ) , force_download=kwargs.pop("""force_download""" , _a ) , proxies=kwargs.pop("""proxies""" , _a ) , resume_download=kwargs.pop("""resume_download""" , _a ) , local_files_only=kwargs.pop("""local_files_only""" , _a ) , use_auth_token=kwargs.pop("""use_auth_token""" , _a ) , revision=kwargs.pop("""revision""" , _a ) , ) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) lowercase_ : int = np.load(_a ) return voice_preset_dict def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Union[str, Any] = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self : Optional[int] , lowercase_ : Optional[int]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Optional[Any]="pt" , lowercase_ : List[Any]=256 , lowercase_ : List[str]=False , lowercase_ : int=True , lowercase_ : List[str]=False , **lowercase_ : Tuple , ): if voice_preset is not None and not isinstance(_a , _a ): if ( isinstance(_a , _a ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): lowercase_ : Optional[Any] = self._load_voice_preset(_a ) else: if isinstance(_a , _a ) and not voice_preset.endswith(""".npz""" ): lowercase_ : List[Any] = voice_preset + '''.npz''' lowercase_ : Union[str, Any] = np.load(_a ) if voice_preset is not None: self._validate_voice_preset_dict(_a , **_a ) lowercase_ : Dict = BatchFeature(data=_a , tensor_type=_a ) lowercase_ : List[str] = self.tokenizer( _a , return_tensors=_a , padding="""max_length""" , max_length=_a , return_attention_mask=_a , return_token_type_ids=_a , add_special_tokens=_a , **_a , ) if voice_preset is not None: lowercase_ : Optional[Any] = voice_preset return encoded_text
365
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __magic_name__ ( ctypes.Structure): # _fields is a specific attr expected by ctypes UpperCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def lowerCamelCase ( ) -> List[Any]: if os.name == "nt": lowercase_ : List[Any] = CursorInfo() lowercase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def lowerCamelCase ( ) -> str: if os.name == "nt": lowercase_ : int = CursorInfo() lowercase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : Optional[int] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def lowerCamelCase ( ) -> Any: try: hide_cursor() yield finally: show_cursor()
21
0
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowercase : int = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[int]=None ): return field(default_factory=lambda: default , metadata=lowerCAmelCase__ ) @dataclass class __magic_name__ : UpperCamelCase__ = list_field( default=[], metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) }, ) UpperCamelCase__ = list_field( default=[8], metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''}) UpperCamelCase__ = list_field( default=[8, 32, 128, 512], metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''}, ) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''}, ) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''}, ) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''}) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Use FP16 to accelerate inference.'''}) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Benchmark training of model'''}) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Verbose memory tracing'''}) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''}, ) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE, metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' }, ) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Trace memory line by line'''}) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Save result to a CSV file'''}) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Save all print statements in a log file'''}) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Whether to print environment information'''}) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE, metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) }, ) UpperCamelCase__ = field( default=f"inference_time_{round(time())}.csv", metadata={'''help''': '''CSV filename used if saving time results to csv.'''}, ) UpperCamelCase__ = field( default=f"inference_memory_{round(time())}.csv", metadata={'''help''': '''CSV filename used if saving memory results to csv.'''}, ) UpperCamelCase__ = field( default=f"train_time_{round(time())}.csv", metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''}, ) UpperCamelCase__ = field( default=f"train_memory_{round(time())}.csv", metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''}, ) UpperCamelCase__ = field( default=f"env_info_{round(time())}.csv", metadata={'''help''': '''CSV filename used if saving environment information.'''}, ) UpperCamelCase__ = field( default=f"log_{round(time())}.csv", metadata={'''help''': '''Log filename used if print statements are saved in log.'''}, ) UpperCamelCase__ = field(default=3, metadata={'''help''': '''Times an experiment will be run.'''}) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE, metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) }, ) def SCREAMING_SNAKE_CASE_ ( self : int ): warnings.warn( f'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , __UpperCAmelCase , ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
366
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowercase : int = logging.get_logger(__name__) @dataclass class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : Optional[Any] , **lowercase_ : int ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase_ : Optional[int] = deprecated_arg[3:] setattr(self , lowercase_ , not kwargs.pop(lowercase_ ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase_ : Tuple = kwargs.pop("""torchscript""" , self.torchscript ) lowercase_ : List[Any] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) lowercase_ : List[Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**lowercase_ ) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Trace the models using torchscript'''}) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''}) UpperCamelCase__ = field( default='''O1''', metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) }, ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: lowercase_ : Optional[Any] = torch.device("""cpu""" ) lowercase_ : Tuple = 0 elif is_torch_tpu_available(): lowercase_ : Optional[int] = xm.xla_device() lowercase_ : str = 0 else: lowercase_ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) lowercase_ : str = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE_ ( self : int ): requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE_ ( self : int ): return self.n_gpu > 0
21
0
'''simple docstring''' from collections.abc import Sequence def lowerCamelCase ( UpperCAmelCase__ : Sequence[float] , UpperCAmelCase__ : float ) -> Union[str, Any]: return sum(c * (x**i) for i, c in enumerate(a_ ) ) def lowerCamelCase ( UpperCAmelCase__ : Sequence[float] , UpperCAmelCase__ : float ) -> Tuple: lowercase_ : str = 0.0 for coeff in reversed(a_ ): lowercase_ : Tuple = result * x + coeff return result if __name__ == "__main__": _lowercase : Optional[Any] = (0.0, 0.0, 5.0, 9.3, 7.0) _lowercase : Optional[Any] = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
367
'''simple docstring''' from __future__ import annotations from typing import Any def lowerCamelCase ( UpperCAmelCase__ : list ) -> int: if not postfix_notation: return 0 lowercase_ : Any = {"""+""", """-""", """*""", """/"""} lowercase_ : list[Any] = [] for token in postfix_notation: if token in operations: lowercase_ , lowercase_ : Dict = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
21
0
'''simple docstring''' import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : float = math.inf , UpperCAmelCase__ : float = -math.inf , UpperCAmelCase__ : float = math.inf , UpperCAmelCase__ : float = -math.inf , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : float = 100 , UpperCAmelCase__ : float = 0.01 , UpperCAmelCase__ : float = 1 , ) -> Any: lowercase_ : int = False lowercase_ : Any = search_prob lowercase_ : Optional[int] = start_temperate lowercase_ : List[str] = [] lowercase_ : Any = 0 lowercase_ : Optional[int] = None while not search_end: lowercase_ : Union[str, Any] = current_state.score() if best_state is None or current_score > best_state.score(): lowercase_ : Dict = current_state scores.append(_UpperCamelCase ) iterations += 1 lowercase_ : int = None lowercase_ : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowercase_ : List[Any] = random.randint(0 , len(_UpperCamelCase ) - 1 ) # picking a random neighbor lowercase_ : Union[str, Any] = neighbors.pop(_UpperCamelCase ) lowercase_ : str = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowercase_ : Any = change * -1 # in case we are finding minimum if change > 0: # improves the solution lowercase_ : Optional[int] = picked_neighbor else: lowercase_ : Dict = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowercase_ : Any = picked_neighbor lowercase_ : Tuple = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowercase_ : Optional[int] = True else: lowercase_ : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_UpperCamelCase ) , _UpperCamelCase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any ) -> int: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _lowercase : Union[str, Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _lowercase : Union[str, Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) _lowercase : int = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) _lowercase : Optional[int] = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] ) -> int: return (3 * x**2) - (6 * y) _lowercase : str = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _lowercase : Dict = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f"""{local_min.score()}""" ) _lowercase : int = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _lowercase : Any = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " f"""{local_min.score()}""" )
368
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase : List[Any] = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : Union[tf.Tensor, np.ndarray] ) -> List[int]: if isinstance(UpperCAmelCase__ , np.ndarray ): return list(tensor.shape ) lowercase_ : Tuple = tf.shape(UpperCAmelCase__ ) if tensor.shape == tf.TensorShape(UpperCAmelCase__ ): return dynamic lowercase_ : Dict = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase__ )] def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[str] = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCAmelCase__ , name=UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=1e-5 , UpperCAmelCase__ : List[str]=-1 ) -> List[str]: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized lowercase_ , lowercase_ : List[str] = tf.nn.moments(UpperCAmelCase__ , axes=[axis] , keepdims=UpperCAmelCase__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase_ : List[Any] = [1] * inputs.shape.rank lowercase_ : List[str] = shape_list(UpperCAmelCase__ )[axis] lowercase_ : List[str] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : List[Any] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) # Compute layer normalization using the batch_normalization # function. lowercase_ : str = tf.nn.batch_normalization( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , offset=UpperCAmelCase__ , scale=UpperCAmelCase__ , variance_epsilon=UpperCAmelCase__ , ) return outputs def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Any=-1 ) -> Dict: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase_ : List[Any] = tf.shape(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase_ : Dict = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor ) -> tf.Tensor: if not isinstance(UpperCAmelCase__ , tf.Tensor ): lowercase_ : List[Any] = tf.convert_to_tensor(UpperCAmelCase__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase_ : Any = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase_ : List[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase_ : Optional[Any] = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : int , UpperCAmelCase__ : str = "input_ids" ) -> None: tf.debugging.assert_less( UpperCAmelCase__ , tf.cast(UpperCAmelCase__ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase__ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> Any: lowercase_ : int = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase_ : Optional[Any] = [x for x in data if len(UpperCAmelCase__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) lowercase_ : Any = np.asarray(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = 1 lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = chunk_data else: lowercase_ : Any = data def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] ) -> str: if name in group.attrs: lowercase_ : Optional[Any] = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs[name]] else: lowercase_ : int = [] lowercase_ : Optional[int] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> Any: def _expand_single_ad_tensor(UpperCAmelCase__ : Optional[Any] ): if isinstance(UpperCAmelCase__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase__ )
21
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowerCamelCase ( ) -> str: lowercase_ : List[str] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=a__ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=a__ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=a__ ) return parser.parse_args() def lowerCamelCase ( ) -> Dict: lowercase_ : Optional[Any] = parse_args() # Import training_script as a module. lowercase_ : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowercase_ : Optional[int] = script_fpath.stem lowercase_ : List[Any] = importlib.import_module(a__ ) # Patch sys.argv lowercase_ : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
369
