code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int:
return x if y == 0 else greatest_common_divisor(UpperCAmelCase__ , x % y )
def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int:
return (x * y) // greatest_common_divisor(UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : int = 20 ) -> int:
lowercase_ : Dict = 1
for i in range(1 , n + 1 ):
lowercase_ : Optional[int] = lcm(UpperCAmelCase__ , UpperCAmelCase__ )
return g
if __name__ == "__main__":
print(f"""{solution() = }""")
| 21 | '''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
_lowercase : str = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase)
class __magic_name__ ( _UpperCAmelCase):
def __init__( self : str , *lowercase_ : Dict , **lowercase_ : List[Any] ):
super().__init__(*lowercase_ , **lowercase_ )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None ):
lowercase_ : Optional[Any] = {}
lowercase_ : Tuple = {}
if prompt is not None:
lowercase_ : Tuple = prompt
if generate_kwargs is not None:
lowercase_ : List[str] = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
lowercase_ : List[Any] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
lowercase_ : str = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : List[Any] , lowercase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ : Optional[int] ):
return super().__call__(lowercase_ , **lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[Any] , lowercase_ : Tuple=None ):
lowercase_ : List[Any] = load_image(lowercase_ )
if prompt is not None:
if not isinstance(lowercase_ , lowercase_ ):
raise ValueError(
f'''Received an invalid text input, got - {type(lowercase_ )} - but expected a single string. '''
"""Note also that one single text can be provided for conditional image to text generation.""" )
lowercase_ : List[Any] = self.model.config.model_type
if model_type == "git":
lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework )
lowercase_ : Union[str, Any] = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_ ).input_ids
lowercase_ : int = [self.tokenizer.cls_token_id] + input_ids
lowercase_ : List[Any] = torch.tensor(lowercase_ ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
lowercase_ : Union[str, Any] = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework )
lowercase_ : List[str] = self.tokenizer(lowercase_ , return_tensors=self.framework )
model_inputs.update(lowercase_ )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
lowercase_ : List[str] = self.image_processor(images=lowercase_ , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
lowercase_ : str = None
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Dict , lowercase_ : Optional[Any]=None ):
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , lowercase_ )
and all(x is None for x in model_inputs["""input_ids"""] )
):
lowercase_ : Any = None
if generate_kwargs is None:
lowercase_ : Optional[Any] = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
lowercase_ : Dict = model_inputs.pop(self.model.main_input_name )
lowercase_ : Any = self.model.generate(lowercase_ , **lowercase_ , **lowercase_ )
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[Any] ):
lowercase_ : List[str] = []
for output_ids in model_outputs:
lowercase_ : Union[str, Any] = {
"""generated_text""": self.tokenizer.decode(
lowercase_ , skip_special_tokens=lowercase_ , )
}
records.append(lowercase_ )
return records
| 21 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class __magic_name__ ( unittest.TestCase):
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ : List[Any] = 1
lowercase_ : str = 3
lowercase_ : Dict = (32, 32)
lowercase_ : Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase_ )
return image
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
torch.manual_seed(0 )
lowercase_ : List[str] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
return model
@property
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
torch.manual_seed(0 )
lowercase_ : Dict = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
torch.manual_seed(0 )
lowercase_ : Optional[int] = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , )
return RobertaSeriesModelWithTransformation(lowercase_ )
@property
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
def extract(*lowercase_ : Optional[int] , **lowercase_ : Optional[int] ):
class __magic_name__ :
def __init__( self : Any ):
lowercase_ : Optional[int] = torch.ones([0] )
def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : List[Any] ):
self.pixel_values.to(lowercase_ )
return self
return Out()
return extract
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowercase_ : Any = self.dummy_cond_unet
lowercase_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowercase_ )
lowercase_ : Optional[Any] = self.dummy_vae
lowercase_ : int = self.dummy_text_encoder
lowercase_ : Any = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" )
lowercase_ : List[Any] = 77
lowercase_ : List[str] = self.dummy_image.to(lowercase_ )
lowercase_ : List[str] = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
lowercase_ : List[Any] = AltDiffusionImgaImgPipeline(
unet=lowercase_ , scheduler=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , safety_checker=lowercase_ , feature_extractor=self.dummy_extractor , )
lowercase_ : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase_ )
lowercase_ : Any = alt_pipe.to(lowercase_ )
alt_pipe.set_progress_bar_config(disable=lowercase_ )
lowercase_ : int = """A painting of a squirrel eating a burger"""
lowercase_ : Any = torch.Generator(device=lowercase_ ).manual_seed(0 )
lowercase_ : Optional[Any] = alt_pipe(
[prompt] , generator=lowercase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=lowercase_ , )
lowercase_ : Optional[int] = output.images
lowercase_ : Any = torch.Generator(device=lowercase_ ).manual_seed(0 )
lowercase_ : List[Any] = alt_pipe(
[prompt] , generator=lowercase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=lowercase_ , return_dict=lowercase_ , )[0]
lowercase_ : int = image[0, -3:, -3:, -1]
lowercase_ : Tuple = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
lowercase_ : List[str] = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : str = self.dummy_cond_unet
lowercase_ : Any = PNDMScheduler(skip_prk_steps=lowercase_ )
lowercase_ : Tuple = self.dummy_vae
lowercase_ : List[Any] = self.dummy_text_encoder
lowercase_ : Any = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" )
lowercase_ : Tuple = 77
lowercase_ : Any = self.dummy_image.to(lowercase_ )
# put models in fp16
lowercase_ : List[Any] = unet.half()
lowercase_ : str = vae.half()
lowercase_ : Union[str, Any] = bert.half()
# make sure here that pndm scheduler skips prk
lowercase_ : Tuple = AltDiffusionImgaImgPipeline(
unet=lowercase_ , scheduler=lowercase_ , vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , safety_checker=lowercase_ , feature_extractor=self.dummy_extractor , )
lowercase_ : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase_ )
lowercase_ : Union[str, Any] = alt_pipe.to(lowercase_ )
alt_pipe.set_progress_bar_config(disable=lowercase_ )
lowercase_ : Dict = """A painting of a squirrel eating a burger"""
lowercase_ : Any = torch.manual_seed(0 )
lowercase_ : int = alt_pipe(
[prompt] , generator=lowercase_ , num_inference_steps=2 , output_type="""np""" , image=lowercase_ , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""" )
# resize to resolution that is divisible by 8 but not 16 or 32
lowercase_ : int = init_image.resize((760, 504) )
lowercase_ : int = """BAAI/AltDiffusion"""
lowercase_ : int = AltDiffusionImgaImgPipeline.from_pretrained(
lowercase_ , safety_checker=lowercase_ , )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
lowercase_ : Any = """A fantasy landscape, trending on artstation"""
lowercase_ : Any = torch.manual_seed(0 )
lowercase_ : List[str] = pipe(
prompt=lowercase_ , image=lowercase_ , strength=0.75 , guidance_scale=7.5 , generator=lowercase_ , output_type="""np""" , )
lowercase_ : List[str] = output.images[0]
lowercase_ : Optional[int] = image[255:258, 383:386, -1]
assert image.shape == (504, 760, 3)
lowercase_ : List[str] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class __magic_name__ ( unittest.TestCase):
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : List[Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""" )
lowercase_ : List[Any] = init_image.resize((768, 512) )
lowercase_ : Optional[int] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" )
lowercase_ : Union[str, Any] = """BAAI/AltDiffusion"""
lowercase_ : int = AltDiffusionImgaImgPipeline.from_pretrained(
lowercase_ , safety_checker=lowercase_ , )
pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
pipe.enable_attention_slicing()
lowercase_ : str = """A fantasy landscape, trending on artstation"""
lowercase_ : int = torch.manual_seed(0 )
lowercase_ : Optional[int] = pipe(
prompt=lowercase_ , image=lowercase_ , strength=0.75 , guidance_scale=7.5 , generator=lowercase_ , output_type="""np""" , )
lowercase_ : Optional[int] = output.images[0]
assert image.shape == (512, 768, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2
| 21 | '''simple docstring'''
class __magic_name__ :
def __init__( self : int , lowercase_ : list ):
lowercase_ : Dict = set_counts
lowercase_ : List[Any] = max(lowercase_ )
lowercase_ : str = len(lowercase_ )
lowercase_ : str = [1] * num_sets
lowercase_ : Dict = list(range(lowercase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : int ):
lowercase_ : List[Any] = self.get_parent(lowercase_ )
lowercase_ : Union[str, Any] = self.get_parent(lowercase_ )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
lowercase_ : List[str] = 0
lowercase_ : Optional[int] = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
lowercase_ : int = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
lowercase_ : int = 0
lowercase_ : List[Any] = src_parent
lowercase_ : List[Any] = self.set_counts[src_parent]
lowercase_ : Tuple = max(self.max_set , lowercase_ )
return True
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : int ):
if self.parents[disj_set] == disj_set:
return disj_set
lowercase_ : int = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 21 | 1 |
'''simple docstring'''
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
_lowercase : List[str] = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n"
_lowercase : str = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n"
_lowercase : List[Any] = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class __magic_name__ ( datasets.Metric):
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ),
"""references""": datasets.Sequence(
datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Any , lowercase_ : int , lowercase_ : Tuple=4 , lowercase_ : Tuple=False ):
lowercase_ : int = compute_bleu(
reference_corpus=lowercase_ , translation_corpus=lowercase_ , max_order=lowercase_ , smooth=lowercase_ )
((lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_)) : Optional[int] = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 21 | '''simple docstring'''
from io import BytesIO
from typing import List, Union
import requests
from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_decord_available():
import numpy as np
from decord import VideoReader
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
_lowercase : str = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase)
class __magic_name__ ( _UpperCAmelCase):
def __init__( self : str , *lowercase_ : int , **lowercase_ : Any ):
super().__init__(*lowercase_ , **lowercase_ )
requires_backends(self , """decord""" )
self.check_model_type(lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None ):
lowercase_ : Union[str, Any] = {}
if frame_sampling_rate is not None:
lowercase_ : Any = frame_sampling_rate
if num_frames is not None:
lowercase_ : Optional[Any] = num_frames
lowercase_ : Union[str, Any] = {}
if top_k is not None:
lowercase_ : Optional[Any] = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : str , lowercase_ : Union[str, List[str]] , **lowercase_ : str ):
return super().__call__(lowercase_ , **lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None , lowercase_ : Optional[int]=1 ):
if num_frames is None:
lowercase_ : List[Any] = self.model.config.num_frames
if video.startswith("""http://""" ) or video.startswith("""https://""" ):
lowercase_ : Union[str, Any] = BytesIO(requests.get(lowercase_ ).content )
lowercase_ : Optional[Any] = VideoReader(lowercase_ )
videoreader.seek(0 )
lowercase_ : Tuple = 0
lowercase_ : List[Any] = num_frames * frame_sampling_rate - 1
lowercase_ : Optional[int] = np.linspace(lowercase_ , lowercase_ , num=lowercase_ , dtype=np.intaa )
lowercase_ : Optional[int] = videoreader.get_batch(lowercase_ ).asnumpy()
lowercase_ : Union[str, Any] = list(lowercase_ )
lowercase_ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : str ):
lowercase_ : int = self.model(**lowercase_ )
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Dict=5 ):
if top_k > self.model.config.num_labels:
lowercase_ : List[Any] = self.model.config.num_labels
if self.framework == "pt":
lowercase_ : str = model_outputs.logits.softmax(-1 )[0]
lowercase_ , lowercase_ : Optional[Any] = probs.topk(lowercase_ )
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
lowercase_ : Union[str, Any] = scores.tolist()
lowercase_ : Tuple = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
| 21 | 1 |
'''simple docstring'''
from __future__ import annotations
class __magic_name__ :
def __init__( self : Optional[int] , lowercase_ : int=None ):
lowercase_ : Any = data
lowercase_ : str = None
def __repr__( self : str ):
lowercase_ : Any = []
lowercase_ : Optional[int] = self
while temp:
string_rep.append(f'''{temp.data}''' )
lowercase_ : Optional[int] = temp.next
return "->".join(lowercase_ )
def lowerCamelCase ( UpperCAmelCase__ : list ) -> Tuple:
if not elements_list:
raise Exception("""The Elements List is empty""" )
lowercase_ : str = Node(elements_list[0] )
for i in range(1 , len(UpperCAmelCase__ ) ):
lowercase_ : List[str] = Node(elements_list[i] )
lowercase_ : int = current.next
return head
def lowerCamelCase ( UpperCAmelCase__ : Node ) -> None:
if head_node is not None and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
print_reverse(head_node.next )
print(head_node.data )
def lowerCamelCase ( ) -> Union[str, Any]:
from doctest import testmod
testmod()
lowercase_ : Any = make_linked_list([14, 52, 14, 12, 43] )
print("""Linked List:""" )
print(UpperCAmelCase__ )
print("""Elements in Reverse:""" )
print_reverse(UpperCAmelCase__ )
if __name__ == "__main__":
main()
| 21 | '''simple docstring'''
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> List[str]:
if isinstance(UpperCAmelCase__ , collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class __magic_name__ :
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Any , lowercase_ : str ):
pass
def SCREAMING_SNAKE_CASE_ ( self : str ):
pass
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
pass
def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : np.ndarray , lowercase_ : float ):
lowercase_ : Optional[Any] = np.abs((a - b) ).max()
self.assertLessEqual(lowercase_ , lowercase_ , f'''Difference between torch and flax is {diff} (>= {tol}).''' )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple=None , **lowercase_ : Optional[int] ):
lowercase_ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ )
lowercase_ : Any = FlaxVisionTextDualEncoderModel(lowercase_ )
lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) )
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : List[Any]=None , **lowercase_ : Tuple ):
lowercase_ , lowercase_ : Any = self.get_vision_text_model(lowercase_ , lowercase_ )
lowercase_ : Optional[int] = {"""vision_model""": vision_model, """text_model""": text_model}
lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ )
lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=None , **lowercase_ : int ):
lowercase_ , lowercase_ : Union[str, Any] = self.get_vision_text_model(lowercase_ , lowercase_ )
lowercase_ : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model}
lowercase_ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ )
lowercase_ : Tuple = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ )
lowercase_ : Any = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowercase_ )
lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ )
lowercase_ : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ )
lowercase_ : Union[str, Any] = after_output[0]
lowercase_ : str = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowercase_ , 1E-3 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Dict=None , **lowercase_ : Optional[Any] ):
lowercase_ , lowercase_ : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ )
lowercase_ : Dict = {"""vision_model""": vision_model, """text_model""": text_model}
lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ )
lowercase_ : Optional[int] = model(
input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ )
lowercase_ : Tuple = output.vision_model_output.attentions
self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
lowercase_ : List[str] = to_atuple(vision_model.config.image_size )
lowercase_ : Optional[Any] = to_atuple(vision_model.config.patch_size )
lowercase_ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
lowercase_ : Optional[Any] = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
lowercase_ : Union[str, Any] = output.text_model_output.attentions
self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int ):
pt_model.to(lowercase_ )
pt_model.eval()
# prepare inputs
lowercase_ : int = inputs_dict
lowercase_ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
lowercase_ : str = pt_model(**lowercase_ ).to_tuple()
lowercase_ : Optional[Any] = fx_model(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowercase_ )
lowercase_ : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ , from_pt=lowercase_ )
lowercase_ : Dict = fx_model_loaded(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowercase_ )
lowercase_ : Union[str, Any] = VisionTextDualEncoderModel.from_pretrained(lowercase_ , from_flax=lowercase_ )
pt_model_loaded.to(lowercase_ )
pt_model_loaded.eval()
with torch.no_grad():
lowercase_ : List[Any] = pt_model_loaded(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(lowercase_ , pt_output_loaded.numpy() , 4E-2 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Union[str, Any] ):
lowercase_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ )
lowercase_ : List[Any] = VisionTextDualEncoderModel(lowercase_ )
lowercase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel(lowercase_ )
lowercase_ : Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ )
lowercase_ : Tuple = fx_state
self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[Any] ):
lowercase_ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ )
lowercase_ : int = VisionTextDualEncoderModel(lowercase_ )
lowercase_ : Dict = FlaxVisionTextDualEncoderModel(lowercase_ )
lowercase_ : Optional[Any] = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params )
self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ : Tuple = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : List[Any] = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : List[Any] = self.prepare_config_and_inputs()
self.check_save_load(**lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : Union[str, Any] = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**lowercase_ )
@is_pt_flax_cross_test
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Tuple = self.prepare_config_and_inputs()
lowercase_ : List[Any] = config_inputs_dict.pop("""vision_config""" )
lowercase_ : int = config_inputs_dict.pop("""text_config""" )
lowercase_ : Optional[int] = config_inputs_dict
self.check_equivalence_pt_to_flax(lowercase_ , lowercase_ , lowercase_ )
self.check_equivalence_flax_to_pt(lowercase_ , lowercase_ , lowercase_ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ , lowercase_ : str = self.get_pretrained_model_and_inputs()
lowercase_ : Dict = model_a(**lowercase_ )
lowercase_ : str = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(lowercase_ )
lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ )
lowercase_ : str = model_a(**lowercase_ )
lowercase_ : Union[str, Any] = after_outputs[0]
lowercase_ : Any = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowercase_ , 1E-5 )
@require_flax
class __magic_name__ ( _UpperCAmelCase, unittest.TestCase):
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
lowercase_ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
"""hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , )
lowercase_ : List[str] = 13
lowercase_ : Optional[Any] = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
lowercase_ : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
lowercase_ : str = random_attention_mask([batch_size, 4] )
lowercase_ : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Tuple ):
lowercase_ : Union[str, Any] = FlaxViTModel(lowercase_ )
lowercase_ : Dict = FlaxBertModel(lowercase_ )
return vision_model, text_model
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : Any = FlaxViTModelTester(self )
lowercase_ : Optional[Any] = FlaxBertModelTester(self )
lowercase_ : Dict = vit_model_tester.prepare_config_and_inputs()
lowercase_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs()
lowercase_ , lowercase_ : List[str] = vision_config_and_inputs
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class __magic_name__ ( _UpperCAmelCase, unittest.TestCase):
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
"""hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , )
lowercase_ : List[str] = 13
lowercase_ : Optional[Any] = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
lowercase_ : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
lowercase_ : Tuple = random_attention_mask([batch_size, 4] )
lowercase_ : Union[str, Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ):
lowercase_ : Tuple = FlaxCLIPVisionModel(lowercase_ )
lowercase_ : Any = FlaxBertModel(lowercase_ )
return vision_model, text_model
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : Union[str, Any] = FlaxCLIPVisionModelTester(self )
lowercase_ : Tuple = FlaxBertModelTester(self )
lowercase_ : Union[str, Any] = clip_model_tester.prepare_config_and_inputs()
lowercase_ : Any = bert_model_tester.prepare_config_and_inputs()
lowercase_ , lowercase_ : Optional[Any] = vision_config_and_inputs
lowercase_ , lowercase_ , lowercase_ , lowercase_ : str = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class __magic_name__ ( unittest.TestCase):
@slow
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 )
lowercase_ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" )
lowercase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
lowercase_ : Optional[int] = processor(
text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowercase_ , padding=lowercase_ , return_tensors="""np""" )
lowercase_ : List[str] = model(**lowercase_ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
lowercase_ : Optional[Any] = np.array([[1.2_28_47_27, 0.3_10_41_22]] )
self.assertTrue(np.allclose(outputs.logits_per_image , lowercase_ , atol=1E-3 ) )
| 21 | 1 |
'''simple docstring'''
from collections import defaultdict
from math import gcd
def lowerCamelCase ( UpperCAmelCase__ : int = 1500000 ) -> int:
lowercase_ : defaultdict = defaultdict(UpperCAmelCase__ )
lowercase_ : Any = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase__ , 2 ):
if gcd(UpperCAmelCase__ , UpperCAmelCase__ ) > 1:
continue
lowercase_ : Tuple = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCAmelCase__ , limit + 1 , UpperCAmelCase__ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 21 | '''simple docstring'''
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __magic_name__ ( unittest.TestCase):
def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int=7 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[Any]=18 , lowercase_ : List[Any]=30 , lowercase_ : int=400 , lowercase_ : Dict=True , lowercase_ : List[Any]=None , lowercase_ : Dict=True , ):
lowercase_ : Tuple = size if size is not None else {"""height""": 18, """width""": 18}
lowercase_ : List[str] = parent
lowercase_ : Any = batch_size
lowercase_ : Optional[Any] = num_channels
lowercase_ : Tuple = image_size
lowercase_ : Optional[Any] = min_resolution
lowercase_ : Dict = max_resolution
lowercase_ : Optional[int] = do_resize
lowercase_ : Optional[Any] = size
lowercase_ : Union[str, Any] = do_normalize
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04],
[-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __magic_name__ ( _UpperCAmelCase, unittest.TestCase):
UpperCamelCase__ = ImageGPTImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Optional[int] = ImageGPTImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : int = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase_ , """clusters""" ) )
self.assertTrue(hasattr(lowercase_ , """do_resize""" ) )
self.assertTrue(hasattr(lowercase_ , """size""" ) )
self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : int = self.image_processing_class(**self.image_processor_dict )
lowercase_ : Union[str, Any] = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : str = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase_ : Union[str, Any] = os.path.join(lowercase_ , """image_processor.json""" )
image_processor_first.to_json_file(lowercase_ )
lowercase_ : Optional[Any] = self.image_processing_class.from_json_file(lowercase_ ).to_dict()
lowercase_ : Any = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(lowercase_ )
lowercase_ : Any = self.image_processing_class.from_pretrained(lowercase_ ).to_dict()
lowercase_ : List[str] = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowercase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
pass
def lowerCamelCase ( ) -> Any:
lowercase_ : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
lowercase_ : Any = Image.open(dataset[4]["""file"""] )
lowercase_ : Dict = Image.open(dataset[5]["""file"""] )
lowercase_ : int = [imagea, imagea]
return images
@require_vision
@require_torch
class __magic_name__ ( unittest.TestCase):
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Optional[Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
lowercase_ : Optional[int] = prepare_images()
# test non-batched
lowercase_ : str = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1024) )
lowercase_ : Tuple = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase_ )
# test batched
lowercase_ : List[str] = image_processing(lowercase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1024) )
lowercase_ : Union[str, Any] = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase_ )
| 21 | 1 |
'''simple docstring'''
import argparse
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration
def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Path , UpperCAmelCase__ : str = None , UpperCAmelCase__ : str = None , UpperCAmelCase__ : str = None , ) -> int:
if config_name_or_path is None:
lowercase_ : int = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base"""
if generator_tokenizer_name_or_path is None:
lowercase_ : Optional[Any] = generator_name_or_path
if question_encoder_tokenizer_name_or_path is None:
lowercase_ : str = question_encoder_name_or_path
lowercase_ : Tuple = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration
# Save model.
lowercase_ : List[Any] = RagConfig.from_pretrained(UpperCAmelCase__ )
lowercase_ : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase__ )
lowercase_ : str = AutoConfig.from_pretrained(UpperCAmelCase__ )
lowercase_ : str = gen_config
lowercase_ : Union[str, Any] = question_encoder_config
lowercase_ : Any = model_class.from_pretrained_question_encoder_generator(
UpperCAmelCase__ , UpperCAmelCase__ , config=UpperCAmelCase__ )
rag_model.save_pretrained(UpperCAmelCase__ )
# Sanity check.
model_class.from_pretrained(UpperCAmelCase__ )
# Save tokenizers.
lowercase_ : int = AutoTokenizer.from_pretrained(UpperCAmelCase__ )
gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" )
lowercase_ : List[Any] = AutoTokenizer.from_pretrained(UpperCAmelCase__ )
question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" )
if __name__ == "__main__":
_lowercase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"--model_type",
choices=["rag_sequence", "rag_token"],
required=True,
type=str,
help="RAG model type: rag_sequence, rag_token",
)
parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.")
parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier")
parser.add_argument(
"--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier"
)
parser.add_argument(
"--generator_tokenizer_name_or_path",
type=str,
help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``",
)
parser.add_argument(
"--question_encoder_tokenizer_name_or_path",
type=str,
help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``",
)
parser.add_argument(
"--config_name_or_path",
type=str,
help=(
"Identifier of the model config to use, if not provided, resolves to a base config for a given"
" ``model_type``"
),
)
_lowercase : Any = parser.parse_args()
_lowercase : Optional[Any] = Path(args.dest)
dest_dir.mkdir(exist_ok=True)
consolidate(
args.model_type,
args.generator_name_or_path,
args.question_encoder_name_or_path,
dest_dir,
args.config_name_or_path,
args.generator_tokenizer_name_or_path,
args.question_encoder_tokenizer_name_or_path,
)
| 21 | '''simple docstring'''
def lowerCamelCase ( ) -> Dict:
lowercase_ : Union[str, Any] = []
lowercase_ : Tuple = 1
while len(UpperCAmelCase__ ) < 1e6:
constant.append(str(UpperCAmelCase__ ) )
i += 1
lowercase_ : int = """""".join(UpperCAmelCase__ )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[999] )
* int(constant[9999] )
* int(constant[99999] )
* int(constant[999999] )
)
if __name__ == "__main__":
print(solution())
| 21 | 1 |
'''simple docstring'''
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> Tuple:
lowercase_ : Optional[int] = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""decoder.output_projection.weight""",
"""_float_tensor""",
"""encoder.embed_positions._float_tensor""",
"""decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
state_dict.pop(UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : Any ) -> Optional[int]:
lowercase_ , lowercase_ : Tuple = emb.weight.shape
lowercase_ : int = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__ , bias=UpperCAmelCase__ )
lowercase_ : Any = emb.weight.data
return lin_layer
def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] ) -> Union[str, Any]:
lowercase_ : str = torch.load(UpperCAmelCase__ , map_location="""cpu""" )
lowercase_ : Dict = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""]
lowercase_ : str = mam_aaa["""model"""]
remove_ignore_keys_(UpperCAmelCase__ )
lowercase_ : List[str] = state_dict["""encoder.embed_tokens.weight"""].shape[0]
lowercase_ : List[str] = MaMaaaConfig(
vocab_size=UpperCAmelCase__ , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , )
lowercase_ : Dict = state_dict["""decoder.embed_tokens.weight"""]
lowercase_ : Optional[int] = MaMaaaForConditionalGeneration(UpperCAmelCase__ )
model.model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ )
lowercase_ : Dict = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
_lowercase : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.")
parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
_lowercase : Optional[int] = parser.parse_args()
_lowercase : Optional[int] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path)
| 21 | '''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
_lowercase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
class __magic_name__ ( _UpperCAmelCase):
def __init__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str ):
super().__init__()
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
@torch.no_grad()
def __call__( self : List[str] , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ):
if audio_length_in_s is None:
lowercase_ : List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate
lowercase_ : Dict = audio_length_in_s * self.unet.config.sample_rate
lowercase_ : Any = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to'''
f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' )
lowercase_ : List[Any] = int(lowercase_ )
if sample_size % down_scale_factor != 0:
lowercase_ : int = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled'''
f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising'''
""" process.""" )
lowercase_ : Any = int(lowercase_ )
lowercase_ : List[str] = next(iter(self.unet.parameters() ) ).dtype
lowercase_ : List[str] = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowercase_ : Any = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ )
# set step values
self.scheduler.set_timesteps(lowercase_ , device=audio.device )
lowercase_ : Optional[Any] = self.scheduler.timesteps.to(lowercase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
lowercase_ : Dict = self.unet(lowercase_ , lowercase_ ).sample
# 2. compute previous image: x_t -> t_t-1
lowercase_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample
lowercase_ : str = audio.clamp(-1 , 1 ).float().cpu().numpy()
lowercase_ : Union[str, Any] = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=lowercase_ )
| 21 | 1 |
'''simple docstring'''
from sklearn.metrics import fa_score
import datasets
_lowercase : Any = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n"
_lowercase : Optional[Any] = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n"
_lowercase : List[Any] = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class __magic_name__ ( datasets.Metric):
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""int32""" ) ),
"""references""": datasets.Sequence(datasets.Value("""int32""" ) ),
}
if self.config_name == """multilabel"""
else {
"""predictions""": datasets.Value("""int32""" ),
"""references""": datasets.Value("""int32""" ),
} ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , )
def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : str=None , lowercase_ : Any=1 , lowercase_ : str="binary" , lowercase_ : Union[str, Any]=None ):
lowercase_ : Optional[int] = fa_score(
lowercase_ , lowercase_ , labels=lowercase_ , pos_label=lowercase_ , average=lowercase_ , sample_weight=lowercase_ )
return {"f1": float(lowercase_ ) if score.size == 1 else score}
| 21 | '''simple docstring'''
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
_lowercase : Union[str, Any] = "src/transformers"
_lowercase : str = "docs/source/en"
_lowercase : Union[str, Any] = "."
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int:
with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowercase_ : Union[str, Any] = f.readlines()
# Find the start prompt.
lowercase_ : Optional[Any] = 0
while not lines[start_index].startswith(UpperCAmelCase__ ):
start_index += 1
start_index += 1
lowercase_ : int = start_index
while not lines[end_index].startswith(UpperCAmelCase__ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
_lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration"
# Regexes that match TF/Flax/PT model names.
_lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
_lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
_lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# This is to make sure the transformers module imported is the one in the repo.
_lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH)
def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any:
lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ )
return [m.group(0 ) for m in matches]
def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]:
lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ )
lowercase_ : List[str] = (width - text_length) // 2
lowercase_ : Dict = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def lowerCamelCase ( ) -> Any:
lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
lowercase_ : Any = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ )
# Let's lookup through all transformers object (once).
for attr_name in dir(UpperCAmelCase__ ):
lowercase_ : Union[str, Any] = None
if attr_name.endswith("""Tokenizer""" ):
lowercase_ : Optional[int] = slow_tokenizers
lowercase_ : Union[str, Any] = attr_name[:-9]
elif attr_name.endswith("""TokenizerFast""" ):
lowercase_ : Optional[Any] = fast_tokenizers
lowercase_ : Dict = attr_name[:-13]
elif _re_tf_models.match(UpperCAmelCase__ ) is not None:
lowercase_ : str = tf_models
lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0]
elif _re_flax_models.match(UpperCAmelCase__ ) is not None:
lowercase_ : List[str] = flax_models
lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0]
elif _re_pt_models.match(UpperCAmelCase__ ) is not None:
lowercase_ : Tuple = pt_models
lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0]
if lookup_dict is not None:
while len(UpperCAmelCase__ ) > 0:
if attr_name in model_name_to_prefix.values():
lowercase_ : int = True
break
# Try again after removing the last word in the name
lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] )
# Let's build that table!
lowercase_ : Dict = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""]
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns]
lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2
# Build the table per se
lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n"""
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n"
lowercase_ : int = {True: """✅""", False: """❌"""}
for name in model_names:
lowercase_ : str = model_name_to_prefix[name]
lowercase_ : Any = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n"
return table
def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str:
lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = _find_text_in_file(
filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , )
lowercase_ : Dict = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
"""The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" )
if __name__ == "__main__":
_lowercase : Any = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
_lowercase : Optional[Any] = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 21 | 1 |
'''simple docstring'''
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class __magic_name__ ( _UpperCAmelCase):
UpperCamelCase__ = DistilBertTokenizer
UpperCamelCase__ = DistilBertTokenizerFast
UpperCamelCase__ = True
@slow
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : int = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" )
lowercase_ : str = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ )
lowercase_ : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ )
lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowercase_ )
lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 21 | '''simple docstring'''
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class __magic_name__ ( ctypes.Structure):
# _fields is a specific attr expected by ctypes
UpperCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)]
def lowerCamelCase ( ) -> List[Any]:
if os.name == "nt":
lowercase_ : List[Any] = CursorInfo()
lowercase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
lowercase_ : List[str] = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
elif os.name == "posix":
sys.stdout.write("""\033[?25l""" )
sys.stdout.flush()
def lowerCamelCase ( ) -> str:
if os.name == "nt":
lowercase_ : int = CursorInfo()
lowercase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
lowercase_ : Optional[int] = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
elif os.name == "posix":
sys.stdout.write("""\033[?25h""" )
sys.stdout.flush()
@contextmanager
def lowerCamelCase ( ) -> Any:
try:
hide_cursor()
yield
finally:
show_cursor()
| 21 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class __magic_name__ ( _UpperCAmelCase):
UpperCamelCase__ = '''openai/whisper-base'''
UpperCamelCase__ = (
'''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the '''
'''transcribed text.'''
)
UpperCamelCase__ = '''transcriber'''
UpperCamelCase__ = WhisperProcessor
UpperCamelCase__ = WhisperForConditionalGeneration
UpperCamelCase__ = ['''audio''']
UpperCamelCase__ = ['''text''']
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : Tuple ):
return self.pre_processor(lowercase_ , return_tensors="""pt""" ).input_features
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : Optional[Any] ):
return self.model.generate(inputs=lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Union[str, Any] ):
return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
| 21 | '''simple docstring'''
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_torch_available():
import torch
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
_lowercase : int = logging.get_logger(__name__)
@dataclass
class __magic_name__ ( _UpperCAmelCase):
UpperCamelCase__ = [
'''no_inference''',
'''no_cuda''',
'''no_tpu''',
'''no_speed''',
'''no_memory''',
'''no_env_print''',
'''no_multi_process''',
]
def __init__( self : Optional[Any] , **lowercase_ : int ):
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
lowercase_ : Optional[int] = deprecated_arg[3:]
setattr(self , lowercase_ , not kwargs.pop(lowercase_ ) )
logger.warning(
f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or'''
f''' {positive_arg}={kwargs[positive_arg]}''' )
lowercase_ : Tuple = kwargs.pop("""torchscript""" , self.torchscript )
lowercase_ : List[Any] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics )
lowercase_ : List[Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level )
super().__init__(**lowercase_ )
UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Trace the models using torchscript'''})
UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''})
UpperCamelCase__ = field(
default='''O1''', metadata={
'''help''': (
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. '''
'''See details at https://nvidia.github.io/apex/amp.html'''
)
}, )
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
requires_backends(self , ["""torch"""] )
logger.info("""PyTorch: setting up devices""" )
if not self.cuda:
lowercase_ : Optional[Any] = torch.device("""cpu""" )
lowercase_ : Tuple = 0
elif is_torch_tpu_available():
lowercase_ : Optional[int] = xm.xla_device()
lowercase_ : str = 0
else:
lowercase_ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
lowercase_ : str = torch.cuda.device_count()
return device, n_gpu
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
return is_torch_tpu_available() and self.tpu
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
requires_backends(self , ["""torch"""] )
# TODO(PVP): currently only single GPU is supported
return torch.cuda.current_device()
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
requires_backends(self , ["""torch"""] )
return self._setup_devices[0]
@property
def SCREAMING_SNAKE_CASE_ ( self : int ):
requires_backends(self , ["""torch"""] )
return self._setup_devices[1]
@property
def SCREAMING_SNAKE_CASE_ ( self : int ):
return self.n_gpu > 0
| 21 | 1 |
'''simple docstring'''
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __magic_name__ ( _UpperCAmelCase, unittest.TestCase):
# TODO: is there an appropriate internal test set?
UpperCamelCase__ = '''ssube/stable-diffusion-x4-upscaler-onnx'''
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Optional[Any]=0 ):
lowercase_ : Any = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowercase_ ) )
lowercase_ : List[str] = torch.manual_seed(lowercase_ )
lowercase_ : str = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
pipe.set_progress_bar_config(disable=lowercase_ )
lowercase_ : List[str] = self.get_dummy_inputs()
lowercase_ : Dict = pipe(**lowercase_ ).images
lowercase_ : Any = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 512, 512, 3)
lowercase_ : Optional[int] = np.array(
[0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
lowercase_ : List[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
lowercase_ : Optional[Any] = self.get_dummy_inputs()
lowercase_ : int = pipe(**lowercase_ ).images
lowercase_ : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowercase_ : Dict = np.array(
[0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
lowercase_ : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowercase_ )
lowercase_ : Optional[int] = self.get_dummy_inputs()
lowercase_ : Any = pipe(**lowercase_ ).images
lowercase_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowercase_ : str = np.array(
[0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
lowercase_ : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
lowercase_ : Optional[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowercase_ )
lowercase_ : Any = self.get_dummy_inputs()
lowercase_ : List[Any] = pipe(**lowercase_ ).images
lowercase_ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowercase_ : Any = np.array(
[0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
lowercase_ : Optional[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=lowercase_ )
lowercase_ : int = self.get_dummy_inputs()
lowercase_ : List[str] = pipe(**lowercase_ ).images
lowercase_ : Optional[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowercase_ : Optional[int] = np.array(
[0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class __magic_name__ ( unittest.TestCase):
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Optional[Any] = ort.SessionOptions()
lowercase_ : List[Any] = False
return options
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ : Any = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""" )
lowercase_ : Optional[Any] = init_image.resize((128, 128) )
# using the PNDM scheduler by default
lowercase_ : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"""ssube/stable-diffusion-x4-upscaler-onnx""" , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowercase_ )
lowercase_ : List[str] = """A fantasy landscape, trending on artstation"""
lowercase_ : List[str] = torch.manual_seed(0 )
lowercase_ : str = pipe(
prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type="""np""" , )
lowercase_ : Optional[Any] = output.images
lowercase_ : List[Any] = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
lowercase_ : Optional[Any] = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
lowercase_ : List[Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/img2img/sketch-mountains-input.jpg""" )
lowercase_ : Tuple = init_image.resize((128, 128) )
lowercase_ : Any = LMSDiscreteScheduler.from_pretrained(
"""ssube/stable-diffusion-x4-upscaler-onnx""" , subfolder="""scheduler""" )
lowercase_ : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"""ssube/stable-diffusion-x4-upscaler-onnx""" , scheduler=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=lowercase_ )
lowercase_ : int = """A fantasy landscape, trending on artstation"""
lowercase_ : Optional[Any] = torch.manual_seed(0 )
lowercase_ : Any = pipe(
prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase_ , output_type="""np""" , )
lowercase_ : Dict = output.images
lowercase_ : Union[str, Any] = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
lowercase_ : Union[str, Any] = np.array(
[0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 21 | '''simple docstring'''
from __future__ import annotations
from typing import Any
def lowerCamelCase ( UpperCAmelCase__ : list ) -> int:
if not postfix_notation:
return 0
lowercase_ : Any = {"""+""", """-""", """*""", """/"""}
lowercase_ : list[Any] = []
for token in postfix_notation:
if token in operations:
lowercase_ , lowercase_ : Dict = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b )
elif token == "-":
stack.append(a - b )
elif token == "*":
stack.append(a * b )
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1 )
else:
stack.append(a // b )
else:
stack.append(int(UpperCAmelCase__ ) )
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 | 1 |
'''simple docstring'''
import os
import string
import sys
_lowercase : Any = 1 << 8
_lowercase : Optional[Any] = {
"tab": ord("\t"),
"newline": ord("\r"),
"esc": 27,
"up": 65 + ARROW_KEY_FLAG,
"down": 66 + ARROW_KEY_FLAG,
"right": 67 + ARROW_KEY_FLAG,
"left": 68 + ARROW_KEY_FLAG,
"mod_int": 91,
"undefined": sys.maxsize,
"interrupt": 3,
"insert": 50,
"delete": 51,
"pg_up": 53,
"pg_down": 54,
}
_lowercase : Union[str, Any] = KEYMAP["up"]
_lowercase : int = KEYMAP["left"]
if sys.platform == "win32":
_lowercase : Tuple = []
_lowercase : List[Any] = {
b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG,
b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG,
b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG,
b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG,
b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG,
b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG,
b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG,
b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG,
}
for i in range(10):
_lowercase : Any = ord(str(i))
def lowerCamelCase ( ) -> List[str]:
if os.name == "nt":
import msvcrt
lowercase_ : Optional[Any] = """mbcs"""
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(UpperCAmelCase__ ) == 0:
# Read the keystroke
lowercase_ : Dict = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
lowercase_ : int = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
lowercase_ : str = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) )
WIN_CH_BUFFER.append(UpperCAmelCase__ )
if ord(UpperCAmelCase__ ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(126 ) )
lowercase_ : Tuple = chr(KEYMAP["""esc"""] )
except KeyError:
lowercase_ : Optional[Any] = cha[1]
else:
lowercase_ : Dict = ch.decode(UpperCAmelCase__ )
else:
lowercase_ : List[str] = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
lowercase_ : Optional[Any] = sys.stdin.fileno()
lowercase_ : str = termios.tcgetattr(UpperCAmelCase__ )
try:
tty.setraw(UpperCAmelCase__ )
lowercase_ : Tuple = sys.stdin.read(1 )
finally:
termios.tcsetattr(UpperCAmelCase__ , termios.TCSADRAIN , UpperCAmelCase__ )
return ch
def lowerCamelCase ( ) -> Union[str, Any]:
lowercase_ : str = get_raw_chars()
if ord(UpperCAmelCase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(UpperCAmelCase__ ) == KEYMAP["esc"]:
lowercase_ : str = get_raw_chars()
if ord(UpperCAmelCase__ ) == KEYMAP["mod_int"]:
lowercase_ : Any = get_raw_chars()
if ord(UpperCAmelCase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(UpperCAmelCase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(UpperCAmelCase__ ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 21 | '''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
_lowercase : List[Any] = logging.get_logger(__name__)
def lowerCamelCase ( UpperCAmelCase__ : Union[tf.Tensor, np.ndarray] ) -> List[int]:
if isinstance(UpperCAmelCase__ , np.ndarray ):
return list(tensor.shape )
lowercase_ : Tuple = tf.shape(UpperCAmelCase__ )
if tensor.shape == tf.TensorShape(UpperCAmelCase__ ):
return dynamic
lowercase_ : Dict = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase__ )]
def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[str] = None ) -> tf.Tensor:
return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCAmelCase__ , name=UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=1e-5 , UpperCAmelCase__ : List[str]=-1 ) -> List[str]:
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" )
# Get mean and variance on the axis to be normalized
lowercase_ , lowercase_ : List[str] = tf.nn.moments(UpperCAmelCase__ , axes=[axis] , keepdims=UpperCAmelCase__ )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
lowercase_ : List[Any] = [1] * inputs.shape.rank
lowercase_ : List[str] = shape_list(UpperCAmelCase__ )[axis]
lowercase_ : List[str] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ )
lowercase_ : List[Any] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ )