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: lowercase_ : Any = prime_factors(UpperCAmelCase__ ) if is_square_free(UpperCAmelCase__ ): return -1 if len(UpperCAmelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
21
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=__UpperCamelCase): UpperCamelCase__ = ["flax", "transformers"] def __init__( self : List[str] , *lowercase_ : List[Any] , **lowercase_ : Dict ): requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *lowercase_ : str , **lowercase_ : int ): requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *lowercase_ : Optional[int] , **lowercase_ : Optional[int] ): requires_backends(cls , ["""flax""", """transformers"""] ) class __magic_name__ ( metaclass=__UpperCamelCase): UpperCamelCase__ = ["flax", "transformers"] def __init__( self : int , *lowercase_ : Optional[int] , **lowercase_ : List[str] ): requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *lowercase_ : Any , **lowercase_ : Union[str, Any] ): requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : List[str] ): requires_backends(cls , ["""flax""", """transformers"""] ) class __magic_name__ ( metaclass=__UpperCamelCase): UpperCamelCase__ = ["flax", "transformers"] def __init__( self : Dict , *lowercase_ : Tuple , **lowercase_ : Union[str, Any] ): requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : int , *lowercase_ : int , **lowercase_ : Tuple ): requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , *lowercase_ : int , **lowercase_ : int ): requires_backends(cls , ["""flax""", """transformers"""] ) class __magic_name__ ( metaclass=__UpperCamelCase): UpperCamelCase__ = ["flax", "transformers"] def __init__( self : Any , *lowercase_ : Dict , **lowercase_ : int ): requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , *lowercase_ : str , **lowercase_ : List[Any] ): requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : List[Any] ): requires_backends(cls , ["""flax""", """transformers"""] )
370
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int = 1000000 ) -> int: lowercase_ : List[Any] = limit + 1 lowercase_ : Optional[Any] = [0] * limit for first_term in range(1 , UpperCAmelCase__ ): for n in range(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : List[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowercase_ : List[Any] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
21
0
from math import factorial def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float ) -> str: if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(__a , __a ) or not isinstance(__a , __a ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) lowercase_ : str = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! lowercase_ : Optional[int] = float(factorial(__a ) ) coefficient /= factorial(__a ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.7_5))
371
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __magic_name__ ( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str ): lowercase_ : Union[str, Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , config_name=lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = AutoConfig.from_pretrained("""gpt2""" ) lowercase_ : List[Any] = GenerationConfig.from_model_config(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowercase_ , lowercase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = GenerationConfig() lowercase_ : int = { """max_new_tokens""": 1024, """foo""": """bar""", } lowercase_ : List[str] = copy.deepcopy(lowercase_ ) lowercase_ : Tuple = generation_config.update(**lowercase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(lowercase_ , lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowercase_ , {"""foo""": """bar"""} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Dict = GenerationConfig() lowercase_ : int = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) lowercase_ : List[str] = GenerationConfig.from_model_config(lowercase_ ) assert not hasattr(lowercase_ , """foo""" ) # no new kwargs should be initialized if from config def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[int] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , lowercase_ ) self.assertEqual(default_config.num_beams , 1 ) lowercase_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , lowercase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ ) lowercase_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __magic_name__ ( unittest.TestCase): @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any ): lowercase_ : int = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) lowercase_ : List[Any] = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""test-generation-config""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) lowercase_ : Optional[Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
21
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __magic_name__ ( lowercase__): UpperCamelCase__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
350
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] ) -> List[Any]: # Initialise PyTorch model lowercase_ : List[str] = FunnelConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) lowercase_ : Dict = FunnelBaseModel(UpperCAmelCase__ ) if base_model else FunnelModel(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase__ ) if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _lowercase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
21
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : List[str] = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __magic_name__ ( __snake_case): UpperCamelCase__ = '''vit_mae''' def __init__( self : str , lowercase_ : List[Any]=768 , lowercase_ : Optional[Any]=12 , lowercase_ : Optional[Any]=12 , lowercase_ : Dict=3072 , lowercase_ : List[Any]="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : str=0.0 , lowercase_ : int=0.02 , lowercase_ : int=1E-12 , lowercase_ : Optional[Any]=224 , lowercase_ : int=16 , lowercase_ : Any=3 , lowercase_ : List[str]=True , lowercase_ : Union[str, Any]=16 , lowercase_ : List[str]=512 , lowercase_ : str=8 , lowercase_ : Optional[int]=2048 , lowercase_ : Optional[Any]=0.75 , lowercase_ : str=False , **lowercase_ : Dict , ): super().__init__(**a_ ) lowercase_ : str = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : Tuple = num_attention_heads lowercase_ : Union[str, Any] = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : str = hidden_dropout_prob lowercase_ : Optional[Any] = attention_probs_dropout_prob lowercase_ : Any = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : List[Any] = image_size lowercase_ : Union[str, Any] = patch_size lowercase_ : List[Any] = num_channels lowercase_ : List[str] = qkv_bias lowercase_ : str = decoder_num_attention_heads lowercase_ : Tuple = decoder_hidden_size lowercase_ : str = decoder_num_hidden_layers lowercase_ : int = decoder_intermediate_size lowercase_ : Dict = mask_ratio lowercase_ : List[Any] = norm_pix_loss
351
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _lowercase : Optional[List[str]] = None _lowercase : str = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _lowercase : Optional[int] = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class __magic_name__ : UpperCamelCase__ = True UpperCamelCase__ = None # Automatically constructed UpperCamelCase__ = "PIL.Image.Image" UpperCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()}) UpperCamelCase__ = field(default='''Image''', init=_UpperCAmelCase, repr=_UpperCAmelCase) def __call__( self : Tuple ): return self.pa_type def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(lowercase_ , lowercase_ ): lowercase_ : int = np.array(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): return {"path": value, "bytes": None} elif isinstance(lowercase_ , lowercase_ ): return {"path": None, "bytes": value} elif isinstance(lowercase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowercase_ ) elif isinstance(lowercase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowercase_ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : dict , lowercase_ : List[str]=None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: lowercase_ : Union[str, Any] = {} lowercase_ , lowercase_ : List[Any] = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowercase_ ): lowercase_ : int = PIL.Image.open(lowercase_ ) else: lowercase_ : str = path.split("""::""" )[-1] try: lowercase_ : Any = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""] lowercase_ : Optional[Any] = token_per_repo_id.get(lowercase_ ) except ValueError: lowercase_ : str = None with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f: lowercase_ : Dict = BytesIO(f.read() ) lowercase_ : Optional[Any] = PIL.Image.open(bytes_ ) else: lowercase_ : Any = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def SCREAMING_SNAKE_CASE_ ( self : int ): from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) lowercase_ : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Any = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowercase_ : Optional[int] = storage.field("""bytes""" ) else: lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowercase_ : Dict = storage.field("""path""" ) else: lowercase_ : int = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowercase_ : Optional[int] = pa.array( [encode_np_array(np.array(lowercase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowercase_ : Tuple = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Tuple = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(lowercase_ : Optional[Any] ): with xopen(lowercase_ , """rb""" ) as f: lowercase_ : int = f.read() return bytes_ lowercase_ : Optional[Any] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase_ : Any = pa.array( [os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def lowerCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowercase_ : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> bytes: lowercase_ : Tuple = BytesIO() if image.format in list_image_compression_formats(): lowercase_ : int = image.format else: lowercase_ : int = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(UpperCAmelCase__ , format=UpperCAmelCase__ ) return buffer.getvalue() def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> dict: if hasattr(UpperCAmelCase__ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : np.ndarray ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) lowercase_ : List[Any] = array.dtype lowercase_ : int = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER lowercase_ : Dict = dtype.kind lowercase_ : List[Any] = dtype.itemsize lowercase_ : Any = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowercase_ : int = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowercase_ : str = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowercase_ : str = dtype_byteorder + dtype_kind + str(UpperCAmelCase__ ) lowercase_ : Optional[Any] = np.dtype(UpperCAmelCase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) lowercase_ : Optional[int] = PIL.Image.fromarray(array.astype(UpperCAmelCase__ ) ) return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: lowercase_ , lowercase_ : Dict = first_non_null_value(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(UpperCAmelCase__ , np.ndarray ): lowercase_ : Union[str, Any] = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowercase_ : int = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] else: return objs else: return objs
21
0
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : def __init__( self : Dict , lowercase_ : Optional[Any] , lowercase_ : str=13 , lowercase_ : List[Any]=30 , lowercase_ : Any=2 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[int]=True , lowercase_ : str=True , lowercase_ : Union[str, Any]=32 , lowercase_ : List[Any]=2 , lowercase_ : Tuple=4 , lowercase_ : str=37 , lowercase_ : Optional[int]="gelu" , lowercase_ : List[Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Optional[Any]=10 , lowercase_ : int=0.02 , lowercase_ : str=3 , lowercase_ : int=0.6 , lowercase_ : Tuple=None , ): lowercase_ : Dict = parent lowercase_ : List[str] = batch_size lowercase_ : Optional[int] = image_size lowercase_ : List[Any] = patch_size lowercase_ : List[Any] = num_channels lowercase_ : Optional[int] = is_training lowercase_ : Tuple = use_labels lowercase_ : Any = hidden_size lowercase_ : List[Any] = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : Any = intermediate_size lowercase_ : Union[str, Any] = hidden_act lowercase_ : List[Any] = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Optional[Any] = type_sequence_label_size lowercase_ : List[str] = initializer_range lowercase_ : int = mask_ratio lowercase_ : List[str] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase_ : str = (image_size // patch_size) ** 2 lowercase_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : int = None if self.use_labels: lowercase_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Dict = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_ ( self : int ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Any , lowercase_ : str , lowercase_ : Union[str, Any] ): lowercase_ : Union[str, Any] = TFViTMAEModel(config=snake_case__ ) lowercase_ : List[Any] = model(snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : List[str] ): lowercase_ : Union[str, Any] = TFViTMAEForPreTraining(snake_case__ ) lowercase_ : Union[str, Any] = model(snake_case__ , training=snake_case__ ) # expected sequence length = num_patches lowercase_ : int = (self.image_size // self.patch_size) ** 2 lowercase_ : Dict = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images lowercase_ : Tuple = 1 lowercase_ : Any = TFViTMAEForPreTraining(snake_case__ ) lowercase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ : Dict = model(snake_case__ , training=snake_case__ ) lowercase_ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Tuple = self.prepare_config_and_inputs() (lowercase_) : List[str] = config_and_inputs lowercase_ : int = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __magic_name__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase): UpperCamelCase__ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () UpperCamelCase__ = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Union[str, Any] = TFViTMAEModelTester(self ) lowercase_ : Tuple = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : str = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase_ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Layer ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : int = model_class(snake_case__ ) lowercase_ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Tuple = [*signature.parameters.keys()] lowercase_ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case__ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): np.random.seed(2 ) lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Any = int((config.image_size // config.patch_size) ** 2 ) lowercase_ : str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase_ : Optional[int] = model_class(snake_case__ ) lowercase_ : Union[str, Any] = self._prepare_for_class(snake_case__ , snake_case__ ) lowercase_ : Optional[int] = model(snake_case__ , noise=snake_case__ ) lowercase_ : int = copy.deepcopy(self._prepare_for_class(snake_case__ , snake_case__ ) ) lowercase_ : int = model(**snake_case__ , noise=snake_case__ ) lowercase_ : str = outputs_dict[0].numpy() lowercase_ : int = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): np.random.seed(2 ) lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : int = int((config.image_size // config.patch_size) ** 2 ) lowercase_ : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(lowercase_ : List[Any] ): lowercase_ : Union[str, Any] = {} for k, v in inputs_dict.items(): if tf.is_tensor(snake_case__ ): lowercase_ : Tuple = v.numpy() else: lowercase_ : int = np.array(snake_case__ ) return inputs_np_dict for model_class in self.all_model_classes: lowercase_ : List[Any] = model_class(snake_case__ ) lowercase_ : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ ) lowercase_ : int = prepare_numpy_arrays(snake_case__ ) lowercase_ : Tuple = model(snake_case__ , noise=snake_case__ ) lowercase_ : Optional[int] = model(**snake_case__ , noise=snake_case__ ) self.assert_outputs_same(snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : List[str] ): np.random.seed(2 ) lowercase_ : int = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) lowercase_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase_ : Optional[int] = tf.constant(snake_case__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase_ : Union[str, Any] = tf_noise super().check_pt_tf_models(snake_case__ , snake_case__ , snake_case__ ) def SCREAMING_SNAKE_CASE_ ( self : str ): np.random.seed(2 ) lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : int = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(snake_case__ ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(snake_case__ , snake_case__ ),) if isinstance(snake_case__ , snake_case__ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(snake_case__ , """_keras_serializable""" , snake_case__ ) } lowercase_ : List[Any] = int((config.image_size // config.patch_size) ** 2 ) lowercase_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) lowercase_ : str = tf.convert_to_tensor(snake_case__ ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: lowercase_ : List[Any] = main_layer_class(snake_case__ ) lowercase_ : Dict = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } lowercase_ : List[Any] = tf.keras.Model(snake_case__ , outputs=main_layer(snake_case__ ) ) lowercase_ : Tuple = model(snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : str = os.path.join(snake_case__ , """keras_model.h5""" ) model.save(snake_case__ ) lowercase_ : Optional[int] = tf.keras.models.load_model( snake_case__ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(snake_case__ , tf.keras.Model ) lowercase_ : List[str] = model(snake_case__ ) self.assert_outputs_same(snake_case__ , snake_case__ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): np.random.seed(2 ) lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Tuple = int((config.image_size // config.patch_size) ** 2 ) lowercase_ : Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase_ : List[str] = model_class(snake_case__ ) lowercase_ : str = self._prepare_for_class(snake_case__ , snake_case__ ) lowercase_ : str = model(snake_case__ , noise=snake_case__ ) if model_class.__name__ == "TFViTMAEModel": lowercase_ : Tuple = outputs.last_hidden_state.numpy() lowercase_ : int = 0 else: lowercase_ : Optional[int] = outputs.logits.numpy() lowercase_ : Union[str, Any] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case__ , saved_model=snake_case__ ) lowercase_ : List[Any] = model_class.from_pretrained(snake_case__ ) lowercase_ : List[Any] = model(snake_case__ , noise=snake_case__ ) if model_class.__name__ == "TFViTMAEModel": lowercase_ : int = after_outputs['last_hidden_state'].numpy() lowercase_ : Dict = 0 else: lowercase_ : Tuple = after_outputs['logits'].numpy() lowercase_ : List[Any] = 0 lowercase_ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case__ , 1E-5 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): np.random.seed(2 ) lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Tuple = int((config.image_size // config.patch_size) ** 2 ) lowercase_ : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: lowercase_ : List[str] = model_class(snake_case__ ) lowercase_ : Optional[Any] = self._prepare_for_class(snake_case__ , snake_case__ ) lowercase_ : Tuple = model(snake_case__ , noise=snake_case__ ) lowercase_ : Union[str, Any] = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(snake_case__ ) lowercase_ : int = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config lowercase_ : str = model_class.from_config(model.config ) lowercase_ : int = new_model(snake_case__ ) # Build model new_model.set_weights(model.get_weights() ) lowercase_ : List[str] = new_model(snake_case__ , noise=snake_case__ ) self.assert_outputs_same(snake_case__ , snake_case__ ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.""" ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): pass @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Tuple = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(snake_case__ ) def lowerCamelCase ( ) -> int: lowercase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __magic_name__ ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): np.random.seed(2 ) lowercase_ : Optional[int] = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) lowercase_ : str = self.default_image_processor lowercase_ : List[Any] = prepare_img() lowercase_ : Dict = image_processor(images=snake_case__ , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase_ : Dict = ViTMAEConfig() lowercase_ : str = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) lowercase_ : Dict = np.random.uniform(size=(1, num_patches) ) # forward pass lowercase_ : Dict = model(**snake_case__ , noise=snake_case__ ) # verify the logits lowercase_ : Tuple = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowercase_ : int = tf.convert_to_tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , snake_case__ , atol=1E-4 )
352
'''simple docstring''' import colorsys from PIL import Image # type: ignore def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : float , UpperCAmelCase__ : int ) -> float: lowercase_ : List[Any] = x lowercase_ : Any = y for step in range(UpperCAmelCase__ ): # noqa: B007 lowercase_ : Dict = a * a - b * b + x lowercase_ : str = 2 * a * b + y lowercase_ : Optional[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCAmelCase__ , 1 , 1 ) ) def lowerCamelCase ( UpperCAmelCase__ : int = 800 , UpperCAmelCase__ : int = 600 , UpperCAmelCase__ : float = -0.6 , UpperCAmelCase__ : float = 0 , UpperCAmelCase__ : float = 3.2 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : bool = True , ) -> Image.Image: lowercase_ : Union[str, Any] = Image.new("""RGB""" , (image_width, image_height) ) lowercase_ : Tuple = img.load() # loop through the image-coordinates for image_x in range(UpperCAmelCase__ ): for image_y in range(UpperCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates lowercase_ : Any = figure_width / image_width * image_height lowercase_ : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width lowercase_ : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height lowercase_ : str = get_distance(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowercase_ : List[Any] = get_color_coded_rgb(UpperCAmelCase__ ) else: lowercase_ : Dict = get_black_and_white_rgb(UpperCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _lowercase : List[str] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
21
0
'''simple docstring''' import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) _lowercase : Optional[int] = getLogger(__name__) def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : int = 8 , UpperCAmelCase__ : int = 1024 , UpperCAmelCase__ : Optional[Any]="val" , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : Optional[int]="summarization" , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : List[Any]=1 , UpperCAmelCase__ : Dict = None , UpperCAmelCase__ : Tuple="" , **UpperCAmelCase__ : str , ) -> Dict: lowercase_ : Any = str(UpperCAmelCase__ ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""" , rank=UpperCAmelCase__ ) lowercase_ : str = Path(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = save_dir.joinpath(F'''rank_{local_rank}_output.json''' ) torch.cuda.set_device(UpperCAmelCase__ ) lowercase_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase__ ).cuda() if fpaa: lowercase_ : Optional[Any] = model.half() # determine if we need to increase num_beams use_task_specific_params(UpperCAmelCase__ , UpperCAmelCase__ ) # update config with task specific params lowercase_ : Union[str, Any] = generate_kwargs.pop("""num_beams""" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: lowercase_ : int = num_return_sequences lowercase_ : Optional[int] = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. if max_source_length is None: lowercase_ : List[str] = tokenizer.model_max_length if prefix is None: lowercase_ : List[Any] = prefix or getattr(model.config , """prefix""" , """""" ) or """""" lowercase_ : Optional[Any] = SeqaSeqDataset( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , max_target_length=1024 , type_path=UpperCAmelCase__ , n_obs=UpperCAmelCase__ , prefix=UpperCAmelCase__ , **UpperCAmelCase__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. lowercase_ : Tuple = ds.make_sortish_sampler(UpperCAmelCase__ , distributed=UpperCAmelCase__ , add_extra_examples=UpperCAmelCase__ , shuffle=UpperCAmelCase__ ) lowercase_ : Any = DataLoader(UpperCAmelCase__ , sampler=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , collate_fn=ds.collate_fn ) lowercase_ : Union[str, Any] = [] for batch in tqdm(UpperCAmelCase__ ): lowercase_ : List[Any] = model.generate( input_ids=batch["""input_ids"""].to(model.device ) , attention_mask=batch["""attention_mask"""].to(model.device ) , num_return_sequences=UpperCAmelCase__ , num_beams=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowercase_ : str = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ ) lowercase_ : Dict = batch["""ids"""] if num_return_sequences > 1: lowercase_ : Optional[int] = chunks(UpperCAmelCase__ , UpperCAmelCase__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(UpperCAmelCase__ ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(UpperCAmelCase__ , UpperCAmelCase__ ) return results, sampler.num_replicas def lowerCamelCase ( ) -> Dict: lowercase_ : Optional[Any] = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""" , type=UpperCAmelCase__ , help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""" , type=UpperCAmelCase__ , help="""like facebook/bart-large-cnn,t5-base, etc.""" , default="""sshleifer/distilbart-xsum-12-3""" , ) parser.add_argument("""--save_dir""" , type=UpperCAmelCase__ , help="""where to save""" , default="""tmp_gen""" ) parser.add_argument("""--max_source_length""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ ) parser.add_argument( """--type_path""" , type=UpperCAmelCase__ , default="""test""" , help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""" , type=UpperCAmelCase__ , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=UpperCAmelCase__ , default=8 , required=UpperCAmelCase__ , help="""batch size""" ) parser.add_argument( """--local_rank""" , type=UpperCAmelCase__ , default=-1 , required=UpperCAmelCase__ , help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , required=UpperCAmelCase__ , help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""" , type=UpperCAmelCase__ , default=1 , required=UpperCAmelCase__ , help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""" , type=UpperCAmelCase__ , default=600 , required=UpperCAmelCase__ , help="""How long should master process wait for other processes to finish.""" , ) parser.add_argument("""--src_lang""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , required=UpperCAmelCase__ ) parser.add_argument("""--tgt_lang""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , required=UpperCAmelCase__ ) parser.add_argument( """--prefix""" , type=UpperCAmelCase__ , required=UpperCAmelCase__ , default=UpperCAmelCase__ , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--debug""" , action="""store_true""" ) lowercase_ : int = time.time() lowercase_ , lowercase_ : Optional[Any] = parser.parse_known_args() lowercase_ : List[str] = parse_numeric_n_bool_cl_kwargs(UpperCAmelCase__ ) if generate_kwargs and args.local_rank <= 0: print(F'''parsed the following generate kwargs: {generate_kwargs}''' ) lowercase_ : Tuple = Path(args.save_dir + """_tmp""" ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) # this handles locking. lowercase_ : List[Any] = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(F'''Found files at {json_save_dir} please move or remove them.''' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. lowercase_ : Tuple = {} if args.src_lang is not None: lowercase_ : List[str] = args.src_lang if args.tgt_lang is not None: lowercase_ : str = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=UpperCAmelCase__ ) lowercase_ , lowercase_ : List[str] = eval_data_dir( args.data_dir , UpperCAmelCase__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=UpperCAmelCase__ , **UpperCAmelCase__ , ) if args.local_rank <= 0: lowercase_ : List[str] = Path(args.save_dir ) save_dir.mkdir(exist_ok=UpperCAmelCase__ ) lowercase_ : Optional[int] = gather_results_from_each_node(UpperCAmelCase__ , UpperCAmelCase__ , args.sync_timeout ) lowercase_ : Tuple = combine_partial_results(UpperCAmelCase__ ) if args.num_return_sequences > 1: lowercase_ : Optional[int] = save_dir.joinpath("""pseudolabel_results.json""" ) print(F'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' ) save_json(UpperCAmelCase__ , UpperCAmelCase__ ) return lowercase_ : Any = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(UpperCAmelCase__ ) as f: lowercase_ : Tuple = [x.rstrip() for x in f.readlines()][: len(UpperCAmelCase__ )] # Calculate metrics, save metrics, and save _generations.txt lowercase_ : Dict = """translation""" in args.task lowercase_ : Optional[int] = calculate_bleu if calc_bleu else calculate_rouge lowercase_ : Optional[Any] = """bleu""" if calc_bleu else """rouge""" lowercase_ : Union[str, Any] = score_fn(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : int = len(UpperCAmelCase__ ) lowercase_ : int = time.time() - start_time lowercase_ : List[str] = round(runtime / metrics["""n_obs"""] , 4 ) lowercase_ : int = num_replicas # TODO(@stas00): add whatever metadata to metrics lowercase_ : List[Any] = save_dir.joinpath(F'''{args.type_path}_{metric_name}.json''' ) save_json(UpperCAmelCase__ , UpperCAmelCase__ , indent=UpperCAmelCase__ ) print(UpperCAmelCase__ ) write_txt_file(UpperCAmelCase__ , save_dir.joinpath(F'''{args.type_path}_generations.txt''' ) ) if args.debug: write_txt_file(UpperCAmelCase__ , save_dir.joinpath(F'''{args.type_path}.target''' ) ) else: shutil.rmtree(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : str ) -> List: lowercase_ : Optional[int] = [] for partial_result in partial_results: records.extend(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : x["id"] ) lowercase_ : Optional[Any] = [x["""pred"""] for x in records] return preds def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] ) -> List[Dict[str, List]]: # WAIT FOR lots of .json files lowercase_ : Union[str, Any] = time.time() logger.info("""waiting for all nodes to finish""" ) lowercase_ : Optional[Any] = None while (time.time() - start_wait) < timeout: lowercase_ : Dict = list(save_dir.glob("""rank_*.json""" ) ) if len(UpperCAmelCase__ ) < num_replicas: continue try: # make sure all json files are fully saved lowercase_ : List[str] = lmap(UpperCAmelCase__ , UpperCAmelCase__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
353
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = DistilBertTokenizer UpperCamelCase__ = DistilBertTokenizerFast UpperCamelCase__ = True @slow def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) lowercase_ : str = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ ) lowercase_ : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ ) lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
21
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : Union[str, Any] = { '''MIT/ast-finetuned-audioset-10-10-0.4593''': ( '''https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json''' ), } class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = 'audio-spectrogram-transformer' def __init__( self : Optional[int] , lowercase_ : Tuple=768 , lowercase_ : Dict=12 , lowercase_ : Optional[Any]=12 , lowercase_ : List[Any]=3072 , lowercase_ : Tuple="gelu" , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : Optional[int]=0.02 , lowercase_ : Optional[int]=1E-12 , lowercase_ : Optional[Any]=16 , lowercase_ : List[str]=True , lowercase_ : List[Any]=10 , lowercase_ : Dict=10 , lowercase_ : List[Any]=1024 , lowercase_ : int=128 , **lowercase_ : Any , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ : Optional[Any] = hidden_size lowercase_ : Tuple = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Any = intermediate_size lowercase_ : Optional[int] = hidden_act lowercase_ : List[str] = hidden_dropout_prob lowercase_ : Optional[int] = attention_probs_dropout_prob lowercase_ : Union[str, Any] = initializer_range lowercase_ : Tuple = layer_norm_eps lowercase_ : Tuple = patch_size lowercase_ : Tuple = qkv_bias lowercase_ : Optional[Any] = frequency_stride lowercase_ : Dict = time_stride lowercase_ : Any = max_length lowercase_ : Any = num_mel_bins
354
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowercase : Union[str, Any] = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : Dict = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _lowercase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Union[str, Any] = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
'''simple docstring''' from graphs.minimum_spanning_tree_kruskal import kruskal def lowerCamelCase ( ) -> Optional[int]: lowercase_ : Dict = 9 lowercase_ : Union[str, Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] lowercase_ : Tuple = kruskal(A__ , A__ ) lowercase_ : Optional[Any] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(A__ ) == sorted(A__ )
356
'''simple docstring''' import os import numpy import onnx def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ) -> Tuple: lowercase_ : Tuple = a.name lowercase_ : Tuple = b.name lowercase_ : Any = """""" lowercase_ : List[Any] = """""" lowercase_ : List[Any] = a == b lowercase_ : Union[str, Any] = name_a lowercase_ : Optional[Any] = name_b return res def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase__ , UpperCAmelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase__ , UpperCAmelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) -> int: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ) -> List[str]: lowercase_ : int = list(model.graph.initializer ) lowercase_ : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase_ : Optional[Any] = inits[i].name lowercase_ : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int ) -> List[str]: lowercase_ : Dict = os.path.dirname(UpperCAmelCase__ ) lowercase_ : Optional[Any] = os.path.basename(UpperCAmelCase__ ) lowercase_ : str = onnx.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowercase_ : List[Any] = list(model.graph.initializer ) lowercase_ : int = set() lowercase_ : int = {} lowercase_ : str = [] lowercase_ : int = 0 for i in range(len(UpperCAmelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase__ ) dup_set.add(UpperCAmelCase__ ) lowercase_ : Dict = inits[j].data_type lowercase_ : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , UpperCAmelCase__ ) total_reduced_size += mem_size lowercase_ : int = inits[i].name lowercase_ : List[str] = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase__ ) else: lowercase_ : Optional[int] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) lowercase_ : Tuple = sorted(UpperCAmelCase__ ) _remove_dup_initializers_from_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Union[str, Any] = """optimized_""" + model_file_name lowercase_ : Optional[int] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) onnx.save(UpperCAmelCase__ , UpperCAmelCase__ ) return new_model
21
0
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _lowercase : Tuple = logging.get_logger(__name__) # General docstring _lowercase : int = "RegNetConfig" # Base docstring _lowercase : Union[str, Any] = "facebook/regnet-y-040" _lowercase : Tuple = [1, 1088, 7, 7] # Image classification docstring _lowercase : Tuple = "facebook/regnet-y-040" _lowercase : List[str] = "tabby, tabby cat" _lowercase : str = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class __magic_name__ ( tf.keras.layers.Layer): def __init__( self : Dict , lowercase_ : int , lowercase_ : int = 3 , lowercase_ : int = 1 , lowercase_ : int = 1 , lowercase_ : Optional[str] = "relu" , **lowercase_ : Optional[Any] , ): super().__init__(**__lowerCAmelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowercase_ : int = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowercase_ : Optional[Any] = tf.keras.layers.ConvaD( filters=__lowerCAmelCase , kernel_size=__lowerCAmelCase , strides=__lowerCAmelCase , padding="""VALID""" , groups=__lowerCAmelCase , use_bias=__lowerCAmelCase , name="""convolution""" , ) lowercase_ : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" ) lowercase_ : Any = ACTaFN[activation] if activation is not None else tf.identity def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : Optional[int] ): lowercase_ : str = self.convolution(self.padding(__lowerCAmelCase ) ) lowercase_ : Optional[Any] = self.normalization(__lowerCAmelCase ) lowercase_ : List[str] = self.activation(__lowerCAmelCase ) return hidden_state class __magic_name__ ( tf.keras.layers.Layer): def __init__( self : Optional[int] , lowercase_ : RegNetConfig , **lowercase_ : Dict ): super().__init__(**__lowerCAmelCase ) lowercase_ : List[str] = config.num_channels lowercase_ : Tuple = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Optional[int] ): lowercase_ : Tuple = shape_list(__lowerCAmelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowercase_ : Union[str, Any] = tf.transpose(__lowerCAmelCase , perm=(0, 2, 3, 1) ) lowercase_ : Optional[int] = self.embedder(__lowerCAmelCase ) return hidden_state class __magic_name__ ( tf.keras.layers.Layer): def __init__( self : str , lowercase_ : int , lowercase_ : int = 2 , **lowercase_ : List[str] ): super().__init__(**__lowerCAmelCase ) lowercase_ : List[str] = tf.keras.layers.ConvaD( filters=__lowerCAmelCase , kernel_size=1 , strides=__lowerCAmelCase , use_bias=__lowerCAmelCase , name="""convolution""" ) lowercase_ : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : tf.Tensor , lowercase_ : bool = False ): return self.normalization(self.convolution(__lowerCAmelCase ) , training=__lowerCAmelCase ) class __magic_name__ ( tf.keras.layers.Layer): def __init__( self : Union[str, Any] , lowercase_ : int , lowercase_ : int , **lowercase_ : int ): super().__init__(**__lowerCAmelCase ) lowercase_ : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCAmelCase , name="""pooler""" ) lowercase_ : List[Any] = [ tf.keras.layers.ConvaD(filters=__lowerCAmelCase , kernel_size=1 , activation="""relu""" , name="""attention.0""" ), tf.keras.layers.ConvaD(filters=__lowerCAmelCase , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ), ] def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Optional[int] ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] lowercase_ : Tuple = self.pooler(__lowerCAmelCase ) for layer_module in self.attention: lowercase_ : Optional[Any] = layer_module(__lowerCAmelCase ) lowercase_ : str = hidden_state * pooled return hidden_state class __magic_name__ ( tf.keras.layers.Layer): def __init__( self : Any , lowercase_ : RegNetConfig , lowercase_ : int , lowercase_ : int , lowercase_ : int = 1 , **lowercase_ : List[str] ): super().__init__(**__lowerCAmelCase ) lowercase_ : Union[str, Any] = in_channels != out_channels or stride != 1 lowercase_ : Optional[Any] = max(1 , out_channels // config.groups_width ) lowercase_ : List[str] = ( TFRegNetShortCut(__lowerCAmelCase , stride=__lowerCAmelCase , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowercase_ : Dict = [ TFRegNetConvLayer(__lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( __lowerCAmelCase , stride=__lowerCAmelCase , groups=__lowerCAmelCase , activation=config.hidden_act , name="""layer.1""" ), TFRegNetConvLayer(__lowerCAmelCase , kernel_size=1 , activation=__lowerCAmelCase , name="""layer.2""" ), ] lowercase_ : Optional[int] = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Any ): lowercase_ : Optional[int] = hidden_state for layer_module in self.layers: lowercase_ : Optional[Any] = layer_module(__lowerCAmelCase ) lowercase_ : Optional[int] = self.shortcut(__lowerCAmelCase ) hidden_state += residual lowercase_ : int = self.activation(__lowerCAmelCase ) return hidden_state class __magic_name__ ( tf.keras.layers.Layer): def __init__( self : Tuple , lowercase_ : RegNetConfig , lowercase_ : int , lowercase_ : int , lowercase_ : int = 1 , **lowercase_ : List[Any] ): super().__init__(**__lowerCAmelCase ) lowercase_ : Optional[Any] = in_channels != out_channels or stride != 1 lowercase_ : List[Any] = max(1 , out_channels // config.groups_width ) lowercase_ : Tuple = ( TFRegNetShortCut(__lowerCAmelCase , stride=__lowerCAmelCase , name="""shortcut""" ) if should_apply_shortcut else tf.keras.layers.Activation("""linear""" , name="""shortcut""" ) ) lowercase_ : int = [ TFRegNetConvLayer(__lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ), TFRegNetConvLayer( __lowerCAmelCase , stride=__lowerCAmelCase , groups=__lowerCAmelCase , activation=config.hidden_act , name="""layer.1""" ), TFRegNetSELayer(__lowerCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ), TFRegNetConvLayer(__lowerCAmelCase , kernel_size=1 , activation=__lowerCAmelCase , name="""layer.3""" ), ] lowercase_ : Optional[int] = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : Dict ): lowercase_ : Any = hidden_state for layer_module in self.layers: lowercase_ : Tuple = layer_module(__lowerCAmelCase ) lowercase_ : List[Any] = self.shortcut(__lowerCAmelCase ) hidden_state += residual lowercase_ : Union[str, Any] = self.activation(__lowerCAmelCase ) return hidden_state class __magic_name__ ( tf.keras.layers.Layer): def __init__( self : Any , lowercase_ : RegNetConfig , lowercase_ : int , lowercase_ : int , lowercase_ : int = 2 , lowercase_ : int = 2 , **lowercase_ : Dict ): super().