# Compute layer normalization using the batch_normalization
# function.
lowercase_ : str = tf.nn.batch_normalization(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , offset=UpperCAmelCase__ , scale=UpperCAmelCase__ , variance_epsilon=UpperCAmelCase__ , )
return outputs
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Any=-1 ) -> Dict:
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
lowercase_ : List[Any] = tf.shape(UpperCAmelCase__ )
lowercase_ : Union[str, Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
lowercase_ : Dict = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor ) -> tf.Tensor:
if not isinstance(UpperCAmelCase__ , tf.Tensor ):
lowercase_ : List[Any] = tf.convert_to_tensor(UpperCAmelCase__ ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
lowercase_ : Any = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
lowercase_ : List[Any] = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
lowercase_ : Optional[Any] = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : int , UpperCAmelCase__ : str = "input_ids" ) -> None:
tf.debugging.assert_less(
UpperCAmelCase__ , tf.cast(UpperCAmelCase__ , dtype=tensor.dtype ) , message=(
F'''The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase__ )}) must be smaller than the embedding '''
F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> Any:
lowercase_ : int = 64512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
lowercase_ : Optional[Any] = [x for x in data if len(UpperCAmelCase__ ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
"""The following attributes cannot be saved to HDF5 file because """
F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
F'''bytes: {bad_attributes}''' )
lowercase_ : Any = np.asarray(UpperCAmelCase__ )
lowercase_ : Union[str, Any] = 1
lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(UpperCAmelCase__ ):
lowercase_ : Union[str, Any] = chunk_data
else:
lowercase_ : Any = data
def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] ) -> str:
if name in group.attrs:
lowercase_ : Optional[Any] = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs[name]]
else:
lowercase_ : int = []
lowercase_ : Optional[int] = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] )
chunk_id += 1
return data
def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> Any:
def _expand_single_ad_tensor(UpperCAmelCase__ : Optional[Any] ):
if isinstance(UpperCAmelCase__ , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(UpperCAmelCase__ , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase__ )
| 21 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __magic_name__ ( _UpperCAmelCase, unittest.TestCase):
UpperCamelCase__ = KandinskyImgaImgPipeline
UpperCamelCase__ = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''']
UpperCamelCase__ = [
'''prompt''',
'''negative_prompt''',
'''image_embeds''',
'''negative_image_embeds''',
'''image''',
]
UpperCamelCase__ = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''negative_prompt''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
UpperCamelCase__ = False
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
return 32
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
return 32
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
return self.time_input_dim
@property
def SCREAMING_SNAKE_CASE_ ( self : Any ):
return self.time_input_dim * 4
@property
def SCREAMING_SNAKE_CASE_ ( self : int ):
return 100
@property
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Union[str, Any] = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" )
return tokenizer
@property
def SCREAMING_SNAKE_CASE_ ( self : int ):
torch.manual_seed(0 )
lowercase_ : Optional[Any] = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , )
lowercase_ : Any = MultilingualCLIP(lowercase_ )
lowercase_ : int = text_encoder.eval()
return text_encoder
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
torch.manual_seed(0 )
lowercase_ : str = {
"""in_channels""": 4,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """text_image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """text_image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
lowercase_ : Optional[int] = UNetaDConditionModel(**lowercase_ )
return model
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
torch.manual_seed(0 )
lowercase_ : Optional[Any] = VQModel(**self.dummy_movq_kwargs )
return model
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
lowercase_ : str = self.dummy_text_encoder
lowercase_ : List[str] = self.dummy_tokenizer
lowercase_ : Union[str, Any] = self.dummy_unet
lowercase_ : str = self.dummy_movq
lowercase_ : Tuple = {
"""num_train_timesteps""": 1000,
"""beta_schedule""": """linear""",
"""beta_start""": 0.0_00_85,
"""beta_end""": 0.0_12,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
lowercase_ : Tuple = DDIMScheduler(**lowercase_ )
lowercase_ : Any = {
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : Union[str, Any]=0 ):
lowercase_ : Tuple = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowercase_ : Any = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowercase_ )
# create init_image
lowercase_ : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowercase_ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowercase_ : Optional[Any] = Image.fromarray(np.uinta(lowercase_ ) ).convert("""RGB""" ).resize((256, 256) )
if str(lowercase_ ).startswith("""mps""" ):
lowercase_ : int = torch.manual_seed(lowercase_ )
else:
lowercase_ : Dict = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowercase_ : Dict = {
"""prompt""": """horse""",
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : str = """cpu"""
lowercase_ : Any = self.get_dummy_components()
lowercase_ : Optional[Any] = self.pipeline_class(**lowercase_ )
lowercase_ : int = pipe.to(lowercase_ )
pipe.set_progress_bar_config(disable=lowercase_ )
lowercase_ : Union[str, Any] = pipe(**self.get_dummy_inputs(lowercase_ ) )
lowercase_ : int = output.images
lowercase_ : Optional[Any] = pipe(
**self.get_dummy_inputs(lowercase_ ) , return_dict=lowercase_ , )[0]
lowercase_ : Union[str, Any] = image[0, -3:, -3:, -1]
lowercase_ : List[str] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowercase_ : str = np.array(
[0.61_47_49_43, 0.6_07_35_39, 0.43_30_85_44, 0.5_92_82_69, 0.47_49_35_95, 0.46_75_59_73, 0.4_61_38_38, 0.45_36_87_97, 0.50_11_92_33] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class __magic_name__ ( unittest.TestCase):
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
lowercase_ : List[Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinsky/kandinsky_img2img_frog.npy""" )
lowercase_ : Optional[Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
lowercase_ : List[Any] = """A red cartoon frog, 4k"""
lowercase_ : Optional[Any] = KandinskyPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(lowercase_ )
lowercase_ : Tuple = KandinskyImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa )
lowercase_ : Dict = pipeline.to(lowercase_ )
pipeline.set_progress_bar_config(disable=lowercase_ )
lowercase_ : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 )
lowercase_ , lowercase_ : int = pipe_prior(
lowercase_ , generator=lowercase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
lowercase_ : Dict = pipeline(
lowercase_ , image=lowercase_ , image_embeds=lowercase_ , negative_image_embeds=lowercase_ , generator=lowercase_ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , )
lowercase_ : Optional[Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(lowercase_ , lowercase_ )
| 21 | '''simple docstring'''
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def lowerCamelCase ( UpperCAmelCase__ : int ) -> int:
lowercase_ : Any = prime_factors(UpperCAmelCase__ )
if is_square_free(UpperCAmelCase__ ):
return -1 if len(UpperCAmelCase__ ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 | 1 |
'''simple docstring'''
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
_lowercase : Optional[int] = "bart"
_lowercase : str = True
@st.cache(allow_output_mutation=UpperCAmelCase__ )
def lowerCamelCase ( ) -> Union[str, Any]:
if LOAD_DENSE_INDEX:
lowercase_ : List[str] = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" )
lowercase_ : str = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" )
lowercase_ : Dict = qar_model.eval()
else:
lowercase_ , lowercase_ : Optional[int] = (None, None)
if MODEL_TYPE == "bart":
lowercase_ : List[Any] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" )
lowercase_ : Any = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" )
lowercase_ : str = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" )
sas_model.load_state_dict(save_dict["""model"""] )
lowercase_ : Optional[Any] = sas_model.eval()
else:
lowercase_ , lowercase_ : List[Any] = make_qa_sas_model(
model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=UpperCAmelCase__ )
def lowerCamelCase ( ) -> List[Any]:
if LOAD_DENSE_INDEX:
lowercase_ : List[Any] = faiss.StandardGpuResources()
lowercase_ : List[str] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""]
lowercase_ : Optional[Any] = np.memmap(
"""wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , )
lowercase_ : Dict = faiss.IndexFlatIP(128 )
lowercase_ : int = faiss.index_cpu_to_gpu(UpperCAmelCase__ , 1 , UpperCAmelCase__ )
wikiaab_gpu_index_flat.add(UpperCAmelCase__ ) # TODO fix for larger GPU
else:
lowercase_ , lowercase_ : str = (None, None)
lowercase_ : Union[str, Any] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=UpperCAmelCase__ )
def lowerCamelCase ( ) -> str:
lowercase_ : Optional[Any] = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" )
lowercase_ : Union[str, Any] = elia["""train_eli5"""]
lowercase_ : Union[str, Any] = np.memmap(
"""eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) )
lowercase_ : Union[str, Any] = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(UpperCAmelCase__ )
return (elia_train, eli5_train_q_index)
_lowercase , _lowercase , _lowercase : Dict = load_indexes()
_lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = load_models()
_lowercase , _lowercase : Tuple = load_train_data()
def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any]=10 ) -> Optional[int]:
lowercase_ : Tuple = embed_questions_for_retrieval([question] , UpperCAmelCase__ , UpperCAmelCase__ )
lowercase_ , lowercase_ : int = eli5_train_q_index.search(UpperCAmelCase__ , UpperCAmelCase__ )
lowercase_ : Union[str, Any] = [elia_train[int(UpperCAmelCase__ )] for i in I[0]]
return nn_examples
def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any]="wiki40b" , UpperCAmelCase__ : Optional[int]="dense" , UpperCAmelCase__ : int=10 ) -> Tuple:
if source == "none":
lowercase_ , lowercase_ : Any = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
lowercase_ , lowercase_ : Optional[int] = query_qa_dense_index(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
else:
lowercase_ , lowercase_ : Tuple = query_es_index(
UpperCAmelCase__ , UpperCAmelCase__ , index_name="""english_wiki40b_snippets_100w""" , n_results=UpperCAmelCase__ , )
lowercase_ : int = [
(res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst
]
lowercase_ : Union[str, Any] = """question: {} context: {}""".format(UpperCAmelCase__ , UpperCAmelCase__ )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda UpperCAmelCase__ : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda UpperCAmelCase__ : None),
} )
def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any]=64 , UpperCAmelCase__ : Any=256 , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : Tuple=0.95 , UpperCAmelCase__ : str=0.8 ) -> List[Any]:
with torch.no_grad():
lowercase_ : List[Any] = qa_sas_generate(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , num_answers=1 , num_beams=UpperCAmelCase__ , min_len=UpperCAmelCase__ , max_len=UpperCAmelCase__ , do_sample=UpperCAmelCase__ , temp=UpperCAmelCase__ , top_p=UpperCAmelCase__ , top_k=UpperCAmelCase__ , max_input_length=1024 , device="""cuda:0""" , )[0]
return (answer, support_list)
st.title("Long Form Question Answering with ELI5")
# Start sidebar
_lowercase : Union[str, Any] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>"
_lowercase : Dict = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
_lowercase : str = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n"
st.sidebar.markdown(description, unsafe_allow_html=True)
_lowercase : List[str] = [
"Answer the question",
"View the retrieved document only",
"View the most similar ELI5 question and answer",
"Show me everything, please!",
]
_lowercase : List[str] = st.sidebar.checkbox("Demo options")
if demo_options:
_lowercase : Dict = st.sidebar.selectbox(
"",
action_list,
index=3,
)
_lowercase : str = action_list.index(action_st)
_lowercase : List[Any] = st.sidebar.selectbox(
"",
["Show full text of passages", "Show passage section titles"],
index=0,
)
_lowercase : str = show_type == "Show full text of passages"
else:
_lowercase : Tuple = 3
_lowercase : Optional[int] = True
_lowercase : Union[str, Any] = st.sidebar.checkbox("Retrieval options")
if retrieval_options:
_lowercase : List[Any] = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n "
st.sidebar.markdown(retriever_info)
_lowercase : List[str] = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"])
_lowercase : Optional[int] = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"])
else:
_lowercase : List[Any] = "wiki40b"
_lowercase : Dict = "dense"
_lowercase : Union[str, Any] = "beam"
_lowercase : Dict = 2
_lowercase : Dict = 64
_lowercase : Any = 256
_lowercase : List[str] = None
_lowercase : Any = None
_lowercase : int = st.sidebar.checkbox("Generation options")
if generate_options:
_lowercase : Union[str, Any] = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n "
st.sidebar.markdown(generate_info)
_lowercase : Dict = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"])
_lowercase : Any = st.sidebar.slider(
"Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
_lowercase : Tuple = st.sidebar.slider(
"Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
_lowercase : Tuple = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
_lowercase : List[str] = st.sidebar.slider(
"Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None
)
_lowercase : Any = st.sidebar.slider(
"Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None
)
_lowercase : List[Any] = None
# start main text
_lowercase : Optional[Any] = [
"<MY QUESTION>",
"How do people make chocolate?",
"Why do we get a fever when we are sick?",
"How can different animals perceive different colors?",
"What is natural language processing?",
"What's the best way to treat a sunburn?",
"What exactly are vitamins ?",
"How does nuclear energy provide electricity?",
"What's the difference between viruses and bacteria?",
"Why are flutes classified as woodwinds when most of them are made out of metal ?",
"Why do people like drinking coffee even though it tastes so bad?",
"What happens when wine ages? How does it make the wine taste better?",
"If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?",
"How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?",
"How does New Zealand have so many large bird predators?",
]
_lowercase : Tuple = st.selectbox(
"What would you like to ask? ---- select <MY QUESTION> to enter a new query",
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
_lowercase : Union[str, Any] = st.text_input("Enter your question here:", "")
else:
_lowercase : int = question_s
if st.button("Show me!"):
if action in [0, 1, 3]:
if index_type == "mixed":
_lowercase , _lowercase : List[str] = make_support(question, source=wiki_source, method="dense", n_results=10)
_lowercase , _lowercase : Any = make_support(question, source=wiki_source, method="sparse", n_results=10)
_lowercase : Dict = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
_lowercase : List[Any] = support_list[:10]
_lowercase : Dict = "<P> " + " <P> ".join([res[-1] for res in support_list])
else:
_lowercase , _lowercase : Union[str, Any] = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
_lowercase , _lowercase : Any = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == "sampled"),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown("### The model generated answer is:")
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:")
for i, res in enumerate(support_list):
_lowercase : Tuple = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_"))
_lowercase : Dict = res[1].strip()
if sec_titles == "":
_lowercase : Tuple = "[{}]({})".format(res[0], wiki_url)
else:
_lowercase : List[Any] = sec_titles.split(" & ")
_lowercase : Any = " & ".join(
["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list]
)
st.markdown(
"{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
"> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True
)
if action in [2, 3]:
_lowercase : List[Any] = find_nearest_training(question)
_lowercase : Tuple = nn_train_list[0]
st.markdown(
"--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"])
)
_lowercase : Dict = [
"{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""]))
for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"]))
if i == 0 or sc > 2
]
st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st)))
_lowercase : Optional[int] = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n"
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 21 | '''simple docstring'''
def lowerCamelCase ( UpperCAmelCase__ : int = 1000000 ) -> int:
lowercase_ : List[Any] = limit + 1
lowercase_ : Optional[Any] = [0] * limit
for first_term in range(1 , UpperCAmelCase__ ):
for n in range(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ):
lowercase_ : List[Any] = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
lowercase_ : List[Any] = sum(1 for x in frequency[1:limit] if x == 10 )
return count
if __name__ == "__main__":
print(f"""{solution() = }""")
| 21 | 1 |
'''simple docstring'''
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def lowerCamelCase ( UpperCAmelCase__ : Dict ) -> List[str]:
lowercase_ : Tuple = args.pruning_method
lowercase_ : Dict = args.threshold
lowercase_ : Tuple = args.model_name_or_path.rstrip("""/""" )
lowercase_ : int = args.target_model_path
print(F'''Load fine-pruned model from {model_name_or_path}''' )
lowercase_ : int = torch.load(os.path.join(UpperCAmelCase__ , """pytorch_model.bin""" ) )
lowercase_ : Dict = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
lowercase_ : Optional[Any] = tensor
print(F'''Copied layer {name}''' )
elif "classifier" in name or "qa_output" in name:
lowercase_ : Any = tensor
print(F'''Copied layer {name}''' )
elif "bias" in name:
lowercase_ : int = tensor
print(F'''Copied layer {name}''' )
else:
if pruning_method == "magnitude":
lowercase_ : List[Any] = MagnitudeBinarizer.apply(inputs=UpperCAmelCase__ , threshold=UpperCAmelCase__ )
lowercase_ : int = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
lowercase_ : List[str] = name[:-6]
lowercase_ : str = model[F'''{prefix_}mask_scores''']
lowercase_ : List[Any] = TopKBinarizer.apply(UpperCAmelCase__ , UpperCAmelCase__ )
lowercase_ : str = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
lowercase_ : int = name[:-6]
lowercase_ : List[str] = model[F'''{prefix_}mask_scores''']
lowercase_ : Optional[int] = ThresholdBinarizer.apply(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
lowercase_ : List[Any] = tensor * mask
print(F'''Pruned layer {name}''' )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
lowercase_ : Tuple = name[:-6]
lowercase_ : List[Any] = model[F'''{prefix_}mask_scores''']
lowercase_ , lowercase_ : List[str] = -0.1, 1.1
lowercase_ : Optional[Any] = torch.sigmoid(UpperCAmelCase__ )
lowercase_ : int = s * (r - l) + l
lowercase_ : Dict = s_bar.clamp(min=0.0 , max=1.0 )
lowercase_ : Union[str, Any] = tensor * mask
print(F'''Pruned layer {name}''' )
else:
raise ValueError("""Unknown pruning method""" )
if target_model_path is None:
lowercase_ : Optional[int] = os.path.join(
os.path.dirname(UpperCAmelCase__ ) , F'''bertarized_{os.path.basename(UpperCAmelCase__ )}''' )
if not os.path.isdir(UpperCAmelCase__ ):
shutil.copytree(UpperCAmelCase__ , UpperCAmelCase__ )
print(F'''\nCreated folder {target_model_path}''' )
torch.save(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , """pytorch_model.bin""" ) )
print("""\nPruned model saved! See you later!""" )
if __name__ == "__main__":
_lowercase : List[str] = argparse.ArgumentParser()
parser.add_argument(
"--pruning_method",
choices=["l0", "magnitude", "topK", "sigmoied_threshold"],
type=str,
required=True,
help=(
"Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,"
" sigmoied_threshold = Soft movement pruning)"
),
)
parser.add_argument(
"--threshold",
type=float,
required=False,
help=(
"For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model."
"For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared."
"Not needed for `l0`"
),
)
parser.add_argument(
"--model_name_or_path",
type=str,
required=True,
help="Folder containing the model that was previously fine-pruned",
)
parser.add_argument(
"--target_model_path",
default=None,
type=str,
required=False,
help="Folder containing the model that was previously fine-pruned",
)
_lowercase : str = parser.parse_args()
main(args)
| 21 | '''simple docstring'''
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __magic_name__ ( unittest.TestCase):
@parameterized.expand([(None,), ("""foo.json""",)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str ):
lowercase_ : Union[str, Any] = GenerationConfig(
do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowercase_ , config_name=lowercase_ )
lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_ )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , lowercase_ )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 50 )
self.assertEqual(loaded_config.max_length , 20 )
self.assertEqual(loaded_config.max_time , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : int = AutoConfig.from_pretrained("""gpt2""" )
lowercase_ : List[Any] = GenerationConfig.from_model_config(lowercase_ )
lowercase_ : Optional[int] = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(lowercase_ , lowercase_ )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Optional[int] = GenerationConfig()
lowercase_ : int = {
"""max_new_tokens""": 1024,
"""foo""": """bar""",
}
lowercase_ : List[str] = copy.deepcopy(lowercase_ )
lowercase_ : Tuple = generation_config.update(**lowercase_ )
# update_kwargs was not modified (no side effects)
self.assertEqual(lowercase_ , lowercase_ )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1024 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(lowercase_ , {"""foo""": """bar"""} )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
lowercase_ : Dict = GenerationConfig()
lowercase_ : int = """bar"""
with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir:
generation_config.save_pretrained(lowercase_ )
lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , """bar""" )
lowercase_ : List[str] = GenerationConfig.from_model_config(lowercase_ )
assert not hasattr(lowercase_ , """foo""" ) # no new kwargs should be initialized if from config
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
lowercase_ : Optional[int] = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , lowercase_ )
self.assertEqual(default_config.num_beams , 1 )
lowercase_ : Dict = GenerationConfig(
do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , lowercase_ )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowercase_ )
lowercase_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , lowercase_ )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class __magic_name__ ( unittest.TestCase):
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Any ):
lowercase_ : int = TOKEN
HfFolder.save_token(lowercase_ )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[Any] ):
try:
delete_repo(token=cls._token , repo_id="""test-generation-config""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" )
except HTTPError:
pass
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Tuple = GenerationConfig(
do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("""test-generation-config""" , use_auth_token=self._token )
lowercase_ : List[Any] = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
# Reset repo
delete_repo(token=self._token , repo_id="""test-generation-config""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
lowercase_ , repo_id="""test-generation-config""" , push_to_hub=lowercase_ , use_auth_token=self._token )
lowercase_ : int = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : List[Any] = GenerationConfig(
do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token )
lowercase_ : Optional[Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
lowercase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowercase_ , use_auth_token=self._token )
lowercase_ : int = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
| 21 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_lowercase : Any = {
"configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Any = ["LlamaTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] = ["LlamaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Any = [
"LlamaForCausalLM",
"LlamaModel",
"LlamaPreTrainedModel",
"LlamaForSequenceClassification",
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
_lowercase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21 | '''simple docstring'''
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] ) -> List[Any]:
# Initialise PyTorch model
lowercase_ : List[str] = FunnelConfig.from_json_file(UpperCAmelCase__ )
print(F'''Building PyTorch model from configuration: {config}''' )
lowercase_ : Dict = FunnelBaseModel(UpperCAmelCase__ ) if base_model else FunnelModel(UpperCAmelCase__ )
# Load weights from tf checkpoint
load_tf_weights_in_funnel(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , UpperCAmelCase__ )
if __name__ == "__main__":
_lowercase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not."
)
_lowercase : Union[str, Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
)
| 21 | 1 |
'''simple docstring'''
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class __magic_name__ ( _UpperCAmelCase):
def __init__( self : List[Any] , lowercase_ : NestedDataStructureLike[PathLike] , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[str] = None , lowercase_ : Optional[int] = None , **lowercase_ : Union[str, Any] , ):
super().__init__(
lowercase_ , split=lowercase_ , features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , )
lowercase_ : Optional[int] = field
lowercase_ : Dict = path_or_paths if isinstance(lowercase_ , lowercase_ ) else {self.split: path_or_paths}
lowercase_ : int = Json(
cache_dir=lowercase_ , data_files=lowercase_ , features=lowercase_ , field=lowercase_ , **lowercase_ , )
def SCREAMING_SNAKE_CASE_ ( self : int ):
# Build iterable dataset
if self.streaming:
lowercase_ : Optional[Any] = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
lowercase_ : str = None
lowercase_ : Dict = None
lowercase_ : str = None
lowercase_ : List[str] = None
self.builder.download_and_prepare(
download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , )
lowercase_ : Any = self.builder.as_dataset(
split=self.split , verification_mode=lowercase_ , in_memory=self.keep_in_memory )
return dataset
class __magic_name__ :
def __init__( self : List[Any] , lowercase_ : Dataset , lowercase_ : Union[PathLike, BinaryIO] , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , **lowercase_ : List[Any] , ):
if num_proc is not None and num_proc <= 0:
raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' )
lowercase_ : int = dataset
lowercase_ : Tuple = path_or_buf
lowercase_ : Dict = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
lowercase_ : List[str] = num_proc
lowercase_ : Optional[Any] = """utf-8"""
lowercase_ : Dict = to_json_kwargs
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : Dict = self.to_json_kwargs.pop("""path_or_buf""" , lowercase_ )
lowercase_ : Dict = self.to_json_kwargs.pop("""orient""" , """records""" )
lowercase_ : Tuple = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False )
lowercase_ : Any = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True )
lowercase_ : Optional[Any] = self.to_json_kwargs.pop("""compression""" , lowercase_ )
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(f'''`datasets` currently does not support {compression} compression''' )
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with fsspec.open(self.path_or_buf , """wb""" , compression=lowercase_ ) as buffer:
lowercase_ : Optional[Any] = self._write(file_obj=lowercase_ , orient=lowercase_ , lines=lowercase_ , index=lowercase_ , **self.to_json_kwargs )
else:
if compression:
raise NotImplementedError(
f'''The compression parameter is not supported when writing to a buffer, but compression={compression}'''
""" was passed. Please provide a local path instead.""" )
lowercase_ : List[Any] = self._write(
file_obj=self.path_or_buf , orient=lowercase_ , lines=lowercase_ , index=lowercase_ , **self.to_json_kwargs )
return written
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : Union[str, Any] ):
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[int] = args
lowercase_ : List[str] = query_table(
table=self.dataset.data , key=slice(lowercase_ , offset + self.batch_size ) , indices=self.dataset._indices , )
lowercase_ : str = batch.to_pandas().to_json(
path_or_buf=lowercase_ , orient=lowercase_ , lines=lowercase_ , index=lowercase_ , **lowercase_ )
if not json_str.endswith("""\n""" ):
json_str += "\n"
return json_str.encode(self.encoding )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : BinaryIO , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : Tuple , **lowercase_ : str , ):
lowercase_ : Dict = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
lowercase_ : List[str] = self._batch_json((offset, orient, lines, index, to_json_kwargs) )
written += file_obj.write(lowercase_ )
else:
lowercase_ , lowercase_ : Any = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowercase_ , lowercase_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
written += file_obj.write(lowercase_ )
return written
| 21 | '''simple docstring'''
import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
_lowercase : Optional[List[str]] = None
_lowercase : str = "<" if sys.byteorder == "little" else ">"
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
_lowercase : Optional[int] = [
np.dtype("|b1"),
np.dtype("|u1"),
np.dtype("<u2"),
np.dtype(">u2"),
np.dtype("<i2"),
np.dtype(">i2"),
np.dtype("<u4"),
np.dtype(">u4"),
np.dtype("<i4"),
np.dtype(">i4"),
np.dtype("<f4"),
np.dtype(">f4"),
np.dtype("<f8"),
np.dtype(">f8"),
]
@dataclass
class __magic_name__ :
UpperCamelCase__ = True
UpperCamelCase__ = None
# Automatically constructed
UpperCamelCase__ = "PIL.Image.Image"
UpperCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()})
UpperCamelCase__ = field(default='''Image''', init=_UpperCAmelCase, repr=_UpperCAmelCase)
def __call__( self : Tuple ):
return self.pa_type
def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if isinstance(lowercase_ , lowercase_ ):
lowercase_ : int = np.array(lowercase_ )
if isinstance(lowercase_ , lowercase_ ):
return {"path": value, "bytes": None}
elif isinstance(lowercase_ , lowercase_ ):
return {"path": None, "bytes": value}
elif isinstance(lowercase_ , np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(lowercase_ )
elif isinstance(lowercase_ , PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(lowercase_ )
elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get("""path""" )}
elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )}
else:
raise ValueError(
f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : dict , lowercase_ : List[str]=None ):
if not self.decode:
raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support decoding images, please install 'Pillow'.""" )
if token_per_repo_id is None:
lowercase_ : Union[str, Any] = {}
lowercase_ , lowercase_ : List[Any] = value["""path"""], value["""bytes"""]
if bytes_ is None:
if path is None:
raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
else:
if is_local_path(lowercase_ ):
lowercase_ : int = PIL.Image.open(lowercase_ )
else:
lowercase_ : str = path.split("""::""" )[-1]
try:
lowercase_ : Any = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""]
lowercase_ : Optional[Any] = token_per_repo_id.get(lowercase_ )
except ValueError:
lowercase_ : str = None
with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f:
lowercase_ : Dict = BytesIO(f.read() )
lowercase_ : Optional[Any] = PIL.Image.open(bytes_ )
else:
lowercase_ : Any = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def SCREAMING_SNAKE_CASE_ ( self : int ):
from .features import Value
return (
self
if self.decode
else {
"bytes": Value("""binary""" ),
"path": Value("""string""" ),
}
)
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ):
if pa.types.is_string(storage.type ):
lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.binary() )
lowercase_ : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.string() )
lowercase_ : Any = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("""bytes""" ) >= 0:
lowercase_ : Optional[int] = storage.field("""bytes""" )
else:
lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() )
if storage.type.get_field_index("""path""" ) >= 0:
lowercase_ : Dict = storage.field("""path""" )
else:
lowercase_ : int = pa.array([None] * len(lowercase_ ) , type=pa.string() )
lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
lowercase_ : Optional[int] = pa.array(
[encode_np_array(np.array(lowercase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
lowercase_ : Tuple = pa.array([None] * len(lowercase_ ) , type=pa.string() )
lowercase_ : Tuple = pa.StructArray.from_arrays(
[bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(lowercase_ , self.pa_type )
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : pa.StructArray ):
@no_op_if_value_is_null
def path_to_bytes(lowercase_ : Optional[Any] ):
with xopen(lowercase_ , """rb""" ) as f:
lowercase_ : int = f.read()
return bytes_
lowercase_ : Optional[Any] = pa.array(
[
(path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
lowercase_ : Any = pa.array(
[os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , )
lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(lowercase_ , self.pa_type )
def lowerCamelCase ( ) -> List[str]:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
lowercase_ : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> bytes:
lowercase_ : Tuple = BytesIO()
if image.format in list_image_compression_formats():
lowercase_ : int = image.format
else:
lowercase_ : int = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF"""
image.save(UpperCAmelCase__ , format=UpperCAmelCase__ )
return buffer.getvalue()
def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> dict:
if hasattr(UpperCAmelCase__ , """filename""" ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )}
def lowerCamelCase ( UpperCAmelCase__ : np.ndarray ) -> dict:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
lowercase_ : List[Any] = array.dtype
lowercase_ : int = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER
lowercase_ : Dict = dtype.kind
lowercase_ : List[Any] = dtype.itemsize
lowercase_ : Any = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
lowercase_ : int = np.dtype("""|u1""" )
if dtype_kind not in ["u", "i"]:
raise TypeError(
F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' )
if dtype is not dest_dtype:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
lowercase_ : str = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
lowercase_ : str = dtype_byteorder + dtype_kind + str(UpperCAmelCase__ )
lowercase_ : Optional[Any] = np.dtype(UpperCAmelCase__ )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' )
lowercase_ : Optional[int] = PIL.Image.fromarray(array.astype(UpperCAmelCase__ ) )
return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )}
def lowerCamelCase ( UpperCAmelCase__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if objs:
lowercase_ , lowercase_ : Dict = first_non_null_value(UpperCAmelCase__ )
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(UpperCAmelCase__ , np.ndarray ):
lowercase_ : Union[str, Any] = no_op_if_value_is_null(UpperCAmelCase__ )
return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs]
elif isinstance(UpperCAmelCase__ , PIL.Image.Image ):
lowercase_ : int = no_op_if_value_is_null(UpperCAmelCase__ )
return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs]
else:
return objs
else:
return objs
| 21 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
_lowercase : Dict = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : int = ["MLukeTokenizer"]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
_lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21 | '''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : float , UpperCAmelCase__ : int ) -> float:
lowercase_ : List[Any] = x
lowercase_ : Any = y
for step in range(UpperCAmelCase__ ): # noqa: B007
lowercase_ : Dict = a * a - b * b + x
lowercase_ : str = 2 * a * b + y
lowercase_ : Optional[Any] = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple:
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple:
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCAmelCase__ , 1 , 1 ) )
def lowerCamelCase ( UpperCAmelCase__ : int = 800 , UpperCAmelCase__ : int = 600 , UpperCAmelCase__ : float = -0.6 , UpperCAmelCase__ : float = 0 , UpperCAmelCase__ : float = 3.2 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : bool = True , ) -> Image.Image:
lowercase_ : Union[str, Any] = Image.new("""RGB""" , (image_width, image_height) )
lowercase_ : Tuple = img.load()
# loop through the image-coordinates
for image_x in range(UpperCAmelCase__ ):
for image_y in range(UpperCAmelCase__ ):
# determine the figure-coordinates based on the image-coordinates
lowercase_ : Any = figure_width / image_width * image_height
lowercase_ : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width
lowercase_ : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height
lowercase_ : str = get_distance(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
lowercase_ : List[Any] = get_color_coded_rgb(UpperCAmelCase__ )
else:
lowercase_ : Dict = get_black_and_white_rgb(UpperCAmelCase__ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
_lowercase : List[str] = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 21 | 1 |
'''simple docstring'''
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class __magic_name__ ( unittest.TestCase):
UpperCamelCase__ = JukeboxTokenizer
UpperCamelCase__ = {
'''artist''': '''Zac Brown Band''',
'''genres''': '''Country''',
'''lyrics''': '''I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
''',
}
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : int ):
import torch
lowercase_ : Any = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" )
lowercase_ : Any = tokenizer(**self.metas )["""input_ids"""]
# fmt: off
lowercase_ : str = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
import torch
lowercase_ : int = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" )
lowercase_ : List[str] = tokenizer(**self.metas )["""input_ids"""]
# fmt: off
lowercase_ : Dict = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 21 | '''simple docstring'''
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class __magic_name__ ( _UpperCAmelCase):
UpperCamelCase__ = DistilBertTokenizer
UpperCamelCase__ = DistilBertTokenizerFast
UpperCamelCase__ = True
@slow
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : int = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" )
lowercase_ : str = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ )
lowercase_ : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ )
lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowercase_ )
lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 21 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_lowercase : Union[str, Any] = logging.get_logger(__name__)
_lowercase : List[str] = torch.device("cpu")
def lowerCamelCase ( ) -> Union[str, Any]:
lowercase_ : int = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowercase_ : int = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw )
return im
def lowerCamelCase ( UpperCAmelCase__ : Any ) -> List[str]:
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] )
def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] ) -> Dict:
lowercase_ : int = dct.pop(UpperCAmelCase__ )
lowercase_ : str = val
def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> Any:
lowercase_ : int = []
for k in state_dict.keys():
lowercase_ : Union[str, Any] = k
if ".pwconv" in k:
lowercase_ : Optional[Any] = k_new.replace(""".pwconv""" , """.point_wise_conv""" )
if ".dwconv" in k:
lowercase_ : Union[str, Any] = k_new.replace(""".dwconv""" , """.depth_wise_conv""" )
if ".Proj." in k:
lowercase_ : Any = k_new.replace(""".Proj.""" , """.proj.""" )
if "patch_embed" in k_new:
lowercase_ : Union[str, Any] = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" )
if "network" in k_new:
lowercase_ : List[str] = k_new.split(""".""" )
if ls[2].isdigit():
lowercase_ : Tuple = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] )
else:
lowercase_ : List[str] = k_new.replace("""network""" , """swiftformer.encoder.network""" )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] ) -> Tuple:
lowercase_ : Optional[Any] = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
lowercase_ : Any = 1000
lowercase_ : List[str] = """huggingface/label-files"""
lowercase_ : Union[str, Any] = """imagenet-1k-id2label.json"""
lowercase_ : Any = json.load(open(hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__ , repo_type="""dataset""" ) , """r""" ) )
lowercase_ : Optional[Any] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()}
lowercase_ : Optional[Any] = idalabel
lowercase_ : List[Any] = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
lowercase_ : List[Any] = [3, 3, 6, 4]
lowercase_ : Dict = [48, 56, 112, 220]
elif swiftformer_name == "swiftformer_s":
lowercase_ : Tuple = [3, 3, 9, 6]
lowercase_ : Optional[int] = [48, 64, 168, 224]
elif swiftformer_name == "swiftformer_l1":
lowercase_ : str = [4, 3, 10, 5]
lowercase_ : Union[str, Any] = [48, 96, 192, 384]
elif swiftformer_name == "swiftformer_l3":
lowercase_ : Tuple = [4, 4, 12, 6]
lowercase_ : List[Any] = [64, 128, 320, 512]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith("""https""" ):
lowercase_ : Optional[int] = torch.hub.load_state_dict_from_url(UpperCAmelCase__ , map_location="""cpu""" , check_hash=UpperCAmelCase__ )
else:
lowercase_ : Optional[int] = torch.load(UpperCAmelCase__ , map_location="""cpu""" )
lowercase_ : Any = checkpoint
lowercase_ : Optional[Any] = create_rename_keys(UpperCAmelCase__ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# load HuggingFace model
lowercase_ : Tuple = SwiftFormerForImageClassification(UpperCAmelCase__ ).eval()
hf_model.load_state_dict(UpperCAmelCase__ )
# prepare test inputs
lowercase_ : List[str] = prepare_img()
lowercase_ : List[str] = ViTImageProcessor.from_pretrained("""preprocessor_config""" )
lowercase_ : Tuple = processor(images=UpperCAmelCase__ , return_tensors="""pt""" )
# compare outputs from both models
lowercase_ : List[Any] = get_expected_output(UpperCAmelCase__ )
lowercase_ : Union[str, Any] = hf_model(inputs["""pixel_values"""] ).logits
assert hf_logits.shape == torch.Size([1, 1000] )
assert torch.allclose(hf_logits[0, 0:5] , UpperCAmelCase__ , atol=1e-3 )
Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ )
print(F'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' )
hf_model.save_pretrained(UpperCAmelCase__ )
if __name__ == "__main__":
_lowercase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--swiftformer_name",
default="swiftformer_xs",
choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"],
type=str,
help="Name of the SwiftFormer model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="./converted_outputs/",
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.")
_lowercase : Optional[int] = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 21 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
_lowercase : Union[str, Any] = {"tokenization_herbert": ["HerbertTokenizer"]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : str = ["HerbertTokenizerFast"]
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
_lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21 | 1 |
'''simple docstring'''
_lowercase : Dict = {
"a": "AAAAA",
"b": "AAAAB",
"c": "AAABA",
"d": "AAABB",
"e": "AABAA",
"f": "AABAB",
"g": "AABBA",
"h": "AABBB",
"i": "ABAAA",
"j": "BBBAA",
"k": "ABAAB",
"l": "ABABA",
"m": "ABABB",
"n": "ABBAA",
"o": "ABBAB",
"p": "ABBBA",
"q": "ABBBB",
"r": "BAAAA",
"s": "BAAAB",
"t": "BAABA",
"u": "BAABB",
"v": "BBBAB",
"w": "BABAA",
"x": "BABAB",
"y": "BABBA",
"z": "BABBB",
" ": " ",
}
_lowercase : int = {value: key for key, value in encode_dict.items()}
def lowerCamelCase ( UpperCAmelCase__ : str ) -> str:
lowercase_ : int = """"""
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception("""encode() accepts only letters of the alphabet and spaces""" )
return encoded
def lowerCamelCase ( UpperCAmelCase__ : str ) -> str:
if set(UpperCAmelCase__ ) - {"A", "B", " "} != set():
raise Exception("""decode() accepts only 'A', 'B' and spaces""" )
lowercase_ : str = """"""
for word in coded.split():
while len(UpperCAmelCase__ ) != 0:
decoded += decode_dict[word[:5]]
lowercase_ : List[Any] = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 21 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
_lowercase : Union[str, Any] = {
"configuration_encodec": [
"ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EncodecConfig",
],
"feature_extraction_encodec": ["EncodecFeatureExtractor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] = [
"ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST",
"EncodecModel",
"EncodecPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
_lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21 | 1 |
'''simple docstring'''
from math import factorial, pi
def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : int = 30 ) -> float:
if not isinstance(UpperCAmelCase__ , (int, float) ):
raise ValueError("""maclaurin_sin() requires either an int or float for theta""" )
if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or accuracy <= 0:
raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" )
lowercase_ : Optional[int] = float(UpperCAmelCase__ )
lowercase_ : int = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(UpperCAmelCase__ ) )
def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : int = 30 ) -> float:
if not isinstance(UpperCAmelCase__ , (int, float) ):
raise ValueError("""maclaurin_cos() requires either an int or float for theta""" )
if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or accuracy <= 0:
raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" )
lowercase_ : List[str] = float(UpperCAmelCase__ )
lowercase_ : Union[str, Any] = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(UpperCAmelCase__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(10))
print(maclaurin_sin(-10))
print(maclaurin_sin(10, 15))
print(maclaurin_sin(-10, 15))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(10, 15))
print(maclaurin_cos(-10, 15))
| 21 | '''simple docstring'''
import os
import numpy
import onnx
def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ) -> Tuple:
lowercase_ : Tuple = a.name
lowercase_ : Tuple = b.name
lowercase_ : Any = """"""
lowercase_ : List[Any] = """"""
lowercase_ : List[Any] = a == b
lowercase_ : Union[str, Any] = name_a
lowercase_ : Optional[Any] = name_b
return res
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]:
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(UpperCAmelCase__ , UpperCAmelCase__ )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ )
_graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase__ , UpperCAmelCase__ )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) -> int:
for n in graph_proto.node:
_node_replace_input_with(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ) -> List[str]:
lowercase_ : int = list(model.graph.initializer )
lowercase_ : List[str] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
lowercase_ : Optional[Any] = inits[i].name
lowercase_ : List[str] = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : int ) -> List[str]:
lowercase_ : Dict = os.path.dirname(UpperCAmelCase__ )
lowercase_ : Optional[Any] = os.path.basename(UpperCAmelCase__ )
lowercase_ : str = onnx.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) )
lowercase_ : List[Any] = list(model.graph.initializer )
lowercase_ : int = set()
lowercase_ : int = {}
lowercase_ : str = []
lowercase_ : int = 0
for i in range(len(UpperCAmelCase__ ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(UpperCAmelCase__ ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(UpperCAmelCase__ )
dup_set.add(UpperCAmelCase__ )
lowercase_ : Dict = inits[j].data_type
lowercase_ : List[str] = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("""unexpected data type: """ , UpperCAmelCase__ )
total_reduced_size += mem_size
lowercase_ : int = inits[i].name
lowercase_ : List[str] = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(UpperCAmelCase__ )
else:
lowercase_ : Optional[int] = [name_j]
ind_to_replace.append((j, i) )
print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" )
lowercase_ : Tuple = sorted(UpperCAmelCase__ )
_remove_dup_initializers_from_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
lowercase_ : Union[str, Any] = """optimized_""" + model_file_name
lowercase_ : Optional[int] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ )
onnx.save(UpperCAmelCase__ , UpperCAmelCase__ )
return new_model
| 21 | 1 |
'''simple docstring'''
from __future__ import annotations
import pandas as pd
def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int ) -> list[int]:
lowercase_ : Tuple = [0] * no_of_processes
lowercase_ : Optional[Any] = [0] * no_of_processes
# Copy the burst time into remaining_time[]
for i in range(UpperCAmelCase__ ):
lowercase_ : Tuple = burst_time[i]
lowercase_ : Dict = 0
lowercase_ : List[str] = 0
lowercase_ : Optional[int] = 999999999
lowercase_ : Optional[int] = 0
lowercase_ : Optional[Any] = False
# Process until all processes are completed
while complete != no_of_processes:
for j in range(UpperCAmelCase__ ):
if arrival_time[j] <= increment_time and remaining_time[j] > 0:
if remaining_time[j] < minm:
lowercase_ : Any = remaining_time[j]
lowercase_ : List[str] = j
lowercase_ : Union[str, Any] = True
if not check:
increment_time += 1
continue
remaining_time[short] -= 1
lowercase_ : str = remaining_time[short]
if minm == 0:
lowercase_ : Tuple = 999999999
if remaining_time[short] == 0:
complete += 1
lowercase_ : Dict = False
# Find finish time of current process
lowercase_ : Optional[int] = increment_time + 1
# Calculate waiting time
lowercase_ : Any = finish_time - arrival_time[short]
lowercase_ : Optional[Any] = finar - burst_time[short]
if waiting_time[short] < 0:
lowercase_ : List[str] = 0
# Increment time
increment_time += 1
return waiting_time
def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : list[int] ) -> list[int]:
lowercase_ : Any = [0] * no_of_processes
for i in range(UpperCAmelCase__ ):
lowercase_ : int = burst_time[i] + waiting_time[i]
return turn_around_time
def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int ) -> None:
lowercase_ : List[str] = 0
lowercase_ : int = 0
for i in range(UpperCAmelCase__ ):
lowercase_ : Optional[int] = total_waiting_time + waiting_time[i]
lowercase_ : Any = total_turn_around_time + turn_around_time[i]
print(F'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' )
print("""Average turn around time =""" , total_turn_around_time / no_of_processes )
if __name__ == "__main__":
print("Enter how many process you want to analyze")
_lowercase : Any = int(input())
_lowercase : List[str] = [0] * no_of_processes
_lowercase : str = [0] * no_of_processes
_lowercase : Union[str, Any] = list(range(1, no_of_processes + 1))
for i in range(no_of_processes):
print("Enter the arrival time and burst time for process:--" + str(i + 1))
_lowercase , _lowercase : str = map(int, input().split())
_lowercase : List[str] = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
_lowercase : Dict = burst_time
_lowercase : Optional[int] = no_of_processes
_lowercase : Union[str, Any] = waiting_time
_lowercase : Optional[int] = calculate_turnaroundtime(bt, n, wt)
calculate_average_times(waiting_time, turn_around_time, no_of_processes)
_lowercase : Union[str, Any] = pd.DataFrame(
list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)),
columns=[
"Process",
"BurstTime",
"ArrivalTime",
"WaitingTime",
"TurnAroundTime",
],
)
# Printing the dataFrame
pd.set_option("display.max_rows", fcfs.shape[0] + 1)
print(fcfs)
| 21 | '''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
_lowercase : str = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase)
class __magic_name__ ( _UpperCAmelCase):
def __init__( self : str , *lowercase_ : Dict , **lowercase_ : List[Any] ):
super().__init__(*lowercase_ , **lowercase_ )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None ):
lowercase_ : Optional[Any] = {}
lowercase_ : Tuple = {}
if prompt is not None:
lowercase_ : Tuple = prompt
if generate_kwargs is not None:
lowercase_ : List[str] = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
lowercase_ : List[Any] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
lowercase_ : str = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : List[Any] , lowercase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ : Optional[int] ):
return super().__call__(lowercase_ , **lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[Any] , lowercase_ : Tuple=None ):
lowercase_ : List[Any] = load_image(lowercase_ )
if prompt is not None:
if not isinstance(lowercase_ , lowercase_ ):
raise ValueError(
f'''Received an invalid text input, got - {type(lowercase_ )} - but expected a single string. '''
"""Note also that one single text can be provided for conditional image to text generation.""" )
lowercase_ : List[Any] = self.model.config.model_type
if model_type == "git":
lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework )
lowercase_ : Union[str, Any] = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_ ).input_ids
lowercase_ : int = [self.tokenizer.cls_token_id] + input_ids
lowercase_ : List[Any] = torch.tensor(lowercase_ ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
lowercase_ : Union[str, Any] = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework )
lowercase_ : List[str] = self.tokenizer(lowercase_ , return_tensors=self.framework )
model_inputs.update(lowercase_ )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
lowercase_ : List[str] = self.image_processor(images=lowercase_ , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
lowercase_ : str = None
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Dict , lowercase_ : Optional[Any]=None ):
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , lowercase_ )
and all(x is None for x in model_inputs["""input_ids"""] )
):
lowercase_ : Any = None
if generate_kwargs is None:
lowercase_ : Optional[Any] = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
lowercase_ : Dict = model_inputs.pop(self.model.main_input_name )
lowercase_ : Any = self.model.generate(lowercase_ , **lowercase_ , **lowercase_ )
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[Any] ):
lowercase_ : List[str] = []
for output_ids in model_outputs:
lowercase_ : Union[str, Any] = {
"""generated_text""": self.tokenizer.decode(
lowercase_ , skip_special_tokens=lowercase_ , )
}
records.append(lowercase_ )
return records
| 21 | 1 |
'''simple docstring'''
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Optional[int]:
lowercase_ : List[Any] = []
for part_id in partition_order:
lowercase_ : Optional[int] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect()
for row_idx, row in enumerate(UpperCAmelCase__ ):
expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def lowerCamelCase ( ) -> Union[str, Any]:
lowercase_ : List[str] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
lowercase_ : Any = spark.range(100 ).repartition(1 )
lowercase_ : Optional[int] = Spark(UpperCAmelCase__ )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def lowerCamelCase ( ) -> int:
lowercase_ : List[Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
lowercase_ : List[str] = spark.range(10 ).repartition(2 )
lowercase_ : int = [1, 0]
lowercase_ : Any = _generate_iterable_examples(UpperCAmelCase__ , UpperCAmelCase__ ) # Reverse the partitions.