__init__(**__lowerCAmelCase ) lowercase_ : int = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer lowercase_ : Optional[Any] = [ # downsampling is done in the first layer with stride of 2 layer(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , stride=__lowerCAmelCase , name="""layers.0""" ), *[layer(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Optional[Any] ): for layer_module in self.layers: lowercase_ : Dict = layer_module(__lowerCAmelCase ) return hidden_state class __magic_name__ ( tf.keras.layers.Layer): def __init__( self : str , lowercase_ : RegNetConfig , **lowercase_ : Optional[Any] ): super().__init__(**__lowerCAmelCase ) lowercase_ : List[Any] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) ) lowercase_ : List[Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowerCAmelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , depth=__lowerCAmelCase , name=f'''stages.{i+1}''' ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : tf.Tensor , lowercase_ : bool = False , lowercase_ : bool = True ): lowercase_ : Any = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase_ : int = hidden_states + (hidden_state,) lowercase_ : Any = stage_module(__lowerCAmelCase ) if output_hidden_states: lowercase_ : List[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowerCAmelCase , hidden_states=__lowerCAmelCase ) @keras_serializable class __magic_name__ ( tf.keras.layers.Layer): UpperCamelCase__ = RegNetConfig def __init__( self : Optional[int] , lowercase_ : Optional[int] , **lowercase_ : Optional[int] ): super().__init__(**__lowerCAmelCase ) lowercase_ : Union[str, Any] = config lowercase_ : Optional[int] = TFRegNetEmbeddings(__lowerCAmelCase , name="""embedder""" ) lowercase_ : int = TFRegNetEncoder(__lowerCAmelCase , name="""encoder""" ) lowercase_ : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCAmelCase , name="""pooler""" ) @unpack_inputs def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : tf.Tensor , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None , lowercase_ : bool = False , ): lowercase_ : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ : Dict = self.embedder(__lowerCAmelCase , training=__lowerCAmelCase ) lowercase_ : Optional[int] = self.encoder( __lowerCAmelCase , output_hidden_states=__lowerCAmelCase , return_dict=__lowerCAmelCase , training=__lowerCAmelCase ) lowercase_ : List[str] = encoder_outputs[0] lowercase_ : List[str] = self.pooler(__lowerCAmelCase ) # Change to NCHW output format have uniformity in the modules lowercase_ : Any = tf.transpose(__lowerCAmelCase , perm=(0, 3, 1, 2) ) lowercase_ : Optional[int] = tf.transpose(__lowerCAmelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowercase_ : List[str] = tuple([tf.transpose(__lowerCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCAmelCase , pooler_output=__lowerCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class __magic_name__ ( lowerCAmelCase_): UpperCamelCase__ = RegNetConfig UpperCamelCase__ = 'regnet' UpperCamelCase__ = 'pixel_values' @property def SCREAMING_SNAKE_CASE_ ( self : Any ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} _lowercase : str = r"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" _lowercase : Optional[int] = r"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''', lowerCAmelCase_, ) class __magic_name__ ( lowerCAmelCase_): def __init__( self : int , lowercase_ : RegNetConfig , *lowercase_ : Dict , **lowercase_ : List[str] ): super().__init__(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ) lowercase_ : str = TFRegNetMainLayer(__lowerCAmelCase , name="""regnet""" ) @unpack_inputs @add_start_docstrings_to_model_forward(__lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : tf.Tensor , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None , lowercase_ : Any=False , ): lowercase_ : List[str] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ : Any = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ : Optional[Any] = self.regnet( pixel_values=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , return_dict=__lowerCAmelCase , training=__lowerCAmelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '''\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ''', lowerCAmelCase_, ) class __magic_name__ ( lowerCAmelCase_, lowerCAmelCase_): def __init__( self : Dict , lowercase_ : RegNetConfig , *lowercase_ : List[Any] , **lowercase_ : List[Any] ): super().__init__(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ) lowercase_ : Optional[Any] = config.num_labels lowercase_ : List[Any] = TFRegNetMainLayer(__lowerCAmelCase , name="""regnet""" ) # classification head lowercase_ : Dict = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : tf.Tensor = None , lowercase_ : tf.Tensor = None , lowercase_ : bool = None , lowercase_ : bool = None , lowercase_ : str=False , ): lowercase_ : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ : int = self.regnet( __lowerCAmelCase , output_hidden_states=__lowerCAmelCase , return_dict=__lowerCAmelCase , training=__lowerCAmelCase ) lowercase_ : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] lowercase_ : Any = self.classifier[0](__lowerCAmelCase ) lowercase_ : Union[str, Any] = self.classifier[1](__lowerCAmelCase ) lowercase_ : List[Any] = None if labels is None else self.hf_compute_loss(labels=__lowerCAmelCase , logits=__lowerCAmelCase ) if not return_dict: lowercase_ : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__lowerCAmelCase , logits=__lowerCAmelCase , hidden_states=outputs.hidden_states )
357
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : Dict , **lowercase_ : List[Any] ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None ): lowercase_ : Optional[Any] = {} lowercase_ : Tuple = {} if prompt is not None: lowercase_ : Tuple = prompt if generate_kwargs is not None: lowercase_ : List[str] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase_ : List[Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase_ : str = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[Any] , lowercase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ : Optional[int] ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[Any] , lowercase_ : Tuple=None ): lowercase_ : List[Any] = load_image(lowercase_ ) if prompt is not None: if not isinstance(lowercase_ , lowercase_ ): raise ValueError( f'''Received an invalid text input, got - {type(lowercase_ )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase_ : List[Any] = self.model.config.model_type if model_type == "git": lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : Union[str, Any] = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_ ).input_ids lowercase_ : int = [self.tokenizer.cls_token_id] + input_ids lowercase_ : List[Any] = torch.tensor(lowercase_ ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase_ : Union[str, Any] = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : List[str] = self.tokenizer(lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: lowercase_ : List[str] = self.image_processor(images=lowercase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase_ : str = None return model_inputs def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Dict , lowercase_ : Optional[Any]=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , lowercase_ ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase_ : Any = None if generate_kwargs is None: lowercase_ : Optional[Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase_ : Dict = model_inputs.pop(self.model.main_input_name ) lowercase_ : Any = self.model.generate(lowercase_ , **lowercase_ , **lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[Any] ): lowercase_ : List[str] = [] for output_ids in model_outputs: lowercase_ : Union[str, Any] = { """generated_text""": self.tokenizer.decode( lowercase_ , skip_special_tokens=lowercase_ , ) } records.append(lowercase_ ) return records
21
0
'''simple docstring''' import qiskit def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> qiskit.result.counts.Counts: lowercase_ : Tuple = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register lowercase_ : Optional[int] = qiskit.QuantumCircuit(_UpperCamelCase , _UpperCamelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator lowercase_ : Optional[Any] = qiskit.execute(_UpperCamelCase , _UpperCamelCase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_UpperCamelCase ) if __name__ == "__main__": _lowercase : List[str] = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
358
'''simple docstring''' class __magic_name__ : def __init__( self : int , lowercase_ : list ): lowercase_ : Dict = set_counts lowercase_ : List[Any] = max(lowercase_ ) lowercase_ : str = len(lowercase_ ) lowercase_ : str = [1] * num_sets lowercase_ : Dict = list(range(lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : int ): lowercase_ : List[Any] = self.get_parent(lowercase_ ) lowercase_ : Union[str, Any] = self.get_parent(lowercase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : List[str] = 0 lowercase_ : Optional[int] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : int = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : int = 0 lowercase_ : List[Any] = src_parent lowercase_ : List[Any] = self.set_counts[src_parent] lowercase_ : Tuple = max(self.max_set , lowercase_ ) return True def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : int ): if self.parents[disj_set] == disj_set: return disj_set lowercase_ : int = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
21
0
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowercase : Optional[Any] = re.compile(r"\s+") def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ): return {"hash": hashlib.mda(re.sub(lowerCAmelCase__ , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] ): lowercase_ : int = [len(lowerCAmelCase__ ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(lowerCAmelCase__ ), "line_max": max(lowerCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ): lowercase_ : int = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] ): if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple=5 ): lowercase_ : Any = ["""auto-generated""", """autogenerated""", """automatically generated"""] lowercase_ : Optional[int] = example["""content"""].splitlines() for _, line in zip(range(lowerCAmelCase__ ) , lowerCAmelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any]=5 , UpperCAmelCase__ : Dict=0.05 ): lowercase_ : Optional[Any] = ["""unit tests""", """test file""", """configuration file"""] lowercase_ : List[str] = example["""content"""].splitlines() lowercase_ : Optional[Any] = 0 lowercase_ : List[str] = 0 # first test for _, line in zip(range(lowerCAmelCase__ ) , lowerCAmelCase__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test lowercase_ : List[Any] = example["""content"""].count("""\n""" ) lowercase_ : Tuple = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ): lowercase_ : Union[str, Any] = ["""def """, """class """, """for """, """while """] lowercase_ : Any = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any]=4 ): lowercase_ : Tuple = example["""content"""].splitlines() lowercase_ : int = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ): lowercase_ : Any = tokenizer(example["""content"""] , truncation=lowerCAmelCase__ )["""input_ids"""] lowercase_ : Optional[int] = len(example["""content"""] ) / len(lowerCAmelCase__ ) return {"ratio": ratio} def lowerCamelCase ( UpperCAmelCase__ : int ): lowercase_ : Tuple = {} results.update(get_hash(lowerCAmelCase__ ) ) results.update(line_stats(lowerCAmelCase__ ) ) results.update(alpha_stats(lowerCAmelCase__ ) ) results.update(char_token_ratio(lowerCAmelCase__ ) ) results.update(is_autogenerated(lowerCAmelCase__ ) ) results.update(is_config_or_test(lowerCAmelCase__ ) ) results.update(has_no_keywords(lowerCAmelCase__ ) ) results.update(has_few_assignments(lowerCAmelCase__ ) ) return results def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] ): if not check_uniques(lowerCAmelCase__ , lowerCAmelCase__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCamelCase ( UpperCAmelCase__ : Dict ): with open(lowerCAmelCase__ , """rb""" ) as f_in: with gzip.open(str(lowerCAmelCase__ ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(lowerCAmelCase__ , lowerCAmelCase__ ) os.unlink(lowerCAmelCase__ ) # Settings _lowercase : List[Any] = HfArgumentParser(PreprocessingArguments) _lowercase : Union[str, Any] = parser.parse_args() if args.num_workers is None: _lowercase : Dict = multiprocessing.cpu_count() _lowercase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowercase : Union[str, Any] = time.time() _lowercase : Union[str, Any] = load_dataset(args.dataset_name, split="train") print(f"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing _lowercase : Tuple = time.time() _lowercase : str = ds.map(preprocess, num_proc=args.num_workers) print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes _lowercase : int = set(ds.unique("hash")) _lowercase : Union[str, Any] = len(uniques) / len(ds) print(f"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics _lowercase : Union[str, Any] = time.time() _lowercase : Tuple = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f"""Time to filter dataset: {time.time()-t_start:.2f}""") print(f"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowercase : str = time.time() _lowercase : int = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(f"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file _lowercase : Tuple = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) _lowercase : int = output_dir / """data""" data_dir.mkdir(exist_ok=True) _lowercase : Optional[int] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowercase : List[str] = str(data_dir / f"""file-{file_number+1:012}.json""") _lowercase : Optional[Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
359
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : int , **lowercase_ : Any ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """decord""" ) self.check_model_type(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None ): lowercase_ : Union[str, Any] = {} if frame_sampling_rate is not None: lowercase_ : Any = frame_sampling_rate if num_frames is not None: lowercase_ : Optional[Any] = num_frames lowercase_ : Union[str, Any] = {} if top_k is not None: lowercase_ : Optional[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : str , lowercase_ : Union[str, List[str]] , **lowercase_ : str ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None , lowercase_ : Optional[int]=1 ): if num_frames is None: lowercase_ : List[Any] = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): lowercase_ : Union[str, Any] = BytesIO(requests.get(lowercase_ ).content ) lowercase_ : Optional[Any] = VideoReader(lowercase_ ) videoreader.seek(0 ) lowercase_ : Tuple = 0 lowercase_ : List[Any] = num_frames * frame_sampling_rate - 1 lowercase_ : Optional[int] = np.linspace(lowercase_ , lowercase_ , num=lowercase_ , dtype=np.intaa ) lowercase_ : Optional[int] = videoreader.get_batch(lowercase_ ).asnumpy() lowercase_ : Union[str, Any] = list(lowercase_ ) lowercase_ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : str ): lowercase_ : int = self.model(**lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Dict=5 ): if top_k > self.model.config.num_labels: lowercase_ : List[Any] = self.model.config.num_labels if self.framework == "pt": lowercase_ : str = model_outputs.logits.softmax(-1 )[0] lowercase_ , lowercase_ : Optional[Any] = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowercase_ : Union[str, Any] = scores.tolist() lowercase_ : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
21
0
def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> str: if not (isinstance(a__ , a__ ) and isinstance(a__ , a__ )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) lowercase_ : Optional[Any] = len(a__ ) lowercase_ : List[Any] = len(a__ ) lowercase_ : Dict = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] lowercase_ : Union[str, Any] = 0 lowercase_ : List[str] = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: lowercase_ : Dict = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: lowercase_ : str = i lowercase_ : Optional[int] = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
360
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> List[str]: if isinstance(UpperCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class __magic_name__ : def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Any , lowercase_ : str ): pass def SCREAMING_SNAKE_CASE_ ( self : str ): pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : np.ndarray , lowercase_ : float ): lowercase_ : Optional[Any] = np.abs((a - b) ).max() self.assertLessEqual(lowercase_ , lowercase_ , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple=None , **lowercase_ : Optional[int] ): lowercase_ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : Any = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : List[Any]=None , **lowercase_ : Tuple ): lowercase_ , lowercase_ : Any = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[int] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=None , **lowercase_ : int ): lowercase_ , lowercase_ : Union[str, Any] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Tuple = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Union[str, Any] = after_output[0] lowercase_ : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-3 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Dict=None , **lowercase_ : Optional[Any] ): lowercase_ , lowercase_ : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Dict = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Optional[int] = model( input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ ) lowercase_ : Tuple = output.vision_model_output.attentions self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ : List[str] = to_atuple(vision_model.config.image_size ) lowercase_ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowercase_ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase_ : Optional[Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowercase_ : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int ): pt_model.to(lowercase_ ) pt_model.eval() # prepare inputs lowercase_ : int = inputs_dict lowercase_ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowercase_ : str = pt_model(**lowercase_ ).to_tuple() lowercase_ : Optional[Any] = fx_model(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowercase_ ) lowercase_ : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ , from_pt=lowercase_ ) lowercase_ : Dict = fx_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowercase_ ) lowercase_ : Union[str, Any] = VisionTextDualEncoderModel.from_pretrained(lowercase_ , from_flax=lowercase_ ) pt_model_loaded.to(lowercase_ ) pt_model_loaded.eval() with torch.no_grad(): lowercase_ : List[Any] = pt_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowercase_ , pt_output_loaded.numpy() , 4E-2 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : List[Any] = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ ) lowercase_ : Tuple = fx_state self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[Any] ): lowercase_ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : int = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Dict = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params ) self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Tuple = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_save_load(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase_ ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = self.prepare_config_and_inputs() lowercase_ : List[Any] = config_inputs_dict.pop("""vision_config""" ) lowercase_ : int = config_inputs_dict.pop("""text_config""" ) lowercase_ : Optional[int] = config_inputs_dict self.check_equivalence_pt_to_flax(lowercase_ , lowercase_ , lowercase_ ) self.check_equivalence_flax_to_pt(lowercase_ , lowercase_ , lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ , lowercase_ : str = self.get_pretrained_model_and_inputs() lowercase_ : Dict = model_a(**lowercase_ ) lowercase_ : str = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : str = model_a(**lowercase_ ) lowercase_ : Union[str, Any] = after_outputs[0] lowercase_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-5 ) @require_flax class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : str = random_attention_mask([batch_size, 4] ) lowercase_ : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Tuple ): lowercase_ : Union[str, Any] = FlaxViTModel(lowercase_ ) lowercase_ : Dict = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Any = FlaxViTModelTester(self ) lowercase_ : Optional[Any] = FlaxBertModelTester(self ) lowercase_ : Dict = vit_model_tester.prepare_config_and_inputs() lowercase_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : List[str] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : Tuple = random_attention_mask([batch_size, 4] ) lowercase_ : Union[str, Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = FlaxCLIPVisionModel(lowercase_ ) lowercase_ : Any = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = FlaxCLIPVisionModelTester(self ) lowercase_ : Tuple = FlaxBertModelTester(self ) lowercase_ : Union[str, Any] = clip_model_tester.prepare_config_and_inputs() lowercase_ : Any = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : Optional[Any] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : str = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) lowercase_ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) lowercase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : Optional[int] = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowercase_ , padding=lowercase_ , return_tensors="""np""" ) lowercase_ : List[str] = model(**lowercase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowercase_ : Optional[Any] = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowercase_ , atol=1E-3 ) )
21
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase : List[Any] = { "configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"], "tokenization_perceiver": ["PerceiverTokenizer"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : int = ["PerceiverFeatureExtractor"] _lowercase : Union[str, Any] = ["PerceiverImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ "PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST", "PerceiverForImageClassificationConvProcessing", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationLearned", "PerceiverForMaskedLM", "PerceiverForMultimodalAutoencoding", "PerceiverForOpticalFlow", "PerceiverForSequenceClassification", "PerceiverLayer", "PerceiverModel", "PerceiverPreTrainedModel", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _lowercase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
361
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __magic_name__ ( unittest.TestCase): def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int=7 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[Any]=18 , lowercase_ : List[Any]=30 , lowercase_ : int=400 , lowercase_ : Dict=True , lowercase_ : List[Any]=None , lowercase_ : Dict=True , ): lowercase_ : Tuple = size if size is not None else {"""height""": 18, """width""": 18} lowercase_ : List[str] = parent lowercase_ : Any = batch_size lowercase_ : Optional[Any] = num_channels lowercase_ : Tuple = image_size lowercase_ : Optional[Any] = min_resolution lowercase_ : Dict = max_resolution lowercase_ : Optional[int] = do_resize lowercase_ : Optional[Any] = size lowercase_ : Union[str, Any] = do_normalize def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ImageGPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = ImageGPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """clusters""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) lowercase_ : Union[str, Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , obj[key] ) ) else: self.assertEqual(obj[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Union[str, Any] = os.path.join(lowercase_ , """image_processor.json""" ) image_processor_first.to_json_file(lowercase_ ) lowercase_ : Optional[Any] = self.image_processing_class.from_json_file(lowercase_ ).to_dict() lowercase_ : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase_ ) lowercase_ : Any = self.image_processing_class.from_pretrained(lowercase_ ).to_dict() lowercase_ : List[str] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass def lowerCamelCase ( ) -> Any: lowercase_ : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) lowercase_ : Any = Image.open(dataset[4]["""file"""] ) lowercase_ : Dict = Image.open(dataset[5]["""file"""] ) lowercase_ : int = [imagea, imagea] return images @require_vision @require_torch class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Optional[Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) lowercase_ : Optional[int] = prepare_images() # test non-batched lowercase_ : str = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) lowercase_ : Tuple = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase_ ) # test batched lowercase_ : List[str] = image_processing(lowercase_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) lowercase_ : Union[str, Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase_ )
21
0
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __magic_name__ : def __init__( self : Optional[Any] , lowercase_ : Any , lowercase_ : Tuple=sys.maxsize ): lowercase_ : str = """bilinear""" lowercase_ : Optional[Any] = max_size lowercase_ : Any = short_edge_length def __call__( self : Dict , lowercase_ : List[str] ): lowercase_ : Any = [] for img in imgs: lowercase_ , lowercase_ : Optional[Any] = img.shape[:2] # later: provide list and randomly choose index for resize lowercase_ : Any = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowercase_ : Optional[Any] = size * 1.0 / min(_a , _a ) if h < w: lowercase_ , lowercase_ : Optional[Any] = size, scale * w else: lowercase_ , lowercase_ : int = scale * h, size if max(_a , _a ) > self.max_size: lowercase_ : Union[str, Any] = self.max_size * 1.0 / max(_a , _a ) lowercase_ : List[str] = newh * scale lowercase_ : Any = neww * scale lowercase_ : List[str] = int(neww + 0.5 ) lowercase_ : str = int(newh + 0.5 ) if img.dtype == np.uinta: lowercase_ : Optional[Any] = Image.fromarray(_a ) lowercase_ : Optional[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowercase_ : Union[str, Any] = np.asarray(_a ) else: lowercase_ : str = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowercase_ : int = nn.functional.interpolate( _a , (newh, neww) , mode=self.interp_method , align_corners=_a ).squeeze(0 ) img_augs.append(_a ) return img_augs class __magic_name__ : def __init__( self : Optional[int] , lowercase_ : Optional[Any] ): lowercase_ : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowercase_ : Tuple = cfg.INPUT.FORMAT lowercase_ : Optional[int] = cfg.SIZE_DIVISIBILITY lowercase_ : Tuple = cfg.PAD_VALUE lowercase_ : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST lowercase_ : int = cfg.MODEL.DEVICE lowercase_ : Any = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase_ : Dict = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase_ : Optional[Any] = lambda lowercase_ : (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Tuple ): lowercase_ : str = tuple(max(_a ) for s in zip(*[img.shape for img in images] ) ) lowercase_ : List[Any] = [im.shape[-2:] for im in images] lowercase_ : List[str] = [ nn.functional.pad( _a , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_a , _a ) ] return torch.stack(_a ), torch.tensor(_a ) def __call__( self : int , lowercase_ : Optional[int] , lowercase_ : Optional[int]=False ): with torch.no_grad(): if not isinstance(_a , _a ): lowercase_ : List[Any] = [images] if single_image: assert len(_a ) == 1 for i in range(len(_a ) ): if isinstance(images[i] , torch.Tensor ): images.insert(_a , images.pop(_a ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( _a , torch.as_tensor(img_tensorize(images.pop(_a ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowercase_ : Dict = torch.tensor([im.shape[:2] for im in images] ) lowercase_ : List[str] = self.aug(_a ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowercase_ : List[Any] = [self.normalizer(_a ) for x in images] # now pad them to do the following operations lowercase_ , lowercase_ : Tuple = self.pad(_a ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowercase_ : Dict = torch.true_divide(_a , _a ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] ) -> Optional[Any]: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple[int, int] ) -> Dict: assert torch.isfinite(UpperCamelCase__ ).all(), "Box tensor contains infinite or NaN!" lowercase_ , lowercase_ : List[Any] = box_size tensor[:, 0].clamp_(min=0 , max=UpperCamelCase__ ) tensor[:, 1].clamp_(min=0 , max=UpperCamelCase__ ) tensor[:, 2].clamp_(min=0 , max=UpperCamelCase__ ) tensor[:, 3].clamp_(min=0 , max=UpperCamelCase__ )