lowercase_ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCAmelCase__ , UpperCAmelCase__ )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
lowercase_ , lowercase_ : Union[str, Any] = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def lowerCamelCase ( ) -> Union[str, Any]:
lowercase_ : Union[str, Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
lowercase_ : Dict = spark.range(10 ).repartition(1 )
lowercase_ : List[Any] = SparkExamplesIterable(UpperCAmelCase__ )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(UpperCAmelCase__ ):
assert row_id == F'''0_{i}'''
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def lowerCamelCase ( ) -> Tuple:
lowercase_ : Union[str, Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
lowercase_ : int = spark.range(30 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch("""numpy.random.Generator""" ) as generator_mock:
lowercase_ : Tuple = lambda UpperCAmelCase__ : x.reverse()
lowercase_ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCAmelCase__ , [2, 1, 0] )
lowercase_ : Union[str, Any] = SparkExamplesIterable(UpperCAmelCase__ ).shuffle_data_sources(UpperCAmelCase__ )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(UpperCAmelCase__ ):
lowercase_ , lowercase_ : Any = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def lowerCamelCase ( ) -> List[Any]:
lowercase_ : Dict = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
lowercase_ : int = spark.range(20 ).repartition(4 )
# Partitions 0 and 2
lowercase_ : Union[str, Any] = SparkExamplesIterable(UpperCAmelCase__ ).shard_data_sources(worker_id=0 , num_workers=2 )
assert shard_it_a.n_shards == 2
lowercase_ : str = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCAmelCase__ , [0, 2] )
for i, (row_id, row_dict) in enumerate(UpperCAmelCase__ ):
lowercase_ , lowercase_ : Any = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
lowercase_ : Optional[Any] = SparkExamplesIterable(UpperCAmelCase__ ).shard_data_sources(worker_id=1 , num_workers=2 )
assert shard_it_a.n_shards == 2
lowercase_ : Any = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCAmelCase__ , [1, 3] )
for i, (row_id, row_dict) in enumerate(UpperCAmelCase__ ):
lowercase_ , lowercase_ : Tuple = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def lowerCamelCase ( ) -> Union[str, Any]:
lowercase_ : Union[str, Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate()
lowercase_ : Dict = spark.range(100 ).repartition(1 )
lowercase_ : str = Spark(UpperCAmelCase__ )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 100
| 21 | '''simple docstring'''
class __magic_name__ :
def __init__( self : int , lowercase_ : list ):
lowercase_ : Dict = set_counts
lowercase_ : List[Any] = max(lowercase_ )
lowercase_ : str = len(lowercase_ )
lowercase_ : str = [1] * num_sets
lowercase_ : Dict = list(range(lowercase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : int ):
lowercase_ : List[Any] = self.get_parent(lowercase_ )
lowercase_ : Union[str, Any] = self.get_parent(lowercase_ )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
lowercase_ : List[str] = 0
lowercase_ : Optional[int] = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
lowercase_ : int = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
lowercase_ : int = 0
lowercase_ : List[Any] = src_parent
lowercase_ : List[Any] = self.set_counts[src_parent]
lowercase_ : Tuple = max(self.max_set , lowercase_ )
return True
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : int ):
if self.parents[disj_set] == disj_set:
return disj_set
lowercase_ : int = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 21 | 1 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
_lowercase : int = logging.get_logger(__name__)
_lowercase : Any = {
"salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json",
}
class __magic_name__ ( _UpperCAmelCase):
UpperCamelCase__ = '''blip_2_vision_model'''
def __init__( self : Optional[int] , lowercase_ : Union[str, Any]=1408 , lowercase_ : List[str]=6144 , lowercase_ : Union[str, Any]=39 , lowercase_ : List[str]=16 , lowercase_ : Optional[Any]=224 , lowercase_ : int=14 , lowercase_ : str="gelu" , lowercase_ : int=0.0_00_01 , lowercase_ : List[Any]=0.0 , lowercase_ : int=1E-10 , lowercase_ : int=True , **lowercase_ : Tuple , ):
super().__init__(**lowercase_ )
lowercase_ : Any = hidden_size
lowercase_ : Union[str, Any] = intermediate_size
lowercase_ : Dict = num_hidden_layers
lowercase_ : int = num_attention_heads
lowercase_ : Optional[Any] = patch_size
lowercase_ : Tuple = image_size
lowercase_ : List[Any] = initializer_range
lowercase_ : Any = attention_dropout
lowercase_ : str = layer_norm_eps
lowercase_ : List[Any] = hidden_act
lowercase_ : Optional[Any] = qkv_bias
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : int ):
cls._set_token_in_kwargs(lowercase_ )
lowercase_ , lowercase_ : str = cls.get_config_dict(lowercase_ , **lowercase_ )
# get the vision config dict if we are loading from Blip2Config
if config_dict.get("""model_type""" ) == "blip-2":
lowercase_ : str = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(lowercase_ , **lowercase_ )
class __magic_name__ ( _UpperCAmelCase):
UpperCamelCase__ = '''blip_2_qformer'''
def __init__( self : Optional[Any] , lowercase_ : Any=30522 , lowercase_ : Union[str, Any]=768 , lowercase_ : Any=12 , lowercase_ : str=12 , lowercase_ : List[str]=3072 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.1 , lowercase_ : int=0.1 , lowercase_ : List[str]=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : int=2 , lowercase_ : Any=1408 , **lowercase_ : Any , ):
super().__init__(pad_token_id=lowercase_ , **lowercase_ )
lowercase_ : Dict = vocab_size
lowercase_ : List[Any] = hidden_size
lowercase_ : Any = num_hidden_layers
lowercase_ : str = num_attention_heads
lowercase_ : List[str] = hidden_act
lowercase_ : Any = intermediate_size
lowercase_ : Dict = hidden_dropout_prob
lowercase_ : List[str] = attention_probs_dropout_prob
lowercase_ : Dict = max_position_embeddings
lowercase_ : Tuple = initializer_range
lowercase_ : str = layer_norm_eps
lowercase_ : int = position_embedding_type
lowercase_ : List[str] = cross_attention_frequency
lowercase_ : int = encoder_hidden_size
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Union[str, Any] ):
cls._set_token_in_kwargs(lowercase_ )
lowercase_ , lowercase_ : Dict = cls.get_config_dict(lowercase_ , **lowercase_ )
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get("""model_type""" ) == "blip-2":
lowercase_ : Union[str, Any] = config_dict["""qformer_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(lowercase_ , **lowercase_ )
class __magic_name__ ( _UpperCAmelCase):
UpperCamelCase__ = '''blip-2'''
UpperCamelCase__ = True
def __init__( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None , lowercase_ : Any=32 , **lowercase_ : Any ):
super().__init__(**lowercase_ )
if vision_config is None:
lowercase_ : Any = {}
logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" )
if qformer_config is None:
lowercase_ : str = {}
logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" )
if text_config is None:
lowercase_ : int = {}
logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" )
lowercase_ : List[Any] = BlipaVisionConfig(**lowercase_ )
lowercase_ : List[str] = BlipaQFormerConfig(**lowercase_ )
lowercase_ : int = text_config["""model_type"""] if """model_type""" in text_config else """opt"""
lowercase_ : Tuple = CONFIG_MAPPING[text_model_type](**lowercase_ )
lowercase_ : Dict = self.text_config.tie_word_embeddings
lowercase_ : Tuple = self.text_config.is_encoder_decoder
lowercase_ : Any = num_query_tokens
lowercase_ : Tuple = self.vision_config.hidden_size
lowercase_ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
lowercase_ : Optional[int] = 1.0
lowercase_ : Dict = 0.02
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[str] , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[str] , ):
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
lowercase_ : Any = copy.deepcopy(self.__dict__ )
lowercase_ : List[str] = self.vision_config.to_dict()
lowercase_ : Optional[Any] = self.qformer_config.to_dict()
lowercase_ : List[Any] = self.text_config.to_dict()
lowercase_ : List[str] = self.__class__.model_type
return output
| 21 | '''simple docstring'''
from io import BytesIO
from typing import List, Union
import requests
from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_decord_available():
import numpy as np
from decord import VideoReader
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
_lowercase : str = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase)
class __magic_name__ ( _UpperCAmelCase):
def __init__( self : str , *lowercase_ : int , **lowercase_ : Any ):
super().__init__(*lowercase_ , **lowercase_ )
requires_backends(self , """decord""" )
self.check_model_type(lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None ):
lowercase_ : Union[str, Any] = {}
if frame_sampling_rate is not None:
lowercase_ : Any = frame_sampling_rate
if num_frames is not None:
lowercase_ : Optional[Any] = num_frames
lowercase_ : Union[str, Any] = {}
if top_k is not None:
lowercase_ : Optional[Any] = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : str , lowercase_ : Union[str, List[str]] , **lowercase_ : str ):
return super().__call__(lowercase_ , **lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None , lowercase_ : Optional[int]=1 ):
if num_frames is None:
lowercase_ : List[Any] = self.model.config.num_frames
if video.startswith("""http://""" ) or video.startswith("""https://""" ):
lowercase_ : Union[str, Any] = BytesIO(requests.get(lowercase_ ).content )
lowercase_ : Optional[Any] = VideoReader(lowercase_ )
videoreader.seek(0 )
lowercase_ : Tuple = 0
lowercase_ : List[Any] = num_frames * frame_sampling_rate - 1
lowercase_ : Optional[int] = np.linspace(lowercase_ , lowercase_ , num=lowercase_ , dtype=np.intaa )
lowercase_ : Optional[int] = videoreader.get_batch(lowercase_ ).asnumpy()
lowercase_ : Union[str, Any] = list(lowercase_ )
lowercase_ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : str ):
lowercase_ : int = self.model(**lowercase_ )
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Dict=5 ):
if top_k > self.model.config.num_labels:
lowercase_ : List[Any] = self.model.config.num_labels
if self.framework == "pt":
lowercase_ : str = model_outputs.logits.softmax(-1 )[0]
lowercase_ , lowercase_ : Optional[Any] = probs.topk(lowercase_ )
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
lowercase_ : Union[str, Any] = scores.tolist()
lowercase_ : Tuple = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
| 21 | 1 |
'''simple docstring'''
import unittest
from datasets import load_dataset
from transformers import BloomTokenizerFast
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __magic_name__ ( _UpperCAmelCase, unittest.TestCase):
UpperCamelCase__ = None
UpperCamelCase__ = BloomTokenizerFast
UpperCamelCase__ = BloomTokenizerFast
UpperCamelCase__ = True
UpperCamelCase__ = False
UpperCamelCase__ = '''tokenizer_file'''
UpperCamelCase__ = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''}
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
super().setUp()
lowercase_ : Tuple = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , **lowercase_ : Dict ):
kwargs.update(self.special_tokens_map )
return BloomTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Tuple = self.get_rust_tokenizer()
lowercase_ : Any = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""]
lowercase_ : Union[str, Any] = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]]
lowercase_ : Dict = tokenizer.batch_encode_plus(lowercase_ )["""input_ids"""]
self.assertListEqual(lowercase_ , lowercase_ )
lowercase_ : Union[str, Any] = tokenizer.batch_decode(lowercase_ )
self.assertListEqual(lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Tuple=6 ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
lowercase_ : List[str] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ )
# tokenizer_r.pad_token = None # Hotfixing padding = None
# Simple input
lowercase_ : Union[str, Any] = """This is a simple input"""
lowercase_ : Dict = ["""This is a simple input 1""", """This is a simple input 2"""]
lowercase_ : Any = ("""This is a simple input""", """This is a pair""")
lowercase_ : Optional[Any] = [
("""This is a simple input 1""", """This is a simple input 2"""),
("""This is a simple pair 1""", """This is a simple pair 2"""),
]
# Simple input tests
try:
tokenizer_r.encode(lowercase_ , max_length=lowercase_ )
tokenizer_r.encode_plus(lowercase_ , max_length=lowercase_ )
tokenizer_r.batch_encode_plus(lowercase_ , max_length=lowercase_ )
tokenizer_r.encode(lowercase_ , max_length=lowercase_ )
tokenizer_r.batch_encode_plus(lowercase_ , max_length=lowercase_ )
except ValueError:
self.fail("""Bloom Tokenizer should be able to deal with padding""" )
lowercase_ : Optional[Any] = None # Hotfixing padding = None
self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="""max_length""" )
# Simple input
self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="""max_length""" )
# Simple input
self.assertRaises(
lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="""max_length""" , )
# Pair input
self.assertRaises(lowercase_ , tokenizer_r.encode , lowercase_ , max_length=lowercase_ , padding="""max_length""" )
# Pair input
self.assertRaises(lowercase_ , tokenizer_r.encode_plus , lowercase_ , max_length=lowercase_ , padding="""max_length""" )
# Pair input
self.assertRaises(
lowercase_ , tokenizer_r.batch_encode_plus , lowercase_ , max_length=lowercase_ , padding="""max_length""" , )
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
lowercase_ : Optional[int] = self.get_rust_tokenizer()
lowercase_ : Optional[int] = load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=lowercase_ )
lowercase_ : List[str] = next(iter(lowercase_ ) )["""premise"""] # pick up one data
lowercase_ : str = list(sample_data.values() )
lowercase_ : Tuple = list(map(tokenizer.encode , lowercase_ ) )
lowercase_ : List[str] = [tokenizer.decode(lowercase_ , clean_up_tokenization_spaces=lowercase_ ) for x in output_tokens]
self.assertListEqual(lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : str ):
# The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have
# any sequence length constraints. This test of the parent class will fail since it relies on the
# maximum sequence length of the positoonal embeddings.
self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 )
self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
| 21 | '''simple docstring'''
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> List[str]:
if isinstance(UpperCAmelCase__ , collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class __magic_name__ :
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Any , lowercase_ : str ):
pass
def SCREAMING_SNAKE_CASE_ ( self : str ):
pass
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
pass
def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : np.ndarray , lowercase_ : float ):
lowercase_ : Optional[Any] = np.abs((a - b) ).max()
self.assertLessEqual(lowercase_ , lowercase_ , f'''Difference between torch and flax is {diff} (>= {tol}).''' )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple=None , **lowercase_ : Optional[int] ):
lowercase_ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ )
lowercase_ : Any = FlaxVisionTextDualEncoderModel(lowercase_ )
lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) )
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : List[Any]=None , **lowercase_ : Tuple ):
lowercase_ , lowercase_ : Any = self.get_vision_text_model(lowercase_ , lowercase_ )
lowercase_ : Optional[int] = {"""vision_model""": vision_model, """text_model""": text_model}
lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ )
lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=None , **lowercase_ : int ):
lowercase_ , lowercase_ : Union[str, Any] = self.get_vision_text_model(lowercase_ , lowercase_ )
lowercase_ : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model}
lowercase_ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ )
lowercase_ : Tuple = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ )
lowercase_ : Any = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowercase_ )
lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ )
lowercase_ : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ )
lowercase_ : Union[str, Any] = after_output[0]
lowercase_ : str = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowercase_ , 1E-3 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Dict=None , **lowercase_ : Optional[Any] ):
lowercase_ , lowercase_ : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ )
lowercase_ : Dict = {"""vision_model""": vision_model, """text_model""": text_model}
lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ )
lowercase_ : Optional[int] = model(
input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ )
lowercase_ : Tuple = output.vision_model_output.attentions
self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
lowercase_ : List[str] = to_atuple(vision_model.config.image_size )
lowercase_ : Optional[Any] = to_atuple(vision_model.config.patch_size )
lowercase_ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
lowercase_ : Optional[Any] = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
lowercase_ : Union[str, Any] = output.text_model_output.attentions
self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int ):
pt_model.to(lowercase_ )
pt_model.eval()
# prepare inputs
lowercase_ : int = inputs_dict
lowercase_ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
lowercase_ : str = pt_model(**lowercase_ ).to_tuple()
lowercase_ : Optional[Any] = fx_model(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowercase_ )
lowercase_ : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ , from_pt=lowercase_ )
lowercase_ : Dict = fx_model_loaded(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowercase_ )
lowercase_ : Union[str, Any] = VisionTextDualEncoderModel.from_pretrained(lowercase_ , from_flax=lowercase_ )
pt_model_loaded.to(lowercase_ )
pt_model_loaded.eval()
with torch.no_grad():
lowercase_ : List[Any] = pt_model_loaded(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(lowercase_ , pt_output_loaded.numpy() , 4E-2 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Union[str, Any] ):
lowercase_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ )
lowercase_ : List[Any] = VisionTextDualEncoderModel(lowercase_ )
lowercase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel(lowercase_ )
lowercase_ : Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ )
lowercase_ : Tuple = fx_state
self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[Any] ):
lowercase_ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ )
lowercase_ : int = VisionTextDualEncoderModel(lowercase_ )
lowercase_ : Dict = FlaxVisionTextDualEncoderModel(lowercase_ )
lowercase_ : Optional[Any] = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params )
self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ : Tuple = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : List[Any] = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : List[Any] = self.prepare_config_and_inputs()
self.check_save_load(**lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : Union[str, Any] = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**lowercase_ )
@is_pt_flax_cross_test
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Tuple = self.prepare_config_and_inputs()
lowercase_ : List[Any] = config_inputs_dict.pop("""vision_config""" )
lowercase_ : int = config_inputs_dict.pop("""text_config""" )
lowercase_ : Optional[int] = config_inputs_dict
self.check_equivalence_pt_to_flax(lowercase_ , lowercase_ , lowercase_ )
self.check_equivalence_flax_to_pt(lowercase_ , lowercase_ , lowercase_ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ , lowercase_ : str = self.get_pretrained_model_and_inputs()
lowercase_ : Dict = model_a(**lowercase_ )
lowercase_ : str = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(lowercase_ )
lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ )
lowercase_ : str = model_a(**lowercase_ )
lowercase_ : Union[str, Any] = after_outputs[0]
lowercase_ : Any = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowercase_ , 1E-5 )
@require_flax
class __magic_name__ ( _UpperCAmelCase, unittest.TestCase):
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
lowercase_ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
"""hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , )
lowercase_ : List[str] = 13
lowercase_ : Optional[Any] = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
lowercase_ : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
lowercase_ : str = random_attention_mask([batch_size, 4] )
lowercase_ : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Tuple ):
lowercase_ : Union[str, Any] = FlaxViTModel(lowercase_ )
lowercase_ : Dict = FlaxBertModel(lowercase_ )
return vision_model, text_model
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : Any = FlaxViTModelTester(self )
lowercase_ : Optional[Any] = FlaxBertModelTester(self )
lowercase_ : Dict = vit_model_tester.prepare_config_and_inputs()
lowercase_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs()
lowercase_ , lowercase_ : List[str] = vision_config_and_inputs
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class __magic_name__ ( _UpperCAmelCase, unittest.TestCase):
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
"""hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , )
lowercase_ : List[str] = 13
lowercase_ : Optional[Any] = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
lowercase_ : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
lowercase_ : Tuple = random_attention_mask([batch_size, 4] )
lowercase_ : Union[str, Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ):
lowercase_ : Tuple = FlaxCLIPVisionModel(lowercase_ )
lowercase_ : Any = FlaxBertModel(lowercase_ )
return vision_model, text_model
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : Union[str, Any] = FlaxCLIPVisionModelTester(self )
lowercase_ : Tuple = FlaxBertModelTester(self )
lowercase_ : Union[str, Any] = clip_model_tester.prepare_config_and_inputs()
lowercase_ : Any = bert_model_tester.prepare_config_and_inputs()
lowercase_ , lowercase_ : Optional[Any] = vision_config_and_inputs
lowercase_ , lowercase_ , lowercase_ , lowercase_ : str = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class __magic_name__ ( unittest.TestCase):
@slow
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 )
lowercase_ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" )
lowercase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
lowercase_ : Optional[int] = processor(
text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowercase_ , padding=lowercase_ , return_tensors="""np""" )
lowercase_ : List[str] = model(**lowercase_ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
lowercase_ : Optional[Any] = np.array([[1.2_28_47_27, 0.3_10_41_22]] )
self.assertTrue(np.allclose(outputs.logits_per_image , lowercase_ , atol=1E-3 ) )
| 21 | 1 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase):
UpperCamelCase__ = IFInpaintingSuperResolutionPipeline
UpperCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''}
UpperCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''})
UpperCamelCase__ = PipelineTesterMixin.required_optional_params - {'''latents'''}
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
return self._get_superresolution_dummy_components()
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str , lowercase_ : List[Any]=0 ):
if str(lowercase_ ).startswith("""mps""" ):
lowercase_ : List[str] = torch.manual_seed(lowercase_ )
else:
lowercase_ : int = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ )
lowercase_ : List[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowercase_ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowercase_ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ )
lowercase_ : int = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""original_image""": original_image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def SCREAMING_SNAKE_CASE_ ( self : str ):
self._test_save_load_local()
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 21 | '''simple docstring'''
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __magic_name__ ( unittest.TestCase):
def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int=7 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[Any]=18 , lowercase_ : List[Any]=30 , lowercase_ : int=400 , lowercase_ : Dict=True , lowercase_ : List[Any]=None , lowercase_ : Dict=True , ):
lowercase_ : Tuple = size if size is not None else {"""height""": 18, """width""": 18}
lowercase_ : List[str] = parent
lowercase_ : Any = batch_size
lowercase_ : Optional[Any] = num_channels
lowercase_ : Tuple = image_size
lowercase_ : Optional[Any] = min_resolution
lowercase_ : Dict = max_resolution
lowercase_ : Optional[int] = do_resize
lowercase_ : Optional[Any] = size
lowercase_ : Union[str, Any] = do_normalize
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04],
[-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __magic_name__ ( _UpperCAmelCase, unittest.TestCase):
UpperCamelCase__ = ImageGPTImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Optional[int] = ImageGPTImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : int = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase_ , """clusters""" ) )
self.assertTrue(hasattr(lowercase_ , """do_resize""" ) )
self.assertTrue(hasattr(lowercase_ , """size""" ) )
self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : int = self.image_processing_class(**self.image_processor_dict )
lowercase_ : Union[str, Any] = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : str = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase_ : Union[str, Any] = os.path.join(lowercase_ , """image_processor.json""" )
image_processor_first.to_json_file(lowercase_ )
lowercase_ : Optional[Any] = self.image_processing_class.from_json_file(lowercase_ ).to_dict()
lowercase_ : Any = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(lowercase_ )
lowercase_ : Any = self.image_processing_class.from_pretrained(lowercase_ ).to_dict()
lowercase_ : List[str] = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowercase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
pass
def lowerCamelCase ( ) -> Any:
lowercase_ : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
lowercase_ : Any = Image.open(dataset[4]["""file"""] )
lowercase_ : Dict = Image.open(dataset[5]["""file"""] )
lowercase_ : int = [imagea, imagea]
return images
@require_vision
@require_torch
class __magic_name__ ( unittest.TestCase):
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Optional[Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
lowercase_ : Optional[int] = prepare_images()
# test non-batched
lowercase_ : str = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1024) )
lowercase_ : Tuple = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase_ )
# test batched
lowercase_ : List[str] = image_processing(lowercase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1024) )
lowercase_ : Union[str, Any] = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase_ )
| 21 | 1 |
'''simple docstring'''
def lowerCamelCase ( UpperCAmelCase__ : int = 100 ) -> int:
lowercase_ : Dict = set()
lowercase_ : List[str] = 0
lowercase_ : Optional[Any] = n + 1 # maximum limit
for a in range(2 , UpperCAmelCase__ ):
for b in range(2 , UpperCAmelCase__ ):
lowercase_ : int = a**b # calculates the current power
collect_powers.add(UpperCAmelCase__ ) # adds the result to the set
return len(UpperCAmelCase__ )
if __name__ == "__main__":
print("Number of terms ", solution(int(str(input()).strip())))
| 21 | '''simple docstring'''
def lowerCamelCase ( ) -> Dict:
lowercase_ : Union[str, Any] = []
lowercase_ : Tuple = 1
while len(UpperCAmelCase__ ) < 1e6:
constant.append(str(UpperCAmelCase__ ) )
i += 1
lowercase_ : int = """""".join(UpperCAmelCase__ )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[999] )
* int(constant[9999] )
* int(constant[99999] )
* int(constant[999999] )
)
if __name__ == "__main__":
print(solution())
| 21 | 1 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class __magic_name__ ( unittest.TestCase):
UpperCamelCase__ = ViTImageProcessor if is_vision_available() else None
@property
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : Any = (3, 32, 128)
lowercase_ : List[Any] = tempfile.mkdtemp()
# fmt: off
lowercase_ : Tuple = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
lowercase_ : int = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) )
lowercase_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(lowercase_ ) + """\n""" )
lowercase_ : List[str] = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 32, """width""": 128},
}
lowercase_ : int = os.path.join(self.tmpdirname , lowercase_ )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , **lowercase_ : Optional[int] ):
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **lowercase_ : Union[str, Any] ):
return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : int = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )
lowercase_ : Any = Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) )
return image_input
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : Any = self.get_tokenizer()
lowercase_ : List[Any] = self.get_image_processor()
lowercase_ : Optional[int] = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
processor.save_pretrained(self.tmpdirname )
lowercase_ : Optional[Any] = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_ )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , lowercase_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
lowercase_ : Optional[Any] = self.get_tokenizer()
lowercase_ : Dict = self.get_image_processor()
lowercase_ : Tuple = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
processor.save_pretrained(self.tmpdirname )
lowercase_ : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
lowercase_ : Optional[Any] = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 )
lowercase_ : Optional[Any] = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase_ , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , lowercase_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : int = self.get_image_processor()
lowercase_ : List[str] = self.get_tokenizer()
lowercase_ : int = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
lowercase_ : Any = self.prepare_image_inputs()
lowercase_ : Any = image_processor(lowercase_ , return_tensors="""np""" )
lowercase_ : Tuple = processor(images=lowercase_ , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : List[Any] = self.get_image_processor()
lowercase_ : Any = self.get_tokenizer()
lowercase_ : Any = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
lowercase_ : int = """test"""
lowercase_ : Optional[Any] = processor(text=lowercase_ )
lowercase_ : Optional[Any] = tokenizer(lowercase_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : Optional[Any] = self.get_image_processor()
lowercase_ : Any = self.get_tokenizer()
lowercase_ : Tuple = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
lowercase_ : List[Any] = """test"""
lowercase_ : List[Any] = self.prepare_image_inputs()
lowercase_ : List[Any] = processor(text=lowercase_ , images=lowercase_ )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] )
# test if it raises when no input is passed
with pytest.raises(lowercase_ ):
processor()
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
lowercase_ : str = self.get_image_processor()
lowercase_ : Tuple = self.get_tokenizer()
lowercase_ : int = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
lowercase_ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
lowercase_ : Union[str, Any] = processor.char_decode(lowercase_ )
lowercase_ : int = tokenizer.batch_decode(lowercase_ )
lowercase_ : Optional[Any] = [seq.replace(""" """ , """""" ) for seq in decoded_tok]
self.assertListEqual(lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : Union[str, Any] = self.get_image_processor()
lowercase_ : str = self.get_tokenizer()
lowercase_ : Union[str, Any] = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
lowercase_ : List[Any] = None
lowercase_ : Optional[Any] = self.prepare_image_inputs()
lowercase_ : str = processor(text=lowercase_ , images=lowercase_ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ : int = self.get_image_processor()
lowercase_ : Union[str, Any] = self.get_tokenizer()
lowercase_ : Optional[int] = MgpstrProcessor(tokenizer=lowercase_ , image_processor=lowercase_ )
lowercase_ : str = torch.randn(1 , 27 , 38 )
lowercase_ : Optional[Any] = torch.randn(1 , 27 , 50257 )
lowercase_ : str = torch.randn(1 , 27 , 30522 )
lowercase_ : str = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
| 21 | '''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
_lowercase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
class __magic_name__ ( _UpperCAmelCase):
def __init__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str ):
super().__init__()
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
@torch.no_grad()
def __call__( self : List[str] , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ):
if audio_length_in_s is None:
lowercase_ : List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate
lowercase_ : Dict = audio_length_in_s * self.unet.config.sample_rate
lowercase_ : Any = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to'''
f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' )
lowercase_ : List[Any] = int(lowercase_ )
if sample_size % down_scale_factor != 0:
lowercase_ : int = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled'''
f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising'''
""" process.""" )
lowercase_ : Any = int(lowercase_ )
lowercase_ : List[str] = next(iter(self.unet.parameters() ) ).dtype
lowercase_ : List[str] = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowercase_ : Any = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ )
# set step values
self.scheduler.set_timesteps(lowercase_ , device=audio.device )
lowercase_ : Optional[Any] = self.scheduler.timesteps.to(lowercase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
lowercase_ : Dict = self.unet(lowercase_ , lowercase_ ).sample
# 2. compute previous image: x_t -> t_t-1
lowercase_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample
lowercase_ : str = audio.clamp(-1 , 1 ).float().cpu().numpy()
lowercase_ : Union[str, Any] = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=lowercase_ )
| 21 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
_lowercase : Union[str, Any] = {"tokenization_herbert": ["HerbertTokenizer"]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : str = ["HerbertTokenizerFast"]
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
_lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21 | '''simple docstring'''
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
_lowercase : Union[str, Any] = "src/transformers"
_lowercase : str = "docs/source/en"
_lowercase : Union[str, Any] = "."
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int:
with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowercase_ : Union[str, Any] = f.readlines()
# Find the start prompt.
lowercase_ : Optional[Any] = 0
while not lines[start_index].startswith(UpperCAmelCase__ ):
start_index += 1
start_index += 1
lowercase_ : int = start_index
while not lines[end_index].startswith(UpperCAmelCase__ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
_lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration"
# Regexes that match TF/Flax/PT model names.
_lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
_lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
_lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# This is to make sure the transformers module imported is the one in the repo.
_lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH)
def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any:
lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ )
return [m.group(0 ) for m in matches]
def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]:
lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ )
lowercase_ : List[str] = (width - text_length) // 2
lowercase_ : Dict = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def lowerCamelCase ( ) -> Any:
lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
lowercase_ : Any = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ )
# Let's lookup through all transformers object (once).
for attr_name in dir(UpperCAmelCase__ ):
lowercase_ : Union[str, Any] = None
if attr_name.endswith("""Tokenizer""" ):
lowercase_ : Optional[int] = slow_tokenizers
lowercase_ : Union[str, Any] = attr_name[:-9]
elif attr_name.endswith("""TokenizerFast""" ):
lowercase_ : Optional[Any] = fast_tokenizers
lowercase_ : Dict = attr_name[:-13]
elif _re_tf_models.match(UpperCAmelCase__ ) is not None:
lowercase_ : str = tf_models
lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0]
elif _re_flax_models.match(UpperCAmelCase__ ) is not None:
lowercase_ : List[str] = flax_models
lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0]
elif _re_pt_models.match(UpperCAmelCase__ ) is not None:
lowercase_ : Tuple = pt_models
lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0]
if lookup_dict is not None:
while len(UpperCAmelCase__ ) > 0:
if attr_name in model_name_to_prefix.values():
lowercase_ : int = True
break
# Try again after removing the last word in the name
lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] )
# Let's build that table!
lowercase_ : Dict = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""]
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns]
lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2
# Build the table per se
lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n"""
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n"
lowercase_ : int = {True: """✅""", False: """❌"""}
for name in model_names:
lowercase_ : str = model_name_to_prefix[name]
lowercase_ : Any = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n"
return table
def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str:
lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = _find_text_in_file(
filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , )
lowercase_ : Dict = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
"""The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" )
if __name__ == "__main__":
_lowercase : Any = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
_lowercase : Optional[Any] = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 21 | 1 |
'''simple docstring'''
from __future__ import annotations
from scipy.special import comb # type: ignore
class __magic_name__ :
def __init__( self : Union[str, Any] , lowercase_ : list[tuple[float, float]] ):
lowercase_ : int = list_of_points
# Degree determines the flexibility of the curve.
# Degree = 1 will produce a straight line.
lowercase_ : Dict = len(lowercase_ ) - 1
def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : float ):
assert 0 <= t <= 1, "Time t must be between 0 and 1."
lowercase_ : list[float] = []
for i in range(len(self.list_of_points ) ):
# basis function for each i
output_values.append(
comb(self.degree , lowercase_ ) * ((1 - t) ** (self.degree - i)) * (t**i) )
# the basis must sum up to 1 for it to produce a valid Bezier curve.
assert round(sum(lowercase_ ) , 5 ) == 1
return output_values
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : float ):
assert 0 <= t <= 1, "Time t must be between 0 and 1."
lowercase_ : List[str] = self.basis_function(lowercase_ )
lowercase_ : Tuple = 0.0
lowercase_ : Dict = 0.0
for i in range(len(self.list_of_points ) ):
# For all points, sum up the product of i-th basis function and i-th point.
x += basis_function[i] * self.list_of_points[i][0]
y += basis_function[i] * self.list_of_points[i][1]
return (x, y)
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : float = 0.01 ):
from matplotlib import pyplot as plt # type: ignore
lowercase_ : list[float] = [] # x coordinates of points to plot
lowercase_ : list[float] = [] # y coordinates of points to plot
lowercase_ : Tuple = 0.0
while t <= 1:
lowercase_ : Any = self.bezier_curve_function(lowercase_ )
to_plot_x.append(value[0] )
to_plot_y.append(value[1] )
t += step_size
lowercase_ : Any = [i[0] for i in self.list_of_points]
lowercase_ : List[str] = [i[1] for i in self.list_of_points]
plt.plot(
lowercase_ , lowercase_ , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , )
plt.scatter(lowercase_ , lowercase_ , color="""red""" , label="""Control Points""" )
plt.legend()
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1
BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2
BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
| 21 | '''simple docstring'''
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class __magic_name__ ( ctypes.Structure):
# _fields is a specific attr expected by ctypes
UpperCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)]
def lowerCamelCase ( ) -> List[Any]:
if os.name == "nt":
lowercase_ : List[Any] = CursorInfo()
lowercase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
lowercase_ : List[str] = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
elif os.name == "posix":
sys.stdout.write("""\033[?25l""" )
sys.stdout.flush()
def lowerCamelCase ( ) -> str:
if os.name == "nt":
lowercase_ : int = CursorInfo()
lowercase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
lowercase_ : Optional[int] = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
elif os.name == "posix":
sys.stdout.write("""\033[?25h""" )
sys.stdout.flush()
@contextmanager
def lowerCamelCase ( ) -> Any:
try:
hide_cursor()
yield
finally:
show_cursor()
| 21 | 1 |
'''simple docstring'''
import torch
from diffusers import StableDiffusionPipeline
_lowercase : List[str] = "path-to-your-trained-model"
_lowercase : Any = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("cuda")
_lowercase : Union[str, Any] = "A photo of sks dog in a bucket"
_lowercase : Dict = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0]
image.save("dog-bucket.png")
| 21 | '''simple docstring'''
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_torch_available():
import torch
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
_lowercase : int = logging.get_logger(__name__)
@dataclass
class __magic_name__ ( _UpperCAmelCase):
UpperCamelCase__ = [
'''no_inference''',
'''no_cuda''',
'''no_tpu''',
'''no_speed''',
'''no_memory''',
'''no_env_print''',
'''no_multi_process''',
]
def __init__( self : Optional[Any] , **lowercase_ : int ):
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
lowercase_ : Optional[int] = deprecated_arg[3:]
setattr(self , lowercase_ , not kwargs.pop(lowercase_ ) )
logger.warning(
f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or'''
f''' {positive_arg}={kwargs[positive_arg]}''' )
lowercase_ : Tuple = kwargs.pop("""torchscript""" , self.torchscript )
lowercase_ : List[Any] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics )
lowercase_ : List[Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level )
super().__init__(**lowercase_ )
UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Trace the models using torchscript'''})
UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''})
UpperCamelCase__ = field(
default='''O1''', metadata={
'''help''': (
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. '''
'''See details at https://nvidia.github.io/apex/amp.html'''
)
}, )
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
requires_backends(self , ["""torch"""] )
logger.info("""PyTorch: setting up devices""" )
if not self.cuda:
lowercase_ : Optional[Any] = torch.device("""cpu""" )
lowercase_ : Tuple = 0
elif is_torch_tpu_available():
lowercase_ : Optional[int] = xm.xla_device()
lowercase_ : str = 0
else:
lowercase_ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
lowercase_ : str = torch.cuda.device_count()
return device, n_gpu
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
return is_torch_tpu_available() and self.tpu
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
requires_backends(self , ["""torch"""] )
# TODO(PVP): currently only single GPU is supported
return torch.cuda.current_device()
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
requires_backends(self , ["""torch"""] )
return self._setup_devices[0]
@property
def SCREAMING_SNAKE_CASE_ ( self : int ):
requires_backends(self , ["""torch"""] )
return self._setup_devices[1]
@property
def SCREAMING_SNAKE_CASE_ ( self : int ):
return self.n_gpu > 0
| 21 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
_lowercase : Dict = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : List[Any] = ["ViTFeatureExtractor"]
_lowercase : Optional[int] = ["ViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : List[Any] = [
"VIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTForImageClassification",
"ViTForMaskedImageModeling",
"ViTModel",
"ViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : int = [
"TFViTForImageClassification",
"TFViTModel",
"TFViTPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] = [
"FlaxViTForImageClassification",
"FlaxViTModel",
"FlaxViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
_lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21 | '''simple docstring'''
from __future__ import annotations
from typing import Any
def lowerCamelCase ( UpperCAmelCase__ : list ) -> int:
if not postfix_notation:
return 0
lowercase_ : Any = {"""+""", """-""", """*""", """/"""}
lowercase_ : list[Any] = []
for token in postfix_notation:
if token in operations:
lowercase_ , lowercase_ : Dict = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b )
elif token == "-":
stack.append(a - b )
elif token == "*":
stack.append(a * b )
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1 )
else:
stack.append(a // b )
else:
stack.append(int(UpperCAmelCase__ ) )
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
_lowercase : Tuple = "platform"
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Tuple=None , ) -> Optional[Any]:
if attention_mask is None:
lowercase_ : Optional[Any] = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
lowercase_ : int = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
lowercase_ : str = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowercase_ : Tuple = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowercase_ : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class __magic_name__ :
def __init__( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Dict=13 , lowercase_ : int=7 , lowercase_ : str=True , lowercase_ : List[str]=False , lowercase_ : int=99 , lowercase_ : str=16 , lowercase_ : Dict=2 , lowercase_ : str=4 , lowercase_ : List[Any]=4 , lowercase_ : List[str]="gelu" , lowercase_ : Any=0.1 , lowercase_ : Any=0.1 , lowercase_ : Union[str, Any]=32 , lowercase_ : Optional[int]=2 , lowercase_ : Optional[Any]=1 , lowercase_ : Optional[int]=0 , lowercase_ : Dict=0.02 , ):
lowercase_ : List[Any] = parent
lowercase_ : str = batch_size
lowercase_ : List[str] = seq_length
lowercase_ : Any = is_training
lowercase_ : Union[str, Any] = use_labels
lowercase_ : Tuple = vocab_size
lowercase_ : Dict = hidden_size
lowercase_ : str = num_hidden_layers
lowercase_ : Dict = num_attention_heads
lowercase_ : Optional[Any] = intermediate_size
lowercase_ : List[Any] = hidden_act
lowercase_ : Optional[Any] = hidden_dropout_prob
lowercase_ : List[str] = attention_probs_dropout_prob
lowercase_ : List[str] = max_position_embeddings
lowercase_ : Dict = eos_token_id
lowercase_ : Dict = pad_token_id
lowercase_ : Dict = bos_token_id
lowercase_ : Dict = initializer_range
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Tuple = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
lowercase_ : List[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
lowercase_ : str = shift_tokens_right(lowercase_ , 1 , 2 )
lowercase_ : Optional[Any] = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowercase_ , )
lowercase_ : List[str] = prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_ )
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
lowercase_ , lowercase_ : Optional[Any] = self.prepare_config_and_inputs()
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : int , lowercase_ : Dict , lowercase_ : List[Any] ):
lowercase_ : str = 20
lowercase_ : Optional[int] = model_class_name(lowercase_ )
lowercase_ : str = model.encode(inputs_dict["""input_ids"""] )
lowercase_ , lowercase_ : Any = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ : Any = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ )
lowercase_ : int = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
lowercase_ : int = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ : List[str] = model.decode(
decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , )
lowercase_ : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowercase_ : Tuple = model.decode(
decoder_input_ids[:, -1:] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase_ , )
lowercase_ : Dict = model.decode(lowercase_ , lowercase_ )
lowercase_ : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : List[Any] ):
lowercase_ : List[str] = 20
lowercase_ : Union[str, Any] = model_class_name(lowercase_ )
lowercase_ : Dict = model.encode(inputs_dict["""input_ids"""] )
lowercase_ , lowercase_ : Optional[int] = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
lowercase_ : List[str] = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
lowercase_ : Dict = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ )
lowercase_ : str = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase_ : Union[str, Any] = model.decode(
decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , )
lowercase_ : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowercase_ : Optional[int] = model.decode(
decoder_input_ids[:, -1:] , lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase_ , decoder_position_ids=lowercase_ , )
lowercase_ : Tuple = model.decode(lowercase_ , lowercase_ , decoder_attention_mask=lowercase_ )
lowercase_ : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' )
@require_flax
class __magic_name__ ( unittest.TestCase):
UpperCamelCase__ = 99
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Optional[int] = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
lowercase_ : List[str] = input_ids.shape[0]
lowercase_ : List[Any] = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ , lowercase_ , lowercase_ : List[Any] = self._get_config_and_data()
lowercase_ : int = FlaxBlenderbotForConditionalGeneration(lowercase_ )
lowercase_ : Any = lm_model(input_ids=lowercase_ )
lowercase_ : Union[str, Any] = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : Union[str, Any] = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
lowercase_ : Any = FlaxBlenderbotForConditionalGeneration(lowercase_ )
lowercase_ : Tuple = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
lowercase_ : Union[str, Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
lowercase_ : str = lm_model(input_ids=lowercase_ , decoder_input_ids=lowercase_ )
lowercase_ : List[Any] = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Dict = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
lowercase_ : int = shift_tokens_right(lowercase_ , 1 , 2 )
lowercase_ : Any = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum()
lowercase_ : Any = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(lowercase_ , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class __magic_name__ ( _UpperCAmelCase, unittest.TestCase, _UpperCAmelCase):
UpperCamelCase__ = True
UpperCamelCase__ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
UpperCamelCase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
lowercase_ : int = FlaxBlenderbotModelTester(self )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ , lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ , lowercase_ : Any = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowercase_ , lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowercase_ : Tuple = self._prepare_for_class(lowercase_ , lowercase_ )
lowercase_ : str = model_class(lowercase_ )
@jax.jit
def encode_jitted(lowercase_ : str , lowercase_ : Tuple=None , **lowercase_ : str ):
return model.encode(input_ids=lowercase_ , attention_mask=lowercase_ )
with self.subTest("""JIT Enabled""" ):
lowercase_ : Optional[Any] = encode_jitted(**lowercase_ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
lowercase_ : Optional[int] = encode_jitted(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) )
for jitted_output, output in zip(lowercase_ , lowercase_ ):
self.assertEqual(jitted_output.shape , output.shape )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ , lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowercase_ : Tuple = model_class(lowercase_ )
lowercase_ : Dict = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
lowercase_ : str = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Optional[int] ):
return model.decode(
decoder_input_ids=lowercase_ , decoder_attention_mask=lowercase_ , encoder_outputs=lowercase_ , )
with self.subTest("""JIT Enabled""" ):
lowercase_ : Union[str, Any] = decode_jitted(**lowercase_ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
lowercase_ : str = decode_jitted(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) )
for jitted_output, output in zip(lowercase_ , lowercase_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
for model_class_name in self.all_model_classes:
lowercase_ : Any = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
lowercase_ : Tuple = np.ones((1, 1) ) * model.config.eos_token_id
lowercase_ : List[Any] = model(lowercase_ )
self.assertIsNotNone(lowercase_ )
@unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : int = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25}
lowercase_ : List[Any] = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True}
lowercase_ : Optional[Any] = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=lowercase_ )
lowercase_ : Optional[int] = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" )
lowercase_ : List[str] = ["""Sam"""]
lowercase_ : Any = tokenizer(lowercase_ , return_tensors="""jax""" )
lowercase_ : Union[str, Any] = model.generate(**lowercase_ , **lowercase_ )
lowercase_ : Tuple = """Sam is a great name. It means \"sun\" in Gaelic."""