362
'''simple docstring''' def lowerCamelCase ( ) -> Dict: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = 1 while len(UpperCAmelCase__ ) < 1e6: constant.append(str(UpperCAmelCase__ ) ) i += 1 lowercase_ : int = """""".join(UpperCAmelCase__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
21
0
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any ) -> List[Any]: if height >= 1: move_tower(height - 1 , _a , _a , _a ) move_disk(_a , _a ) move_tower(height - 1 , _a , _a , _a ) def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] ) -> str: print("""moving disk from""" , _a , """to""" , _a ) def lowerCamelCase ( ) -> Union[str, Any]: lowercase_ : Any = int(input("""Height of hanoi: """ ).strip() ) move_tower(_a , """A""" , """B""" , """C""" ) if __name__ == "__main__": main()
363
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _lowercase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( _UpperCAmelCase): def __init__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str ): super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : List[str] , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ): if audio_length_in_s is None: lowercase_ : List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate lowercase_ : Dict = audio_length_in_s * self.unet.config.sample_rate lowercase_ : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowercase_ : List[Any] = int(lowercase_ ) if sample_size % down_scale_factor != 0: lowercase_ : int = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) lowercase_ : Any = int(lowercase_ ) lowercase_ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowercase_ : List[str] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowercase_ : Any = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) # set step values self.scheduler.set_timesteps(lowercase_ , device=audio.device ) lowercase_ : Optional[Any] = self.scheduler.timesteps.to(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase_ : Dict = self.unet(lowercase_ , lowercase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowercase_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowercase_ : str = audio.clamp(-1 , 1 ).float().cpu().numpy() lowercase_ : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase_ )
21
0
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __magic_name__ ( snake_case__, unittest.TestCase): UpperCamelCase__ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Optional[Any]=0 ): lowercase_ : int = np.random.RandomState(UpperCAmelCase_ ) lowercase_ : Any = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowercase_ : Optional[Any] = self.get_dummy_inputs() lowercase_ : Union[str, Any] = pipe(**UpperCAmelCase_ ).images lowercase_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : Optional[Any] = np.array([0.6_50_72, 0.5_84_92, 0.4_82_19, 0.5_55_21, 0.5_31_80, 0.5_59_39, 0.5_06_97, 0.3_98_00, 0.4_64_55] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : Optional[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowercase_ : Union[str, Any] = self.get_dummy_inputs() lowercase_ : Optional[int] = pipe(**UpperCAmelCase_ ).images lowercase_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : Any = np.array([0.6_58_63, 0.5_94_25, 0.4_93_26, 0.5_63_13, 0.5_38_75, 0.5_66_27, 0.5_10_65, 0.3_97_77, 0.4_63_30] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : int = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowercase_ : str = self.get_dummy_inputs() lowercase_ : Union[str, Any] = pipe(**UpperCAmelCase_ ).images lowercase_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : List[str] = np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : int = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowercase_ : Dict = self.get_dummy_inputs() lowercase_ : int = pipe(**UpperCAmelCase_ ).images lowercase_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : List[str] = np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowercase_ : List[Any] = self.get_dummy_inputs() lowercase_ : str = pipe(**UpperCAmelCase_ ).images lowercase_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : Tuple = np.array([0.5_38_17, 0.6_08_12, 0.4_73_84, 0.4_95_30, 0.5_18_94, 0.4_98_14, 0.4_79_84, 0.3_89_58, 0.4_42_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowercase_ : Dict = self.get_dummy_inputs() lowercase_ : Tuple = pipe(**UpperCAmelCase_ ).images lowercase_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : List[Any] = np.array([0.5_38_95, 0.6_08_08, 0.4_79_33, 0.4_96_08, 0.5_18_86, 0.4_99_50, 0.4_80_53, 0.3_89_57, 0.4_42_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowercase_ : List[str] = self.get_dummy_inputs() lowercase_ : Optional[int] = 3 * [inputs["prompt"]] # forward lowercase_ : List[str] = pipe(**UpperCAmelCase_ ) lowercase_ : Dict = output.images[0, -3:, -3:, -1] lowercase_ : Optional[Any] = self.get_dummy_inputs() lowercase_ : Tuple = 3 * [inputs.pop("""prompt""" )] lowercase_ : List[str] = pipe.tokenizer( UpperCAmelCase_ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=UpperCAmelCase_ , return_tensors="""np""" , ) lowercase_ : Tuple = text_inputs["input_ids"] lowercase_ : List[Any] = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] lowercase_ : Tuple = prompt_embeds # forward lowercase_ : Optional[int] = pipe(**UpperCAmelCase_ ) lowercase_ : Any = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowercase_ : Dict = self.get_dummy_inputs() lowercase_ : str = 3 * ["this is a negative prompt"] lowercase_ : List[Any] = negative_prompt lowercase_ : str = 3 * [inputs["prompt"]] # forward lowercase_ : Tuple = pipe(**UpperCAmelCase_ ) lowercase_ : Tuple = output.images[0, -3:, -3:, -1] lowercase_ : Optional[int] = self.get_dummy_inputs() lowercase_ : Dict = 3 * [inputs.pop("""prompt""" )] lowercase_ : Optional[Any] = [] for p in [prompt, negative_prompt]: lowercase_ : Any = pipe.tokenizer( UpperCAmelCase_ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=UpperCAmelCase_ , return_tensors="""np""" , ) lowercase_ : Dict = text_inputs["input_ids"] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) lowercase_ : List[str] = embeds # forward lowercase_ : int = pipe(**UpperCAmelCase_ ) lowercase_ : Optional[Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class __magic_name__ ( unittest.TestCase): @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Union[str, Any] = ort.SessionOptions() lowercase_ : str = False return options def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Tuple = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowercase_ : List[str] = "A painting of a squirrel eating a burger" np.random.seed(0 ) lowercase_ : int = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) lowercase_ : List[str] = output.images lowercase_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase_ : Tuple = np.array([0.04_52, 0.03_90, 0.00_87, 0.03_50, 0.06_17, 0.03_64, 0.05_44, 0.05_23, 0.07_20] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : List[str] = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) lowercase_ : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowercase_ : Optional[int] = "open neural network exchange" lowercase_ : str = np.random.RandomState(0 ) lowercase_ : int = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCAmelCase_ , output_type="""np""" ) lowercase_ : List[Any] = output.images lowercase_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase_ : str = np.array([0.28_67, 0.19_74, 0.14_81, 0.72_94, 0.72_51, 0.66_67, 0.41_94, 0.56_42, 0.64_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Any = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) lowercase_ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowercase_ : Optional[Any] = "open neural network exchange" lowercase_ : Union[str, Any] = np.random.RandomState(0 ) lowercase_ : Any = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCAmelCase_ , output_type="""np""" ) lowercase_ : int = output.images lowercase_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase_ : List[Any] = np.array([0.23_06, 0.19_59, 0.15_93, 0.65_49, 0.63_94, 0.54_08, 0.50_65, 0.60_10, 0.61_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : List[str] = 0 def test_callback_fn(lowercase_ : int , lowercase_ : int , lowercase_ : np.ndarray ) -> None: lowercase_ : Tuple = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) lowercase_ : Optional[Any] = latents[0, -3:, -3:, -1] lowercase_ : Tuple = np.array( [-0.67_72, -0.38_35, -1.24_56, 0.19_05, -1.09_74, 0.69_67, -1.93_53, 0.01_78, 1.01_67] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) lowercase_ : Optional[Any] = latents[0, -3:, -3:, -1] lowercase_ : Dict = np.array( [-0.33_51, 0.22_41, -0.18_37, -0.23_25, -0.65_77, 0.33_93, -0.02_41, 0.58_99, 1.38_75] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 lowercase_ : List[Any] = False lowercase_ : str = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowercase_ : Union[str, Any] = "Andromeda galaxy in a bottle" lowercase_ : Union[str, Any] = np.random.RandomState(0 ) pipe( prompt=UpperCAmelCase_ , num_inference_steps=5 , guidance_scale=7.5 , generator=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Any = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert pipe.safety_checker is None lowercase_ : List[Any] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_ ) lowercase_ : str = OnnxStableDiffusionPipeline.from_pretrained(UpperCAmelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase_ : Dict = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
364
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _lowercase : Union[str, Any] = "src/transformers" _lowercase : str = "docs/source/en" _lowercase : Union[str, Any] = "." def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int: with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ : Union[str, Any] = f.readlines() # Find the start prompt. lowercase_ : Optional[Any] = 0 while not lines[start_index].startswith(UpperCAmelCase__ ): start_index += 1 start_index += 1 lowercase_ : int = start_index while not lines[end_index].startswith(UpperCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. _lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any: lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ ) return [m.group(0 ) for m in matches] def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]: lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ ) lowercase_ : List[str] = (width - text_length) // 2 lowercase_ : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase ( ) -> Any: lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase_ : Any = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = None if attr_name.endswith("""Tokenizer""" ): lowercase_ : Optional[int] = slow_tokenizers lowercase_ : Union[str, Any] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowercase_ : Optional[Any] = fast_tokenizers lowercase_ : Dict = attr_name[:-13] elif _re_tf_models.match(UpperCAmelCase__ ) is not None: lowercase_ : str = tf_models lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0] elif _re_flax_models.match(UpperCAmelCase__ ) is not None: lowercase_ : List[str] = flax_models lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0] elif _re_pt_models.match(UpperCAmelCase__ ) is not None: lowercase_ : Tuple = pt_models lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): lowercase_ : int = True break # Try again after removing the last word in the name lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] ) # Let's build that table! lowercase_ : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns] lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowercase_ : int = {True: """✅""", False: """❌"""} for name in model_names: lowercase_ : str = model_name_to_prefix[name] lowercase_ : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n" return table def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str: lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = _find_text_in_file( filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowercase_ : Dict = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowercase : Optional[Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
21