lowercase_ : Tuple = tokenizer.batch_decode(lowercase_ , **lowercase_ )
assert generated_txt[0].strip() == tgt_text
| 21 | '''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
_lowercase : List[Any] = logging.get_logger(__name__)
def lowerCamelCase ( UpperCAmelCase__ : Union[tf.Tensor, np.ndarray] ) -> List[int]:
if isinstance(UpperCAmelCase__ , np.ndarray ):
return list(tensor.shape )
lowercase_ : Tuple = tf.shape(UpperCAmelCase__ )
if tensor.shape == tf.TensorShape(UpperCAmelCase__ ):
return dynamic
lowercase_ : Dict = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase__ )]
def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[str] = None ) -> tf.Tensor:
return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCAmelCase__ , name=UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=1e-5 , UpperCAmelCase__ : List[str]=-1 ) -> List[str]:
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" )
# Get mean and variance on the axis to be normalized
lowercase_ , lowercase_ : List[str] = tf.nn.moments(UpperCAmelCase__ , axes=[axis] , keepdims=UpperCAmelCase__ )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
lowercase_ : List[Any] = [1] * inputs.shape.rank
lowercase_ : List[str] = shape_list(UpperCAmelCase__ )[axis]
lowercase_ : List[str] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ )
lowercase_ : List[Any] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ )
# Compute layer normalization using the batch_normalization
# function.
lowercase_ : str = tf.nn.batch_normalization(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , offset=UpperCAmelCase__ , scale=UpperCAmelCase__ , variance_epsilon=UpperCAmelCase__ , )
return outputs
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Any=-1 ) -> Dict:
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
lowercase_ : List[Any] = tf.shape(UpperCAmelCase__ )
lowercase_ : Union[str, Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
lowercase_ : Dict = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor ) -> tf.Tensor:
if not isinstance(UpperCAmelCase__ , tf.Tensor ):
lowercase_ : List[Any] = tf.convert_to_tensor(UpperCAmelCase__ ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
lowercase_ : Any = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
lowercase_ : List[Any] = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
lowercase_ : Optional[Any] = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : int , UpperCAmelCase__ : str = "input_ids" ) -> None:
tf.debugging.assert_less(
UpperCAmelCase__ , tf.cast(UpperCAmelCase__ , dtype=tensor.dtype ) , message=(
F'''The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase__ )}) must be smaller than the embedding '''
F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> Any:
lowercase_ : int = 64512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
lowercase_ : Optional[Any] = [x for x in data if len(UpperCAmelCase__ ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
"""The following attributes cannot be saved to HDF5 file because """
F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
F'''bytes: {bad_attributes}''' )
lowercase_ : Any = np.asarray(UpperCAmelCase__ )
lowercase_ : Union[str, Any] = 1
lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(UpperCAmelCase__ ):
lowercase_ : Union[str, Any] = chunk_data
else:
lowercase_ : Any = data
def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] ) -> str:
if name in group.attrs:
lowercase_ : Optional[Any] = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs[name]]
else:
lowercase_ : int = []
lowercase_ : Optional[int] = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] )
chunk_id += 1
return data
def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> Any:
def _expand_single_ad_tensor(UpperCAmelCase__ : Optional[Any] ):
if isinstance(UpperCAmelCase__ , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(UpperCAmelCase__ , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase__ )
| 21 | 1 |
'''simple docstring'''
from io import BytesIO
from typing import List, Union
import requests
from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_decord_available():
import numpy as np
from decord import VideoReader
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
_lowercase : str = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase)
class __magic_name__ ( _UpperCAmelCase):
def __init__( self : str , *lowercase_ : int , **lowercase_ : Any ):
super().__init__(*lowercase_ , **lowercase_ )
requires_backends(self , """decord""" )
self.check_model_type(lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None ):
lowercase_ : Union[str, Any] = {}
if frame_sampling_rate is not None:
lowercase_ : Any = frame_sampling_rate
if num_frames is not None:
lowercase_ : Optional[Any] = num_frames
lowercase_ : Union[str, Any] = {}
if top_k is not None:
lowercase_ : Optional[Any] = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : str , lowercase_ : Union[str, List[str]] , **lowercase_ : str ):
return super().__call__(lowercase_ , **lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None , lowercase_ : Optional[int]=1 ):
if num_frames is None:
lowercase_ : List[Any] = self.model.config.num_frames
if video.startswith("""http://""" ) or video.startswith("""https://""" ):
lowercase_ : Union[str, Any] = BytesIO(requests.get(lowercase_ ).content )
lowercase_ : Optional[Any] = VideoReader(lowercase_ )
videoreader.seek(0 )
lowercase_ : Tuple = 0
lowercase_ : List[Any] = num_frames * frame_sampling_rate - 1
lowercase_ : Optional[int] = np.linspace(lowercase_ , lowercase_ , num=lowercase_ , dtype=np.intaa )
lowercase_ : Optional[int] = videoreader.get_batch(lowercase_ ).asnumpy()
lowercase_ : Union[str, Any] = list(lowercase_ )
lowercase_ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : str ):
lowercase_ : int = self.model(**lowercase_ )
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Dict=5 ):
if top_k > self.model.config.num_labels:
lowercase_ : List[Any] = self.model.config.num_labels
if self.framework == "pt":
lowercase_ : str = model_outputs.logits.softmax(-1 )[0]
lowercase_ , lowercase_ : Optional[Any] = probs.topk(lowercase_ )
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
lowercase_ : Union[str, Any] = scores.tolist()
lowercase_ : Tuple = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
| 21 | '''simple docstring'''
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def lowerCamelCase ( UpperCAmelCase__ : int ) -> int:
lowercase_ : Any = prime_factors(UpperCAmelCase__ )
if is_square_free(UpperCAmelCase__ ):
return -1 if len(UpperCAmelCase__ ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 | 1 |
'''simple docstring'''
import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , ) -> Tuple:
lowercase_ : Union[str, Any] = {
"""7z""": (seven_zip_file, SevenZipExtractor),
"""bz2""": (bza_file, BzipaExtractor),
"""gzip""": (gz_file, GzipExtractor),
"""lz4""": (lza_file, LzaExtractor),
"""tar""": (tar_file, TarExtractor),
"""xz""": (xz_file, XzExtractor),
"""zip""": (zip_file, ZipExtractor),
"""zstd""": (zstd_file, ZstdExtractor),
}
lowercase_ , lowercase_ : int = input_paths_and_base_extractors[compression_format]
if input_path is None:
lowercase_ : Optional[Any] = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(UpperCAmelCase__ )
assert base_extractor.is_extractable(UpperCAmelCase__ )
lowercase_ : Union[str, Any] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
base_extractor.extract(UpperCAmelCase__ , UpperCAmelCase__ )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
lowercase_ : Optional[int] = file_path.read_text(encoding="""utf-8""" )
else:
lowercase_ : Optional[Any] = output_path.read_text(encoding="""utf-8""" )
lowercase_ : int = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
"""compression_format, is_archive""" , [
("""7z""", True),
("""bz2""", False),
("""gzip""", False),
("""lz4""", False),
("""tar""", True),
("""xz""", False),
("""zip""", True),
("""zstd""", False),
] , )
def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , ) -> Dict:
lowercase_ : str = {
"""7z""": seven_zip_file,
"""bz2""": bza_file,
"""gzip""": gz_file,
"""lz4""": lza_file,
"""tar""": tar_file,
"""xz""": xz_file,
"""zip""": zip_file,
"""zstd""": zstd_file,
}
lowercase_ : List[Any] = input_paths[compression_format]
if input_path is None:
lowercase_ : Any = F'''for \'{compression_format}\' compression_format, '''
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(UpperCAmelCase__ )
lowercase_ : str = Extractor.infer_extractor_format(UpperCAmelCase__ )
assert extractor_format is not None
lowercase_ : Optional[Any] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""")
Extractor.extract(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
lowercase_ : Dict = file_path.read_text(encoding="""utf-8""" )
else:
lowercase_ : List[Any] = output_path.read_text(encoding="""utf-8""" )
lowercase_ : Optional[int] = text_file.read_text(encoding="""utf-8""" )
assert extracted_file_content == expected_file_content
@pytest.fixture
def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : Any ) -> Optional[int]:
import tarfile
lowercase_ : List[Any] = tmp_path / """data_dot_dot"""
directory.mkdir()
lowercase_ : Any = directory / """tar_file_with_dot_dot.tar"""
with tarfile.TarFile(UpperCAmelCase__ , """w""" ) as f:
f.add(UpperCAmelCase__ , arcname=os.path.join("""..""" , text_file.name ) )
return path
@pytest.fixture
def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> Any:
import tarfile
lowercase_ : Dict = tmp_path / """data_sym_link"""
directory.mkdir()
lowercase_ : List[Any] = directory / """tar_file_with_sym_link.tar"""
os.symlink("""..""" , directory / """subdir""" , target_is_directory=UpperCAmelCase__ )
with tarfile.TarFile(UpperCAmelCase__ , """w""" ) as f:
f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
"""insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , )
def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] ) -> Tuple:
lowercase_ : List[Any] = {
"""tar_file_with_dot_dot""": tar_file_with_dot_dot,
"""tar_file_with_sym_link""": tar_file_with_sym_link,
}
lowercase_ : Union[str, Any] = insecure_tar_files[insecure_tar_file]
lowercase_ : List[str] = tmp_path / """extracted"""
TarExtractor.extract(UpperCAmelCase__ , UpperCAmelCase__ )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def lowerCamelCase ( UpperCAmelCase__ : str ) -> List[Any]:
# We should have less false positives than zipfile.is_zipfile
# We do that by checking only the magic number
lowercase_ : List[str] = tmpdir / """not_a_zip_file"""
# From: https://github.com/python/cpython/pull/5053
lowercase_ : Union[str, Any] = (
b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00"""
b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I"""
b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07"""
b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82"""
)
with not_a_zip_file.open("""wb""" ) as f:
f.write(UpperCAmelCase__ )
assert zipfile.is_zipfile(str(UpperCAmelCase__ ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(UpperCAmelCase__ ) # but we're right
| 21 | '''simple docstring'''
def lowerCamelCase ( UpperCAmelCase__ : int = 1000000 ) -> int:
lowercase_ : List[Any] = limit + 1
lowercase_ : Optional[Any] = [0] * limit
for first_term in range(1 , UpperCAmelCase__ ):
for n in range(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ):
lowercase_ : List[Any] = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
lowercase_ : List[Any] = sum(1 for x in frequency[1:limit] if x == 10 )
return count
if __name__ == "__main__":
print(f"""{solution() = }""")
| 21 | 1 |
'''simple docstring'''
from __future__ import annotations
def lowerCamelCase ( UpperCAmelCase__ : list[float] ) -> bool:
if len(UpperCAmelCase__ ) < 2:
raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" )
if any(i <= 0 for i in nums ):
raise ValueError("""All values must be greater than 0""" )
lowercase_ : List[Any] = nums.copy()
copy_nums.sort()
return copy_nums[-1] < sum(copy_nums[:-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 | '''simple docstring'''
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __magic_name__ ( unittest.TestCase):
@parameterized.expand([(None,), ("""foo.json""",)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str ):
lowercase_ : Union[str, Any] = GenerationConfig(
do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowercase_ , config_name=lowercase_ )
lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_ )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , lowercase_ )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 50 )
self.assertEqual(loaded_config.max_length , 20 )
self.assertEqual(loaded_config.max_time , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : int = AutoConfig.from_pretrained("""gpt2""" )
lowercase_ : List[Any] = GenerationConfig.from_model_config(lowercase_ )
lowercase_ : Optional[int] = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(lowercase_ , lowercase_ )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Optional[int] = GenerationConfig()
lowercase_ : int = {
"""max_new_tokens""": 1024,
"""foo""": """bar""",
}
lowercase_ : List[str] = copy.deepcopy(lowercase_ )
lowercase_ : Tuple = generation_config.update(**lowercase_ )
# update_kwargs was not modified (no side effects)
self.assertEqual(lowercase_ , lowercase_ )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1024 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(lowercase_ , {"""foo""": """bar"""} )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
lowercase_ : Dict = GenerationConfig()
lowercase_ : int = """bar"""
with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir:
generation_config.save_pretrained(lowercase_ )
lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , """bar""" )
lowercase_ : List[str] = GenerationConfig.from_model_config(lowercase_ )
assert not hasattr(lowercase_ , """foo""" ) # no new kwargs should be initialized if from config
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
lowercase_ : Optional[int] = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , lowercase_ )
self.assertEqual(default_config.num_beams , 1 )
lowercase_ : Dict = GenerationConfig(
do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , lowercase_ )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowercase_ )
lowercase_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , lowercase_ )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class __magic_name__ ( unittest.TestCase):
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Any ):
lowercase_ : int = TOKEN
HfFolder.save_token(lowercase_ )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[Any] ):
try:
delete_repo(token=cls._token , repo_id="""test-generation-config""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" )
except HTTPError:
pass
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Tuple = GenerationConfig(
do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("""test-generation-config""" , use_auth_token=self._token )
lowercase_ : List[Any] = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
# Reset repo
delete_repo(token=self._token , repo_id="""test-generation-config""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
lowercase_ , repo_id="""test-generation-config""" , push_to_hub=lowercase_ , use_auth_token=self._token )
lowercase_ : int = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : List[Any] = GenerationConfig(
do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token )
lowercase_ : Optional[Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
lowercase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowercase_ , use_auth_token=self._token )
lowercase_ : int = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
| 21 | 1 |
'''simple docstring'''
import os
import re
import shutil
from argparse import ArgumentParser, Namespace
from datasets.commands import BaseDatasetsCLICommand
from datasets.utils.logging import get_logger
_lowercase : Any = "<<<<<<< This should probably be modified because it mentions: "
_lowercase : Any = "=======\n>>>>>>>\n"
_lowercase : Dict = [
"TextEncoderConfig",
"ByteTextEncoder",
"SubwordTextEncoder",
"encoder_config",
"maybe_build_from_corpus",
"manual_dir",
]
_lowercase : List[str] = [
# (pattern, replacement)
# Order is important here for some replacements
(r"tfds\.core", r"datasets"),
(r"tf\.io\.gfile\.GFile", r"open"),
(r"tf\.([\w\d]+)", r"datasets.Value('\1')"),
(r"tfds\.features\.Text\(\)", r"datasets.Value('string')"),
(r"tfds\.features\.Text\(", r"datasets.Value('string'),"),
(r"features\s*=\s*tfds.features.FeaturesDict\(", r"features=datasets.Features("),
(r"tfds\.features\.FeaturesDict\(", r"dict("),
(r"The TensorFlow Datasets Authors", r"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"),
(r"tfds\.", r"datasets."),
(r"dl_manager\.manual_dir", r"self.config.data_dir"),
(r"self\.builder_config", r"self.config"),
]
def lowerCamelCase ( UpperCAmelCase__ : Namespace ) -> Dict:
return ConvertCommand(args.tfds_path , args.datasets_directory )
class __magic_name__ ( _UpperCAmelCase):
@staticmethod
def SCREAMING_SNAKE_CASE_ ( lowercase_ : ArgumentParser ):
lowercase_ : List[Any] = parser.add_parser(
"""convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , )
train_parser.add_argument(
"""--tfds_path""" , type=lowercase_ , required=lowercase_ , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , )
train_parser.add_argument(
"""--datasets_directory""" , type=lowercase_ , required=lowercase_ , help="""Path to the HuggingFace Datasets folder.""" )
train_parser.set_defaults(func=lowercase_ )
def __init__( self : Tuple , lowercase_ : str , lowercase_ : str , *lowercase_ : Tuple ):
lowercase_ : Optional[int] = get_logger("""datasets-cli/converting""" )
lowercase_ : List[Any] = tfds_path
lowercase_ : Any = datasets_directory
def SCREAMING_SNAKE_CASE_ ( self : int ):
if os.path.isdir(self._tfds_path ):
lowercase_ : Dict = os.path.abspath(self._tfds_path )
elif os.path.isfile(self._tfds_path ):
lowercase_ : List[str] = os.path.dirname(self._tfds_path )
else:
raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" )
lowercase_ : Any = os.path.abspath(self._datasets_directory )
self._logger.info(f'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' )
lowercase_ : Union[str, Any] = []
lowercase_ : List[str] = []
lowercase_ : Union[str, Any] = {}
if os.path.isdir(self._tfds_path ):
lowercase_ : Dict = os.listdir(lowercase_ )
else:
lowercase_ : List[Any] = [os.path.basename(self._tfds_path )]
for f_name in file_names:
self._logger.info(f'''Looking at file {f_name}''' )
lowercase_ : Dict = os.path.join(lowercase_ , lowercase_ )
lowercase_ : List[Any] = os.path.join(lowercase_ , lowercase_ )
if not os.path.isfile(lowercase_ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name:
self._logger.info("""Skipping file""" )
continue
with open(lowercase_ , encoding="""utf-8""" ) as f:
lowercase_ : str = f.readlines()
lowercase_ : Any = []
lowercase_ : List[Any] = False
lowercase_ : Any = False
lowercase_ : str = []
for line in lines:
lowercase_ : Dict = line
# Convert imports
if "import tensorflow.compat.v2 as tf" in out_line:
continue
elif "@tfds.core" in out_line:
continue
elif "builder=self" in out_line:
continue
elif "import tensorflow_datasets.public_api as tfds" in out_line:
lowercase_ : int = """import datasets\n"""
elif "import tensorflow" in out_line:
# order is important here
lowercase_ : Dict = """"""
continue
elif "from absl import logging" in out_line:
lowercase_ : int = """from datasets import logging\n"""
elif "getLogger" in out_line:
lowercase_ : Dict = out_line.replace("""getLogger""" , """get_logger""" )
elif any(expression in out_line for expression in TO_HIGHLIGHT ):
lowercase_ : Optional[int] = True
lowercase_ : List[Any] = list(filter(lambda lowercase_ : e in out_line , lowercase_ ) )
out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowercase_ ) + """\n""" )
out_lines.append(lowercase_ )
out_lines.append(lowercase_ )
continue
else:
for pattern, replacement in TO_CONVERT:
lowercase_ : Union[str, Any] = re.sub(lowercase_ , lowercase_ , lowercase_ )
# Take care of saving utilities (to later move them together with main script)
if "tensorflow_datasets" in out_line:
lowercase_ : Dict = re.match(r"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , lowercase_ )
tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) )
lowercase_ : Tuple = """from . import """ + match.group(1 )
# Check we have not forget anything
if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line:
raise ValueError(f'''Error converting {out_line.strip()}''' )
if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line:
lowercase_ : Optional[int] = True
out_lines.append(lowercase_ )
if is_builder or "wmt" in f_name:
# We create a new directory for each dataset
lowercase_ : int = f_name.replace(""".py""" , """""" )
lowercase_ : int = os.path.join(lowercase_ , lowercase_ )
lowercase_ : Union[str, Any] = os.path.join(lowercase_ , lowercase_ )
os.makedirs(lowercase_ , exist_ok=lowercase_ )
self._logger.info(f'''Adding directory {output_dir}''' )
imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} )
else:
# Utilities will be moved at the end
utils_files.append(lowercase_ )
if needs_manual_update:
with_manual_update.append(lowercase_ )
with open(lowercase_ , """w""" , encoding="""utf-8""" ) as f:
f.writelines(lowercase_ )
self._logger.info(f'''Converted in {output_file}''' )
for utils_file in utils_files:
try:
lowercase_ : str = os.path.basename(lowercase_ )
lowercase_ : List[str] = imports_to_builder_map[f_name.replace(""".py""" , """""" )]
self._logger.info(f'''Moving {dest_folder} to {utils_file}''' )
shutil.copy(lowercase_ , lowercase_ )
except KeyError:
self._logger.error(f'''Cannot find destination folder for {utils_file}. Please copy manually.''' )
if with_manual_update:
for file_path in with_manual_update:
self._logger.warning(
f'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
| 21 | '''simple docstring'''
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] ) -> List[Any]:
# Initialise PyTorch model
lowercase_ : List[str] = FunnelConfig.from_json_file(UpperCAmelCase__ )
print(F'''Building PyTorch model from configuration: {config}''' )
lowercase_ : Dict = FunnelBaseModel(UpperCAmelCase__ ) if base_model else FunnelModel(UpperCAmelCase__ )
# Load weights from tf checkpoint
load_tf_weights_in_funnel(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , UpperCAmelCase__ )
if __name__ == "__main__":
_lowercase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not."
)
_lowercase : Union[str, Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
)
| 21 | 1 |
'''simple docstring'''
from __future__ import annotations
def lowerCamelCase ( UpperCAmelCase__ : list[float] , UpperCAmelCase__ : list[float] ) -> float:
lowercase_ : Tuple = sorted(numsa + numsa )
lowercase_ , lowercase_ : Optional[Any] = divmod(len(UpperCAmelCase__ ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : List[str] = [float(x) for x in input("Enter the elements of first array: ").split()]
_lowercase : Tuple = [float(x) for x in input("Enter the elements of second array: ").split()]
print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
| 21 | '''simple docstring'''
import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
_lowercase : Optional[List[str]] = None
_lowercase : str = "<" if sys.byteorder == "little" else ">"
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
_lowercase : Optional[int] = [
np.dtype("|b1"),
np.dtype("|u1"),
np.dtype("<u2"),
np.dtype(">u2"),
np.dtype("<i2"),
np.dtype(">i2"),
np.dtype("<u4"),
np.dtype(">u4"),
np.dtype("<i4"),
np.dtype(">i4"),
np.dtype("<f4"),
np.dtype(">f4"),
np.dtype("<f8"),
np.dtype(">f8"),
]
@dataclass
class __magic_name__ :
UpperCamelCase__ = True
UpperCamelCase__ = None
# Automatically constructed
UpperCamelCase__ = "PIL.Image.Image"
UpperCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()})
UpperCamelCase__ = field(default='''Image''', init=_UpperCAmelCase, repr=_UpperCAmelCase)
def __call__( self : Tuple ):
return self.pa_type
def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if isinstance(lowercase_ , lowercase_ ):
lowercase_ : int = np.array(lowercase_ )
if isinstance(lowercase_ , lowercase_ ):
return {"path": value, "bytes": None}
elif isinstance(lowercase_ , lowercase_ ):
return {"path": None, "bytes": value}
elif isinstance(lowercase_ , np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(lowercase_ )
elif isinstance(lowercase_ , PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(lowercase_ )
elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get("""path""" )}
elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )}
else:
raise ValueError(
f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : dict , lowercase_ : List[str]=None ):
if not self.decode:
raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support decoding images, please install 'Pillow'.""" )
if token_per_repo_id is None:
lowercase_ : Union[str, Any] = {}
lowercase_ , lowercase_ : List[Any] = value["""path"""], value["""bytes"""]
if bytes_ is None:
if path is None:
raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
else:
if is_local_path(lowercase_ ):
lowercase_ : int = PIL.Image.open(lowercase_ )
else:
lowercase_ : str = path.split("""::""" )[-1]
try:
lowercase_ : Any = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""]
lowercase_ : Optional[Any] = token_per_repo_id.get(lowercase_ )
except ValueError:
lowercase_ : str = None
with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f:
lowercase_ : Dict = BytesIO(f.read() )
lowercase_ : Optional[Any] = PIL.Image.open(bytes_ )
else:
lowercase_ : Any = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def SCREAMING_SNAKE_CASE_ ( self : int ):
from .features import Value
return (
self
if self.decode
else {
"bytes": Value("""binary""" ),
"path": Value("""string""" ),
}
)
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ):
if pa.types.is_string(storage.type ):
lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.binary() )
lowercase_ : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.string() )
lowercase_ : Any = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("""bytes""" ) >= 0:
lowercase_ : Optional[int] = storage.field("""bytes""" )
else:
lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() )
if storage.type.get_field_index("""path""" ) >= 0:
lowercase_ : Dict = storage.field("""path""" )
else:
lowercase_ : int = pa.array([None] * len(lowercase_ ) , type=pa.string() )
lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
lowercase_ : Optional[int] = pa.array(
[encode_np_array(np.array(lowercase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
lowercase_ : Tuple = pa.array([None] * len(lowercase_ ) , type=pa.string() )
lowercase_ : Tuple = pa.StructArray.from_arrays(
[bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(lowercase_ , self.pa_type )
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : pa.StructArray ):
@no_op_if_value_is_null
def path_to_bytes(lowercase_ : Optional[Any] ):
with xopen(lowercase_ , """rb""" ) as f:
lowercase_ : int = f.read()
return bytes_
lowercase_ : Optional[Any] = pa.array(
[
(path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
lowercase_ : Any = pa.array(
[os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , )
lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(lowercase_ , self.pa_type )
def lowerCamelCase ( ) -> List[str]:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
lowercase_ : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> bytes:
lowercase_ : Tuple = BytesIO()
if image.format in list_image_compression_formats():
lowercase_ : int = image.format
else:
lowercase_ : int = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF"""
image.save(UpperCAmelCase__ , format=UpperCAmelCase__ )
return buffer.getvalue()
def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> dict:
if hasattr(UpperCAmelCase__ , """filename""" ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )}
def lowerCamelCase ( UpperCAmelCase__ : np.ndarray ) -> dict:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
lowercase_ : List[Any] = array.dtype
lowercase_ : int = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER
lowercase_ : Dict = dtype.kind
lowercase_ : List[Any] = dtype.itemsize
lowercase_ : Any = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
lowercase_ : int = np.dtype("""|u1""" )
if dtype_kind not in ["u", "i"]:
raise TypeError(
F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' )
if dtype is not dest_dtype:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
lowercase_ : str = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
lowercase_ : str = dtype_byteorder + dtype_kind + str(UpperCAmelCase__ )
lowercase_ : Optional[Any] = np.dtype(UpperCAmelCase__ )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' )
lowercase_ : Optional[int] = PIL.Image.fromarray(array.astype(UpperCAmelCase__ ) )
return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )}
def lowerCamelCase ( UpperCAmelCase__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if objs:
lowercase_ , lowercase_ : Dict = first_non_null_value(UpperCAmelCase__ )
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(UpperCAmelCase__ , np.ndarray ):
lowercase_ : Union[str, Any] = no_op_if_value_is_null(UpperCAmelCase__ )
return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs]
elif isinstance(UpperCAmelCase__ , PIL.Image.Image ):
lowercase_ : int = no_op_if_value_is_null(UpperCAmelCase__ )
return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs]
else:
return objs
else:
return objs
| 21 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class __magic_name__ :
UpperCamelCase__ = XGLMConfig
UpperCamelCase__ = {}
UpperCamelCase__ = '''gelu'''
def __init__( self : List[Any] , lowercase_ : List[Any] , lowercase_ : List[str]=14 , lowercase_ : Tuple=7 , lowercase_ : Any=True , lowercase_ : Tuple=True , lowercase_ : List[str]=True , lowercase_ : Any=99 , lowercase_ : Dict=32 , lowercase_ : List[Any]=2 , lowercase_ : Dict=4 , lowercase_ : Union[str, Any]=37 , lowercase_ : List[str]="gelu" , lowercase_ : Dict=0.1 , lowercase_ : Optional[int]=0.1 , lowercase_ : Union[str, Any]=512 , lowercase_ : Tuple=0.02 , ):
lowercase_ : List[Any] = parent
lowercase_ : Optional[Any] = batch_size
lowercase_ : Dict = seq_length
lowercase_ : int = is_training
lowercase_ : Dict = use_input_mask
lowercase_ : Optional[int] = use_labels
lowercase_ : str = vocab_size
lowercase_ : int = d_model
lowercase_ : Any = num_hidden_layers
lowercase_ : Tuple = num_attention_heads
lowercase_ : Optional[Any] = ffn_dim
lowercase_ : List[str] = activation_function
lowercase_ : Any = activation_dropout
lowercase_ : List[str] = attention_dropout
lowercase_ : int = max_position_embeddings
lowercase_ : Optional[int] = initializer_range
lowercase_ : int = None
lowercase_ : Any = 0
lowercase_ : Union[str, Any] = 2
lowercase_ : Optional[int] = 1
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
return XGLMConfig.from_pretrained("""facebook/xglm-564M""" )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
lowercase_ : Union[str, Any] = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
lowercase_ : Tuple = None
if self.use_input_mask:
lowercase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
lowercase_ : str = self.get_config()
lowercase_ : Union[str, Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowercase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowercase_ , )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : str = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : List[str] = config_and_inputs
lowercase_ : str = {
"""input_ids""": input_ids,
"""head_mask""": head_mask,
}
return config, inputs_dict
@require_tf
class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase):
UpperCamelCase__ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
UpperCamelCase__ = (TFXGLMForCausalLM,) if is_tf_available() else ()
UpperCamelCase__ = (
{'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {}
)
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : str = TFXGLMModelTester(self )
lowercase_ : List[str] = ConfigTester(self , config_class=lowercase_ , n_embd=37 )
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
self.config_tester.run_common_tests()
@slow
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : Optional[int] = TFXGLMModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
@unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
super().test_resize_token_embeddings()
@require_tf
class __magic_name__ ( unittest.TestCase):
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : int=True ):
lowercase_ : Optional[int] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
lowercase_ : Optional[Any] = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
lowercase_ : Optional[Any] = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581]
# fmt: on
lowercase_ : List[str] = model.generate(lowercase_ , do_sample=lowercase_ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : Optional[int] = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
lowercase_ : Any = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
tf.random.set_seed(0 )
lowercase_ : Union[str, Any] = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" )
lowercase_ : Optional[Any] = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(""":/CPU:0""" ):
lowercase_ : Any = model.generate(lowercase_ , do_sample=lowercase_ , seed=[7, 0] )
lowercase_ : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase_ )
lowercase_ : Any = (
"""Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"""
)
self.assertEqual(lowercase_ , lowercase_ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Optional[int] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" )
lowercase_ : Tuple = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" )
lowercase_ : int = """left"""
# use different length sentences to test batching
lowercase_ : str = [
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When""",
"""Hello, my dog is a little""",
]
lowercase_ : Tuple = tokenizer(lowercase_ , return_tensors="""tf""" , padding=lowercase_ )
lowercase_ : Dict = inputs["""input_ids"""]
lowercase_ : Any = model.generate(input_ids=lowercase_ , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 )
lowercase_ : Optional[Any] = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids
lowercase_ : Union[str, Any] = model.generate(input_ids=lowercase_ , max_new_tokens=12 )
lowercase_ : Dict = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids
lowercase_ : Optional[Any] = model.generate(input_ids=lowercase_ , max_new_tokens=12 )
lowercase_ : Optional[Any] = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )
lowercase_ : Optional[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ )
lowercase_ : List[str] = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ )
lowercase_ : Dict = [
"""This is an extremelly long sentence that only exists to test the ability of the model to cope with """
"""left-padding, such as in batched generation. The output for the sequence below should be the same """
"""regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """
"""a single""",
"""Hello, my dog is a little bit of a shy one, but he is very friendly""",
]
self.assertListEqual(lowercase_ , lowercase_ )
self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] )
| 21 | '''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : float , UpperCAmelCase__ : int ) -> float:
lowercase_ : List[Any] = x
lowercase_ : Any = y
for step in range(UpperCAmelCase__ ): # noqa: B007
lowercase_ : Dict = a * a - b * b + x
lowercase_ : str = 2 * a * b + y
lowercase_ : Optional[Any] = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple:
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple:
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCAmelCase__ , 1 , 1 ) )
def lowerCamelCase ( UpperCAmelCase__ : int = 800 , UpperCAmelCase__ : int = 600 , UpperCAmelCase__ : float = -0.6 , UpperCAmelCase__ : float = 0 , UpperCAmelCase__ : float = 3.2 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : bool = True , ) -> Image.Image:
lowercase_ : Union[str, Any] = Image.new("""RGB""" , (image_width, image_height) )
lowercase_ : Tuple = img.load()
# loop through the image-coordinates
for image_x in range(UpperCAmelCase__ ):
for image_y in range(UpperCAmelCase__ ):
# determine the figure-coordinates based on the image-coordinates
lowercase_ : Any = figure_width / image_width * image_height
lowercase_ : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width
lowercase_ : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height
lowercase_ : str = get_distance(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
lowercase_ : List[Any] = get_color_coded_rgb(UpperCAmelCase__ )
else:
lowercase_ : Dict = get_black_and_white_rgb(UpperCAmelCase__ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
_lowercase : List[str] = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 21 | 1 |
'''simple docstring'''
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class __magic_name__ ( ctypes.Structure):
# _fields is a specific attr expected by ctypes
UpperCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)]
def lowerCamelCase ( ) -> List[Any]:
if os.name == "nt":
lowercase_ : List[Any] = CursorInfo()
lowercase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
lowercase_ : List[str] = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
elif os.name == "posix":
sys.stdout.write("""\033[?25l""" )
sys.stdout.flush()
def lowerCamelCase ( ) -> str:
if os.name == "nt":
lowercase_ : int = CursorInfo()
lowercase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
lowercase_ : Optional[int] = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
elif os.name == "posix":
sys.stdout.write("""\033[?25h""" )
sys.stdout.flush()
@contextmanager
def lowerCamelCase ( ) -> Any:
try:
hide_cursor()
yield
finally:
show_cursor()
| 21 | '''simple docstring'''
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class __magic_name__ ( _UpperCAmelCase):
UpperCamelCase__ = DistilBertTokenizer
UpperCamelCase__ = DistilBertTokenizerFast
UpperCamelCase__ = True
@slow
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : int = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" )
lowercase_ : str = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ )
lowercase_ : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ )
lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowercase_ )
lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 21 | 1 |
'''simple docstring'''
import os
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen, xsplitext
from ..table import array_cast
from ..utils.py_utils import no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
from .features import FeatureType
_lowercase , _lowercase , _lowercase : Tuple = False, False, False
@dataclass
class __magic_name__ :
UpperCamelCase__ = None
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = None
# Automatically constructed
UpperCamelCase__ = "dict"
UpperCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()})
UpperCamelCase__ = field(default='''Audio''', init=_UpperCAmelCase, repr=_UpperCAmelCase)
def __call__( self : List[Any] ):
return self.pa_type
def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Union[str, bytes, dict] ):
try:
import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files.
except ImportError as err:
raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err
if isinstance(lowercase_ , lowercase_ ):
return {"bytes": None, "path": value}
elif isinstance(lowercase_ , lowercase_ ):
return {"bytes": value, "path": None}
elif "array" in value:
# convert the audio array to wav bytes
lowercase_ : List[str] = BytesIO()
sf.write(lowercase_ , value["""array"""] , value["""sampling_rate"""] , format="""wav""" )
return {"bytes": buffer.getvalue(), "path": None}
elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ):
# we set "bytes": None to not duplicate the data if they're already available locally
if value["path"].endswith("""pcm""" ):
# "PCM" only has raw audio bytes
if value.get("""sampling_rate""" ) is None:
# At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate
raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" )
if value.get("""bytes""" ):
# If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!)
lowercase_ : int = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 32767
else:
lowercase_ : Tuple = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 32767
lowercase_ : Tuple = BytesIO(bytes() )
sf.write(lowercase_ , lowercase_ , value["""sampling_rate"""] , format="""wav""" )
return {"bytes": buffer.getvalue(), "path": None}
else:
return {"bytes": None, "path": value.get("""path""" )}
elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None:
# store the audio bytes, and path is used to infer the audio format using the file extension
return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )}
else:
raise ValueError(
f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : dict , lowercase_ : Optional[Dict[str, Union[str, bool, None]]] = None ):
if not self.decode:
raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" )
lowercase_ , lowercase_ : str = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None)
if path is None and file is None:
raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
try:
import librosa
import soundfile as sf
except ImportError as err:
raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err
lowercase_ : str = xsplitext(lowercase_ )[1][1:].lower() if path is not None else None
if not config.IS_OPUS_SUPPORTED and audio_format == "opus":
raise RuntimeError(
"""Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """
"""You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ )
elif not config.IS_MP3_SUPPORTED and audio_format == "mp3":
raise RuntimeError(
"""Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """
"""You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ )
if file is None:
lowercase_ : Union[str, Any] = token_per_repo_id or {}
lowercase_ : Optional[Any] = path.split("""::""" )[-1]
try:
lowercase_ : Optional[int] = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""]
lowercase_ : Optional[Any] = token_per_repo_id[repo_id]
except (ValueError, KeyError):
lowercase_ : int = None
with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f:
lowercase_ , lowercase_ : Optional[int] = sf.read(lowercase_ )
else:
lowercase_ , lowercase_ : List[str] = sf.read(lowercase_ )
lowercase_ : int = array.T
if self.mono:
lowercase_ : List[Any] = librosa.to_mono(lowercase_ )
if self.sampling_rate and self.sampling_rate != sampling_rate:
lowercase_ : Any = librosa.resample(lowercase_ , orig_sr=lowercase_ , target_sr=self.sampling_rate )
lowercase_ : List[Any] = self.sampling_rate
return {"path": path, "array": array, "sampling_rate": sampling_rate}
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
from .features import Value
if self.decode:
raise ValueError("""Cannot flatten a decoded Audio feature.""" )
return {
"bytes": Value("""binary""" ),
"path": Value("""string""" ),
}
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Union[pa.StringArray, pa.StructArray] ):
if pa.types.is_string(storage.type ):
lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() )
lowercase_ : List[Any] = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.string() )
lowercase_ : Dict = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ):
lowercase_ : Optional[Any] = pa.array([Audio().encode_example(lowercase_ ) if x is not None else None for x in storage.to_pylist()] )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("""bytes""" ) >= 0:
lowercase_ : Optional[int] = storage.field("""bytes""" )
else:
lowercase_ : int = pa.array([None] * len(lowercase_ ) , type=pa.binary() )
if storage.type.get_field_index("""path""" ) >= 0:
lowercase_ : Any = storage.field("""path""" )
else:
lowercase_ : List[str] = pa.array([None] * len(lowercase_ ) , type=pa.string() )
lowercase_ : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
return array_cast(lowercase_ , self.pa_type )
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : pa.StructArray ):
@no_op_if_value_is_null
def path_to_bytes(lowercase_ : str ):
with xopen(lowercase_ , """rb""" ) as f:
lowercase_ : Optional[Any] = f.read()
return bytes_
lowercase_ : Any = pa.array(
[
(path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
lowercase_ : Any = pa.array(
[os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , )
lowercase_ : List[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(lowercase_ , self.pa_type )
| 21 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
_lowercase : Union[str, Any] = {"tokenization_herbert": ["HerbertTokenizer"]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : str = ["HerbertTokenizerFast"]
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
_lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21 | 1 |
'''simple docstring'''
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def lowerCamelCase ( ) -> List[Any]:
lowercase_ : Tuple = ArgumentParser(
description=(
"""PyTorch TPU distributed training launch """
"""helper utility that will spawn up """
"""multiple distributed processes"""
) )
# Optional arguments for the launch helper
parser.add_argument("""--num_cores""" , type=UpperCAmelCase__ , default=1 , help="""Number of TPU cores to use (1 or 8).""" )
# positional
parser.add_argument(
"""training_script""" , type=UpperCAmelCase__ , help=(
"""The full path to the single TPU training """
"""program/script to be launched in parallel, """
"""followed by all the arguments for the """
"""training script"""
) , )
# rest from the training program
parser.add_argument("""training_script_args""" , nargs=UpperCAmelCase__ )
return parser.parse_args()
def lowerCamelCase ( ) -> Optional[int]:
lowercase_ : Any = parse_args()
# Import training_script as a module.
lowercase_ : int = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
lowercase_ : List[Any] = script_fpath.stem
lowercase_ : str = importlib.import_module(UpperCAmelCase__ )
# Patch sys.argv
lowercase_ : int = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 21 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
_lowercase : Union[str, Any] = {
"configuration_encodec": [
"ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EncodecConfig",
],
"feature_extraction_encodec": ["EncodecFeatureExtractor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] = [
"ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST",
"EncodecModel",
"EncodecPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
_lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21 | 1 |
'''simple docstring'''
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
_lowercase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name
_lowercase : Tuple = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n"
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str=8 ) -> Dict:
lowercase_ : Tuple = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
lowercase_ : Optional[int] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class __magic_name__ ( _UpperCAmelCase):
def __init__( self : Tuple , lowercase_ : UNetaDConditionModel , lowercase_ : DDPMScheduler , lowercase_ : VQModel , ):
super().__init__()
self.register_modules(
unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , )
lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Tuple ):
if latents is None:
lowercase_ : Optional[int] = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ )
else:
if latents.shape != shape:
raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' )
lowercase_ : int = latents.to(lowercase_ )
lowercase_ : List[Any] = latents * scheduler.init_noise_sigma
return latents
def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[str]=0 ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
lowercase_ : Tuple = torch.device(f'''cuda:{gpu_id}''' )
lowercase_ : int = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : Dict=0 ):
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" )
lowercase_ : Union[str, Any] = torch.device(f'''cuda:{gpu_id}''' )
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=lowercase_ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
lowercase_ : Optional[int] = None
for cpu_offloaded_model in [self.unet, self.movq]:
lowercase_ , lowercase_ : Any = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ )
# We'll offload the last model manually.
lowercase_ : Union[str, Any] = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
if not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(lowercase_ , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(lowercase_ )
def __call__( self : int , lowercase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase_ : int = 512 , lowercase_ : int = 512 , lowercase_ : int = 100 , lowercase_ : float = 4.0 , lowercase_ : int = 1 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , ):
lowercase_ : List[str] = self._execution_device
lowercase_ : Union[str, Any] = guidance_scale > 1.0
if isinstance(lowercase_ , lowercase_ ):
lowercase_ : Any = torch.cat(lowercase_ , dim=0 )
lowercase_ : Dict = image_embeds.shape[0] * num_images_per_prompt
if isinstance(lowercase_ , lowercase_ ):
lowercase_ : List[str] = torch.cat(lowercase_ , dim=0 )
if do_classifier_free_guidance:
lowercase_ : Union[str, Any] = image_embeds.repeat_interleave(lowercase_ , dim=0 )
lowercase_ : Union[str, Any] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 )
lowercase_ : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ )
self.scheduler.set_timesteps(lowercase_ , device=lowercase_ )
lowercase_ : Optional[int] = self.scheduler.timesteps
lowercase_ : Union[str, Any] = self.unet.config.in_channels
lowercase_ , lowercase_ : Optional[int] = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor )
# create initial latent
lowercase_ : List[str] = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , )
for i, t in enumerate(self.progress_bar(lowercase_ ) ):
# expand the latents if we are doing classifier free guidance
lowercase_ : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
lowercase_ : Any = {"""image_embeds""": image_embeds}
lowercase_ : Any = self.unet(
sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0]
if do_classifier_free_guidance:
lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 )
lowercase_ , lowercase_ : Dict = noise_pred.chunk(2 )
lowercase_ , lowercase_ : Any = variance_pred.chunk(2 )
lowercase_ : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
lowercase_ : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , """variance_type""" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
lowercase_ , lowercase_ : List[str] = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
lowercase_ : int = self.scheduler.step(
lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0]
# post-processing
lowercase_ : Optional[Any] = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["""sample"""]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' )
if output_type in ["np", "pil"]:
lowercase_ : str = image * 0.5 + 0.5
lowercase_ : Any = image.clamp(0 , 1 )
lowercase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
lowercase_ : int = self.numpy_to_pil(lowercase_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowercase_ )
| 21 | '''simple docstring'''
import os
import numpy
import onnx
def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ) -> Tuple:
lowercase_ : Tuple = a.name
lowercase_ : Tuple = b.name
lowercase_ : Any = """"""
lowercase_ : List[Any] = """"""
lowercase_ : List[Any] = a == b
lowercase_ : Union[str, Any] = name_a
lowercase_ : Optional[Any] = name_b
return res
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]:
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(UpperCAmelCase__ , UpperCAmelCase__ )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ )
_graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase__ , UpperCAmelCase__ )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) -> int:
for n in graph_proto.node:
_node_replace_input_with(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ) -> List[str]:
lowercase_ : int = list(model.graph.initializer )
lowercase_ : List[str] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
lowercase_ : Optional[Any] = inits[i].name
lowercase_ : List[str] = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : int ) -> List[str]:
lowercase_ : Dict = os.path.dirname(UpperCAmelCase__ )
lowercase_ : Optional[Any] = os.path.basename(UpperCAmelCase__ )
lowercase_ : str = onnx.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) )
lowercase_ : List[Any] = list(model.graph.initializer )
lowercase_ : int = set()
lowercase_ : int = {}
lowercase_ : str = []
lowercase_ : int = 0
for i in range(len(UpperCAmelCase__ ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(UpperCAmelCase__ ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(UpperCAmelCase__ )
dup_set.add(UpperCAmelCase__ )
lowercase_ : Dict = inits[j].data_type
lowercase_ : List[str] = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("""unexpected data type: """ , UpperCAmelCase__ )
total_reduced_size += mem_size
lowercase_ : int = inits[i].name
lowercase_ : List[str] = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(UpperCAmelCase__ )
else:
lowercase_ : Optional[int] = [name_j]
ind_to_replace.append((j, i) )
print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" )
lowercase_ : Tuple = sorted(UpperCAmelCase__ )
_remove_dup_initializers_from_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
lowercase_ : Union[str, Any] = """optimized_""" + model_file_name
lowercase_ : Optional[int] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ )
onnx.save(UpperCAmelCase__ , UpperCAmelCase__ )
return new_model
| 21 | 1 |
'''simple docstring'''
import inspect
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __magic_name__ :
def __init__( self : Union[str, Any] , lowercase_ : Any , lowercase_ : List[str]=13 , lowercase_ : str=30 , lowercase_ : List[str]=2 , lowercase_ : str=3 , lowercase_ : Dict=True , lowercase_ : int=True , lowercase_ : List[str]=32 , lowercase_ : List[str]=5 , lowercase_ : Dict=4 , lowercase_ : Optional[int]=37 , lowercase_ : Dict="gelu" , lowercase_ : Optional[Any]=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : Dict=10 , lowercase_ : Optional[int]=0.02 , lowercase_ : List[Any]=3 , lowercase_ : Union[str, Any]=0.6 , lowercase_ : Dict=None , ):
lowercase_ : Any = parent
lowercase_ : Tuple = batch_size
lowercase_ : List[Any] = image_size
lowercase_ : Dict = patch_size
lowercase_ : Dict = num_channels
lowercase_ : Dict = is_training
lowercase_ : Any = use_labels
lowercase_ : Optional[int] = hidden_size
lowercase_ : List[str] = num_hidden_layers
lowercase_ : Optional[Any] = num_attention_heads
lowercase_ : Dict = intermediate_size
lowercase_ : Dict = hidden_act
lowercase_ : int = hidden_dropout_prob
lowercase_ : Dict = attention_probs_dropout_prob
lowercase_ : Union[str, Any] = type_sequence_label_size
lowercase_ : Union[str, Any] = initializer_range
lowercase_ : Tuple = mask_ratio
lowercase_ : List[Any] = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
lowercase_ : str = (image_size // patch_size) ** 2
lowercase_ : Tuple = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase_ : List[Any] = None
if self.use_labels:
lowercase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase_ : Any = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Tuple ):
lowercase_ : Union[str, Any] = ViTMAEModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase_ : Union[str, Any] = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : int , lowercase_ : Tuple , lowercase_ : List[Any] ):
lowercase_ : Any = ViTMAEForPreTraining(lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase_ : Any = model(lowercase_ )
lowercase_ : Union[str, Any] = (self.image_size // self.patch_size) ** 2
lowercase_ : Union[str, Any] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
lowercase_ : Dict = 1
lowercase_ : Union[str, Any] = ViTMAEForPreTraining(lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowercase_ : Union[str, Any] = model(lowercase_ )
lowercase_ : Any = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : str = self.prepare_config_and_inputs()
lowercase_ , lowercase_ , lowercase_ : List[str] = config_and_inputs
lowercase_ : Dict = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase):
UpperCamelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
UpperCamelCase__ = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {}
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : List[Any] = ViTMAEModelTester(self )
lowercase_ : List[str] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMAE does not use inputs_embeds""" )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
pass
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ , lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ : Optional[int] = model_class(lowercase_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowercase_ : Any = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) )
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ , lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ : Tuple = model_class(lowercase_ )
lowercase_ : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase_ : List[Any] = [*signature.parameters.keys()]
lowercase_ : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : int , lowercase_ : str , lowercase_ : Dict ):
# make masks reproducible
np.random.seed(2 )
lowercase_ : Optional[int] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 )
lowercase_ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowercase_ : Optional[int] = torch.from_numpy(lowercase_ )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
lowercase_ : List[Any] = pt_noise
super().check_pt_tf_models(lowercase_ , lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ , lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ : List[Any] = model_class(lowercase_ )
model.to(lowercase_ )
model.eval()
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
lowercase_ : str = model(**self._prepare_for_class(lowercase_ , lowercase_ ) )
lowercase_ : Dict = outputs[0].cpu().numpy()
lowercase_ : Union[str, Any] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowercase_ )
lowercase_ : Optional[int] = model_class.from_pretrained(lowercase_ )
model.to(lowercase_ )
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
lowercase_ : Optional[int] = model(**self._prepare_for_class(lowercase_ , lowercase_ ) )
# Make sure we don't have nans
lowercase_ : Optional[int] = after_outputs[0].cpu().numpy()
lowercase_ : Any = 0
lowercase_ : Union[str, Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowercase_ , 1E-5 )
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def SCREAMING_SNAKE_CASE_ ( self : str ):
pass
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def SCREAMING_SNAKE_CASE_ ( self : str ):
pass
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
pass
@unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
pass
@slow
def SCREAMING_SNAKE_CASE_ ( self : int ):
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : Any = ViTMAEModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
def lowerCamelCase ( ) -> List[str]:
lowercase_ : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __magic_name__ ( unittest.TestCase):
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE_ ( self : int ):
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
lowercase_ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(lowercase_ )
lowercase_ : Dict = self.default_image_processor
lowercase_ : int = prepare_img()
lowercase_ : List[str] = image_processor(images=lowercase_ , return_tensors="""pt""" ).to(lowercase_ )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
lowercase_ : Union[str, Any] = ViTMAEConfig()
lowercase_ : List[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
lowercase_ : List[str] = np.random.uniform(size=(1, num_patches) )
# forward pass
with torch.no_grad():
lowercase_ : Union[str, Any] = model(**lowercase_ , noise=torch.from_numpy(lowercase_ ).to(device=lowercase_ ) )
# verify the logits
lowercase_ : int = torch.Size((1, 196, 768) )
self.assertEqual(outputs.logits.shape , lowercase_ )
lowercase_ : int = torch.tensor(
[[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowercase_ ) , atol=1E-4 ) )
| 21 | '''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
_lowercase : str = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase)
class __magic_name__ ( _UpperCAmelCase):
def __init__( self : str , *lowercase_ : Dict , **lowercase_ : List[Any] ):
super().__init__(*lowercase_ , **lowercase_ )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None ):
lowercase_ : Optional[Any] = {}
lowercase_ : Tuple = {}
if prompt is not None:
lowercase_ : Tuple = prompt
if generate_kwargs is not None:
lowercase_ : List[str] = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
lowercase_ : List[Any] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
lowercase_ : str = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : List[Any] , lowercase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ : Optional[int] ):
return super().__call__(lowercase_ , **lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[Any] , lowercase_ : Tuple=None ):
lowercase_ : List[Any] = load_image(lowercase_ )
if prompt is not None:
if not isinstance(lowercase_ , lowercase_ ):
raise ValueError(
f'''Received an invalid text input, got - {type(lowercase_ )} - but expected a single string. '''
"""Note also that one single text can be provided for conditional image to text generation.""" )
lowercase_ : List[Any] = self.model.config.model_type
if model_type == "git":
lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework )
lowercase_ : Union[str, Any] = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_ ).input_ids
lowercase_ : int = [self.tokenizer.cls_token_id] + input_ids
lowercase_ : List[Any] = torch.tensor(lowercase_ ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
lowercase_ : Union[str, Any] = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework )
lowercase_ : List[str] = self.tokenizer(lowercase_ , return_tensors=self.framework )
model_inputs.update(lowercase_ )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
lowercase_ : List[str] = self.image_processor(images=lowercase_ , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
lowercase_ : str = None
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Dict , lowercase_ : Optional[Any]=None ):
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , lowercase_ )
and all(x is None for x in model_inputs["""input_ids"""] )
):
lowercase_ : Any = None
if generate_kwargs is None:
lowercase_ : Optional[Any] = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
lowercase_ : Dict = model_inputs.pop(self.model.main_input_name )
lowercase_ : Any = self.model.generate(lowercase_ , **lowercase_ , **lowercase_ )
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[Any] ):
lowercase_ : List[str] = []
for output_ids in model_outputs:
lowercase_ : Union[str, Any] = {
"""generated_text""": self.tokenizer.decode(
lowercase_ , skip_special_tokens=lowercase_ , )
}
records.append(lowercase_ )
return records
| 21 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowercase : Optional[Any] = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Dict = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Any = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : str = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
_lowercase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21 | '''simple docstring'''
class __magic_name__ :
def __init__( self : int , lowercase_ : list ):
lowercase_ : Dict = set_counts
lowercase_ : List[Any] = max(lowercase_ )
lowercase_ : str = len(lowercase_ )
lowercase_ : str = [1] * num_sets
lowercase_ : Dict = list(range(lowercase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : int ):
lowercase_ : List[Any] = self.get_parent(lowercase_ )
lowercase_ : Union[str, Any] = self.get_parent(lowercase_ )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
lowercase_ : List[str] = 0
lowercase_ : Optional[int] = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
lowercase_ : int = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
lowercase_ : int = 0
lowercase_ : List[Any] = src_parent
lowercase_ : List[Any] = self.set_counts[src_parent]
lowercase_ : Tuple = max(self.max_set , lowercase_ )
return True
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : int ):
if self.parents[disj_set] == disj_set:
return disj_set
lowercase_ : int = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 21 | 1 |
'''simple docstring'''
def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> str:
if a < 0 or b < 0:
raise ValueError("""the value of both inputs must be positive""" )
lowercase_ : List[str] = str(bin(UpperCAmelCase__ ) )[2:] # remove the leading "0b"
lowercase_ : Union[str, Any] = str(bin(UpperCAmelCase__ ) )[2:]
lowercase_ : Tuple = max(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) )
return "0b" + "".join(
str(int("""1""" in (char_a, char_b) ) )
for char_a, char_b in zip(a_binary.zfill(UpperCAmelCase__ ) , b_binary.zfill(UpperCAmelCase__ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 | '''simple docstring'''
from io import BytesIO
from typing import List, Union
import requests
from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_decord_available():
import numpy as np
from decord import VideoReader
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
_lowercase : str = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase)
class __magic_name__ ( _UpperCAmelCase):
def __init__( self : str , *lowercase_ : int , **lowercase_ : Any ):
super().__init__(*lowercase_ , **lowercase_ )
requires_backends(self , """decord""" )
self.check_model_type(lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None ):
lowercase_ : Union[str, Any] = {}
if frame_sampling_rate is not None:
lowercase_ : Any = frame_sampling_rate
if num_frames is not None:
lowercase_ : Optional[Any] = num_frames
lowercase_ : Union[str, Any] = {}
if top_k is not None:
lowercase_ : Optional[Any] = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : str , lowercase_ : Union[str, List[str]] , **lowercase_ : str ):
return super().__call__(lowercase_ , **lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None , lowercase_ : Optional[int]=1 ):
if num_frames is None:
lowercase_ : List[Any] = self.model.config.num_frames
if video.startswith("""http://""" ) or video.startswith("""https://""" ):
lowercase_ : Union[str, Any] = BytesIO(requests.get(lowercase_ ).content )
lowercase_ : Optional[Any] = VideoReader(lowercase_ )
videoreader.seek(0 )
lowercase_ : Tuple = 0
lowercase_ : List[Any] = num_frames * frame_sampling_rate - 1
lowercase_ : Optional[int] = np.linspace(lowercase_ , lowercase_ , num=lowercase_ , dtype=np.intaa )
lowercase_ : Optional[int] = videoreader.get_batch(lowercase_ ).asnumpy()
lowercase_ : Union[str, Any] = list(lowercase_ )
lowercase_ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : str ):
lowercase_ : int = self.model(**lowercase_ )
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Dict=5 ):
if top_k > self.model.config.num_labels:
lowercase_ : List[Any] = self.model.config.num_labels
if self.framework == "pt":
lowercase_ : str = model_outputs.logits.softmax(-1 )[0]
lowercase_ , lowercase_ : Optional[Any] = probs.topk(lowercase_ )
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
lowercase_ : Union[str, Any] = scores.tolist()
lowercase_ : Tuple = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
| 21 | 1 |
'''simple docstring'''
import heapq
def lowerCamelCase ( UpperCAmelCase__ : dict ) -> set[int]:
lowercase_ : list[list] = []
# for each node and his adjacency list add them and the rank of the node to queue
# using heapq module the queue will be filled like a Priority Queue
# heapq works with a min priority queue, so I used -1*len(v) to build it
for key, value in graph.items():
# O(log(n))
heapq.heappush(UpperCAmelCase__ , [-1 * len(UpperCAmelCase__ ), (key, value)] )
# chosen_vertices = set of chosen vertices
lowercase_ : List[Any] = set()
# while queue isn't empty and there are still edges
# (queue[0][0] is the rank of the node with max rank)
while queue and queue[0][0] != 0:
# extract vertex with max rank from queue and add it to chosen_vertices
lowercase_ : Tuple = heapq.heappop(UpperCAmelCase__ )[1][0]
chosen_vertices.add(UpperCAmelCase__ )
# Remove all arcs adjacent to argmax
for elem in queue:
# if v haven't adjacent node, skip
if elem[0] == 0:
continue
# if argmax is reachable from elem
# remove argmax from elem's adjacent list and update his rank
if argmax in elem[1][1]:
lowercase_ : Union[str, Any] = elem[1][1].index(UpperCAmelCase__ )
del elem[1][1][index]
elem[0] += 1
# re-order the queue
heapq.heapify(UpperCAmelCase__ )
return chosen_vertices
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowercase : Optional[int] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
| 21 | '''simple docstring'''
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> List[str]:
if isinstance(UpperCAmelCase__ , collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class __magic_name__ :
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Any , lowercase_ : str ):
pass
def SCREAMING_SNAKE_CASE_ ( self : str ):
pass
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
pass
def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : np.ndarray , lowercase_ : float ):
lowercase_ : Optional[Any] = np.abs((a - b) ).max()
self.assertLessEqual(lowercase_ , lowercase_ , f'''Difference between torch and flax is {diff} (>= {tol}).''' )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple=None , **lowercase_ : Optional[int] ):
lowercase_ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ )
lowercase_ : Any = FlaxVisionTextDualEncoderModel(lowercase_ )
lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) )
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : List[Any]=None , **lowercase_ : Tuple ):
lowercase_ , lowercase_ : Any = self.get_vision_text_model(lowercase_ , lowercase_ )
lowercase_ : Optional[int] = {"""vision_model""": vision_model, """text_model""": text_model}
lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ )
lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=None , **lowercase_ : int ):
lowercase_ , lowercase_ : Union[str, Any] = self.get_vision_text_model(lowercase_ , lowercase_ )
lowercase_ : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model}
lowercase_ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ )
lowercase_ : Tuple = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ )
lowercase_ : Any = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowercase_ )
lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ )
lowercase_ : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ )
lowercase_ : Union[str, Any] = after_output[0]
lowercase_ : str = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowercase_ , 1E-3 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Dict=None , **lowercase_ : Optional[Any] ):
lowercase_ , lowercase_ : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ )
lowercase_ : Dict = {"""vision_model""": vision_model, """text_model""": text_model}
lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ )
lowercase_ : Optional[int] = model(
input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ )
lowercase_ : Tuple = output.vision_model_output.attentions
self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
lowercase_ : List[str] = to_atuple(vision_model.config.image_size )
lowercase_ : Optional[Any] = to_atuple(vision_model.config.patch_size )
lowercase_ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
lowercase_ : Optional[Any] = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
lowercase_ : Union[str, Any] = output.text_model_output.attentions
self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int ):
pt_model.to(lowercase_ )
pt_model.eval()
# prepare inputs
lowercase_ : int = inputs_dict
lowercase_ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
lowercase_ : str = pt_model(**lowercase_ ).to_tuple()
lowercase_ : Optional[Any] = fx_model(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowercase_ )
lowercase_ : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ , from_pt=lowercase_ )
lowercase_ : Dict = fx_model_loaded(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowercase_ )
lowercase_ : Union[str, Any] = VisionTextDualEncoderModel.from_pretrained(lowercase_ , from_flax=lowercase_ )
pt_model_loaded.to(lowercase_ )
pt_model_loaded.eval()
with torch.no_grad():
lowercase_ : List[Any] = pt_model_loaded(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(lowercase_ , pt_output_loaded.numpy() , 4E-2 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Union[str, Any] ):
lowercase_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ )
lowercase_ : List[Any] = VisionTextDualEncoderModel(lowercase_ )
lowercase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel(lowercase_ )
lowercase_ : Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ )
lowercase_ : Tuple = fx_state
self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[Any] ):
lowercase_ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ )
lowercase_ : int = VisionTextDualEncoderModel(lowercase_ )
lowercase_ : Dict = FlaxVisionTextDualEncoderModel(lowercase_ )
lowercase_ : Optional[Any] = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params )
self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ : Tuple = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : List[Any] = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : List[Any] = self.prepare_config_and_inputs()
self.check_save_load(**lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : Union[str, Any] = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**lowercase_ )
@is_pt_flax_cross_test
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Tuple = self.prepare_config_and_inputs()
lowercase_ : List[Any] = config_inputs_dict.pop("""vision_config""" )
lowercase_ : int = config_inputs_dict.pop("""text_config""" )
lowercase_ : Optional[int] = config_inputs_dict
self.check_equivalence_pt_to_flax(lowercase_ , lowercase_ , lowercase_ )
self.check_equivalence_flax_to_pt(lowercase_ , lowercase_ , lowercase_ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ , lowercase_ : str = self.get_pretrained_model_and_inputs()
lowercase_ : Dict = model_a(**lowercase_ )
lowercase_ : str = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(lowercase_ )
lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ )
lowercase_ : str = model_a(**lowercase_ )
lowercase_ : Union[str, Any] = after_outputs[0]
lowercase_ : Any = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowercase_ , 1E-5 )
@require_flax
class __magic_name__ ( _UpperCAmelCase, unittest.TestCase):
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
lowercase_ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
"""hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , )
lowercase_ : List[str] = 13
lowercase_ : Optional[Any] = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
lowercase_ : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
lowercase_ : str = random_attention_mask([batch_size, 4] )
lowercase_ : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Tuple ):
lowercase_ : Union[str, Any] = FlaxViTModel(lowercase_ )
lowercase_ : Dict = FlaxBertModel(lowercase_ )
return vision_model, text_model
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : Any = FlaxViTModelTester(self )
lowercase_ : Optional[Any] = FlaxBertModelTester(self )
lowercase_ : Dict = vit_model_tester.prepare_config_and_inputs()
lowercase_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs()
lowercase_ , lowercase_ : List[str] = vision_config_and_inputs
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class __magic_name__ ( _UpperCAmelCase, unittest.TestCase):
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
"""hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , )
lowercase_ : List[str] = 13
lowercase_ : Optional[Any] = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
lowercase_ : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
lowercase_ : Tuple = random_attention_mask([batch_size, 4] )
lowercase_ : Union[str, Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ):
lowercase_ : Tuple = FlaxCLIPVisionModel(lowercase_ )
lowercase_ : Any = FlaxBertModel(lowercase_ )
return vision_model, text_model
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : Union[str, Any] = FlaxCLIPVisionModelTester(self )
lowercase_ : Tuple = FlaxBertModelTester(self )
lowercase_ : Union[str, Any] = clip_model_tester.prepare_config_and_inputs()
lowercase_ : Any = bert_model_tester.prepare_config_and_inputs()
lowercase_ , lowercase_ : Optional[Any] = vision_config_and_inputs
lowercase_ , lowercase_ , lowercase_ , lowercase_ : str = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class __magic_name__ ( unittest.TestCase):
@slow
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 )
lowercase_ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" )
lowercase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
lowercase_ : Optional[int] = processor(
text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowercase_ , padding=lowercase_ , return_tensors="""np""" )
lowercase_ : List[str] = model(**lowercase_ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
lowercase_ : Optional[Any] = np.array([[1.2_28_47_27, 0.3_10_41_22]] )
self.assertTrue(np.allclose(outputs.logits_per_image , lowercase_ , atol=1E-3 ) )
| 21 | 1 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
def lowerCamelCase ( UpperCAmelCase__ : list ) -> int:
if not postfix_notation:
return 0
lowercase_ : Any = {"""+""", """-""", """*""", """/"""}
lowercase_ : list[Any] = []
for token in postfix_notation:
if token in operations:
lowercase_ , lowercase_ : Dict = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b )
elif token == "-":
stack.append(a - b )
elif token == "*":
stack.append(a * b )
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1 )
else:
stack.append(a // b )
else:
stack.append(int(UpperCAmelCase__ ) )
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 | '''simple docstring'''
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __magic_name__ ( unittest.TestCase):
def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int=7 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[Any]=18 , lowercase_ : List[Any]=30 , lowercase_ : int=400 , lowercase_ : Dict=True , lowercase_ : List[Any]=None , lowercase_ : Dict=True , ):
lowercase_ : Tuple = size if size is not None else {"""height""": 18, """width""": 18}
lowercase_ : List[str] = parent
lowercase_ : Any = batch_size
lowercase_ : Optional[Any] = num_channels
lowercase_ : Tuple = image_size
lowercase_ : Optional[Any] = min_resolution
lowercase_ : Dict = max_resolution
lowercase_ : Optional[int] = do_resize
lowercase_ : Optional[Any] = size
lowercase_ : Union[str, Any] = do_normalize
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04],
[-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __magic_name__ ( _UpperCAmelCase, unittest.TestCase):
UpperCamelCase__ = ImageGPTImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Optional[int] = ImageGPTImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : int = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase_ , """clusters""" ) )
self.assertTrue(hasattr(lowercase_ , """do_resize""" ) )
self.assertTrue(hasattr(lowercase_ , """size""" ) )
self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : int = self.image_processing_class(**self.image_processor_dict )
lowercase_ : Union[str, Any] = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : str = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase_ : Union[str, Any] = os.path.join(lowercase_ , """image_processor.json""" )
image_processor_first.to_json_file(lowercase_ )
lowercase_ : Optional[Any] = self.image_processing_class.from_json_file(lowercase_ ).to_dict()
lowercase_ : Any = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(lowercase_ )
lowercase_ : Any = self.image_processing_class.from_pretrained(lowercase_ ).to_dict()
lowercase_ : List[str] = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowercase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
pass
def lowerCamelCase ( ) -> Any:
lowercase_ : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
lowercase_ : Any = Image.open(dataset[4]["""file"""] )
lowercase_ : Dict = Image.open(dataset[5]["""file"""] )
lowercase_ : int = [imagea, imagea]
return images
@require_vision
@require_torch
class __magic_name__ ( unittest.TestCase):
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Optional[Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
lowercase_ : Optional[int] = prepare_images()
# test non-batched
lowercase_ : str = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1024) )
lowercase_ : Tuple = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase_ )
# test batched
lowercase_ : List[str] = image_processing(lowercase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1024) )
lowercase_ : Union[str, Any] = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase_ )
| 21 | 1 |
'''simple docstring'''
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def lowerCamelCase ( UpperCAmelCase__ : int ) -> int:
lowercase_ : Any = prime_factors(UpperCAmelCase__ )
if is_square_free(UpperCAmelCase__ ):
return -1 if len(UpperCAmelCase__ ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 | '''simple docstring'''
def lowerCamelCase ( ) -> Dict:
lowercase_ : Union[str, Any] = []
lowercase_ : Tuple = 1
while len(UpperCAmelCase__ ) < 1e6:
constant.append(str(UpperCAmelCase__ ) )
i += 1
lowercase_ : int = """""".join(UpperCAmelCase__ )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[999] )
* int(constant[9999] )
* int(constant[99999] )
* int(constant[999999] )
)
if __name__ == "__main__":
print(solution())
| 21 | 1 |
'''simple docstring'''
import os
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ..auto import AutoTokenizer
class __magic_name__ ( _UpperCAmelCase):
UpperCamelCase__ = ['''image_processor''', '''tokenizer''']
UpperCamelCase__ = '''BlipImageProcessor'''
UpperCamelCase__ = '''AutoTokenizer'''
def __init__( self : str , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] ):
super().__init__(lowercase_ , lowercase_ )
# add QFormer tokenizer
lowercase_ : Optional[int] = qformer_tokenizer
def __call__( self : List[Any] , lowercase_ : ImageInput = None , lowercase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase_ : bool = True , lowercase_ : Union[bool, str, PaddingStrategy] = False , lowercase_ : Union[bool, str, TruncationStrategy] = None , lowercase_ : Optional[int] = None , lowercase_ : int = 0 , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = True , lowercase_ : Optional[Union[str, TensorType]] = None , **lowercase_ : Dict , ):
if images is None and text is None:
raise ValueError("""You have to specify at least images or text.""" )
lowercase_ : List[str] = BatchFeature()
if text is not None:
lowercase_ : Optional[Any] = self.tokenizer(
text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , )
encoding.update(lowercase_ )
lowercase_ : Tuple = self.qformer_tokenizer(
text=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_token_type_ids=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , )
lowercase_ : List[Any] = qformer_text_encoding.pop("""input_ids""" )
lowercase_ : List[Any] = qformer_text_encoding.pop("""attention_mask""" )
if images is not None:
lowercase_ : str = self.image_processor(lowercase_ , return_tensors=lowercase_ )
encoding.update(lowercase_ )
return encoding
def SCREAMING_SNAKE_CASE_ ( self : List[str] , *lowercase_ : int , **lowercase_ : Any ):
return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , *lowercase_ : Optional[int] , **lowercase_ : Optional[Any] ):
return self.tokenizer.decode(*lowercase_ , **lowercase_ )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
lowercase_ : Tuple = self.tokenizer.model_input_names
lowercase_ : Optional[Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[str] , **lowercase_ : Optional[int] ):
if os.path.isfile(lowercase_ ):
raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(lowercase_ , exist_ok=lowercase_ )
lowercase_ : List[Any] = os.path.join(lowercase_ , """qformer_tokenizer""" )
self.qformer_tokenizer.save_pretrained(lowercase_ )
return super().save_pretrained(lowercase_ , **lowercase_ )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : int , lowercase_ : Any , **lowercase_ : str ):
lowercase_ : Tuple = AutoTokenizer.from_pretrained(lowercase_ , subfolder="""qformer_tokenizer""" )
lowercase_ : List[Any] = cls._get_arguments_from_pretrained(lowercase_ , **lowercase_ )
args.append(lowercase_ )
return cls(*lowercase_ )
| 21 | '''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
_lowercase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
class __magic_name__ ( _UpperCAmelCase):
def __init__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str ):
super().__init__()
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
@torch.no_grad()
def __call__( self : List[str] , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ):
if audio_length_in_s is None:
lowercase_ : List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate
lowercase_ : Dict = audio_length_in_s * self.unet.config.sample_rate
lowercase_ : Any = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to'''
f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' )
lowercase_ : List[Any] = int(lowercase_ )
if sample_size % down_scale_factor != 0:
lowercase_ : int = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled'''
f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising'''
""" process.""" )
lowercase_ : Any = int(lowercase_ )
lowercase_ : List[str] = next(iter(self.unet.parameters() ) ).dtype
lowercase_ : List[str] = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowercase_ : Any = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ )
# set step values
self.scheduler.set_timesteps(lowercase_ , device=audio.device )
lowercase_ : Optional[Any] = self.scheduler.timesteps.to(lowercase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
lowercase_ : Dict = self.unet(lowercase_ , lowercase_ ).sample
# 2. compute previous image: x_t -> t_t-1
lowercase_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample
lowercase_ : str = audio.clamp(-1 , 1 ).float().cpu().numpy()
lowercase_ : Union[str, Any] = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=lowercase_ )
| 21 | 1 |
'''simple docstring'''
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : Any = logging.get_logger(__name__)
_lowercase : Optional[int] = {
"facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json",
"facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json",
}
class __magic_name__ ( _UpperCAmelCase):
UpperCamelCase__ = '''encodec'''
def __init__( self : Optional[int] , lowercase_ : Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase_ : Tuple=24000 , lowercase_ : str=1 , lowercase_ : Optional[Any]=False , lowercase_ : Optional[int]=None , lowercase_ : Union[str, Any]=None , lowercase_ : str=128 , lowercase_ : Tuple=32 , lowercase_ : Dict=1 , lowercase_ : Optional[Any]=[8, 5, 4, 2] , lowercase_ : Optional[int]="weight_norm" , lowercase_ : Tuple=7 , lowercase_ : Union[str, Any]=7 , lowercase_ : Dict=3 , lowercase_ : Union[str, Any]=2 , lowercase_ : List[Any]=True , lowercase_ : List[Any]="reflect" , lowercase_ : str=2 , lowercase_ : Any=2 , lowercase_ : Tuple=1.0 , lowercase_ : Dict=1024 , lowercase_ : List[Any]=None , lowercase_ : Dict=True , **lowercase_ : str , ):
lowercase_ : Union[str, Any] = target_bandwidths
lowercase_ : Optional[int] = sampling_rate
lowercase_ : Union[str, Any] = audio_channels
lowercase_ : str = normalize
lowercase_ : Dict = chunk_length_s
lowercase_ : Optional[int] = overlap
lowercase_ : Any = hidden_size
lowercase_ : List[Any] = num_filters
lowercase_ : Tuple = num_residual_layers
lowercase_ : List[Any] = upsampling_ratios
lowercase_ : List[Any] = norm_type
lowercase_ : List[str] = kernel_size
lowercase_ : Tuple = last_kernel_size
lowercase_ : Optional[Any] = residual_kernel_size
lowercase_ : Any = dilation_growth_rate
lowercase_ : Optional[int] = use_causal_conv
lowercase_ : Optional[int] = pad_mode
lowercase_ : str = compress
lowercase_ : Any = num_lstm_layers
lowercase_ : List[str] = trim_right_ratio
lowercase_ : Optional[int] = codebook_size
lowercase_ : Optional[int] = codebook_dim if codebook_dim is not None else hidden_size
lowercase_ : List[Any] = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' )
super().__init__(**lowercase_ )
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
lowercase_ : Union[str, Any] = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 21 | '''simple docstring'''
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
_lowercase : Union[str, Any] = "src/transformers"
_lowercase : str = "docs/source/en"
_lowercase : Union[str, Any] = "."
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int:
with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowercase_ : Union[str, Any] = f.readlines()
# Find the start prompt.
lowercase_ : Optional[Any] = 0
while not lines[start_index].startswith(UpperCAmelCase__ ):
start_index += 1
start_index += 1
lowercase_ : int = start_index
while not lines[end_index].startswith(UpperCAmelCase__ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
_lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration"
# Regexes that match TF/Flax/PT model names.
_lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
_lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
_lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# This is to make sure the transformers module imported is the one in the repo.
_lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH)
def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any:
lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ )
return [m.group(0 ) for m in matches]
def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]:
lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ )
lowercase_ : List[str] = (width - text_length) // 2
lowercase_ : Dict = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def lowerCamelCase ( ) -> Any:
lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
lowercase_ : Any = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ )
# Let's lookup through all transformers object (once).
for attr_name in dir(UpperCAmelCase__ ):
lowercase_ : Union[str, Any] = None
if attr_name.endswith("""Tokenizer""" ):
lowercase_ : Optional[int] = slow_tokenizers
lowercase_ : Union[str, Any] = attr_name[:-9]
elif attr_name.endswith("""TokenizerFast""" ):
lowercase_ : Optional[Any] = fast_tokenizers
lowercase_ : Dict = attr_name[:-13]
elif _re_tf_models.match(UpperCAmelCase__ ) is not None:
lowercase_ : str = tf_models
lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0]
elif _re_flax_models.match(UpperCAmelCase__ ) is not None:
lowercase_ : List[str] = flax_models
lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0]
elif _re_pt_models.match(UpperCAmelCase__ ) is not None:
lowercase_ : Tuple = pt_models
lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0]
if lookup_dict is not None:
while len(UpperCAmelCase__ ) > 0:
if attr_name in model_name_to_prefix.values():
lowercase_ : int = True
break
# Try again after removing the last word in the name
lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] )
# Let's build that table!
lowercase_ : Dict = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""]
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns]
lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2
# Build the table per se
lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n"""
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n"
lowercase_ : int = {True: """✅""", False: """❌"""}
for name in model_names:
lowercase_ : str = model_name_to_prefix[name]
lowercase_ : Any = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n"
return table
def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str:
lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = _find_text_in_file(
filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , )
lowercase_ : Dict = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
"""The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" )
if __name__ == "__main__":
_lowercase : Any = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
_lowercase : Optional[Any] = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 21 | 1 |
'''simple docstring'''
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class __magic_name__ ( unittest.TestCase):
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : List[Any] ):
lowercase_ : int = 3
lowercase_ : Tuple = 250
lowercase_ : Union[str, Any] = ids_tensor((batch_size, length) , lowercase_ )
lowercase_ : str = torch.ones((batch_size, length) , device=lowercase_ , dtype=torch.float ) / length
return input_ids, scores
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
lowercase_ , lowercase_ : str = self._get_tensors(5 )
lowercase_ : int = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=10 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(lowercase_ , lowercase_ ) )
lowercase_ , lowercase_ : Any = self._get_tensors(9 )
self.assertFalse(criteria(lowercase_ , lowercase_ ) )
lowercase_ , lowercase_ : int = self._get_tensors(10 )
self.assertTrue(criteria(lowercase_ , lowercase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
lowercase_ : Any = MaxLengthCriteria(max_length=10 )
lowercase_ , lowercase_ : Tuple = self._get_tensors(5 )
self.assertFalse(criteria(lowercase_ , lowercase_ ) )
lowercase_ , lowercase_ : str = self._get_tensors(9 )
self.assertFalse(criteria(lowercase_ , lowercase_ ) )
lowercase_ , lowercase_ : Dict = self._get_tensors(10 )
self.assertTrue(criteria(lowercase_ , lowercase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : Tuple = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 )
lowercase_ , lowercase_ : str = self._get_tensors(5 )
self.assertFalse(criteria(lowercase_ , lowercase_ ) )
lowercase_ , lowercase_ : Dict = self._get_tensors(9 )
self.assertFalse(criteria(lowercase_ , lowercase_ ) )
lowercase_ , lowercase_ : Optional[int] = self._get_tensors(10 )
self.assertTrue(criteria(lowercase_ , lowercase_ ) )
lowercase_ : List[str] = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length , 10 )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ , lowercase_ : Tuple = self._get_tensors(5 )
lowercase_ : List[str] = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(lowercase_ , lowercase_ ) )
lowercase_ : str = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(lowercase_ , lowercase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 )
with self.assertWarns(lowercase_ ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 )
lowercase_ : Dict = validate_stopping_criteria(StoppingCriteriaList() , 11 )
self.assertEqual(len(lowercase_ ) , 1 )
| 21 | '''simple docstring'''
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class __magic_name__ ( ctypes.Structure):
# _fields is a specific attr expected by ctypes
UpperCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)]
def lowerCamelCase ( ) -> List[Any]:
if os.name == "nt":
lowercase_ : List[Any] = CursorInfo()
lowercase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
lowercase_ : List[str] = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
elif os.name == "posix":
sys.stdout.write("""\033[?25l""" )
sys.stdout.flush()
def lowerCamelCase ( ) -> str:
if os.name == "nt":
lowercase_ : int = CursorInfo()
lowercase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
lowercase_ : Optional[int] = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
elif os.name == "posix":
sys.stdout.write("""\033[?25h""" )
sys.stdout.flush()
@contextmanager
def lowerCamelCase ( ) -> Any:
try:
hide_cursor()
yield
finally:
show_cursor()
| 21 | 1 |
'''simple docstring'''
import os
import tempfile
import unittest
import uuid
from pathlib import Path
from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision
from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText
from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_soundfile_availble():
import soundfile as sf
if is_vision_available():
from PIL import Image
def lowerCamelCase ( UpperCAmelCase__ : Any="" ) -> str:
lowercase_ : Optional[int] = tempfile.mkdtemp()
return os.path.join(UpperCAmelCase__ , str(uuid.uuida() ) + suffix )
@require_soundfile
@require_torch
class __magic_name__ ( unittest.TestCase):
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
lowercase_ : Dict = torch.rand(12 , dtype=torch.floataa ) - 0.5
lowercase_ : Optional[Any] = AgentAudio(lowercase_ )
lowercase_ : List[Any] = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(lowercase_ , agent_type.to_raw() , atol=1E-4 ) )
del agent_type
# Ensure the path remains even after the object deletion
self.assertTrue(os.path.exists(lowercase_ ) )
# Ensure that the file contains the same value as the original tensor
lowercase_ , lowercase_ : Tuple = sf.read(lowercase_ )
self.assertTrue(torch.allclose(lowercase_ , torch.tensor(lowercase_ ) , atol=1E-4 ) )
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : Any = torch.rand(12 , dtype=torch.floataa ) - 0.5
lowercase_ : Dict = get_new_path(suffix=""".wav""" )
sf.write(lowercase_ , lowercase_ , 16000 )
lowercase_ : Optional[Any] = AgentAudio(lowercase_ )
self.assertTrue(torch.allclose(lowercase_ , agent_type.to_raw() , atol=1E-4 ) )
self.assertEqual(agent_type.to_string() , lowercase_ )
@require_vision
@require_torch
class __magic_name__ ( unittest.TestCase):
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : int = torch.randint(0 , 256 , (64, 64, 3) )
lowercase_ : int = AgentImage(lowercase_ )
lowercase_ : List[Any] = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(lowercase_ , agent_type._tensor , atol=1E-4 ) )
self.assertIsInstance(agent_type.to_raw() , Image.Image )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(lowercase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
lowercase_ : Dict = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png"""
lowercase_ : Optional[Any] = Image.open(lowercase_ )
lowercase_ : Union[str, Any] = AgentImage(lowercase_ )
self.assertTrue(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(lowercase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : Tuple = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png"""
lowercase_ : Dict = Image.open(lowercase_ )
lowercase_ : Dict = AgentImage(lowercase_ )
self.assertFalse(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(lowercase_ ) )
class __magic_name__ ( unittest.TestCase):
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : List[str] = """Hey!"""
lowercase_ : Any = AgentText(lowercase_ )
self.assertEqual(lowercase_ , agent_type.to_string() )
self.assertEqual(lowercase_ , agent_type.to_raw() )
self.assertEqual(lowercase_ , lowercase_ )
| 21 | '''simple docstring'''
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_torch_available():
import torch
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
_lowercase : int = logging.get_logger(__name__)
@dataclass
class __magic_name__ ( _UpperCAmelCase):
UpperCamelCase__ = [
'''no_inference''',
'''no_cuda''',
'''no_tpu''',
'''no_speed''',
'''no_memory''',
'''no_env_print''',
'''no_multi_process''',
]
def __init__( self : Optional[Any] , **lowercase_ : int ):
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
lowercase_ : Optional[int] = deprecated_arg[3:]
setattr(self , lowercase_ , not kwargs.pop(lowercase_ ) )
logger.warning(
f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or'''
f''' {positive_arg}={kwargs[positive_arg]}''' )
lowercase_ : Tuple = kwargs.pop("""torchscript""" , self.torchscript )
lowercase_ : List[Any] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics )
lowercase_ : List[Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level )
super().__init__(**lowercase_ )
UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Trace the models using torchscript'''})
UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''})
UpperCamelCase__ = field(
default='''O1''', metadata={
'''help''': (
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. '''
'''See details at https://nvidia.github.io/apex/amp.html'''
)
}, )
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
requires_backends(self , ["""torch"""] )
logger.info("""PyTorch: setting up devices""" )
if not self.cuda:
lowercase_ : Optional[Any] = torch.device("""cpu""" )
lowercase_ : Tuple = 0
elif is_torch_tpu_available():
lowercase_ : Optional[int] = xm.xla_device()
lowercase_ : str = 0
else:
lowercase_ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
lowercase_ : str = torch.cuda.device_count()
return device, n_gpu
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
return is_torch_tpu_available() and self.tpu
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
requires_backends(self , ["""torch"""] )
# TODO(PVP): currently only single GPU is supported
return torch.cuda.current_device()
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
requires_backends(self , ["""torch"""] )
return self._setup_devices[0]
@property
def SCREAMING_SNAKE_CASE_ ( self : int ):
requires_backends(self , ["""torch"""] )
return self._setup_devices[1]
@property
def SCREAMING_SNAKE_CASE_ ( self : int ):
return self.n_gpu > 0
| 21 | 1 |
'''simple docstring'''
import re
from filelock import FileLock
try:
import nltk
_lowercase : Any = True
except (ImportError, ModuleNotFoundError):
_lowercase : Union[str, Any] = False
if NLTK_AVAILABLE:
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
def lowerCamelCase ( UpperCAmelCase__ : str ) -> str:
re.sub("""<n>""" , """""" , UpperCAmelCase__ ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(UpperCAmelCase__ ) )
| 21 | '''simple docstring'''
from __future__ import annotations
from typing import Any
def lowerCamelCase ( UpperCAmelCase__ : list ) -> int:
if not postfix_notation:
return 0
lowercase_ : Any = {"""+""", """-""", """*""", """/"""}
lowercase_ : list[Any] = []
for token in postfix_notation:
if token in operations:
lowercase_ , lowercase_ : Dict = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b )
elif token == "-":
stack.append(a - b )
elif token == "*":
stack.append(a * b )
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1 )
else:
stack.append(a // b )
else:
stack.append(int(UpperCAmelCase__ ) )
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 | 1 |
'''simple docstring'''
from __future__ import annotations
import bisect
def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = -1 ) -> int:
if hi < 0:
lowercase_ : int = len(UpperCAmelCase__ )
while lo < hi:
lowercase_ : List[str] = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
lowercase_ : Optional[Any] = mid + 1
else:
lowercase_ : Dict = mid
return lo
def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = -1 ) -> int:
if hi < 0:
lowercase_ : Union[str, Any] = len(UpperCAmelCase__ )
while lo < hi:
lowercase_ : Dict = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
lowercase_ : List[Any] = mid + 1
else:
lowercase_ : Union[str, Any] = mid
return lo
def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = -1 ) -> None:
sorted_collection.insert(bisect_left(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : int = -1 ) -> None:
sorted_collection.insert(bisect_right(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int ) -> int | None:
lowercase_ : Optional[int] = 0
lowercase_ : Optional[Any] = len(UpperCAmelCase__ ) - 1
while left <= right:
lowercase_ : List[str] = left + (right - left) // 2
lowercase_ : Optional[int] = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
lowercase_ : Union[str, Any] = midpoint - 1
else:
lowercase_ : Optional[Any] = midpoint + 1
return None
def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int ) -> int | None:
lowercase_ : Optional[Any] = bisect.bisect_left(UpperCAmelCase__ , UpperCAmelCase__ )
if index != len(UpperCAmelCase__ ) and sorted_collection[index] == item:
return index
return None
def lowerCamelCase ( UpperCAmelCase__ : list[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> int | None:
if right < left:
return None
lowercase_ : Any = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , midpoint - 1 )
else:
return binary_search_by_recursion(UpperCAmelCase__ , UpperCAmelCase__ , midpoint + 1 , UpperCAmelCase__ )
if __name__ == "__main__":
_lowercase : List[Any] = input("Enter numbers separated by comma:\n").strip()
_lowercase : Optional[Any] = sorted(int(item) for item in user_input.split(","))
_lowercase : str = int(input("Enter a single number to be found in the list:\n"))
_lowercase : List[Any] = binary_search(collection, target)
if result is None:
print(f"""{target} was not found in {collection}.""")
else:
print(f"""{target} was found at position {result} in {collection}.""")
| 21 | '''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
_lowercase : List[Any] = logging.get_logger(__name__)
def lowerCamelCase ( UpperCAmelCase__ : Union[tf.Tensor, np.ndarray] ) -> List[int]:
if isinstance(UpperCAmelCase__ , np.ndarray ):
return list(tensor.shape )
lowercase_ : Tuple = tf.shape(UpperCAmelCase__ )
if tensor.shape == tf.TensorShape(UpperCAmelCase__ ):
return dynamic
lowercase_ : Dict = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase__ )]
def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[str] = None ) -> tf.Tensor:
return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCAmelCase__ , name=UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=1e-5 , UpperCAmelCase__ : List[str]=-1 ) -> List[str]:
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" )
# Get mean and variance on the axis to be normalized
lowercase_ , lowercase_ : List[str] = tf.nn.moments(UpperCAmelCase__ , axes=[axis] , keepdims=UpperCAmelCase__ )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
lowercase_ : List[Any] = [1] * inputs.shape.rank
lowercase_ : List[str] = shape_list(UpperCAmelCase__ )[axis]
lowercase_ : List[str] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ )
lowercase_ : List[Any] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ )
# Compute layer normalization using the batch_normalization
# function.
lowercase_ : str = tf.nn.batch_normalization(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , offset=UpperCAmelCase__ , scale=UpperCAmelCase__ , variance_epsilon=UpperCAmelCase__ , )
return outputs
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Any=-1 ) -> Dict:
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
lowercase_ : List[Any] = tf.shape(UpperCAmelCase__ )
lowercase_ : Union[str, Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
lowercase_ : Dict = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor ) -> tf.Tensor:
if not isinstance(UpperCAmelCase__ , tf.Tensor ):
lowercase_ : List[Any] = tf.convert_to_tensor(UpperCAmelCase__ ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
lowercase_ : Any = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
lowercase_ : List[Any] = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
lowercase_ : Optional[Any] = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : int , UpperCAmelCase__ : str = "input_ids" ) -> None:
tf.debugging.assert_less(
UpperCAmelCase__ , tf.cast(UpperCAmelCase__ , dtype=tensor.dtype ) , message=(
F'''The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase__ )}) must be smaller than the embedding '''
F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> Any:
lowercase_ : int = 64512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
lowercase_ : Optional[Any] = [x for x in data if len(UpperCAmelCase__ ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
"""The following attributes cannot be saved to HDF5 file because """
F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
F'''bytes: {bad_attributes}''' )
lowercase_ : Any = np.asarray(UpperCAmelCase__ )
lowercase_ : Union[str, Any] = 1
lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(UpperCAmelCase__ ):
lowercase_ : Union[str, Any] = chunk_data
else:
lowercase_ : Any = data
def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] ) -> str:
if name in group.attrs:
lowercase_ : Optional[Any] = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs[name]]
else:
lowercase_ : int = []
lowercase_ : Optional[int] = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] )
chunk_id += 1
return data
def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> Any:
def _expand_single_ad_tensor(UpperCAmelCase__ : Optional[Any] ):
if isinstance(UpperCAmelCase__ , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(UpperCAmelCase__ , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase__ )
| 21 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_albert import AlbertTokenizer
else:
_lowercase : List[str] = None
_lowercase : int = logging.get_logger(__name__)
_lowercase : List[str] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
_lowercase : Dict = {
"vocab_file": {
"albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model",
"albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model",
"albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model",
"albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model",
"albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model",
"albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model",
"albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model",
"albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model",
},
"tokenizer_file": {
"albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json",
"albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json",
"albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json",
"albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json",
"albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json",
"albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json",
"albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json",
"albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json",
},
}
_lowercase : Optional[Any] = {
"albert-base-v1": 512,
"albert-large-v1": 512,
"albert-xlarge-v1": 512,
"albert-xxlarge-v1": 512,
"albert-base-v2": 512,
"albert-large-v2": 512,
"albert-xlarge-v2": 512,
"albert-xxlarge-v2": 512,
}
_lowercase : Tuple = "▁"
class __magic_name__ ( _UpperCAmelCase):
UpperCamelCase__ = VOCAB_FILES_NAMES
UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase__ = AlbertTokenizer
def __init__( self : Any , lowercase_ : int=None , lowercase_ : str=None , lowercase_ : Optional[int]=True , lowercase_ : Dict=True , lowercase_ : Union[str, Any]=False , lowercase_ : Optional[Any]="[CLS]" , lowercase_ : Any="[SEP]" , lowercase_ : List[str]="<unk>" , lowercase_ : Dict="[SEP]" , lowercase_ : Union[str, Any]="<pad>" , lowercase_ : List[str]="[CLS]" , lowercase_ : str="[MASK]" , **lowercase_ : Optional[Any] , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
lowercase_ : Optional[int] = (
AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ , normalized=lowercase_ )
if isinstance(lowercase_ , lowercase_ )
else mask_token
)
super().__init__(
lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , )
lowercase_ : Union[str, Any] = do_lower_case
lowercase_ : List[str] = remove_space
lowercase_ : str = keep_accents
lowercase_ : str = vocab_file
lowercase_ : int = False if not self.vocab_file else True
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ):
lowercase_ : List[str] = [self.sep_token_id]
lowercase_ : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ):
lowercase_ : Tuple = [self.sep_token_id]
lowercase_ : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str , lowercase_ : Optional[str] = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(lowercase_ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase_ : Any = os.path.join(
lowercase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ):
copyfile(self.vocab_file , lowercase_ )
return (out_vocab_file,)
| 21 | '''simple docstring'''
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def lowerCamelCase ( UpperCAmelCase__ : int ) -> int:
lowercase_ : Any = prime_factors(UpperCAmelCase__ )
if is_square_free(UpperCAmelCase__ ):
return -1 if len(UpperCAmelCase__ ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 | 1 |
'''simple docstring'''
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
_lowercase : Union[str, Any] = "src/transformers"
_lowercase : str = "docs/source/en"
_lowercase : Union[str, Any] = "."
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int:
with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowercase_ : Union[str, Any] = f.readlines()
# Find the start prompt.
lowercase_ : Optional[Any] = 0
while not lines[start_index].startswith(UpperCAmelCase__ ):
start_index += 1
start_index += 1
lowercase_ : int = start_index
while not lines[end_index].startswith(UpperCAmelCase__ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
_lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration"
# Regexes that match TF/Flax/PT model names.
_lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
_lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
_lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# This is to make sure the transformers module imported is the one in the repo.
_lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH)
def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any:
lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ )
return [m.group(0 ) for m in matches]
def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]:
lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ )
lowercase_ : List[str] = (width - text_length) // 2
lowercase_ : Dict = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def lowerCamelCase ( ) -> Any:
lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
lowercase_ : Any = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ )
# Let's lookup through all transformers object (once).
for attr_name in dir(UpperCAmelCase__ ):
lowercase_ : Union[str, Any] = None
if attr_name.endswith("""Tokenizer""" ):
lowercase_ : Optional[int] = slow_tokenizers
lowercase_ : Union[str, Any] = attr_name[:-9]
elif attr_name.endswith("""TokenizerFast""" ):
lowercase_ : Optional[Any] = fast_tokenizers
lowercase_ : Dict = attr_name[:-13]
elif _re_tf_models.match(UpperCAmelCase__ ) is not None:
lowercase_ : str = tf_models
lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0]
elif _re_flax_models.match(UpperCAmelCase__ ) is not None:
lowercase_ : List[str] = flax_models
lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0]
elif _re_pt_models.match(UpperCAmelCase__ ) is not None:
lowercase_ : Tuple = pt_models
lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0]
if lookup_dict is not None:
while len(UpperCAmelCase__ ) > 0:
if attr_name in model_name_to_prefix.values():
lowercase_ : int = True
break
# Try again after removing the last word in the name
lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] )
# Let's build that table!
lowercase_ : Dict = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""]
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns]
lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2
# Build the table per se
lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n"""
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n"
lowercase_ : int = {True: """✅""", False: """❌"""}
for name in model_names:
lowercase_ : str = model_name_to_prefix[name]
lowercase_ : Any = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n"
return table
def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str:
lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = _find_text_in_file(
filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , )
lowercase_ : Dict = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
"""The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" )
if __name__ == "__main__":
_lowercase : Any = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
_lowercase : Optional[Any] = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 21 | '''simple docstring'''
def lowerCamelCase ( UpperCAmelCase__ : int = 1000000 ) -> int:
lowercase_ : List[Any] = limit + 1
lowercase_ : Optional[Any] = [0] * limit
for first_term in range(1 , UpperCAmelCase__ ):
for n in range(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ):
lowercase_ : List[Any] = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
lowercase_ : List[Any] = sum(1 for x in frequency[1:limit] if x == 10 )
return count
if __name__ == "__main__":
print(f"""{solution() = }""")
| 21 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class __magic_name__ ( _UpperCAmelCase):
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
lowercase_ : Any = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(lowercase_ , """width_multiplier""" ) )
class __magic_name__ :
def __init__( self : Optional[Any] , lowercase_ : Tuple , lowercase_ : List[str]=13 , lowercase_ : Optional[int]=64 , lowercase_ : int=2 , lowercase_ : Optional[int]=3 , lowercase_ : Dict="swish" , lowercase_ : Union[str, Any]=3 , lowercase_ : int=32 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.02 , lowercase_ : List[str]=True , lowercase_ : List[str]=True , lowercase_ : Optional[Any]=10 , lowercase_ : str=None , lowercase_ : Union[str, Any]=0.25 , lowercase_ : str=0.0 , lowercase_ : int=0.0 , ):
lowercase_ : Optional[int] = parent
lowercase_ : List[str] = batch_size
lowercase_ : str = image_size
lowercase_ : Dict = patch_size
lowercase_ : int = num_channels
lowercase_ : str = make_divisible(512 * width_multiplier , divisor=8 )
lowercase_ : Tuple = hidden_act
lowercase_ : Union[str, Any] = conv_kernel_size
lowercase_ : Optional[int] = output_stride
lowercase_ : List[str] = classifier_dropout_prob
lowercase_ : Optional[Any] = use_labels
lowercase_ : List[Any] = is_training
lowercase_ : List[Any] = num_labels
lowercase_ : int = initializer_range
lowercase_ : List[Any] = scope
lowercase_ : List[str] = width_multiplier
lowercase_ : Dict = ffn_dropout
lowercase_ : Any = attn_dropout
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
lowercase_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase_ : List[str] = None
lowercase_ : int = None
if self.use_labels:
lowercase_ : Any = ids_tensor([self.batch_size] , self.num_labels )
lowercase_ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
lowercase_ : Any = self.get_config()
return config, pixel_values, labels, pixel_labels
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Optional[int] ):
lowercase_ : Optional[int] = MobileViTVaModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase_ : Any = model(lowercase_ )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : int , lowercase_ : Optional[Any] ):
lowercase_ : Dict = self.num_labels
lowercase_ : Dict = MobileViTVaForImageClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase_ : Any = model(lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : str , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Any ):
lowercase_ : Any = self.num_labels
lowercase_ : Dict = MobileViTVaForSemanticSegmentation(lowercase_ )
model.to(lowercase_ )
model.eval()
lowercase_ : Optional[int] = model(lowercase_ )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
lowercase_ : Optional[Any] = model(lowercase_ , labels=lowercase_ )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : Optional[Any] = self.prepare_config_and_inputs()
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[int] = config_and_inputs
lowercase_ : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase):
UpperCamelCase__ = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
UpperCamelCase__ = (
{
'''feature-extraction''': MobileViTVaModel,
'''image-classification''': MobileViTVaForImageClassification,
'''image-segmentation''': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
lowercase_ : Optional[int] = MobileViTVaModelTester(self )
lowercase_ : List[str] = MobileViTVaConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" )
def SCREAMING_SNAKE_CASE_ ( self : int ):
pass
@unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
pass
@unittest.skip(reason="""MobileViTV2 does not output attentions""" )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
pass
@require_torch_multi_gpu
@unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def SCREAMING_SNAKE_CASE_ ( self : str ):
pass
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ , lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ : Tuple = model_class(lowercase_ )
lowercase_ : Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase_ : Union[str, Any] = [*signature.parameters.keys()]
lowercase_ : Optional[int] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : str ):
def check_hidden_states_output(lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Any ):
lowercase_ : int = model_class(lowercase_ )
model.to(lowercase_ )
model.eval()
with torch.no_grad():
lowercase_ : Tuple = model(**self._prepare_for_class(lowercase_ , lowercase_ ) )
lowercase_ : List[str] = outputs.hidden_states
lowercase_ : List[Any] = 5
self.assertEqual(len(lowercase_ ) , lowercase_ )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
lowercase_ : Optional[int] = 2
for i in range(len(lowercase_ ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
lowercase_ , lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ : Dict = True
check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowercase_ : int = True
check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*lowercase_ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ):
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : Tuple = MobileViTVaModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
def lowerCamelCase ( ) -> Union[str, Any]:
lowercase_ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __magic_name__ ( unittest.TestCase):
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
return (
MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" )
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : Dict = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to(
lowercase_ )
lowercase_ : List[Any] = self.default_image_processor
lowercase_ : Any = prepare_img()
lowercase_ : Tuple = image_processor(images=lowercase_ , return_tensors="""pt""" ).to(lowercase_ )
# forward pass
with torch.no_grad():
lowercase_ : Optional[Any] = model(**lowercase_ )
# verify the logits
lowercase_ : int = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , lowercase_ )
lowercase_ : int = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(lowercase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ : Dict = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
lowercase_ : Dict = model.to(lowercase_ )
lowercase_ : Optional[Any] = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
lowercase_ : Dict = prepare_img()
lowercase_ : Union[str, Any] = image_processor(images=lowercase_ , return_tensors="""pt""" ).to(lowercase_ )
# forward pass
with torch.no_grad():
lowercase_ : List[Any] = model(**lowercase_ )
lowercase_ : Optional[int] = outputs.logits
# verify the logits
lowercase_ : List[str] = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , lowercase_ )
lowercase_ : Any = torch.tensor(
[
[[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]],
[[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]],
[[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]],
] , device=lowercase_ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
lowercase_ : Optional[Any] = model.to(lowercase_ )
lowercase_ : Optional[Any] = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" )
lowercase_ : str = prepare_img()
lowercase_ : str = image_processor(images=lowercase_ , return_tensors="""pt""" ).to(lowercase_ )
# forward pass
with torch.no_grad():
lowercase_ : Any = model(**lowercase_ )
lowercase_ : str = outputs.logits.detach().cpu()
lowercase_ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=lowercase_ , target_sizes=[(50, 60)] )
lowercase_ : Union[str, Any] = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , lowercase_ )
lowercase_ : str = image_processor.post_process_semantic_segmentation(outputs=lowercase_ )
lowercase_ : Tuple = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , lowercase_ )
| 21 | '''simple docstring'''
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __magic_name__ ( unittest.TestCase):
@parameterized.expand([(None,), ("""foo.json""",)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str ):
lowercase_ : Union[str, Any] = GenerationConfig(
do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowercase_ , config_name=lowercase_ )
lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_ )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , lowercase_ )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 50 )
self.assertEqual(loaded_config.max_length , 20 )
self.assertEqual(loaded_config.max_time , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : int = AutoConfig.from_pretrained("""gpt2""" )
lowercase_ : List[Any] = GenerationConfig.from_model_config(lowercase_ )
lowercase_ : Optional[int] = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(lowercase_ , lowercase_ )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Optional[int] = GenerationConfig()
lowercase_ : int = {
"""max_new_tokens""": 1024,
"""foo""": """bar""",
}
lowercase_ : List[str] = copy.deepcopy(lowercase_ )
lowercase_ : Tuple = generation_config.update(**lowercase_ )
# update_kwargs was not modified (no side effects)
self.assertEqual(lowercase_ , lowercase_ )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1024 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(lowercase_ , {"""foo""": """bar"""} )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
lowercase_ : Dict = GenerationConfig()
lowercase_ : int = """bar"""
with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir:
generation_config.save_pretrained(lowercase_ )
lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , """bar""" )
lowercase_ : List[str] = GenerationConfig.from_model_config(lowercase_ )
assert not hasattr(lowercase_ , """foo""" ) # no new kwargs should be initialized if from config
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
lowercase_ : Optional[int] = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , lowercase_ )
self.assertEqual(default_config.num_beams , 1 )
lowercase_ : Dict = GenerationConfig(
do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , lowercase_ )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowercase_ )
lowercase_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , lowercase_ )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class __magic_name__ ( unittest.TestCase):
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Any ):
lowercase_ : int = TOKEN
HfFolder.save_token(lowercase_ )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[Any] ):
try:
delete_repo(token=cls._token , repo_id="""test-generation-config""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" )
except HTTPError:
pass
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Tuple = GenerationConfig(
do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("""test-generation-config""" , use_auth_token=self._token )
lowercase_ : List[Any] = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
# Reset repo
delete_repo(token=self._token , repo_id="""test-generation-config""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
lowercase_ , repo_id="""test-generation-config""" , push_to_hub=lowercase_ , use_auth_token=self._token )
lowercase_ : int = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : List[Any] = GenerationConfig(
do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token )
lowercase_ : Optional[Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
lowercase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowercase_ , use_auth_token=self._token )
lowercase_ : int = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
| 21 | 1 |
'''simple docstring'''
import numpy as np
def lowerCamelCase ( UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : float = 1e-12 , UpperCAmelCase__ : int = 100 , ) -> tuple[float, np.ndarray]:
assert np.shape(_UpperCAmelCase )[0] == np.shape(_UpperCAmelCase )[1]
# Ensure proper dimensionality.
assert np.shape(_UpperCAmelCase )[0] == np.shape(_UpperCAmelCase )[0]
# Ensure inputs are either both complex or both real
assert np.iscomplexobj(_UpperCAmelCase ) == np.iscomplexobj(_UpperCAmelCase )
lowercase_ : Dict = np.iscomplexobj(_UpperCAmelCase )
if is_complex:
# Ensure complex input_matrix is Hermitian
assert np.array_equal(_UpperCAmelCase , input_matrix.conj().T )
# Set convergence to False. Will define convergence when we exceed max_iterations
# or when we have small changes from one iteration to next.
lowercase_ : Union[str, Any] = False
lowercase_ : Dict = 0
lowercase_ : Any = 0
lowercase_ : List[str] = 1e12
while not convergence:
# Multiple matrix by the vector.
lowercase_ : Union[str, Any] = np.dot(_UpperCAmelCase , _UpperCAmelCase )
# Normalize the resulting output vector.
lowercase_ : int = w / np.linalg.norm(_UpperCAmelCase )
# Find rayleigh quotient
# (faster than usual b/c we know vector is normalized already)
lowercase_ : Dict = vector.conj().T if is_complex else vector.T
lowercase_ : Optional[Any] = np.dot(_UpperCAmelCase , np.dot(_UpperCAmelCase , _UpperCAmelCase ) )
# Check convergence.
lowercase_ : Any = np.abs(lambda_ - lambda_previous ) / lambda_
iterations += 1
if error <= error_tol or iterations >= max_iterations:
lowercase_ : str = True
lowercase_ : List[Any] = lambda_
if is_complex:
lowercase_ : List[Any] = np.real(lambda_ )
return lambda_, vector
def lowerCamelCase ( ) -> None:
lowercase_ : Optional[int] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] )
lowercase_ : List[Any] = np.array([41, 4, 20] )
lowercase_ : str = real_input_matrix.astype(np.complexaaa )
lowercase_ : Optional[int] = np.triu(1J * complex_input_matrix , 1 )
complex_input_matrix += imag_matrix
complex_input_matrix += -1 * imag_matrix.T
lowercase_ : int = np.array([41, 4, 20] ).astype(np.complexaaa )
for problem_type in ["real", "complex"]:
if problem_type == "real":
lowercase_ : List[Any] = real_input_matrix
lowercase_ : Optional[int] = real_vector
elif problem_type == "complex":
lowercase_ : Dict = complex_input_matrix
lowercase_ : Dict = complex_vector
# Our implementation.
lowercase_ : Any = power_iteration(_UpperCAmelCase , _UpperCAmelCase )
# Numpy implementation.
# Get eigenvalues and eigenvectors using built-in numpy
# eigh (eigh used for symmetric or hermetian matrices).
lowercase_ : List[Any] = np.linalg.eigh(_UpperCAmelCase )
# Last eigenvalue is the maximum one.
lowercase_ : str = eigen_values[-1]
# Last column in this matrix is eigenvector corresponding to largest eigenvalue.
lowercase_ : str = eigen_vectors[:, -1]
# Check our implementation and numpy gives close answers.
assert np.abs(eigen_value - eigen_value_max ) <= 1e-6
# Take absolute values element wise of each eigenvector.
# as they are only unique to a minus sign.
assert np.linalg.norm(np.abs(_UpperCAmelCase ) - np.abs(_UpperCAmelCase ) ) <= 1e-6
if __name__ == "__main__":
import doctest
doctest.testmod()
test_power_iteration()
| 350 | '''simple docstring'''
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] ) -> List[Any]:
# Initialise PyTorch model
lowercase_ : List[str] = FunnelConfig.from_json_file(UpperCAmelCase__ )
print(F'''Building PyTorch model from configuration: {config}''' )
lowercase_ : Dict = FunnelBaseModel(UpperCAmelCase__ ) if base_model else FunnelModel(UpperCAmelCase__ )
# Load weights from tf checkpoint
load_tf_weights_in_funnel(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , UpperCAmelCase__ )
if __name__ == "__main__":
_lowercase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not."
)
_lowercase : Union[str, Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
)
| 21 | 0 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast
from transformers.testing_utils import require_sentencepiece, require_torchaudio
from .test_feature_extraction_clap import floats_list
@require_torchaudio
@require_sentencepiece
class __magic_name__ ( unittest.TestCase):
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
lowercase_ : Any = """laion/clap-htsat-unfused"""
lowercase_ : Optional[Any] = tempfile.mkdtemp()
def SCREAMING_SNAKE_CASE_ ( self : Tuple , **lowercase_ : int ):
return RobertaTokenizer.from_pretrained(self.checkpoint , **__A )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , **lowercase_ : List[Any] ):
return ClapFeatureExtractor.from_pretrained(self.checkpoint , **__A )
def SCREAMING_SNAKE_CASE_ ( self : str ):
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : Optional[Any] = self.get_tokenizer()
lowercase_ : Optional[Any] = self.get_feature_extractor()
lowercase_ : Optional[int] = ClapProcessor(tokenizer=__A , feature_extractor=__A )
processor.save_pretrained(self.tmpdirname )
lowercase_ : Optional[Any] = ClapProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , __A )
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , __A )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
lowercase_ : Dict = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() )
processor.save_pretrained(self.tmpdirname )
lowercase_ : str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
lowercase_ : Dict = self.get_feature_extractor(do_normalize=__A , padding_value=1.0 )
lowercase_ : Union[str, Any] = ClapProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__A , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __A )
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.feature_extractor , __A )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : Dict = self.get_feature_extractor()
lowercase_ : str = self.get_tokenizer()
lowercase_ : List[Any] = ClapProcessor(tokenizer=__A , feature_extractor=__A )
lowercase_ : Optional[Any] = floats_list((3, 1000) )
lowercase_ : Optional[Any] = feature_extractor(__A , return_tensors="""np""" )
lowercase_ : str = processor(audios=__A , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : List[Any] = self.get_feature_extractor()
lowercase_ : Any = self.get_tokenizer()
lowercase_ : Optional[int] = ClapProcessor(tokenizer=__A , feature_extractor=__A )
lowercase_ : List[Any] = """This is a test string"""
lowercase_ : Dict = processor(text=__A )
lowercase_ : List[str] = tokenizer(__A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : int = self.get_feature_extractor()
lowercase_ : Tuple = self.get_tokenizer()
lowercase_ : Optional[Any] = ClapProcessor(tokenizer=__A , feature_extractor=__A )
lowercase_ : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowercase_ : Tuple = processor.batch_decode(__A )
lowercase_ : Optional[Any] = tokenizer.batch_decode(__A )
self.assertListEqual(__A , __A )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Optional[Any] = self.get_feature_extractor()
lowercase_ : Any = self.get_tokenizer()
lowercase_ : Optional[int] = ClapProcessor(tokenizer=__A , feature_extractor=__A )
self.assertListEqual(
processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
| 351 | '''simple docstring'''
import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
_lowercase : Optional[List[str]] = None
_lowercase : str = "<" if sys.byteorder == "little" else ">"
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
_lowercase : Optional[int] = [
np.dtype("|b1"),
np.dtype("|u1"),
np.dtype("<u2"),
np.dtype(">u2"),
np.dtype("<i2"),
np.dtype(">i2"),
np.dtype("<u4"),
np.dtype(">u4"),
np.dtype("<i4"),
np.dtype(">i4"),
np.dtype("<f4"),
np.dtype(">f4"),
np.dtype("<f8"),
np.dtype(">f8"),
]
@dataclass
class __magic_name__ :
UpperCamelCase__ = True
UpperCamelCase__ = None
# Automatically constructed
UpperCamelCase__ = "PIL.Image.Image"
UpperCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()})
UpperCamelCase__ = field(default='''Image''', init=_UpperCAmelCase, repr=_UpperCAmelCase)
def __call__( self : Tuple ):
return self.pa_type
def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if isinstance(lowercase_ , lowercase_ ):
lowercase_ : int = np.array(lowercase_ )
if isinstance(lowercase_ , lowercase_ ):
return {"path": value, "bytes": None}
elif isinstance(lowercase_ , lowercase_ ):
return {"path": None, "bytes": value}
elif isinstance(lowercase_ , np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(lowercase_ )
elif isinstance(lowercase_ , PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(lowercase_ )
elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get("""path""" )}
elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )}
else:
raise ValueError(
f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : dict , lowercase_ : List[str]=None ):
if not self.decode:
raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support decoding images, please install 'Pillow'.""" )
if token_per_repo_id is None:
lowercase_ : Union[str, Any] = {}
lowercase_ , lowercase_ : List[Any] = value["""path"""], value["""bytes"""]
if bytes_ is None:
if path is None:
raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
else:
if is_local_path(lowercase_ ):
lowercase_ : int = PIL.Image.open(lowercase_ )
else:
lowercase_ : str = path.split("""::""" )[-1]
try:
lowercase_ : Any = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""]
lowercase_ : Optional[Any] = token_per_repo_id.get(lowercase_ )
except ValueError:
lowercase_ : str = None
with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f:
lowercase_ : Dict = BytesIO(f.read() )
lowercase_ : Optional[Any] = PIL.Image.open(bytes_ )
else:
lowercase_ : Any = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def SCREAMING_SNAKE_CASE_ ( self : int ):
from .features import Value
return (
self
if self.decode
else {
"bytes": Value("""binary""" ),
"path": Value("""string""" ),
}
)
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ):
if pa.types.is_string(storage.type ):
lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.binary() )
lowercase_ : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.string() )
lowercase_ : Any = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("""bytes""" ) >= 0:
lowercase_ : Optional[int] = storage.field("""bytes""" )
else:
lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() )
if storage.type.get_field_index("""path""" ) >= 0:
lowercase_ : Dict = storage.field("""path""" )
else:
lowercase_ : int = pa.array([None] * len(lowercase_ ) , type=pa.string() )
lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
lowercase_ : Optional[int] = pa.array(
[encode_np_array(np.array(lowercase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
lowercase_ : Tuple = pa.array([None] * len(lowercase_ ) , type=pa.string() )
lowercase_ : Tuple = pa.StructArray.from_arrays(
[bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(lowercase_ , self.pa_type )
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : pa.StructArray ):
@no_op_if_value_is_null
def path_to_bytes(lowercase_ : Optional[Any] ):
with xopen(lowercase_ , """rb""" ) as f:
lowercase_ : int = f.read()
return bytes_
lowercase_ : Optional[Any] = pa.array(
[
(path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
lowercase_ : Any = pa.array(
[os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , )
lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(lowercase_ , self.pa_type )
def lowerCamelCase ( ) -> List[str]:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
lowercase_ : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> bytes:
lowercase_ : Tuple = BytesIO()
if image.format in list_image_compression_formats():
lowercase_ : int = image.format
else:
lowercase_ : int = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF"""
image.save(UpperCAmelCase__ , format=UpperCAmelCase__ )
return buffer.getvalue()
def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> dict:
if hasattr(UpperCAmelCase__ , """filename""" ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )}
def lowerCamelCase ( UpperCAmelCase__ : np.ndarray ) -> dict:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
lowercase_ : List[Any] = array.dtype
lowercase_ : int = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER
lowercase_ : Dict = dtype.kind
lowercase_ : List[Any] = dtype.itemsize
lowercase_ : Any = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
lowercase_ : int = np.dtype("""|u1""" )
if dtype_kind not in ["u", "i"]:
raise TypeError(
F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' )
if dtype is not dest_dtype:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
lowercase_ : str = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
lowercase_ : str = dtype_byteorder + dtype_kind + str(UpperCAmelCase__ )
lowercase_ : Optional[Any] = np.dtype(UpperCAmelCase__ )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' )
lowercase_ : Optional[int] = PIL.Image.fromarray(array.astype(UpperCAmelCase__ ) )
return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )}
def lowerCamelCase ( UpperCAmelCase__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if objs:
lowercase_ , lowercase_ : Dict = first_non_null_value(UpperCAmelCase__ )
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(UpperCAmelCase__ , np.ndarray ):
lowercase_ : Union[str, Any] = no_op_if_value_is_null(UpperCAmelCase__ )
return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs]
elif isinstance(UpperCAmelCase__ , PIL.Image.Image ):
lowercase_ : int = no_op_if_value_is_null(UpperCAmelCase__ )
return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs]
else:
return objs
else:
return objs
| 21 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_lowercase : Union[str, Any] = {
"configuration_rag": ["RagConfig"],
"retrieval_rag": ["RagRetriever"],
"tokenization_rag": ["RagTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : int = [
"RagModel",
"RagPreTrainedModel",
"RagSequenceForGeneration",
"RagTokenForGeneration",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : List[Any] = [
"TFRagModel",
"TFRagPreTrainedModel",
"TFRagSequenceForGeneration",
"TFRagTokenForGeneration",
]
if TYPE_CHECKING:
from .configuration_rag import RagConfig
from .retrieval_rag import RagRetriever
from .tokenization_rag import RagTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rag import (
TFRagModel,
TFRagPreTrainedModel,
TFRagSequenceForGeneration,
TFRagTokenForGeneration,
)
else:
import sys
_lowercase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 352 | '''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : float , UpperCAmelCase__ : int ) -> float:
lowercase_ : List[Any] = x
lowercase_ : Any = y
for step in range(UpperCAmelCase__ ): # noqa: B007
lowercase_ : Dict = a * a - b * b + x
lowercase_ : str = 2 * a * b + y
lowercase_ : Optional[Any] = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple:
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple:
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCAmelCase__ , 1 , 1 ) )
def lowerCamelCase ( UpperCAmelCase__ : int = 800 , UpperCAmelCase__ : int = 600 , UpperCAmelCase__ : float = -0.6 , UpperCAmelCase__ : float = 0 , UpperCAmelCase__ : float = 3.2 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : bool = True , ) -> Image.Image:
lowercase_ : Union[str, Any] = Image.new("""RGB""" , (image_width, image_height) )
lowercase_ : Tuple = img.load()
# loop through the image-coordinates
for image_x in range(UpperCAmelCase__ ):
for image_y in range(UpperCAmelCase__ ):
# determine the figure-coordinates based on the image-coordinates
lowercase_ : Any = figure_width / image_width * image_height
lowercase_ : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width
lowercase_ : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height
lowercase_ : str = get_distance(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
lowercase_ : List[Any] = get_color_coded_rgb(UpperCAmelCase__ )
else:
lowercase_ : Dict = get_black_and_white_rgb(UpperCAmelCase__ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
_lowercase : List[str] = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 21 | 0 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel
from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __magic_name__ ( unittest.TestCase):
@property
def SCREAMING_SNAKE_CASE_ ( self : Any ):
torch.manual_seed(0 )
lowercase_ : Dict = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , )
return model
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
torch.manual_seed(0 )
lowercase_ : int = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , )
return model
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
torch.manual_seed(0 )
lowercase_ : Union[str, Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModel(__snake_case )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
lowercase_ : Tuple = self.dummy_uncond_unet
lowercase_ : str = DDIMScheduler()
lowercase_ : Optional[Any] = self.dummy_vq_model
lowercase_ : Tuple = LDMPipeline(unet=__snake_case , vqvae=__snake_case , scheduler=__snake_case )
ldm.to(__snake_case )
ldm.set_progress_bar_config(disable=__snake_case )
lowercase_ : List[Any] = torch.manual_seed(0 )
lowercase_ : List[str] = ldm(generator=__snake_case , num_inference_steps=2 , output_type="""numpy""" ).images
lowercase_ : Tuple = torch.manual_seed(0 )
lowercase_ : Any = ldm(generator=__snake_case , num_inference_steps=2 , output_type="""numpy""" , return_dict=__snake_case )[0]
lowercase_ : int = image[0, -3:, -3:, -1]
lowercase_ : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowercase_ : Optional[int] = np.array([0.85_12, 0.8_18, 0.64_11, 0.68_08, 0.44_65, 0.56_18, 0.46, 0.62_31, 0.51_72] )
lowercase_ : Optional[Any] = 1E-2 if torch_device != """mps""" else 3E-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance
@slow
@require_torch
class __magic_name__ ( unittest.TestCase):
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : Optional[Any] = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" )
ldm.to(__snake_case )
ldm.set_progress_bar_config(disable=__snake_case )
lowercase_ : Union[str, Any] = torch.manual_seed(0 )
lowercase_ : Tuple = ldm(generator=__snake_case , num_inference_steps=5 , output_type="""numpy""" ).images
lowercase_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
lowercase_ : List[str] = np.array([0.43_99, 0.4_49_75, 0.4_68_25, 0.4_74, 0.43_59, 0.45_81, 0.4_50_95, 0.43_41, 0.44_47] )
lowercase_ : int = 1E-2 if torch_device != """mps""" else 3E-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
| 353 | '''simple docstring'''
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class __magic_name__ ( _UpperCAmelCase):
UpperCamelCase__ = DistilBertTokenizer
UpperCamelCase__ = DistilBertTokenizerFast
UpperCamelCase__ = True
@slow
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : int = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" )
lowercase_ : str = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ )
lowercase_ : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ )
lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowercase_ )
lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 21 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : Dict = logging.get_logger(__name__)
_lowercase : Optional[int] = {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json"
),
}
class __magic_name__ ( a__):
UpperCamelCase__ = '''dpr'''
def __init__( self : int , lowercase_ : int=30522 , lowercase_ : Optional[int]=768 , lowercase_ : List[str]=12 , lowercase_ : List[Any]=12 , lowercase_ : Union[str, Any]=3072 , lowercase_ : int="gelu" , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Dict=512 , lowercase_ : int=2 , lowercase_ : Tuple=0.02 , lowercase_ : Tuple=1E-12 , lowercase_ : Dict=0 , lowercase_ : List[str]="absolute" , lowercase_ : int = 0 , **lowercase_ : int , ):
super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase )
lowercase_ : Union[str, Any] = vocab_size
lowercase_ : Tuple = hidden_size
lowercase_ : Tuple = num_hidden_layers
lowercase_ : Union[str, Any] = num_attention_heads
lowercase_ : List[Any] = hidden_act
lowercase_ : Union[str, Any] = intermediate_size
lowercase_ : Optional[Any] = hidden_dropout_prob
lowercase_ : Any = attention_probs_dropout_prob
lowercase_ : Dict = max_position_embeddings
lowercase_ : int = type_vocab_size
lowercase_ : Optional[Any] = initializer_range
lowercase_ : Union[str, Any] = layer_norm_eps
lowercase_ : Dict = projection_dim
lowercase_ : Any = position_embedding_type
| 354 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
_lowercase : Union[str, Any] = {"tokenization_herbert": ["HerbertTokenizer"]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : str = ["HerbertTokenizerFast"]
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
_lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21 | 0 |
'''simple docstring'''
def lowerCamelCase ( UpperCAmelCase__ : str ) -> Optional[Any]:
lowercase_ : List[Any] = 0
# if input_string is "aba" than new_input_string become "a|b|a"
lowercase_ : Optional[int] = ''
lowercase_ : List[str] = ''
# append each character + "|" in new_string for range(0, length-1)
for i in input_string[: len(__a ) - 1]:
new_input_string += i + "|"
# append last character
new_input_string += input_string[-1]
# we will store the starting and ending of previous furthest ending palindromic
# substring
lowercase_ : Optional[int] = 0, 0
# length[i] shows the length of palindromic substring with center i
lowercase_ : Optional[Any] = [1 for i in range(len(__a ) )]
# for each character in new_string find corresponding palindromic string
lowercase_ : Dict = 0
for j in range(len(__a ) ):
lowercase_ : Dict = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 )
while (
j - k >= 0
and j + k < len(__a )
and new_input_string[k + j] == new_input_string[j - k]
):
k += 1
lowercase_ : Optional[int] = 2 * k - 1
# does this string is ending after the previously explored end (that is r) ?
# if yes the update the new r to the last index of this
if j + k - 1 > r:
lowercase_ : str = j - k + 1 # noqa: E741
lowercase_ : Any = j + k - 1
# update max_length and start position
if max_length < length[j]:
lowercase_ : Union[str, Any] = length[j]
lowercase_ : List[str] = j
# create that string
lowercase_ : Tuple = new_input_string[start - max_length // 2 : start + max_length // 2 + 1]
for i in s:
if i != "|":
output_string += i
return output_string
if __name__ == "__main__":
import doctest
doctest.testmod()
| 355 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
_lowercase : Union[str, Any] = {
"configuration_encodec": [
"ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EncodecConfig",
],
"feature_extraction_encodec": ["EncodecFeatureExtractor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] = [
"ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST",
"EncodecModel",
"EncodecPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
_lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21 | 0 |
'''simple docstring'''
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
_lowercase : Tuple = datasets.load_iris()
_lowercase : List[str] = np.array(data["data"])
_lowercase : Union[str, Any] = np.array(data["target"])
_lowercase : int = data["""target_names"""]
_lowercase : Optional[Any] = train_test_split(X, y)
def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple ) -> Tuple:
return np.linalg.norm(np.array(__snake_case ) - np.array(__snake_case ) )
def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple=5 ) -> Union[str, Any]:
lowercase_ : List[str] = zip(__snake_case , __snake_case )
# List of distances of all points from the point to be classified
lowercase_ : Optional[Any] = []
for data_point in data:
lowercase_ : Optional[int] = euclidean_distance(data_point[0] , __snake_case )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
lowercase_ : Optional[Any] = [i[1] for i in sorted(__snake_case )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
lowercase_ : Tuple = Counter(__snake_case ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 356 | '''simple docstring'''
import os
import numpy
import onnx
def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ) -> Tuple:
lowercase_ : Tuple = a.name
lowercase_ : Tuple = b.name
lowercase_ : Any = """"""
lowercase_ : List[Any] = """"""
lowercase_ : List[Any] = a == b
lowercase_ : Union[str, Any] = name_a
lowercase_ : Optional[Any] = name_b
return res
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]:
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(UpperCAmelCase__ , UpperCAmelCase__ )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ )
_graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase__ , UpperCAmelCase__ )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) -> int:
for n in graph_proto.node:
_node_replace_input_with(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ) -> List[str]:
lowercase_ : int = list(model.graph.initializer )
lowercase_ : List[str] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
lowercase_ : Optional[Any] = inits[i].name
lowercase_ : List[str] = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : int ) -> List[str]:
lowercase_ : Dict = os.path.dirname(UpperCAmelCase__ )
lowercase_ : Optional[Any] = os.path.basename(UpperCAmelCase__ )
lowercase_ : str = onnx.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) )
lowercase_ : List[Any] = list(model.graph.initializer )
lowercase_ : int = set()
lowercase_ : int = {}
lowercase_ : str = []
lowercase_ : int = 0
for i in range(len(UpperCAmelCase__ ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(UpperCAmelCase__ ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(UpperCAmelCase__ )
dup_set.add(UpperCAmelCase__ )
lowercase_ : Dict = inits[j].data_type
lowercase_ : List[str] = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("""unexpected data type: """ , UpperCAmelCase__ )
total_reduced_size += mem_size
lowercase_ : int = inits[i].name
lowercase_ : List[str] = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(UpperCAmelCase__ )
else:
lowercase_ : Optional[int] = [name_j]
ind_to_replace.append((j, i) )
print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" )
lowercase_ : Tuple = sorted(UpperCAmelCase__ )
_remove_dup_initializers_from_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
lowercase_ : Union[str, Any] = """optimized_""" + model_file_name
lowercase_ : Optional[int] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ )
onnx.save(UpperCAmelCase__ , UpperCAmelCase__ )
return new_model
| 21 | 0 |
'''simple docstring'''
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class __magic_name__ :
def __init__( self : Union[str, Any] , lowercase_ : int , lowercase_ : List[str]=13 , lowercase_ : Any=7 , lowercase_ : List[Any]=True , lowercase_ : Any=True , lowercase_ : Tuple=True , lowercase_ : Any=True , lowercase_ : int=99 , lowercase_ : Dict=32 , lowercase_ : Optional[int]=2 , lowercase_ : Optional[Any]=4 , lowercase_ : str=37 , lowercase_ : Dict="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : Any=0.1 , lowercase_ : Optional[int]=512 , lowercase_ : str=16 , lowercase_ : Union[str, Any]=2 , lowercase_ : Optional[Any]=0.02 , lowercase_ : int=3 , lowercase_ : List[str]=4 , lowercase_ : Any=None , ):
lowercase_ : Dict = parent
lowercase_ : Dict = 13
lowercase_ : List[str] = 7
lowercase_ : Any = True
lowercase_ : Tuple = True
lowercase_ : List[Any] = True
lowercase_ : Any = True
lowercase_ : int = 99
lowercase_ : Dict = 384
lowercase_ : Union[str, Any] = 2
lowercase_ : Optional[Any] = 4
lowercase_ : Any = 37
lowercase_ : List[Any] = """gelu"""
lowercase_ : Union[str, Any] = 0.1
lowercase_ : Optional[int] = 0.1
lowercase_ : int = 512
lowercase_ : Any = 16
lowercase_ : str = 2
lowercase_ : str = 0.02
lowercase_ : str = 3
lowercase_ : str = 4
lowercase_ : Optional[int] = 128
lowercase_ : List[str] = 2
lowercase_ : Dict = 9
lowercase_ : List[str] = 1
lowercase_ : List[Any] = None
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase_ : Optional[Any] = None
if self.use_input_mask:
lowercase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] )
lowercase_ : List[Any] = None
if self.use_token_type_ids:
lowercase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowercase_ : List[str] = None
lowercase_ : Optional[Any] = None
lowercase_ : int = None
if self.use_labels:
lowercase_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase_ : Dict = ids_tensor([self.batch_size] , self.num_choices )
lowercase_ : List[str] = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_snake_case , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : Any , lowercase_ : Dict , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Tuple ):
lowercase_ : List[Any] = TFConvBertModel(config=_snake_case )
lowercase_ : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
lowercase_ : List[str] = [input_ids, input_mask]
lowercase_ : Dict = model(_snake_case )
lowercase_ : str = model(_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : str ):
lowercase_ : Union[str, Any] = TFConvBertForMaskedLM(config=_snake_case )
lowercase_ : str = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
lowercase_ : Dict = model(_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : str , lowercase_ : Optional[int] ):
lowercase_ : Tuple = self.num_labels
lowercase_ : Any = TFConvBertForSequenceClassification(config=_snake_case )
lowercase_ : str = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
lowercase_ : int = model(_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : List[str] , lowercase_ : Tuple ):
lowercase_ : Optional[Any] = self.num_choices
lowercase_ : Union[str, Any] = TFConvBertForMultipleChoice(config=_snake_case )
lowercase_ : List[str] = tf.tile(tf.expand_dims(_snake_case , 1 ) , (1, self.num_choices, 1) )
lowercase_ : Union[str, Any] = tf.tile(tf.expand_dims(_snake_case , 1 ) , (1, self.num_choices, 1) )
lowercase_ : List[Any] = tf.tile(tf.expand_dims(_snake_case , 1 ) , (1, self.num_choices, 1) )
lowercase_ : int = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
"""token_type_ids""": multiple_choice_token_type_ids,
}
lowercase_ : Optional[int] = model(_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Any , lowercase_ : str , lowercase_ : List[str] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] ):
lowercase_ : str = self.num_labels
lowercase_ : Union[str, Any] = TFConvBertForTokenClassification(config=_snake_case )
lowercase_ : Union[str, Any] = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
lowercase_ : Union[str, Any] = model(_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Union[str, Any] ):
lowercase_ : Optional[int] = TFConvBertForQuestionAnswering(config=_snake_case )
lowercase_ : List[Any] = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
lowercase_ : List[str] = model(_snake_case )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
lowercase_ : str = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Any = config_and_inputs
lowercase_ : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase):
UpperCamelCase__ = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
UpperCamelCase__ = (
{
'''feature-extraction''': TFConvBertModel,
'''fill-mask''': TFConvBertForMaskedLM,
'''question-answering''': TFConvBertForQuestionAnswering,
'''text-classification''': TFConvBertForSequenceClassification,
'''token-classification''': TFConvBertForTokenClassification,
'''zero-shot''': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
lowercase_ : int = TFConvBertModelTester(self )
lowercase_ : Tuple = ConfigTester(self , config_class=_snake_case , hidden_size=37 )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_snake_case )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_snake_case )
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_snake_case )
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
lowercase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_snake_case )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_snake_case )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ : Any = True
lowercase_ : int = True
if hasattr(_snake_case , """use_cache""" ):
lowercase_ : List[str] = True
lowercase_ : Union[str, Any] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length )
lowercase_ : Optional[int] = getattr(self.model_tester , """key_length""" , _snake_case )
for model_class in self.all_model_classes:
lowercase_ : Any = self._prepare_for_class(_snake_case , _snake_case )
lowercase_ : str = model_class(_snake_case )
lowercase_ : Tuple = len(model(_snake_case ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_snake_case , saved_model=_snake_case )
lowercase_ : Tuple = os.path.join(_snake_case , """saved_model""" , """1""" )
lowercase_ : int = tf.keras.models.load_model(_snake_case )
lowercase_ : List[str] = model(_snake_case )
if self.is_encoder_decoder:
lowercase_ : Optional[int] = outputs["""encoder_hidden_states"""]
lowercase_ : Any = outputs["""encoder_attentions"""]
else:
lowercase_ : List[str] = outputs["""hidden_states"""]
lowercase_ : Dict = outputs["""attentions"""]
self.assertEqual(len(_snake_case ) , _snake_case )
lowercase_ : List[Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(_snake_case ) , _snake_case )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : List[str] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" )
self.assertIsNotNone(_snake_case )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ : int = True
lowercase_ : Any = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length )
lowercase_ : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length )
lowercase_ : Optional[Any] = getattr(self.model_tester , """key_length""" , _snake_case )
lowercase_ : Optional[Any] = getattr(self.model_tester , """key_length""" , _snake_case )
def check_decoder_attentions_output(lowercase_ : List[str] ):
lowercase_ : List[str] = len(_snake_case )
self.assertEqual(out_len % 2 , 0 )
lowercase_ : Tuple = outputs.decoder_attentions
self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(lowercase_ : Optional[Any] ):
lowercase_ : Union[str, Any] = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_snake_case ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
lowercase_ : str = True
lowercase_ : Dict = False
lowercase_ : List[Any] = model_class(_snake_case )
lowercase_ : Any = model(self._prepare_for_class(_snake_case , _snake_case ) )
lowercase_ : str = len(_snake_case )
self.assertEqual(config.output_hidden_states , _snake_case )
check_encoder_attentions_output(_snake_case )
if self.is_encoder_decoder:
lowercase_ : Optional[int] = model_class(_snake_case )
lowercase_ : List[str] = model(self._prepare_for_class(_snake_case , _snake_case ) )
self.assertEqual(config.output_hidden_states , _snake_case )
check_decoder_attentions_output(_snake_case )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
lowercase_ : Optional[int] = True
lowercase_ : Optional[Any] = model_class(_snake_case )
lowercase_ : Optional[int] = model(self._prepare_for_class(_snake_case , _snake_case ) )
self.assertEqual(config.output_hidden_states , _snake_case )
check_encoder_attentions_output(_snake_case )
# Check attention is always last and order is fine
lowercase_ : Optional[int] = True
lowercase_ : Optional[Any] = True
lowercase_ : Optional[int] = model_class(_snake_case )
lowercase_ : List[str] = model(self._prepare_for_class(_snake_case , _snake_case ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_snake_case ) )
self.assertEqual(model.config.output_hidden_states , _snake_case )
check_encoder_attentions_output(_snake_case )
@require_tf
class __magic_name__ ( unittest.TestCase):
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : List[Any] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" )
lowercase_ : List[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] )
lowercase_ : Dict = model(_snake_case )[0]
lowercase_ : Optional[Any] = [1, 6, 768]
self.assertEqual(output.shape , _snake_case )
lowercase_ : List[str] = tf.constant(
[
[
[-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32],
[0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24],
[0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _snake_case , atol=1E-4 )
| 357 | '''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
_lowercase : str = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase)
class __magic_name__ ( _UpperCAmelCase):
def __init__( self : str , *lowercase_ : Dict , **lowercase_ : List[Any] ):
super().__init__(*lowercase_ , **lowercase_ )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None ):
lowercase_ : Optional[Any] = {}
lowercase_ : Tuple = {}
if prompt is not None:
lowercase_ : Tuple = prompt
if generate_kwargs is not None:
lowercase_ : List[str] = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
lowercase_ : List[Any] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
lowercase_ : str = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : List[Any] , lowercase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ : Optional[int] ):
return super().__call__(lowercase_ , **lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[Any] , lowercase_ : Tuple=None ):
lowercase_ : List[Any] = load_image(lowercase_ )
if prompt is not None:
if not isinstance(lowercase_ , lowercase_ ):
raise ValueError(
f'''Received an invalid text input, got - {type(lowercase_ )} - but expected a single string. '''
"""Note also that one single text can be provided for conditional image to text generation.""" )
lowercase_ : List[Any] = self.model.config.model_type
if model_type == "git":
lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework )
lowercase_ : Union[str, Any] = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_ ).input_ids
lowercase_ : int = [self.tokenizer.cls_token_id] + input_ids
lowercase_ : List[Any] = torch.tensor(lowercase_ ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
lowercase_ : Union[str, Any] = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework )
lowercase_ : List[str] = self.tokenizer(lowercase_ , return_tensors=self.framework )
model_inputs.update(lowercase_ )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
lowercase_ : List[str] = self.image_processor(images=lowercase_ , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
lowercase_ : str = None
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Dict , lowercase_ : Optional[Any]=None ):
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , lowercase_ )
and all(x is None for x in model_inputs["""input_ids"""] )
):
lowercase_ : Any = None
if generate_kwargs is None:
lowercase_ : Optional[Any] = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
lowercase_ : Dict = model_inputs.pop(self.model.main_input_name )
lowercase_ : Any = self.model.generate(lowercase_ , **lowercase_ , **lowercase_ )
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[Any] ):
lowercase_ : List[str] = []
for output_ids in model_outputs:
lowercase_ : Union[str, Any] = {
"""generated_text""": self.tokenizer.decode(
lowercase_ , skip_special_tokens=lowercase_ , )
}
records.append(lowercase_ )
return records
| 21 | 0 |
'''simple docstring'''
def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] ) -> Optional[Any]:
if index == r:
for j in range(lowerCamelCase_ ):
print(data[j] , end=""" """ )
print(""" """ )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
lowercase_ : List[str] = arr[i]
combination_util(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , index + 1 , lowerCamelCase_ , i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict ) -> Any:
lowercase_ : List[str] = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , 0 , lowerCamelCase_ , 0 )
if __name__ == "__main__":
# Driver code to check the function above
_lowercase : List[Any] = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 358 | '''simple docstring'''
class __magic_name__ :
def __init__( self : int , lowercase_ : list ):
lowercase_ : Dict = set_counts
lowercase_ : List[Any] = max(lowercase_ )
lowercase_ : str = len(lowercase_ )
lowercase_ : str = [1] * num_sets
lowercase_ : Dict = list(range(lowercase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : int ):
lowercase_ : List[Any] = self.get_parent(lowercase_ )
lowercase_ : Union[str, Any] = self.get_parent(lowercase_ )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
lowercase_ : List[str] = 0
lowercase_ : Optional[int] = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
lowercase_ : int = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
lowercase_ : int = 0
lowercase_ : List[Any] = src_parent
lowercase_ : List[Any] = self.set_counts[src_parent]
lowercase_ : Tuple = max(self.max_set , lowercase_ )
return True
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : int ):
if self.parents[disj_set] == disj_set:
return disj_set
lowercase_ : int = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 21 | 0 |
'''simple docstring'''
import numpy as np
from scipy.spatial.distance import cdist
from sklearn.metrics import fa_score
import datasets
_lowercase : Tuple = """\
@inproceedings{kakwani2020indicnlpsuite,
title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},
author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},
year={2020},
booktitle={Findings of EMNLP},
}
"""
_lowercase : Tuple = """\
IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide
variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.