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType _lowercase : List[str] = logging.get_logger(__name__) _lowercase : int = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class __magic_name__ ( lowerCamelCase_): UpperCamelCase__ = """layoutlmv3""" def __init__( self : List[Any] , lowercase_ : List[Any]=50265 , lowercase_ : Optional[Any]=768 , lowercase_ : Dict=12 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=3072 , lowercase_ : List[Any]="gelu" , lowercase_ : str=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=512 , lowercase_ : Union[str, Any]=2 , lowercase_ : Optional[Any]=0.02 , lowercase_ : List[Any]=1E-5 , lowercase_ : Tuple=1 , lowercase_ : Any=0 , lowercase_ : List[str]=2 , lowercase_ : Dict=1024 , lowercase_ : int=128 , lowercase_ : List[Any]=128 , lowercase_ : Union[str, Any]=True , lowercase_ : Dict=32 , lowercase_ : Optional[int]=128 , lowercase_ : Optional[Any]=64 , lowercase_ : str=256 , lowercase_ : Optional[Any]=True , lowercase_ : Dict=True , lowercase_ : Dict=True , lowercase_ : List[Any]=224 , lowercase_ : str=3 , lowercase_ : List[str]=16 , lowercase_ : Tuple=None , **lowercase_ : List[str] , ): super().__init__( vocab_size=lowerCAmelCase__ , hidden_size=lowerCAmelCase__ , num_hidden_layers=lowerCAmelCase__ , num_attention_heads=lowerCAmelCase__ , intermediate_size=lowerCAmelCase__ , hidden_act=lowerCAmelCase__ , hidden_dropout_prob=lowerCAmelCase__ , attention_probs_dropout_prob=lowerCAmelCase__ , max_position_embeddings=lowerCAmelCase__ , type_vocab_size=lowerCAmelCase__ , initializer_range=lowerCAmelCase__ , layer_norm_eps=lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) lowercase_ : Any = max_ad_position_embeddings lowercase_ : Any = coordinate_size lowercase_ : Tuple = shape_size lowercase_ : Any = has_relative_attention_bias lowercase_ : Optional[int] = rel_pos_bins lowercase_ : Optional[int] = max_rel_pos lowercase_ : List[Any] = has_spatial_attention_bias lowercase_ : Dict = rel_ad_pos_bins lowercase_ : List[Any] = max_rel_ad_pos lowercase_ : Any = text_embed lowercase_ : List[str] = visual_embed lowercase_ : List[Any] = input_size lowercase_ : str = num_channels lowercase_ : str = patch_size lowercase_ : str = classifier_dropout class __magic_name__ ( lowerCamelCase_): UpperCamelCase__ = version.parse('''1.12''') @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): return 1E-5 @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): return 12 def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] = -1 , lowercase_ : int = -1 , lowercase_ : List[str] = False , lowercase_ : Any = None , lowercase_ : Dict = 3 , lowercase_ : Optional[int] = 40 , lowercase_ : int = 40 , ): setattr(processor.image_processor , """apply_ocr""" , lowerCAmelCase__ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase_ : int = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase_ : Optional[int] = processor.tokenizer.num_special_tokens_to_add(lowerCAmelCase__ ) lowercase_ : Any = compute_effective_axis_dimension( lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase__ ) # Generate dummy inputs according to compute batch and sequence lowercase_ : Tuple = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes lowercase_ : List[Any] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) lowercase_ : str = self._generate_dummy_images(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase_ : str = dict( processor( lowerCAmelCase__ , text=lowerCAmelCase__ , boxes=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , ) ) return inputs
365
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __magic_name__ ( ctypes.Structure): # _fields is a specific attr expected by ctypes UpperCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def lowerCamelCase ( ) -> List[Any]: if os.name == "nt": lowercase_ : List[Any] = CursorInfo() lowercase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def lowerCamelCase ( ) -> str: if os.name == "nt": lowercase_ : int = CursorInfo() lowercase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : Optional[int] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def lowerCamelCase ( ) -> Any: try: hide_cursor() yield finally: show_cursor()
21
0
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _lowercase : List[Any] = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowerCamelCase ( UpperCAmelCase__ : str = "mumbai" ): lowercase_ : List[Any] = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): lowercase_ : Optional[int] = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() lowercase_ : Union[str, Any] = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
366
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowercase : int = logging.get_logger(__name__) @dataclass class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : Optional[Any] , **lowercase_ : int ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase_ : Optional[int] = deprecated_arg[3:] setattr(self , lowercase_ , not kwargs.pop(lowercase_ ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase_ : Tuple = kwargs.pop("""torchscript""" , self.torchscript ) lowercase_ : List[Any] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) lowercase_ : List[Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**lowercase_ ) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Trace the models using torchscript'''}) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''}) UpperCamelCase__ = field( default='''O1''', metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) }, ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: lowercase_ : Optional[Any] = torch.device("""cpu""" ) lowercase_ : Tuple = 0 elif is_torch_tpu_available(): lowercase_ : Optional[int] = xm.xla_device() lowercase_ : str = 0 else: lowercase_ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) lowercase_ : str = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE_ ( self : int ): requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE_ ( self : int ): return self.n_gpu > 0
21
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _lowercase : Optional[int] = logging.get_logger(__name__) _lowercase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _lowercase : Tuple = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json" ), }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt" ), }, "tokenizer_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json", "roberta-base-openai-detector": ( "https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json" ), "roberta-large-openai-detector": ( "https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json" ), }, } _lowercase : List[str] = { "roberta-base": 512, "roberta-large": 512, "roberta-large-mnli": 512, "distilroberta-base": 512, "roberta-base-openai-detector": 512, "roberta-large-openai-detector": 512, } class __magic_name__ ( A_): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ['''input_ids''', '''attention_mask'''] UpperCamelCase__ = RobertaTokenizer def __init__( self : Dict , lowercase_ : Dict=None , lowercase_ : int=None , lowercase_ : Optional[int]=None , lowercase_ : int="replace" , lowercase_ : Optional[Any]="<s>" , lowercase_ : str="</s>" , lowercase_ : List[str]="</s>" , lowercase_ : str="<s>" , lowercase_ : Union[str, Any]="<unk>" , lowercase_ : List[str]="<pad>" , lowercase_ : List[str]="<mask>" , lowercase_ : int=False , lowercase_ : int=True , **lowercase_ : int , ): super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) lowercase_ : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , _lowerCamelCase ) != add_prefix_space: lowercase_ : Tuple = getattr(_lowerCamelCase , pre_tok_state.pop("""type""" ) ) lowercase_ : Optional[Any] = add_prefix_space lowercase_ : Optional[Any] = pre_tok_class(**_lowerCamelCase ) lowercase_ : Optional[Any] = add_prefix_space lowercase_ : Union[str, Any] = """post_processor""" lowercase_ : Tuple = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: lowercase_ : Union[str, Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase_ : Optional[Any] = tuple(state["""sep"""] ) if "cls" in state: lowercase_ : Optional[Any] = tuple(state["""cls"""] ) lowercase_ : int = False if state.get("""add_prefix_space""" , _lowerCamelCase ) != add_prefix_space: lowercase_ : List[Any] = add_prefix_space lowercase_ : List[str] = True if state.get("""trim_offsets""" , _lowerCamelCase ) != trim_offsets: lowercase_ : Union[str, Any] = trim_offsets lowercase_ : Tuple = True if changes_to_apply: lowercase_ : Any = getattr(_lowerCamelCase , state.pop("""type""" ) ) lowercase_ : List[Any] = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property def SCREAMING_SNAKE_CASE_ ( self : Any ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : Tuple ): lowercase_ : Union[str, Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value lowercase_ : Union[str, Any] = value def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , *lowercase_ : Dict , **lowercase_ : int ): lowercase_ : Dict = kwargs.get("""is_split_into_words""" , _lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : int , *lowercase_ : List[Any] , **lowercase_ : List[Any] ): lowercase_ : Dict = kwargs.get("""is_split_into_words""" , _lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : str , lowercase_ : Optional[str] = None ): lowercase_ : Union[str, Any] = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Optional[int] , lowercase_ : Any=None ): lowercase_ : Tuple = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): lowercase_ : Union[str, Any] = [self.sep_token_id] lowercase_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
367
'''simple docstring''' from __future__ import annotations from typing import Any def lowerCamelCase ( UpperCAmelCase__ : list ) -> int: if not postfix_notation: return 0 lowercase_ : Any = {"""+""", """-""", """*""", """/"""} lowercase_ : list[Any] = [] for token in postfix_notation: if token in operations: lowercase_ , lowercase_ : Dict = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
21
0
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int ) -> str: lowercase_ : Any = int(_snake_case ) if decimal in (0, 1): # Exit cases for the recursion return str(_snake_case ) lowercase_ : List[Any] = divmod(_snake_case , 2 ) return binary_recursive(_snake_case ) + str(_snake_case ) def lowerCamelCase ( UpperCAmelCase__ : str ) -> str: lowercase_ : int = str(_snake_case ).strip() if not number: raise ValueError("""No input value was provided""" ) lowercase_ : Tuple = "-" if number.startswith("""-""" ) else "" lowercase_ : Union[str, Any] = number.lstrip("""-""" ) if not number.isnumeric(): raise ValueError("""Input value is not an integer""" ) return F'''{negative}0b{binary_recursive(int(_snake_case ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
368
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase : List[Any] = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : Union[tf.Tensor, np.ndarray] ) -> List[int]: if isinstance(UpperCAmelCase__ , np.ndarray ): return list(tensor.shape ) lowercase_ : Tuple = tf.shape(UpperCAmelCase__ ) if tensor.shape == tf.TensorShape(UpperCAmelCase__ ): return dynamic lowercase_ : Dict = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase__ )] def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[str] = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCAmelCase__ , name=UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=1e-5 , UpperCAmelCase__ : List[str]=-1 ) -> List[str]: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized lowercase_ , lowercase_ : List[str] = tf.nn.moments(UpperCAmelCase__ , axes=[axis] , keepdims=UpperCAmelCase__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase_ : List[Any] = [1] * inputs.shape.rank lowercase_ : List[str] = shape_list(UpperCAmelCase__ )[axis] lowercase_ : List[str] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : List[Any] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) # Compute layer normalization using the batch_normalization # function. lowercase_ : str = tf.nn.batch_normalization( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , offset=UpperCAmelCase__ , scale=UpperCAmelCase__ , variance_epsilon=UpperCAmelCase__ , ) return outputs def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Any=-1 ) -> Dict: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase_ : List[Any] = tf.shape(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase_ : Dict = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor ) -> tf.Tensor: if not isinstance(UpperCAmelCase__ , tf.Tensor ): lowercase_ : List[Any] = tf.convert_to_tensor(UpperCAmelCase__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase_ : Any = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase_ : List[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase_ : Optional[Any] = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : int , UpperCAmelCase__ : str = "input_ids" ) -> None: tf.debugging.assert_less( UpperCAmelCase__ , tf.cast(UpperCAmelCase__ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase__ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> Any: lowercase_ : int = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase_ : Optional[Any] = [x for x in data if len(UpperCAmelCase__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) lowercase_ : Any = np.asarray(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = 1 lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = chunk_data else: lowercase_ : Any = data def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] ) -> str: if name in group.attrs: lowercase_ : Optional[Any] = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs[name]] else: lowercase_ : int = [] lowercase_ : Optional[int] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> Any: def _expand_single_ad_tensor(UpperCAmelCase__ : Optional[Any] ): if isinstance(UpperCAmelCase__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase__ )
21
0