"""
_lowercase : Union[str, Any] = """
Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset.
Args:
predictions: list of predictions to score (as int64),
except for 'cvit-mkb-clsr' where each prediction is a vector (of float32).
references: list of ground truth labels corresponding to the predictions (as int64),
except for 'cvit-mkb-clsr' where each reference is a vector (of float32).
Returns: depending on the IndicGLUE subset, one or several of:
\"accuracy\": Accuracy
\"f1\": F1 score
\"precision\": Precision@10
Examples:
>>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"]
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = indic_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0}
>>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = indic_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0, 'f1': 1.0}
>>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr')
>>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]
>>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]
>>> results = indic_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'precision@10': 1.0}
"""
def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] ):
return float((preds == labels).mean() )
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict ):
lowercase_ : Optional[int] = simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )
lowercase_ : int = float(fa_score(y_true=UpperCAmelCase__ , y_pred=UpperCAmelCase__ ) )
return {
"accuracy": acc,
"f1": fa,
}
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple ):
lowercase_ : Union[str, Any] = np.array(UpperCAmelCase__ )
lowercase_ : Optional[int] = np.array(UpperCAmelCase__ )
lowercase_ : Optional[int] = en_sentvecs.shape[0]
# mean centering
lowercase_ : Optional[Any] = en_sentvecs - np.mean(UpperCAmelCase__ , axis=0 )
lowercase_ : Dict = in_sentvecs - np.mean(UpperCAmelCase__ , axis=0 )
lowercase_ : List[Any] = cdist(UpperCAmelCase__ , UpperCAmelCase__ , """cosine""" )
lowercase_ : Optional[int] = np.array(range(UpperCAmelCase__ ) )
lowercase_ : Optional[int] = sim.argsort(axis=1 )[:, :10]
lowercase_ : List[Any] = np.any(preds == actual[:, None] , axis=1 )
return float(matches.mean() )
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class __magic_name__ ( datasets.Metric):
def SCREAMING_SNAKE_CASE_ ( self : int ):
if self.config_name not in [
"wnli",
"copa",
"sna",
"csqa",
"wstp",
"inltkh",
"bbca",
"cvit-mkb-clsr",
"iitp-mr",
"iitp-pr",
"actsa-sc",
"md",
"wiki-ner",
]:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", """
"""\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", """
"""\"wiki-ner\"]""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""int64""" )
if self.config_name != """cvit-mkb-clsr"""
else datasets.Sequence(datasets.Value("""float32""" ) ),
"""references""": datasets.Value("""int64""" )
if self.config_name != """cvit-mkb-clsr"""
else datasets.Sequence(datasets.Value("""float32""" ) ),
} ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if self.config_name != """cvit-mkb-clsr""" else None , )
def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] ):
if self.config_name == "cvit-mkb-clsr":
return {"precision@10": precision_at_aa(__lowercase , __lowercase )}
elif self.config_name in ["wiki-ner"]:
return acc_and_fa(__lowercase , __lowercase )
elif self.config_name in [
"wnli",
"copa",
"sna",
"csqa",
"wstp",
"inltkh",
"bbca",
"iitp-mr",
"iitp-pr",
"actsa-sc",
"md",
]:
return {"accuracy": simple_accuracy(__lowercase , __lowercase )}
else:
raise KeyError(
"""You should supply a configuration name selected in """
"""[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", """
"""\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", """
"""\"wiki-ner\"]""" )
| 359 | '''simple docstring'''
from io import BytesIO
from typing import List, Union
import requests
from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_decord_available():
import numpy as np
from decord import VideoReader
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
_lowercase : str = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase)
class __magic_name__ ( _UpperCAmelCase):
def __init__( self : str , *lowercase_ : int , **lowercase_ : Any ):
super().__init__(*lowercase_ , **lowercase_ )
requires_backends(self , """decord""" )
self.check_model_type(lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None ):
lowercase_ : Union[str, Any] = {}
if frame_sampling_rate is not None:
lowercase_ : Any = frame_sampling_rate
if num_frames is not None:
lowercase_ : Optional[Any] = num_frames
lowercase_ : Union[str, Any] = {}
if top_k is not None:
lowercase_ : Optional[Any] = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : str , lowercase_ : Union[str, List[str]] , **lowercase_ : str ):
return super().__call__(lowercase_ , **lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None , lowercase_ : Optional[int]=1 ):
if num_frames is None:
lowercase_ : List[Any] = self.model.config.num_frames
if video.startswith("""http://""" ) or video.startswith("""https://""" ):
lowercase_ : Union[str, Any] = BytesIO(requests.get(lowercase_ ).content )
lowercase_ : Optional[Any] = VideoReader(lowercase_ )
videoreader.seek(0 )
lowercase_ : Tuple = 0
lowercase_ : List[Any] = num_frames * frame_sampling_rate - 1
lowercase_ : Optional[int] = np.linspace(lowercase_ , lowercase_ , num=lowercase_ , dtype=np.intaa )
lowercase_ : Optional[int] = videoreader.get_batch(lowercase_ ).asnumpy()
lowercase_ : Union[str, Any] = list(lowercase_ )
lowercase_ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : str ):
lowercase_ : int = self.model(**lowercase_ )
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Dict=5 ):
if top_k > self.model.config.num_labels:
lowercase_ : List[Any] = self.model.config.num_labels
if self.framework == "pt":
lowercase_ : str = model_outputs.logits.softmax(-1 )[0]
lowercase_ , lowercase_ : Optional[Any] = probs.topk(lowercase_ )
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
lowercase_ : Union[str, Any] = scores.tolist()
lowercase_ : Tuple = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
| 21 | 0 |
from collections import defaultdict
def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : str ) -> int:
lowercase_ : Union[str, Any] = first_str.lower().strip()
lowercase_ : Any = second_str.lower().strip()
# Remove whitespace
lowercase_ : Optional[int] = first_str.replace(""" """ , """""" )
lowercase_ : Tuple = second_str.replace(""" """ , """""" )
# Strings of different lengths are not anagrams
if len(__lowerCamelCase ) != len(__lowerCamelCase ):
return False
# Default values for count should be 0
lowercase_ : defaultdict[str, int] = defaultdict(__lowerCamelCase )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(__lowerCamelCase ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowercase : Any = input("Enter the first string ").strip()
_lowercase : List[str] = input("Enter the second string ").strip()
_lowercase : Optional[int] = check_anagrams(input_a, input_b)
print(f"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
| 360 | '''simple docstring'''
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> List[str]:
if isinstance(UpperCAmelCase__ , collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class __magic_name__ :
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Any , lowercase_ : str ):
pass
def SCREAMING_SNAKE_CASE_ ( self : str ):
pass
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
pass
def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : np.ndarray , lowercase_ : float ):
lowercase_ : Optional[Any] = np.abs((a - b) ).max()
self.assertLessEqual(lowercase_ , lowercase_ , f'''Difference between torch and flax is {diff} (>= {tol}).''' )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple=None , **lowercase_ : Optional[int] ):
lowercase_ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ )
lowercase_ : Any = FlaxVisionTextDualEncoderModel(lowercase_ )
lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) )
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : List[Any]=None , **lowercase_ : Tuple ):
lowercase_ , lowercase_ : Any = self.get_vision_text_model(lowercase_ , lowercase_ )
lowercase_ : Optional[int] = {"""vision_model""": vision_model, """text_model""": text_model}
lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ )
lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=None , **lowercase_ : int ):
lowercase_ , lowercase_ : Union[str, Any] = self.get_vision_text_model(lowercase_ , lowercase_ )
lowercase_ : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model}
lowercase_ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ )
lowercase_ : Tuple = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ )
lowercase_ : Any = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowercase_ )
lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ )
lowercase_ : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ )
lowercase_ : Union[str, Any] = after_output[0]
lowercase_ : str = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowercase_ , 1E-3 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Dict=None , **lowercase_ : Optional[Any] ):
lowercase_ , lowercase_ : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ )
lowercase_ : Dict = {"""vision_model""": vision_model, """text_model""": text_model}
lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ )
lowercase_ : Optional[int] = model(
input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ )
lowercase_ : Tuple = output.vision_model_output.attentions
self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
lowercase_ : List[str] = to_atuple(vision_model.config.image_size )
lowercase_ : Optional[Any] = to_atuple(vision_model.config.patch_size )
lowercase_ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
lowercase_ : Optional[Any] = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
lowercase_ : Union[str, Any] = output.text_model_output.attentions
self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int ):
pt_model.to(lowercase_ )
pt_model.eval()
# prepare inputs
lowercase_ : int = inputs_dict
lowercase_ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
lowercase_ : str = pt_model(**lowercase_ ).to_tuple()
lowercase_ : Optional[Any] = fx_model(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowercase_ )
lowercase_ : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ , from_pt=lowercase_ )
lowercase_ : Dict = fx_model_loaded(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowercase_ )
lowercase_ : Union[str, Any] = VisionTextDualEncoderModel.from_pretrained(lowercase_ , from_flax=lowercase_ )
pt_model_loaded.to(lowercase_ )
pt_model_loaded.eval()
with torch.no_grad():
lowercase_ : List[Any] = pt_model_loaded(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(lowercase_ , pt_output_loaded.numpy() , 4E-2 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Union[str, Any] ):
lowercase_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ )
lowercase_ : List[Any] = VisionTextDualEncoderModel(lowercase_ )
lowercase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel(lowercase_ )
lowercase_ : Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ )
lowercase_ : Tuple = fx_state
self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[Any] ):
lowercase_ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ )
lowercase_ : int = VisionTextDualEncoderModel(lowercase_ )
lowercase_ : Dict = FlaxVisionTextDualEncoderModel(lowercase_ )
lowercase_ : Optional[Any] = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params )
self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ : Tuple = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : List[Any] = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : List[Any] = self.prepare_config_and_inputs()
self.check_save_load(**lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : Union[str, Any] = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**lowercase_ )
@is_pt_flax_cross_test
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Tuple = self.prepare_config_and_inputs()
lowercase_ : List[Any] = config_inputs_dict.pop("""vision_config""" )
lowercase_ : int = config_inputs_dict.pop("""text_config""" )
lowercase_ : Optional[int] = config_inputs_dict
self.check_equivalence_pt_to_flax(lowercase_ , lowercase_ , lowercase_ )
self.check_equivalence_flax_to_pt(lowercase_ , lowercase_ , lowercase_ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ , lowercase_ : str = self.get_pretrained_model_and_inputs()
lowercase_ : Dict = model_a(**lowercase_ )
lowercase_ : str = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(lowercase_ )
lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ )
lowercase_ : str = model_a(**lowercase_ )
lowercase_ : Union[str, Any] = after_outputs[0]
lowercase_ : Any = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowercase_ , 1E-5 )
@require_flax
class __magic_name__ ( _UpperCAmelCase, unittest.TestCase):
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
lowercase_ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
"""hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , )
lowercase_ : List[str] = 13
lowercase_ : Optional[Any] = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
lowercase_ : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
lowercase_ : str = random_attention_mask([batch_size, 4] )
lowercase_ : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Tuple ):
lowercase_ : Union[str, Any] = FlaxViTModel(lowercase_ )
lowercase_ : Dict = FlaxBertModel(lowercase_ )
return vision_model, text_model
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : Any = FlaxViTModelTester(self )
lowercase_ : Optional[Any] = FlaxBertModelTester(self )
lowercase_ : Dict = vit_model_tester.prepare_config_and_inputs()
lowercase_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs()
lowercase_ , lowercase_ : List[str] = vision_config_and_inputs
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class __magic_name__ ( _UpperCAmelCase, unittest.TestCase):
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
"""hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , )
lowercase_ : List[str] = 13
lowercase_ : Optional[Any] = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
lowercase_ : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
lowercase_ : Tuple = random_attention_mask([batch_size, 4] )
lowercase_ : Union[str, Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ):
lowercase_ : Tuple = FlaxCLIPVisionModel(lowercase_ )
lowercase_ : Any = FlaxBertModel(lowercase_ )
return vision_model, text_model
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : Union[str, Any] = FlaxCLIPVisionModelTester(self )
lowercase_ : Tuple = FlaxBertModelTester(self )
lowercase_ : Union[str, Any] = clip_model_tester.prepare_config_and_inputs()
lowercase_ : Any = bert_model_tester.prepare_config_and_inputs()
lowercase_ , lowercase_ : Optional[Any] = vision_config_and_inputs
lowercase_ , lowercase_ , lowercase_ , lowercase_ : str = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class __magic_name__ ( unittest.TestCase):
@slow
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 )
lowercase_ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" )
lowercase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
lowercase_ : Optional[int] = processor(
text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowercase_ , padding=lowercase_ , return_tensors="""np""" )
lowercase_ : List[str] = model(**lowercase_ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
lowercase_ : Optional[Any] = np.array([[1.2_28_47_27, 0.3_10_41_22]] )
self.assertTrue(np.allclose(outputs.logits_per_image , lowercase_ , atol=1E-3 ) )
| 21 | 0 |
'''simple docstring'''
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
_lowercase : List[str] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
_lowercase : Optional[Any] = typing.Union[np.floataa, int, float] # noqa: UP007
def lowerCamelCase ( UpperCAmelCase__ : Vector , UpperCAmelCase__ : Vector ) -> VectorOut:
return np.sqrt(np.sum((np.asarray(lowerCAmelCase__ ) - np.asarray(lowerCAmelCase__ )) ** 2 ) )
def lowerCamelCase ( UpperCAmelCase__ : Vector , UpperCAmelCase__ : Vector ) -> VectorOut:
return sum((va - va) ** 2 for va, va in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) ** (1 / 2)
if __name__ == "__main__":
def lowerCamelCase ( ) -> None:
from timeit import timeit
print("""Without Numpy""" )
print(
timeit(
"""euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) )
print("""With Numpy""" )
print(
timeit(
"""euclidean_distance([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) )
benchmark()
| 361 | '''simple docstring'''
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __magic_name__ ( unittest.TestCase):
def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int=7 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[Any]=18 , lowercase_ : List[Any]=30 , lowercase_ : int=400 , lowercase_ : Dict=True , lowercase_ : List[Any]=None , lowercase_ : Dict=True , ):
lowercase_ : Tuple = size if size is not None else {"""height""": 18, """width""": 18}
lowercase_ : List[str] = parent
lowercase_ : Any = batch_size
lowercase_ : Optional[Any] = num_channels
lowercase_ : Tuple = image_size
lowercase_ : Optional[Any] = min_resolution
lowercase_ : Dict = max_resolution
lowercase_ : Optional[int] = do_resize
lowercase_ : Optional[Any] = size
lowercase_ : Union[str, Any] = do_normalize
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04],
[-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __magic_name__ ( _UpperCAmelCase, unittest.TestCase):
UpperCamelCase__ = ImageGPTImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Optional[int] = ImageGPTImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : int = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase_ , """clusters""" ) )
self.assertTrue(hasattr(lowercase_ , """do_resize""" ) )
self.assertTrue(hasattr(lowercase_ , """size""" ) )
self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : int = self.image_processing_class(**self.image_processor_dict )
lowercase_ : Union[str, Any] = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : str = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase_ : Union[str, Any] = os.path.join(lowercase_ , """image_processor.json""" )
image_processor_first.to_json_file(lowercase_ )
lowercase_ : Optional[Any] = self.image_processing_class.from_json_file(lowercase_ ).to_dict()
lowercase_ : Any = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(lowercase_ )
lowercase_ : Any = self.image_processing_class.from_pretrained(lowercase_ ).to_dict()
lowercase_ : List[str] = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowercase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
pass
def lowerCamelCase ( ) -> Any:
lowercase_ : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
lowercase_ : Any = Image.open(dataset[4]["""file"""] )
lowercase_ : Dict = Image.open(dataset[5]["""file"""] )
lowercase_ : int = [imagea, imagea]
return images
@require_vision
@require_torch
class __magic_name__ ( unittest.TestCase):
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Optional[Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
lowercase_ : Optional[int] = prepare_images()
# test non-batched
lowercase_ : str = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1024) )
lowercase_ : Tuple = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase_ )
# test batched
lowercase_ : List[str] = image_processing(lowercase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1024) )
lowercase_ : Union[str, Any] = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase_ )
| 21 | 0 |
'''simple docstring'''
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> Any:
lowercase_ : int = tmp_path / 'file.csv'
lowercase_ : int = textwrap.dedent(
"""\\n header1,header2\n 1,2\n 10,20\n """ )
with open(lowercase__ , """w""" ) as f:
f.write(lowercase__ )
return str(lowercase__ )
@pytest.fixture
def lowerCamelCase ( UpperCAmelCase__ : Any ) -> Optional[Any]:
lowercase_ : Union[str, Any] = tmp_path / 'malformed_file.csv'
lowercase_ : Dict = textwrap.dedent(
"""\\n header1,header2\n 1,2\n 10,20,\n """ )
with open(lowercase__ , """w""" ) as f:
f.write(lowercase__ )
return str(lowercase__ )
@pytest.fixture
def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Any ) -> Tuple:
lowercase_ : Union[str, Any] = tmp_path / 'csv_with_image.csv'
lowercase_ : List[Any] = textwrap.dedent(
F'''\
image
{image_file}
''' )
with open(lowercase__ , """w""" ) as f:
f.write(lowercase__ )
return str(lowercase__ )
@pytest.fixture
def lowerCamelCase ( UpperCAmelCase__ : int ) -> str:
lowercase_ : Optional[int] = tmp_path / 'csv_with_label.csv'
lowercase_ : int = textwrap.dedent(
"""\\n label\n good\n bad\n good\n """ )
with open(lowercase__ , """w""" ) as f:
f.write(lowercase__ )
return str(lowercase__ )
@pytest.fixture
def lowerCamelCase ( UpperCAmelCase__ : str ) -> Union[str, Any]:
lowercase_ : str = tmp_path / 'csv_with_int_list.csv'
lowercase_ : List[Any] = textwrap.dedent(
"""\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n """ )
with open(lowercase__ , """w""" ) as f:
f.write(lowercase__ )
return str(lowercase__ )
def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple ) -> int:
lowercase_ : Any = Csv()
lowercase_ : Union[str, Any] = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(lowercase__ , match="""Error tokenizing data""" ):
for _ in generator:
pass
assert any(
record.levelname == """ERROR"""
and """Failed to read file""" in record.message
and os.path.basename(lowercase__ ) in record.message
for record in caplog.records )
@require_pil
def lowerCamelCase ( UpperCAmelCase__ : List[Any] ) -> Optional[int]:
with open(lowercase__ , encoding="""utf-8""" ) as f:
lowercase_ : Optional[int] = f.read().splitlines()[1]
lowercase_ : Tuple = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) )
lowercase_ : Optional[int] = csv._generate_tables([[csv_file_with_image]] )
lowercase_ : Union[str, Any] = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field("""image""" ).type == Image()()
lowercase_ : Tuple = pa_table.to_pydict()['image']
assert generated_content == [{"path": image_file, "bytes": None}]
def lowerCamelCase ( UpperCAmelCase__ : Tuple ) -> Tuple:
with open(lowercase__ , encoding="""utf-8""" ) as f:
lowercase_ : Dict = f.read().splitlines()[1:]
lowercase_ : Union[str, Any] = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) )
lowercase_ : Optional[Any] = csv._generate_tables([[csv_file_with_label]] )
lowercase_ : Optional[Any] = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )()
lowercase_ : Union[str, Any] = pa_table.to_pydict()['label']
assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(lowercase__ ) for label in labels]
def lowerCamelCase ( UpperCAmelCase__ : str ) -> Tuple:
lowercase_ : List[str] = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda UpperCAmelCase__ : [int(lowercase__ ) for i in x.split()]} )
lowercase_ : List[str] = csv._generate_tables([[csv_file_with_int_list]] )
lowercase_ : str = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type )
lowercase_ : str = pa_table.to_pydict()['int_list']
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 362 | '''simple docstring'''
def lowerCamelCase ( ) -> Dict:
lowercase_ : Union[str, Any] = []
lowercase_ : Tuple = 1
while len(UpperCAmelCase__ ) < 1e6:
constant.append(str(UpperCAmelCase__ ) )
i += 1
lowercase_ : int = """""".join(UpperCAmelCase__ )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[999] )
* int(constant[9999] )
* int(constant[99999] )
* int(constant[999999] )
)
if __name__ == "__main__":
print(solution())
| 21 | 0 |
'''simple docstring'''
class __magic_name__ :
def __init__( self : Tuple , lowercase_ : Tuple , lowercase_ : Optional[Any] ):
lowercase_ : Any = name
lowercase_ : Dict = val
def __str__( self : List[Any] ):
return f'''{self.__class__.__name__}({self.name}, {self.val})'''
def __lt__( self : Any , lowercase_ : Dict ):
return self.val < other.val
class __magic_name__ :
def __init__( self : Tuple , lowercase_ : Any ):
lowercase_ : Dict = {}
lowercase_ : Dict = {}
lowercase_ : Dict = self.build_heap(lowercase_ )
def __getitem__( self : str , lowercase_ : Tuple ):
return self.get_value(lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : str ):
return (idx - 1) // 2
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str ):
return idx * 2 + 1
def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : int ):
return idx * 2 + 2
def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : Dict ):
return self.heap_dict[key]
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Optional[int] ):
lowercase_ : Dict = len(lowercase_ ) - 1
lowercase_ : Dict = self.get_parent_idx(lowercase_ )
for idx, i in enumerate(lowercase_ ):
lowercase_ : Dict = idx
lowercase_ : Tuple = i.val
for i in range(lowercase_ , -1 , -1 ):
self.sift_down(lowercase_ , lowercase_ )
return array
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Any , lowercase_ : Optional[Any] ):
while True:
lowercase_ : Tuple = self.get_left_child_idx(lowercase_ ) # noqa: E741
lowercase_ : int = self.get_right_child_idx(lowercase_ )
lowercase_ : Union[str, Any] = idx
if l < len(lowercase_ ) and array[l] < array[idx]:
lowercase_ : List[Any] = l
if r < len(lowercase_ ) and array[r] < array[smallest]:
lowercase_ : Dict = r
if smallest != idx:
lowercase_ : str = array[smallest], array[idx]
(
lowercase_
) : str = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
lowercase_ : Optional[int] = smallest
else:
break
def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Tuple ):
lowercase_ : str = self.get_parent_idx(lowercase_ )
while p >= 0 and self.heap[p] > self.heap[idx]:
lowercase_ : int = self.heap[idx], self.heap[p]
lowercase_ : List[Any] = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
lowercase_ : Any = p
lowercase_ : Optional[int] = self.get_parent_idx(lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
return self.heap[0]
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : List[str] = self.heap[-1], self.heap[0]
lowercase_ : str = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
lowercase_ : str = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 , self.heap )
return x
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : Dict ):
self.heap.append(lowercase_ )
lowercase_ : Dict = len(self.heap ) - 1
lowercase_ : Dict = node.val
self.sift_up(len(self.heap ) - 1 )
def SCREAMING_SNAKE_CASE_ ( self : int ):
return len(self.heap ) == 0
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : int , lowercase_ : List[Any] ):
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
lowercase_ : Tuple = new_value
lowercase_ : Union[str, Any] = new_value
self.sift_up(self.idx_of_element[node] )
_lowercase : str = Node("R", -1)
_lowercase : List[Any] = Node("B", 6)
_lowercase : str = Node("A", 3)
_lowercase : Dict = Node("X", 1)
_lowercase : List[str] = Node("E", 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
_lowercase : List[Any] = MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print("Min Heap - before decrease key")
for i in my_min_heap.heap:
print(i)
print("Min Heap - After decrease key of node [B -> -17]")
my_min_heap.decrease_key(b, -17)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 363 | '''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
_lowercase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
class __magic_name__ ( _UpperCAmelCase):
def __init__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str ):
super().__init__()
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
@torch.no_grad()
def __call__( self : List[str] , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ):
if audio_length_in_s is None:
lowercase_ : List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate
lowercase_ : Dict = audio_length_in_s * self.unet.config.sample_rate
lowercase_ : Any = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to'''
f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' )
lowercase_ : List[Any] = int(lowercase_ )
if sample_size % down_scale_factor != 0:
lowercase_ : int = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled'''
f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising'''
""" process.""" )
lowercase_ : Any = int(lowercase_ )
lowercase_ : List[str] = next(iter(self.unet.parameters() ) ).dtype
lowercase_ : List[str] = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowercase_ : Any = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ )
# set step values
self.scheduler.set_timesteps(lowercase_ , device=audio.device )
lowercase_ : Optional[Any] = self.scheduler.timesteps.to(lowercase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
lowercase_ : Dict = self.unet(lowercase_ , lowercase_ ).sample
# 2. compute previous image: x_t -> t_t-1
lowercase_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample
lowercase_ : str = audio.clamp(-1 , 1 ).float().cpu().numpy()
lowercase_ : Union[str, Any] = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=lowercase_ )
| 21 | 0 |
import argparse
import logging
import os
import time
import timeit
import datasets
import numpy as np
import pycuda.autoinit # noqa: F401
import pycuda.driver as cuda
import tensorrt as trt
import torch
from absl import logging as absl_logging
from accelerate import Accelerator
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from utils_qa import postprocess_qa_predictions
import transformers
from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed
from transformers.trainer_pt_utils import nested_concat, nested_truncate
_lowercase : Dict = trt.Logger(trt.Logger.WARNING)
_lowercase : int = absl_logging.get_absl_logger()
absl_logger.setLevel(logging.WARNING)
_lowercase : Optional[Any] = logging.getLogger(__name__)
_lowercase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--onnx_model_path",
default=None,
type=str,
required=True,
help="Path to ONNX model: ",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints and predictions will be written.",
)
# Other parameters
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
required=True,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--version_2_with_negative",
action="store_true",
help="If true, the SQuAD examples contain some that do not have an answer.",
)
parser.add_argument(
"--null_score_diff_threshold",
type=float,
default=0.0,
help="If null_score - best_non_null is greater than the threshold predict null.",
)
parser.add_argument(
"--max_seq_length",
default=384,
type=int,
help=(
"The maximum total input sequence length after WordPiece tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded."
),
)
parser.add_argument(
"--doc_stride",
default=128,
type=int,
help="When splitting up a long document into chunks, how much stride to take between chunks.",
)
parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.")
parser.add_argument(
"--n_best_size",
default=20,
type=int,
help="The total number of n-best predictions to generate in the nbest_predictions.json output file.",
)
parser.add_argument(
"--max_answer_length",
default=30,
type=int,
help=(
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
),
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
"--dataset_name",
type=str,
default=None,
required=True,
help="The name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The configuration name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data."
)
parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision instead of 32-bit",
)
parser.add_argument(
"--int8",
action="store_true",
help="Whether to use INT8",
)
_lowercase : Optional[int] = parser.parse_args()
if args.tokenizer_name:
_lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
logger.info("Training/evaluation parameters %s", args)
_lowercase : Tuple = args.per_device_eval_batch_size
_lowercase : Any = (args.eval_batch_size, args.max_seq_length)
# TRT Engine properties
_lowercase : List[str] = True
_lowercase : List[str] = "temp_engine/bert-fp32.engine"
if args.fpaa:
_lowercase : str = "temp_engine/bert-fp16.engine"
if args.inta:
_lowercase : str = "temp_engine/bert-int8.engine"
# import ONNX file
if not os.path.exists("temp_engine"):
os.makedirs("temp_engine")
_lowercase : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(
network, TRT_LOGGER
) as parser:
with open(args.onnx_model_path, "rb") as model:
if not parser.parse(model.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
# Query input names and shapes from parsed TensorRT network
_lowercase : int = [network.get_input(i) for i in range(network.num_inputs)]
_lowercase : str = [_input.name for _input in network_inputs] # ex: ["actual_input1"]
with builder.create_builder_config() as config:
_lowercase : List[Any] = 1 << 50
if STRICT_TYPES:
config.set_flag(trt.BuilderFlag.STRICT_TYPES)
if args.fpaa:
config.set_flag(trt.BuilderFlag.FPaa)
if args.inta:
config.set_flag(trt.BuilderFlag.INTa)
_lowercase : List[str] = builder.create_optimization_profile()
config.add_optimization_profile(profile)
for i in range(len(input_names)):
profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE)
_lowercase : str = builder.build_engine(network, config)
# serialize_engine and store in file (can be directly loaded and deserialized):
with open(engine_name, "wb") as f:
f.write(engine.serialize())
def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int ) -> List[str]:
lowercase_ : Dict = np.asarray(inputs["""input_ids"""] , dtype=np.intaa )
lowercase_ : int = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa )
lowercase_ : Union[str, Any] = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa )
# Copy inputs
cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , a_ )
cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , a_ )
cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , a_ )
# start time
lowercase_ : str = time.time()
# Run inference
context.execute_async(
bindings=[int(a_ ) for d_inp in d_inputs] + [int(a_ ), int(a_ )] , stream_handle=stream.handle )
# Transfer predictions back from GPU
cuda.memcpy_dtoh_async(a_ , a_ , a_ )
cuda.memcpy_dtoh_async(a_ , a_ , a_ )
# Synchronize the stream and take time
stream.synchronize()
# end time
lowercase_ : Optional[Any] = time.time()
lowercase_ : List[str] = end_time - start_time
lowercase_ : Tuple = (h_outputa, h_outputa)
# print(outputs)
return outputs, infer_time
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
_lowercase : str = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
_lowercase : List[str] = load_dataset(args.dataset_name, args.dataset_config_name)
else:
raise ValueError("Evaluation requires a dataset name")
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Preprocessing the datasets.
# Preprocessing is slighlty different for training and evaluation.
_lowercase : Union[str, Any] = raw_datasets["validation"].column_names
_lowercase : List[str] = "question" if "question" in column_names else column_names[0]
_lowercase : List[Any] = "context" if "context" in column_names else column_names[1]
_lowercase : Tuple = "answers" if "answers" in column_names else column_names[2]
# Padding side determines if we do (question|context) or (context|question).
_lowercase : Dict = tokenizer.padding_side == "right"
if args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"""
f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."""
)
_lowercase : List[Any] = min(args.max_seq_length, tokenizer.model_max_length)
def lowerCamelCase ( UpperCAmelCase__ : List[Any] ) -> List[Any]:
# Some of the questions have lots of whitespace on the left, which is not useful and will make the
# truncation of the context fail (the tokenized question will take a lots of space). So we remove that
# left whitespace
lowercase_ : int = [q.lstrip() for q in examples[question_column_name]]
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
lowercase_ : Any = tokenizer(
examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=a_ , stride=args.doc_stride , return_overflowing_tokens=a_ , return_offsets_mapping=a_ , padding="""max_length""" , )
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
lowercase_ : Optional[int] = tokenized_examples.pop("""overflow_to_sample_mapping""" )
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
# corresponding example_id and we will store the offset mappings.
lowercase_ : int = []
for i in range(len(tokenized_examples["""input_ids"""] ) ):
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
lowercase_ : Tuple = tokenized_examples.sequence_ids(a_ )
lowercase_ : List[Any] = 1 if pad_on_right else 0
# One example can give several spans, this is the index of the example containing this span of text.
lowercase_ : str = sample_mapping[i]
tokenized_examples["example_id"].append(examples["""id"""][sample_index] )
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
# position is part of the context or not.
lowercase_ : List[str] = [
(o if sequence_ids[k] == context_index else None)
for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] )
]
return tokenized_examples
_lowercase : Tuple = raw_datasets["validation"]
# Validation Feature Creation
_lowercase : List[str] = eval_examples.map(
prepare_validation_features,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
_lowercase : List[Any] = default_data_collator
_lowercase : int = eval_dataset.remove_columns(["example_id", "offset_mapping"])
_lowercase : Optional[Any] = DataLoader(
eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[Any]="eval" ) -> List[Any]:
# Post-processing: we match the start logits and end logits to answers in the original context.
lowercase_ : List[str] = postprocess_qa_predictions(
examples=a_ , features=a_ , predictions=a_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=a_ , )
# Format the result to the format the metric expects.
if args.version_2_with_negative:
lowercase_ : Optional[int] = [
{"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items()
]
else:
lowercase_ : Dict = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()]
lowercase_ : List[str] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples]
return EvalPrediction(predictions=a_ , label_ids=a_ )
_lowercase : Dict = load_metric("squad_v2" if args.version_2_with_negative else "squad")
# Evaluation!
logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path)
with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine(
f.read()
) as engine, engine.create_execution_context() as context:
# setup for TRT inferrence
for i in range(len(input_names)):
context.set_binding_shape(i, INPUT_SHAPE)
assert context.all_binding_shapes_specified
def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] ) -> List[Any]:
return trt.volume(engine.get_binding_shape(a_ ) ) * engine.get_binding_dtype(a_ ).itemsize
# Allocate device memory for inputs and outputs.
_lowercase : Optional[int] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)]
# Allocate output buffer
_lowercase : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa)
_lowercase : List[str] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa)
_lowercase : str = cuda.mem_alloc(h_outputa.nbytes)
_lowercase : str = cuda.mem_alloc(h_outputa.nbytes)
# Create a stream in which to copy inputs/outputs and run inference.
_lowercase : List[Any] = cuda.Stream()
# Evaluation
logger.info("***** Running Evaluation *****")
logger.info(f""" Num examples = {len(eval_dataset)}""")
logger.info(f""" Batch size = {args.per_device_eval_batch_size}""")
_lowercase : List[Any] = 0.0
_lowercase : Any = 0
_lowercase : int = timeit.default_timer()
_lowercase : int = None
for step, batch in enumerate(eval_dataloader):
_lowercase , _lowercase : List[Any] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream)
total_time += infer_time
niter += 1
_lowercase , _lowercase : str = outputs
_lowercase : Dict = torch.tensor(start_logits)
_lowercase : Optional[Any] = torch.tensor(end_logits)
# necessary to pad predictions and labels for being gathered
_lowercase : Union[str, Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100)
_lowercase : Tuple = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100)
_lowercase : str = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy())
_lowercase : Tuple = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
if all_preds is not None:
_lowercase : Union[str, Any] = nested_truncate(all_preds, len(eval_dataset))
_lowercase : Union[str, Any] = timeit.default_timer() - start_time
logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset))
# Inference time from TRT
logger.info("Average Inference Time = {:.3f} ms".format(total_time * 1000 / niter))
logger.info("Total Inference Time = {:.3f} ms".format(total_time * 1000))
logger.info("Total Number of Inference = %d", niter)
_lowercase : Dict = post_processing_function(eval_examples, eval_dataset, all_preds)
_lowercase : Optional[int] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
logger.info(f"""Evaluation metrics: {eval_metric}""")
| 364 | '''simple docstring'''
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
_lowercase : Union[str, Any] = "src/transformers"
_lowercase : str = "docs/source/en"
_lowercase : Union[str, Any] = "."
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int:
with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowercase_ : Union[str, Any] = f.readlines()
# Find the start prompt.
lowercase_ : Optional[Any] = 0
while not lines[start_index].startswith(UpperCAmelCase__ ):
start_index += 1
start_index += 1
lowercase_ : int = start_index
while not lines[end_index].startswith(UpperCAmelCase__ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
_lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration"
# Regexes that match TF/Flax/PT model names.
_lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
_lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
_lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# This is to make sure the transformers module imported is the one in the repo.
_lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH)
def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any:
lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ )
return [m.group(0 ) for m in matches]
def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]:
lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ )
lowercase_ : List[str] = (width - text_length) // 2
lowercase_ : Dict = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def lowerCamelCase ( ) -> Any:
lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
lowercase_ : Any = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ )
# Let's lookup through all transformers object (once).
for attr_name in dir(UpperCAmelCase__ ):
lowercase_ : Union[str, Any] = None
if attr_name.endswith("""Tokenizer""" ):
lowercase_ : Optional[int] = slow_tokenizers
lowercase_ : Union[str, Any] = attr_name[:-9]
elif attr_name.endswith("""TokenizerFast""" ):
lowercase_ : Optional[Any] = fast_tokenizers
lowercase_ : Dict = attr_name[:-13]
elif _re_tf_models.match(UpperCAmelCase__ ) is not None:
lowercase_ : str = tf_models
lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0]
elif _re_flax_models.match(UpperCAmelCase__ ) is not None:
lowercase_ : List[str] = flax_models
lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0]
elif _re_pt_models.match(UpperCAmelCase__ ) is not None:
lowercase_ : Tuple = pt_models
lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0]
if lookup_dict is not None:
while len(UpperCAmelCase__ ) > 0:
if attr_name in model_name_to_prefix.values():
lowercase_ : int = True
break
# Try again after removing the last word in the name
lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] )
# Let's build that table!
lowercase_ : Dict = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""]
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns]
lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2
# Build the table per se
lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n"""
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n"
lowercase_ : int = {True: """✅""", False: """❌"""}
for name in model_names:
lowercase_ : str = model_name_to_prefix[name]
lowercase_ : Any = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n"
return table
def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str:
lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = _find_text_in_file(
filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , )
lowercase_ : Dict = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
"""The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" )
if __name__ == "__main__":
_lowercase : Any = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
_lowercase : Optional[Any] = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 21 | 0 |
'''simple docstring'''
import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
_lowercase : List[Any] = logging.get_logger(__name__)
class __magic_name__ ( __lowercase):
UpperCamelCase__ = "AutoTokenizer"
UpperCamelCase__ = ["tokenizer"]
UpperCamelCase__ = {
"semantic_prompt": 1,
"coarse_prompt": 2,
"fine_prompt": 2,
}
def __init__( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : List[Any]=None ):
super().__init__(_a )
lowercase_ : List[Any] = speaker_embeddings
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Tuple , lowercase_ : Optional[Any] , lowercase_ : Dict="speaker_embeddings_path.json" , **lowercase_ : Optional[Any] ):
if speaker_embeddings_dict_path is not None:
lowercase_ : List[Any] = get_file_from_repo(
_a , _a , subfolder=kwargs.pop("""subfolder""" , _a ) , cache_dir=kwargs.pop("""cache_dir""" , _a ) , force_download=kwargs.pop("""force_download""" , _a ) , proxies=kwargs.pop("""proxies""" , _a ) , resume_download=kwargs.pop("""resume_download""" , _a ) , local_files_only=kwargs.pop("""local_files_only""" , _a ) , use_auth_token=kwargs.pop("""use_auth_token""" , _a ) , revision=kwargs.pop("""revision""" , _a ) , )
if speaker_embeddings_path is None:
logger.warning(
f'''`{os.path.join(_a , _a )}` does not exists
, no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json
dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' )
lowercase_ : Optional[int] = None
else:
with open(_a ) as speaker_embeddings_json:
lowercase_ : Tuple = json.load(_a )
else:
lowercase_ : Dict = None
lowercase_ : List[Any] = AutoTokenizer.from_pretrained(_a , **_a )
return cls(tokenizer=_a , speaker_embeddings=_a )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Tuple , lowercase_ : Optional[Any]="speaker_embeddings_path.json" , lowercase_ : Dict="speaker_embeddings" , lowercase_ : Tuple = False , **lowercase_ : Dict , ):
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(_a , _a , """v2""" ) , exist_ok=_a )
lowercase_ : Any = {}
lowercase_ : Tuple = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
lowercase_ : Union[str, Any] = self._load_voice_preset(_a )
lowercase_ : List[Any] = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict["""repo_or_path"""] , _a , f'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=_a , )
lowercase_ : int = os.path.join(_a , f'''{prompt_key}_{key}.npy''' )
lowercase_ : Any = tmp_dict
with open(os.path.join(_a , _a ) , """w""" ) as fp:
json.dump(_a , _a )
super().save_pretrained(_a , _a , **_a )
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] = None , **lowercase_ : Dict ):
lowercase_ : Any = self.speaker_embeddings[voice_preset]
lowercase_ : int = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' )
lowercase_ : Optional[int] = get_file_from_repo(
self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , _a ) , cache_dir=kwargs.pop("""cache_dir""" , _a ) , force_download=kwargs.pop("""force_download""" , _a ) , proxies=kwargs.pop("""proxies""" , _a ) , resume_download=kwargs.pop("""resume_download""" , _a ) , local_files_only=kwargs.pop("""local_files_only""" , _a ) , use_auth_token=kwargs.pop("""use_auth_token""" , _a ) , revision=kwargs.pop("""revision""" , _a ) , )
if path is None:
raise ValueError(
f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists
, no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}
embeddings.''' )
lowercase_ : int = np.load(_a )
return voice_preset_dict
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Union[str, Any] = None ):
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' )
if not isinstance(voice_preset[key] , np.ndarray ):
raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
def __call__( self : Optional[int] , lowercase_ : Optional[int]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Optional[Any]="pt" , lowercase_ : List[Any]=256 , lowercase_ : List[str]=False , lowercase_ : int=True , lowercase_ : List[str]=False , **lowercase_ : Tuple , ):
if voice_preset is not None and not isinstance(_a , _a ):
if (
isinstance(_a , _a )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
lowercase_ : Optional[Any] = self._load_voice_preset(_a )
else:
if isinstance(_a , _a ) and not voice_preset.endswith(""".npz""" ):
lowercase_ : List[Any] = voice_preset + '''.npz'''
lowercase_ : Union[str, Any] = np.load(_a )
if voice_preset is not None:
self._validate_voice_preset_dict(_a , **_a )
lowercase_ : Dict = BatchFeature(data=_a , tensor_type=_a )
lowercase_ : List[str] = self.tokenizer(
_a , return_tensors=_a , padding="""max_length""" , max_length=_a , return_attention_mask=_a , return_token_type_ids=_a , add_special_tokens=_a , **_a , )
if voice_preset is not None:
lowercase_ : Optional[Any] = voice_preset
return encoded_text
| 365 | '''simple docstring'''
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class __magic_name__ ( ctypes.Structure):
# _fields is a specific attr expected by ctypes
UpperCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)]
def lowerCamelCase ( ) -> List[Any]:
if os.name == "nt":
lowercase_ : List[Any] = CursorInfo()
lowercase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
lowercase_ : List[str] = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
elif os.name == "posix":
sys.stdout.write("""\033[?25l""" )
sys.stdout.flush()
def lowerCamelCase ( ) -> str:
if os.name == "nt":
lowercase_ : int = CursorInfo()
lowercase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
lowercase_ : Optional[int] = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
elif os.name == "posix":
sys.stdout.write("""\033[?25h""" )
sys.stdout.flush()
@contextmanager
def lowerCamelCase ( ) -> Any:
try:
hide_cursor()
yield
finally:
show_cursor()
| 21 | 0 |
'''simple docstring'''
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
_lowercase : int = logging.get_logger(__name__)
def lowerCamelCase ( UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : Optional[int]=None ):
return field(default_factory=lambda: default , metadata=lowerCAmelCase__ )
@dataclass
class __magic_name__ :
UpperCamelCase__ = list_field(
default=[], metadata={
'''help''': (
'''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version'''
''' of all available models'''
)
}, )
UpperCamelCase__ = list_field(
default=[8], metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''})
UpperCamelCase__ = list_field(
default=[8, 32, 128, 512], metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''}, )
UpperCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''}, )
UpperCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''}, )
UpperCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''})
UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Use FP16 to accelerate inference.'''})
UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Benchmark training of model'''})
UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Verbose memory tracing'''})
UpperCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''}, )
UpperCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE, metadata={
'''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory'''
}, )
UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Trace memory line by line'''})
UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Save result to a CSV file'''})
UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Save all print statements in a log file'''})
UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE, metadata={'''help''': '''Whether to print environment information'''})
UpperCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE, metadata={
'''help''': (
'''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use'''
''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled'''
''' for debugging / testing and on TPU.'''
)
}, )
UpperCamelCase__ = field(
default=f"inference_time_{round(time())}.csv", metadata={'''help''': '''CSV filename used if saving time results to csv.'''}, )
UpperCamelCase__ = field(
default=f"inference_memory_{round(time())}.csv", metadata={'''help''': '''CSV filename used if saving memory results to csv.'''}, )
UpperCamelCase__ = field(
default=f"train_time_{round(time())}.csv", metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''}, )
UpperCamelCase__ = field(
default=f"train_memory_{round(time())}.csv", metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''}, )
UpperCamelCase__ = field(
default=f"env_info_{round(time())}.csv", metadata={'''help''': '''CSV filename used if saving environment information.'''}, )
UpperCamelCase__ = field(
default=f"log_{round(time())}.csv", metadata={'''help''': '''Log filename used if print statements are saved in log.'''}, )
UpperCamelCase__ = field(default=3, metadata={'''help''': '''Times an experiment will be run.'''})
UpperCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE, metadata={
'''help''': (
'''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain'''
''' model weights.'''
)
}, )
def SCREAMING_SNAKE_CASE_ ( self : int ):
warnings.warn(
f'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils'''
""" are deprecated in general and it is advised to use external Benchmarking libraries """
""" to benchmark Transformer models.""" , __UpperCAmelCase , )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
if len(self.models ) <= 0:
raise ValueError(
"""Please make sure you provide at least one model name / model identifier, *e.g.* `--models"""
""" bert-base-cased` or `args.models = ['bert-base-cased'].""" )
return self.models
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
if not self.multi_process:
return False
elif self.is_tpu:
logger.info("""Multiprocessing is currently not possible on TPU.""" )
return False
else:
return True
| 366 | '''simple docstring'''
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_torch_available():
import torch
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
_lowercase : int = logging.get_logger(__name__)
@dataclass
class __magic_name__ ( _UpperCAmelCase):
UpperCamelCase__ = [
'''no_inference''',
'''no_cuda''',
'''no_tpu''',
'''no_speed''',
'''no_memory''',
'''no_env_print''',
'''no_multi_process''',
]
def __init__( self : Optional[Any] , **lowercase_ : int ):
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
lowercase_ : Optional[int] = deprecated_arg[3:]
setattr(self , lowercase_ , not kwargs.pop(lowercase_ ) )
logger.warning(
f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or'''
f''' {positive_arg}={kwargs[positive_arg]}''' )
lowercase_ : Tuple = kwargs.pop("""torchscript""" , self.torchscript )
lowercase_ : List[Any] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics )
lowercase_ : List[Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level )
super().__init__(**lowercase_ )
UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Trace the models using torchscript'''})
UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''})
UpperCamelCase__ = field(
default='''O1''', metadata={
'''help''': (
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. '''
'''See details at https://nvidia.github.io/apex/amp.html'''
)
}, )
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
requires_backends(self , ["""torch"""] )
logger.info("""PyTorch: setting up devices""" )
if not self.cuda:
lowercase_ : Optional[Any] = torch.device("""cpu""" )
lowercase_ : Tuple = 0
elif is_torch_tpu_available():
lowercase_ : Optional[int] = xm.xla_device()
lowercase_ : str = 0
else:
lowercase_ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
lowercase_ : str = torch.cuda.device_count()
return device, n_gpu
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
return is_torch_tpu_available() and self.tpu
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
requires_backends(self , ["""torch"""] )
# TODO(PVP): currently only single GPU is supported
return torch.cuda.current_device()
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
requires_backends(self , ["""torch"""] )
return self._setup_devices[0]
@property
def SCREAMING_SNAKE_CASE_ ( self : int ):
requires_backends(self , ["""torch"""] )
return self._setup_devices[1]
@property
def SCREAMING_SNAKE_CASE_ ( self : int ):
return self.n_gpu > 0
| 21 | 0 |
'''simple docstring'''
from collections.abc import Sequence
def lowerCamelCase ( UpperCAmelCase__ : Sequence[float] , UpperCAmelCase__ : float ) -> Union[str, Any]:
return sum(c * (x**i) for i, c in enumerate(a_ ) )
def lowerCamelCase ( UpperCAmelCase__ : Sequence[float] , UpperCAmelCase__ : float ) -> Tuple:
lowercase_ : str = 0.0
for coeff in reversed(a_ ):
lowercase_ : Tuple = result * x + coeff
return result
if __name__ == "__main__":
_lowercase : Optional[Any] = (0.0, 0.0, 5.0, 9.3, 7.0)
_lowercase : Optional[Any] = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 367 | '''simple docstring'''
from __future__ import annotations
from typing import Any
def lowerCamelCase ( UpperCAmelCase__ : list ) -> int:
if not postfix_notation:
return 0
lowercase_ : Any = {"""+""", """-""", """*""", """/"""}
lowercase_ : list[Any] = []
for token in postfix_notation:
if token in operations:
lowercase_ , lowercase_ : Dict = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b )
elif token == "-":
stack.append(a - b )
elif token == "*":
stack.append(a * b )
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1 )
else:
stack.append(a // b )
else:
stack.append(int(UpperCAmelCase__ ) )
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 | 0 |
'''simple docstring'''
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : float = math.inf , UpperCAmelCase__ : float = -math.inf , UpperCAmelCase__ : float = math.inf , UpperCAmelCase__ : float = -math.inf , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : float = 100 , UpperCAmelCase__ : float = 0.01 , UpperCAmelCase__ : float = 1 , ) -> Any:
lowercase_ : int = False
lowercase_ : Any = search_prob
lowercase_ : Optional[int] = start_temperate
lowercase_ : List[str] = []
lowercase_ : Any = 0
lowercase_ : Optional[int] = None
while not search_end:
lowercase_ : Union[str, Any] = current_state.score()
if best_state is None or current_score > best_state.score():
lowercase_ : Dict = current_state
scores.append(_UpperCamelCase )
iterations += 1
lowercase_ : int = None
lowercase_ : Union[str, Any] = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
lowercase_ : List[Any] = random.randint(0 , len(_UpperCamelCase ) - 1 ) # picking a random neighbor
lowercase_ : Union[str, Any] = neighbors.pop(_UpperCamelCase )
lowercase_ : str = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
lowercase_ : Any = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
lowercase_ : Optional[int] = picked_neighbor
else:
lowercase_ : Dict = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
lowercase_ : Any = picked_neighbor
lowercase_ : Tuple = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
lowercase_ : Optional[int] = True
else:
lowercase_ : str = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(_UpperCamelCase ) , _UpperCamelCase )
plt.xlabel("""Iterations""" )
plt.ylabel("""Function values""" )
plt.show()
return best_state
if __name__ == "__main__":
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any ) -> int:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
_lowercase : Union[str, Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_lowercase : Union[str, Any] = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 "
f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
# starting the problem with initial coordinates (12, 47)
_lowercase : int = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
_lowercase : Optional[int] = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 "
f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] ) -> int:
return (3 * x**2) - (6 * y)
_lowercase : str = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_lowercase : Dict = simulated_annealing(prob, find_max=False, visualization=True)
print(
"The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: "
f"""{local_min.score()}"""
)
_lowercase : int = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_lowercase : Any = simulated_annealing(prob, find_max=True, visualization=True)
print(
"The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: "
f"""{local_min.score()}"""
)
| 368 | '''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
_lowercase : List[Any] = logging.get_logger(__name__)
def lowerCamelCase ( UpperCAmelCase__ : Union[tf.Tensor, np.ndarray] ) -> List[int]:
if isinstance(UpperCAmelCase__ , np.ndarray ):
return list(tensor.shape )
lowercase_ : Tuple = tf.shape(UpperCAmelCase__ )
if tensor.shape == tf.TensorShape(UpperCAmelCase__ ):
return dynamic
lowercase_ : Dict = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase__ )]
def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[str] = None ) -> tf.Tensor:
return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCAmelCase__ , name=UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=1e-5 , UpperCAmelCase__ : List[str]=-1 ) -> List[str]:
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" )
# Get mean and variance on the axis to be normalized
lowercase_ , lowercase_ : List[str] = tf.nn.moments(UpperCAmelCase__ , axes=[axis] , keepdims=UpperCAmelCase__ )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
lowercase_ : List[Any] = [1] * inputs.shape.rank
lowercase_ : List[str] = shape_list(UpperCAmelCase__ )[axis]
lowercase_ : List[str] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ )
lowercase_ : List[Any] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ )
# Compute layer normalization using the batch_normalization
# function.
lowercase_ : str = tf.nn.batch_normalization(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , offset=UpperCAmelCase__ , scale=UpperCAmelCase__ , variance_epsilon=UpperCAmelCase__ , )
return outputs
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Any=-1 ) -> Dict:
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
lowercase_ : List[Any] = tf.shape(UpperCAmelCase__ )
lowercase_ : Union[str, Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
lowercase_ : Dict = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor ) -> tf.Tensor:
if not isinstance(UpperCAmelCase__ , tf.Tensor ):
lowercase_ : List[Any] = tf.convert_to_tensor(UpperCAmelCase__ ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
lowercase_ : Any = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
lowercase_ : List[Any] = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
lowercase_ : Optional[Any] = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : int , UpperCAmelCase__ : str = "input_ids" ) -> None:
tf.debugging.assert_less(
UpperCAmelCase__ , tf.cast(UpperCAmelCase__ , dtype=tensor.dtype ) , message=(
F'''The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase__ )}) must be smaller than the embedding '''
F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> Any:
lowercase_ : int = 64512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
lowercase_ : Optional[Any] = [x for x in data if len(UpperCAmelCase__ ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
"""The following attributes cannot be saved to HDF5 file because """
F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
F'''bytes: {bad_attributes}''' )
lowercase_ : Any = np.asarray(UpperCAmelCase__ )
lowercase_ : Union[str, Any] = 1
lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(UpperCAmelCase__ ):
lowercase_ : Union[str, Any] = chunk_data
else:
lowercase_ : Any = data
def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] ) -> str:
if name in group.attrs:
lowercase_ : Optional[Any] = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs[name]]
else:
lowercase_ : int = []
lowercase_ : Optional[int] = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] )
chunk_id += 1
return data
def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> Any:
def _expand_single_ad_tensor(UpperCAmelCase__ : Optional[Any] ):
if isinstance(UpperCAmelCase__ , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(UpperCAmelCase__ , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase__ )
| 21 | 0 |
'''simple docstring'''
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def lowerCamelCase ( ) -> str:
lowercase_ : List[str] = ArgumentParser(
description=(
"""PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes"""
) )
# Optional arguments for the launch helper
parser.add_argument("""--num_cores""" , type=a__ , default=1 , help="""Number of TPU cores to use (1 or 8).""" )
# positional
parser.add_argument(
"""training_script""" , type=a__ , help=(
"""The full path to the single TPU training """
"""program/script to be launched in parallel, """
"""followed by all the arguments for the """
"""training script"""
) , )
# rest from the training program
parser.add_argument("""training_script_args""" , nargs=a__ )
return parser.parse_args()
def lowerCamelCase ( ) -> Dict:
lowercase_ : Optional[Any] = parse_args()
# Import training_script as a module.
lowercase_ : Optional[Any] = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
lowercase_ : Optional[int] = script_fpath.stem
lowercase_ : List[Any] = importlib.import_module(a__ )
# Patch sys.argv
lowercase_ : str = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 369 | '''simple docstring'''
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def lowerCamelCase ( UpperCAmelCase__ : int ) -> int:
lowercase_ : Any = prime_factors(UpperCAmelCase__ )
if is_square_free(UpperCAmelCase__ ):
return -1 if len(UpperCAmelCase__ ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 | 0 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class __magic_name__ ( metaclass=__UpperCamelCase):
UpperCamelCase__ = ["flax", "transformers"]
def __init__( self : List[str] , *lowercase_ : List[Any] , **lowercase_ : Dict ):
requires_backends(self , ["""flax""", """transformers"""] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : int , *lowercase_ : str , **lowercase_ : int ):
requires_backends(cls , ["""flax""", """transformers"""] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : int , *lowercase_ : Optional[int] , **lowercase_ : Optional[int] ):
requires_backends(cls , ["""flax""", """transformers"""] )
class __magic_name__ ( metaclass=__UpperCamelCase):
UpperCamelCase__ = ["flax", "transformers"]
def __init__( self : int , *lowercase_ : Optional[int] , **lowercase_ : List[str] ):
requires_backends(self , ["""flax""", """transformers"""] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : int , *lowercase_ : Any , **lowercase_ : Union[str, Any] ):
requires_backends(cls , ["""flax""", """transformers"""] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Tuple , *lowercase_ : List[Any] , **lowercase_ : List[str] ):
requires_backends(cls , ["""flax""", """transformers"""] )
class __magic_name__ ( metaclass=__UpperCamelCase):
UpperCamelCase__ = ["flax", "transformers"]
def __init__( self : Dict , *lowercase_ : Tuple , **lowercase_ : Union[str, Any] ):
requires_backends(self , ["""flax""", """transformers"""] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : int , *lowercase_ : int , **lowercase_ : Tuple ):
requires_backends(cls , ["""flax""", """transformers"""] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Any , *lowercase_ : int , **lowercase_ : int ):
requires_backends(cls , ["""flax""", """transformers"""] )
class __magic_name__ ( metaclass=__UpperCamelCase):
UpperCamelCase__ = ["flax", "transformers"]
def __init__( self : Any , *lowercase_ : Dict , **lowercase_ : int ):
requires_backends(self , ["""flax""", """transformers"""] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , *lowercase_ : str , **lowercase_ : List[Any] ):
requires_backends(cls , ["""flax""", """transformers"""] )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[str] , *lowercase_ : Union[str, Any] , **lowercase_ : List[Any] ):
requires_backends(cls , ["""flax""", """transformers"""] )
| 370 | '''simple docstring'''
def lowerCamelCase ( UpperCAmelCase__ : int = 1000000 ) -> int:
lowercase_ : List[Any] = limit + 1
lowercase_ : Optional[Any] = [0] * limit
for first_term in range(1 , UpperCAmelCase__ ):
for n in range(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ):
lowercase_ : List[Any] = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
lowercase_ : List[Any] = sum(1 for x in frequency[1:limit] if x == 10 )
return count
if __name__ == "__main__":
print(f"""{solution() = }""")
| 21 | 0 |
from math import factorial
def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : float ) -> str:
if successes > trials:
raise ValueError("""successes must be lower or equal to trials""" )
if trials < 0 or successes < 0:
raise ValueError("""the function is defined for non-negative integers""" )
if not isinstance(__a , __a ) or not isinstance(__a , __a ):
raise ValueError("""the function is defined for non-negative integers""" )
if not 0 < prob < 1:
raise ValueError("""prob has to be in range of 1 - 0""" )
lowercase_ : str = (prob**successes) * ((1 - prob) ** (trials - successes))
# Calculate the binomial coefficient: n! / k!(n-k)!
lowercase_ : Optional[int] = float(factorial(__a ) )
coefficient /= factorial(__a ) * factorial(trials - successes )
return probability * coefficient
if __name__ == "__main__":
from doctest import testmod
testmod()
print("Probability of 2 successes out of 4 trails")
print("with probability of 0.75 is:", end=" ")
print(binomial_distribution(2, 4, 0.7_5))
| 371 | '''simple docstring'''
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __magic_name__ ( unittest.TestCase):
@parameterized.expand([(None,), ("""foo.json""",)] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str ):
lowercase_ : Union[str, Any] = GenerationConfig(
do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowercase_ , config_name=lowercase_ )
lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_ )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , lowercase_ )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 50 )
self.assertEqual(loaded_config.max_length , 20 )
self.assertEqual(loaded_config.max_time , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : int = AutoConfig.from_pretrained("""gpt2""" )
lowercase_ : List[Any] = GenerationConfig.from_model_config(lowercase_ )
lowercase_ : Optional[int] = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(lowercase_ , lowercase_ )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Optional[int] = GenerationConfig()
lowercase_ : int = {
"""max_new_tokens""": 1024,
"""foo""": """bar""",
}
lowercase_ : List[str] = copy.deepcopy(lowercase_ )
lowercase_ : Tuple = generation_config.update(**lowercase_ )
# update_kwargs was not modified (no side effects)
self.assertEqual(lowercase_ , lowercase_ )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1024 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(lowercase_ , {"""foo""": """bar"""} )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
lowercase_ : Dict = GenerationConfig()
lowercase_ : int = """bar"""
with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir:
generation_config.save_pretrained(lowercase_ )
lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , """bar""" )
lowercase_ : List[str] = GenerationConfig.from_model_config(lowercase_ )
assert not hasattr(lowercase_ , """foo""" ) # no new kwargs should be initialized if from config
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
lowercase_ : Optional[int] = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , lowercase_ )
self.assertEqual(default_config.num_beams , 1 )
lowercase_ : Dict = GenerationConfig(
do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , lowercase_ )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowercase_ )
lowercase_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , lowercase_ )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class __magic_name__ ( unittest.TestCase):
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Any ):
lowercase_ : int = TOKEN
HfFolder.save_token(lowercase_ )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[Any] ):
try:
delete_repo(token=cls._token , repo_id="""test-generation-config""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" )
except HTTPError:
pass
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Tuple = GenerationConfig(
do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("""test-generation-config""" , use_auth_token=self._token )
lowercase_ : List[Any] = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
# Reset repo
delete_repo(token=self._token , repo_id="""test-generation-config""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
lowercase_ , repo_id="""test-generation-config""" , push_to_hub=lowercase_ , use_auth_token=self._token )
lowercase_ : int = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : List[Any] = GenerationConfig(
do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token )
lowercase_ : Optional[Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
lowercase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowercase_ , use_auth_token=self._token )
lowercase_ : int = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
| 21 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import torch
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
@dataclass
class __magic_name__ ( lowercase__):
UpperCamelCase__ = 42
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_text_to_video_synth import TextToVideoSDPipeline
from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401
from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
| 350 | '''simple docstring'''
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] ) -> List[Any]:
# Initialise PyTorch model
lowercase_ : List[str] = FunnelConfig.from_json_file(UpperCAmelCase__ )
print(F'''Building PyTorch model from configuration: {config}''' )
lowercase_ : Dict = FunnelBaseModel(UpperCAmelCase__ ) if base_model else FunnelModel(UpperCAmelCase__ )
# Load weights from tf checkpoint
load_tf_weights_in_funnel(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , UpperCAmelCase__ )
if __name__ == "__main__":
_lowercase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.",
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not."
)
_lowercase : Union[str, Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
)
| 21 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : Union[str, Any] = logging.get_logger(__name__)
_lowercase : List[str] = {
"""facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""",
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class __magic_name__ ( __snake_case):
UpperCamelCase__ = '''vit_mae'''
def __init__( self : str , lowercase_ : List[Any]=768 , lowercase_ : Optional[Any]=12 , lowercase_ : Optional[Any]=12 , lowercase_ : Dict=3072 , lowercase_ : List[Any]="gelu" , lowercase_ : Tuple=0.0 , lowercase_ : str=0.0 , lowercase_ : int=0.02 , lowercase_ : int=1E-12 , lowercase_ : Optional[Any]=224 , lowercase_ : int=16 , lowercase_ : Any=3 , lowercase_ : List[str]=True , lowercase_ : Union[str, Any]=16 , lowercase_ : List[str]=512 , lowercase_ : str=8 , lowercase_ : Optional[int]=2048 , lowercase_ : Optional[Any]=0.75 , lowercase_ : str=False , **lowercase_ : Dict , ):
super().__init__(**a_ )
lowercase_ : str = hidden_size
lowercase_ : Optional[int] = num_hidden_layers
lowercase_ : Tuple = num_attention_heads
lowercase_ : Union[str, Any] = intermediate_size
lowercase_ : List[Any] = hidden_act
lowercase_ : str = hidden_dropout_prob
lowercase_ : Optional[Any] = attention_probs_dropout_prob
lowercase_ : Any = initializer_range
lowercase_ : List[str] = layer_norm_eps
lowercase_ : List[Any] = image_size
lowercase_ : Union[str, Any] = patch_size
lowercase_ : List[Any] = num_channels
lowercase_ : List[str] = qkv_bias
lowercase_ : str = decoder_num_attention_heads
lowercase_ : Tuple = decoder_hidden_size
lowercase_ : str = decoder_num_hidden_layers
lowercase_ : int = decoder_intermediate_size
lowercase_ : Dict = mask_ratio
lowercase_ : List[Any] = norm_pix_loss
| 351 | '''simple docstring'''
import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
_lowercase : Optional[List[str]] = None
_lowercase : str = "<" if sys.byteorder == "little" else ">"
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
_lowercase : Optional[int] = [
np.dtype("|b1"),
np.dtype("|u1"),
np.dtype("<u2"),
np.dtype(">u2"),
np.dtype("<i2"),
np.dtype(">i2"),
np.dtype("<u4"),
np.dtype(">u4"),
np.dtype("<i4"),
np.dtype(">i4"),
np.dtype("<f4"),
np.dtype(">f4"),
np.dtype("<f8"),
np.dtype(">f8"),
]
@dataclass
class __magic_name__ :
UpperCamelCase__ = True
UpperCamelCase__ = None
# Automatically constructed
UpperCamelCase__ = "PIL.Image.Image"
UpperCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()})
UpperCamelCase__ = field(default='''Image''', init=_UpperCAmelCase, repr=_UpperCAmelCase)
def __call__( self : Tuple ):
return self.pa_type
def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ):
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if isinstance(lowercase_ , lowercase_ ):
lowercase_ : int = np.array(lowercase_ )
if isinstance(lowercase_ , lowercase_ ):
return {"path": value, "bytes": None}
elif isinstance(lowercase_ , lowercase_ ):
return {"path": None, "bytes": value}
elif isinstance(lowercase_ , np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(lowercase_ )
elif isinstance(lowercase_ , PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(lowercase_ )
elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get("""path""" )}
elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )}
else:
raise ValueError(
f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : dict , lowercase_ : List[str]=None ):
if not self.decode:
raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support decoding images, please install 'Pillow'.""" )
if token_per_repo_id is None:
lowercase_ : Union[str, Any] = {}
lowercase_ , lowercase_ : List[Any] = value["""path"""], value["""bytes"""]
if bytes_ is None:
if path is None:
raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
else:
if is_local_path(lowercase_ ):
lowercase_ : int = PIL.Image.open(lowercase_ )
else:
lowercase_ : str = path.split("""::""" )[-1]
try:
lowercase_ : Any = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""]
lowercase_ : Optional[Any] = token_per_repo_id.get(lowercase_ )
except ValueError:
lowercase_ : str = None
with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f:
lowercase_ : Dict = BytesIO(f.read() )
lowercase_ : Optional[Any] = PIL.Image.open(bytes_ )
else:
lowercase_ : Any = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def SCREAMING_SNAKE_CASE_ ( self : int ):
from .features import Value
return (
self
if self.decode
else {
"bytes": Value("""binary""" ),
"path": Value("""string""" ),
}
)
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ):
if pa.types.is_string(storage.type ):
lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.binary() )
lowercase_ : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.string() )
lowercase_ : Any = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("""bytes""" ) >= 0:
lowercase_ : Optional[int] = storage.field("""bytes""" )
else:
lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() )
if storage.type.get_field_index("""path""" ) >= 0:
lowercase_ : Dict = storage.field("""path""" )
else:
lowercase_ : int = pa.array([None] * len(lowercase_ ) , type=pa.string() )
lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
lowercase_ : Optional[int] = pa.array(
[encode_np_array(np.array(lowercase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
lowercase_ : Tuple = pa.array([None] * len(lowercase_ ) , type=pa.string() )
lowercase_ : Tuple = pa.StructArray.from_arrays(
[bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(lowercase_ , self.pa_type )
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : pa.StructArray ):
@no_op_if_value_is_null
def path_to_bytes(lowercase_ : Optional[Any] ):
with xopen(lowercase_ , """rb""" ) as f:
lowercase_ : int = f.read()
return bytes_
lowercase_ : Optional[Any] = pa.array(
[
(path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
lowercase_ : Any = pa.array(
[os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , )
lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() )
return array_cast(lowercase_ , self.pa_type )
def lowerCamelCase ( ) -> List[str]:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
lowercase_ : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> bytes:
lowercase_ : Tuple = BytesIO()
if image.format in list_image_compression_formats():
lowercase_ : int = image.format
else:
lowercase_ : int = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF"""
image.save(UpperCAmelCase__ , format=UpperCAmelCase__ )
return buffer.getvalue()
def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> dict:
if hasattr(UpperCAmelCase__ , """filename""" ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )}
def lowerCamelCase ( UpperCAmelCase__ : np.ndarray ) -> dict:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
lowercase_ : List[Any] = array.dtype
lowercase_ : int = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER
lowercase_ : Dict = dtype.kind
lowercase_ : List[Any] = dtype.itemsize
lowercase_ : Any = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
lowercase_ : int = np.dtype("""|u1""" )
if dtype_kind not in ["u", "i"]:
raise TypeError(
F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' )
if dtype is not dest_dtype:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
lowercase_ : str = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
lowercase_ : str = dtype_byteorder + dtype_kind + str(UpperCAmelCase__ )
lowercase_ : Optional[Any] = np.dtype(UpperCAmelCase__ )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' )
lowercase_ : Optional[int] = PIL.Image.fromarray(array.astype(UpperCAmelCase__ ) )
return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )}
def lowerCamelCase ( UpperCAmelCase__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError("""To support encoding images, please install 'Pillow'.""" )
if objs:
lowercase_ , lowercase_ : Dict = first_non_null_value(UpperCAmelCase__ )
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(UpperCAmelCase__ , np.ndarray ):
lowercase_ : Union[str, Any] = no_op_if_value_is_null(UpperCAmelCase__ )
return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs]
elif isinstance(UpperCAmelCase__ , PIL.Image.Image ):
lowercase_ : int = no_op_if_value_is_null(UpperCAmelCase__ )
return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs]
else:
return objs
else:
return objs
| 21 | 0 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __magic_name__ :
def __init__( self : Dict , lowercase_ : Optional[Any] , lowercase_ : str=13 , lowercase_ : List[Any]=30 , lowercase_ : Any=2 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[int]=True , lowercase_ : str=True , lowercase_ : Union[str, Any]=32 , lowercase_ : List[Any]=2 , lowercase_ : Tuple=4 , lowercase_ : str=37 , lowercase_ : Optional[int]="gelu" , lowercase_ : List[Any]=0.1 , lowercase_ : str=0.1 , lowercase_ : Optional[Any]=10 , lowercase_ : int=0.02 , lowercase_ : str=3 , lowercase_ : int=0.6 , lowercase_ : Tuple=None , ):
lowercase_ : Dict = parent
lowercase_ : List[str] = batch_size
lowercase_ : Optional[int] = image_size
lowercase_ : List[Any] = patch_size
lowercase_ : List[Any] = num_channels
lowercase_ : Optional[int] = is_training
lowercase_ : Tuple = use_labels
lowercase_ : Any = hidden_size
lowercase_ : List[Any] = num_hidden_layers
lowercase_ : str = num_attention_heads
lowercase_ : Any = intermediate_size
lowercase_ : Union[str, Any] = hidden_act
lowercase_ : List[Any] = hidden_dropout_prob
lowercase_ : str = attention_probs_dropout_prob
lowercase_ : Optional[Any] = type_sequence_label_size
lowercase_ : List[str] = initializer_range
lowercase_ : int = mask_ratio
lowercase_ : List[str] = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
lowercase_ : str = (image_size // patch_size) ** 2
lowercase_ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowercase_ : int = None
if self.use_labels:
lowercase_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase_ : Dict = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE_ ( self : int ):
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Any , lowercase_ : str , lowercase_ : Union[str, Any] ):
lowercase_ : Union[str, Any] = TFViTMAEModel(config=snake_case__ )
lowercase_ : List[Any] = model(snake_case__ , training=snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : List[str] ):
lowercase_ : Union[str, Any] = TFViTMAEForPreTraining(snake_case__ )
lowercase_ : Union[str, Any] = model(snake_case__ , training=snake_case__ )
# expected sequence length = num_patches
lowercase_ : int = (self.image_size // self.patch_size) ** 2
lowercase_ : Dict = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
lowercase_ : Tuple = 1
lowercase_ : Any = TFViTMAEForPreTraining(snake_case__ )
lowercase_ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowercase_ : Dict = model(snake_case__ , training=snake_case__ )
lowercase_ : Optional[Any] = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : Tuple = self.prepare_config_and_inputs()
(lowercase_) : List[str] = config_and_inputs
lowercase_ : int = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class __magic_name__ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, unittest.TestCase):
UpperCamelCase__ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
UpperCamelCase__ = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {}
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
UpperCamelCase__ = False
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : Union[str, Any] = TFViTMAEModelTester(self )
lowercase_ : Tuple = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 )
def SCREAMING_SNAKE_CASE_ ( self : int ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMAE does not use inputs_embeds""" )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
pass
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ : str = model_class(snake_case__ )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
lowercase_ : int = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Layer ) )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ : int = model_class(snake_case__ )
lowercase_ : Any = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase_ : Tuple = [*signature.parameters.keys()]
lowercase_ : Optional[int] = ['pixel_values']
self.assertListEqual(arg_names[:1] , snake_case__ )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*snake_case__ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
np.random.seed(2 )
lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ : Any = int((config.image_size // config.patch_size) ** 2 )
lowercase_ : str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowercase_ : Optional[int] = model_class(snake_case__ )
lowercase_ : Union[str, Any] = self._prepare_for_class(snake_case__ , snake_case__ )
lowercase_ : Optional[int] = model(snake_case__ , noise=snake_case__ )
lowercase_ : int = copy.deepcopy(self._prepare_for_class(snake_case__ , snake_case__ ) )
lowercase_ : int = model(**snake_case__ , noise=snake_case__ )
lowercase_ : str = outputs_dict[0].numpy()
lowercase_ : int = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
np.random.seed(2 )
lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ : int = int((config.image_size // config.patch_size) ** 2 )
lowercase_ : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(lowercase_ : List[Any] ):
lowercase_ : Union[str, Any] = {}
for k, v in inputs_dict.items():
if tf.is_tensor(snake_case__ ):
lowercase_ : Tuple = v.numpy()
else:
lowercase_ : int = np.array(snake_case__ )
return inputs_np_dict
for model_class in self.all_model_classes:
lowercase_ : List[Any] = model_class(snake_case__ )
lowercase_ : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ )
lowercase_ : int = prepare_numpy_arrays(snake_case__ )
lowercase_ : Tuple = model(snake_case__ , noise=snake_case__ )
lowercase_ : Optional[int] = model(**snake_case__ , noise=snake_case__ )
self.assert_outputs_same(snake_case__ , snake_case__ )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : List[str] ):
np.random.seed(2 )
lowercase_ : int = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
lowercase_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowercase_ : Optional[int] = tf.constant(snake_case__ )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
lowercase_ : Union[str, Any] = tf_noise
super().check_pt_tf_models(snake_case__ , snake_case__ , snake_case__ )
def SCREAMING_SNAKE_CASE_ ( self : str ):
np.random.seed(2 )
lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ : int = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(snake_case__ )
if module_member_name.endswith("""MainLayer""" )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )]
for module_member in (getattr(snake_case__ , snake_case__ ),)
if isinstance(snake_case__ , snake_case__ )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(snake_case__ , """_keras_serializable""" , snake_case__ )
}
lowercase_ : List[Any] = int((config.image_size // config.patch_size) ** 2 )
lowercase_ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
lowercase_ : str = tf.convert_to_tensor(snake_case__ )
inputs_dict.update({"""noise""": noise} )
for main_layer_class in tf_main_layer_classes:
lowercase_ : List[Any] = main_layer_class(snake_case__ )
lowercase_ : Dict = {
name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
lowercase_ : List[Any] = tf.keras.Model(snake_case__ , outputs=main_layer(snake_case__ ) )
lowercase_ : Tuple = model(snake_case__ )
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase_ : str = os.path.join(snake_case__ , """keras_model.h5""" )
model.save(snake_case__ )
lowercase_ : Optional[int] = tf.keras.models.load_model(
snake_case__ , custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(snake_case__ , tf.keras.Model )
lowercase_ : List[str] = model(snake_case__ )
self.assert_outputs_same(snake_case__ , snake_case__ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
np.random.seed(2 )
lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ : Tuple = int((config.image_size // config.patch_size) ** 2 )
lowercase_ : Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowercase_ : List[str] = model_class(snake_case__ )
lowercase_ : str = self._prepare_for_class(snake_case__ , snake_case__ )
lowercase_ : str = model(snake_case__ , noise=snake_case__ )
if model_class.__name__ == "TFViTMAEModel":
lowercase_ : Tuple = outputs.last_hidden_state.numpy()
lowercase_ : int = 0
else:
lowercase_ : Optional[int] = outputs.logits.numpy()
lowercase_ : Union[str, Any] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(snake_case__ , saved_model=snake_case__ )
lowercase_ : List[Any] = model_class.from_pretrained(snake_case__ )
lowercase_ : List[Any] = model(snake_case__ , noise=snake_case__ )
if model_class.__name__ == "TFViTMAEModel":
lowercase_ : int = after_outputs['last_hidden_state'].numpy()
lowercase_ : Dict = 0
else:
lowercase_ : Tuple = after_outputs['logits'].numpy()
lowercase_ : List[Any] = 0
lowercase_ : Optional[Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(snake_case__ , 1E-5 )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
np.random.seed(2 )
lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ : Tuple = int((config.image_size // config.patch_size) ** 2 )
lowercase_ : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
lowercase_ : List[str] = model_class(snake_case__ )
lowercase_ : Optional[Any] = self._prepare_for_class(snake_case__ , snake_case__ )
lowercase_ : Tuple = model(snake_case__ , noise=snake_case__ )
lowercase_ : Union[str, Any] = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(snake_case__ )
lowercase_ : int = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
lowercase_ : str = model_class.from_config(model.config )
lowercase_ : int = new_model(snake_case__ ) # Build model
new_model.set_weights(model.get_weights() )
lowercase_ : List[str] = new_model(snake_case__ , noise=snake_case__ )
self.assert_outputs_same(snake_case__ , snake_case__ )
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.""" )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
pass
@unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
pass
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
lowercase_ : Tuple = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" )
self.assertIsNotNone(snake_case__ )
def lowerCamelCase ( ) -> int:
lowercase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class __magic_name__ ( unittest.TestCase):
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
np.random.seed(2 )
lowercase_ : Optional[int] = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" )
lowercase_ : str = self.default_image_processor
lowercase_ : List[Any] = prepare_img()
lowercase_ : Dict = image_processor(images=snake_case__ , return_tensors="""tf""" )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
lowercase_ : Dict = ViTMAEConfig()
lowercase_ : str = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
lowercase_ : Dict = np.random.uniform(size=(1, num_patches) )
# forward pass
lowercase_ : Dict = model(**snake_case__ , noise=snake_case__ )
# verify the logits
lowercase_ : Tuple = tf.convert_to_tensor([1, 196, 768] )
self.assertEqual(outputs.logits.shape , snake_case__ )
lowercase_ : int = tf.convert_to_tensor(
[[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] , snake_case__ , atol=1E-4 )
| 352 | '''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : float , UpperCAmelCase__ : int ) -> float:
lowercase_ : List[Any] = x
lowercase_ : Any = y
for step in range(UpperCAmelCase__ ): # noqa: B007
lowercase_ : Dict = a * a - b * b + x
lowercase_ : str = 2 * a * b + y
lowercase_ : Optional[Any] = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple:
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple:
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCAmelCase__ , 1 , 1 ) )
def lowerCamelCase ( UpperCAmelCase__ : int = 800 , UpperCAmelCase__ : int = 600 , UpperCAmelCase__ : float = -0.6 , UpperCAmelCase__ : float = 0 , UpperCAmelCase__ : float = 3.2 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : bool = True , ) -> Image.Image:
lowercase_ : Union[str, Any] = Image.new("""RGB""" , (image_width, image_height) )
lowercase_ : Tuple = img.load()
# loop through the image-coordinates
for image_x in range(UpperCAmelCase__ ):
for image_y in range(UpperCAmelCase__ ):
# determine the figure-coordinates based on the image-coordinates
lowercase_ : Any = figure_width / image_width * image_height
lowercase_ : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width
lowercase_ : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height
lowercase_ : str = get_distance(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
lowercase_ : List[Any] = get_color_coded_rgb(UpperCAmelCase__ )
else:
lowercase_ : Dict = get_black_and_white_rgb(UpperCAmelCase__ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
_lowercase : List[str] = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 21 | 0 |
'''simple docstring'''
import argparse
import shutil
import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import (
SeqaSeqDataset,
calculate_bleu,
calculate_rouge,
chunks,
lmap,
load_json,
parse_numeric_n_bool_cl_kwargs,
save_json,
use_task_specific_params,
write_txt_file,
)
_lowercase : Optional[int] = getLogger(__name__)
def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : int = 8 , UpperCAmelCase__ : int = 1024 , UpperCAmelCase__ : Optional[Any]="val" , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[str]=False , UpperCAmelCase__ : Optional[int]="summarization" , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : List[Any]=1 , UpperCAmelCase__ : Dict = None , UpperCAmelCase__ : Tuple="" , **UpperCAmelCase__ : str , ) -> Dict:
lowercase_ : Any = str(UpperCAmelCase__ )
assert local_rank is not None
torch.distributed.init_process_group(backend="""nccl""" , rank=UpperCAmelCase__ )
lowercase_ : str = Path(UpperCAmelCase__ )
lowercase_ : Union[str, Any] = save_dir.joinpath(F'''rank_{local_rank}_output.json''' )
torch.cuda.set_device(UpperCAmelCase__ )
lowercase_ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase__ ).cuda()
if fpaa:
lowercase_ : Optional[Any] = model.half()
# determine if we need to increase num_beams
use_task_specific_params(UpperCAmelCase__ , UpperCAmelCase__ ) # update config with task specific params
lowercase_ : Union[str, Any] = generate_kwargs.pop("""num_beams""" , model.config.num_beams ) # AttributeError risk?
if num_return_sequences > num_beams:
lowercase_ : int = num_return_sequences
lowercase_ : Optional[int] = AutoTokenizer.from_pretrained(UpperCAmelCase__ )
logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type.
if max_source_length is None:
lowercase_ : List[str] = tokenizer.model_max_length
if prefix is None:
lowercase_ : List[Any] = prefix or getattr(model.config , """prefix""" , """""" ) or """"""
lowercase_ : Optional[Any] = SeqaSeqDataset(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , max_target_length=1024 , type_path=UpperCAmelCase__ , n_obs=UpperCAmelCase__ , prefix=UpperCAmelCase__ , **UpperCAmelCase__ , )
# I set shuffle=True for a more accurate progress bar.
# If all the longest samples are first, the prog bar estimate is too high at the beginning.
lowercase_ : Tuple = ds.make_sortish_sampler(UpperCAmelCase__ , distributed=UpperCAmelCase__ , add_extra_examples=UpperCAmelCase__ , shuffle=UpperCAmelCase__ )
lowercase_ : Any = DataLoader(UpperCAmelCase__ , sampler=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , collate_fn=ds.collate_fn )
lowercase_ : Union[str, Any] = []
for batch in tqdm(UpperCAmelCase__ ):
lowercase_ : List[Any] = model.generate(
input_ids=batch["""input_ids"""].to(model.device ) , attention_mask=batch["""attention_mask"""].to(model.device ) , num_return_sequences=UpperCAmelCase__ , num_beams=UpperCAmelCase__ , **UpperCAmelCase__ , )
lowercase_ : str = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ )
lowercase_ : Dict = batch["""ids"""]
if num_return_sequences > 1:
lowercase_ : Optional[int] = chunks(UpperCAmelCase__ , UpperCAmelCase__ ) # batch size chunks, each of size num_return_seq
for i, pred in enumerate(UpperCAmelCase__ ):
results.append({"""pred""": pred, """id""": ids[i].item()} )
save_json(UpperCAmelCase__ , UpperCAmelCase__ )
return results, sampler.num_replicas
def lowerCamelCase ( ) -> Dict:
lowercase_ : Optional[Any] = argparse.ArgumentParser(
epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" )
parser.add_argument("""--data_dir""" , type=UpperCAmelCase__ , help="""like cnn_dm/test.source""" )
parser.add_argument(
"""--model_name""" , type=UpperCAmelCase__ , help="""like facebook/bart-large-cnn,t5-base, etc.""" , default="""sshleifer/distilbart-xsum-12-3""" , )
parser.add_argument("""--save_dir""" , type=UpperCAmelCase__ , help="""where to save""" , default="""tmp_gen""" )
parser.add_argument("""--max_source_length""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ )
parser.add_argument(
"""--type_path""" , type=UpperCAmelCase__ , default="""test""" , help="""which subset to evaluate typically train/val/test""" )
parser.add_argument("""--task""" , type=UpperCAmelCase__ , default="""summarization""" , help="""used for task_specific_params + metrics""" )
parser.add_argument("""--bs""" , type=UpperCAmelCase__ , default=8 , required=UpperCAmelCase__ , help="""batch size""" )
parser.add_argument(
"""--local_rank""" , type=UpperCAmelCase__ , default=-1 , required=UpperCAmelCase__ , help="""should be passed by distributed.launch""" )
parser.add_argument(
"""--n_obs""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , required=UpperCAmelCase__ , help="""How many observations. Defaults to all.""" )
parser.add_argument(
"""--num_return_sequences""" , type=UpperCAmelCase__ , default=1 , required=UpperCAmelCase__ , help="""How many sequences to return""" )
parser.add_argument(
"""--sync_timeout""" , type=UpperCAmelCase__ , default=600 , required=UpperCAmelCase__ , help="""How long should master process wait for other processes to finish.""" , )
parser.add_argument("""--src_lang""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , required=UpperCAmelCase__ )
parser.add_argument("""--tgt_lang""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , required=UpperCAmelCase__ )
parser.add_argument(
"""--prefix""" , type=UpperCAmelCase__ , required=UpperCAmelCase__ , default=UpperCAmelCase__ , help="""will be added to the begininng of src examples""" )
parser.add_argument("""--fp16""" , action="""store_true""" )
parser.add_argument("""--debug""" , action="""store_true""" )
lowercase_ : int = time.time()
lowercase_ , lowercase_ : Optional[Any] = parser.parse_known_args()
lowercase_ : List[str] = parse_numeric_n_bool_cl_kwargs(UpperCAmelCase__ )
if generate_kwargs and args.local_rank <= 0:
print(F'''parsed the following generate kwargs: {generate_kwargs}''' )
lowercase_ : Tuple = Path(args.save_dir + """_tmp""" )
Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) # this handles locking.
lowercase_ : List[Any] = list(json_save_dir.glob("""rank_*.json""" ) )
if intermediate_files:
raise ValueError(F'''Found files at {json_save_dir} please move or remove them.''' )
# In theory, a node could finish and save before another node hits this. If this happens, we can address later.
lowercase_ : Tuple = {}
if args.src_lang is not None:
lowercase_ : List[str] = args.src_lang
if args.tgt_lang is not None:
lowercase_ : str = args.tgt_lang
Path(args.save_dir ).mkdir(exist_ok=UpperCAmelCase__ )
lowercase_ , lowercase_ : List[str] = eval_data_dir(
args.data_dir , UpperCAmelCase__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=UpperCAmelCase__ , **UpperCAmelCase__ , )
if args.local_rank <= 0:
lowercase_ : List[str] = Path(args.save_dir )
save_dir.mkdir(exist_ok=UpperCAmelCase__ )
lowercase_ : Optional[int] = gather_results_from_each_node(UpperCAmelCase__ , UpperCAmelCase__ , args.sync_timeout )
lowercase_ : Tuple = combine_partial_results(UpperCAmelCase__ )
if args.num_return_sequences > 1:
lowercase_ : Optional[int] = save_dir.joinpath("""pseudolabel_results.json""" )
print(F'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' )
save_json(UpperCAmelCase__ , UpperCAmelCase__ )
return
lowercase_ : Any = Path(args.data_dir ).joinpath(args.type_path + """.target""" )
with open(UpperCAmelCase__ ) as f:
lowercase_ : Tuple = [x.rstrip() for x in f.readlines()][: len(UpperCAmelCase__ )]
# Calculate metrics, save metrics, and save _generations.txt
lowercase_ : Dict = """translation""" in args.task
lowercase_ : Optional[int] = calculate_bleu if calc_bleu else calculate_rouge
lowercase_ : Optional[Any] = """bleu""" if calc_bleu else """rouge"""
lowercase_ : Union[str, Any] = score_fn(UpperCAmelCase__ , UpperCAmelCase__ )
lowercase_ : int = len(UpperCAmelCase__ )
lowercase_ : int = time.time() - start_time
lowercase_ : List[str] = round(runtime / metrics["""n_obs"""] , 4 )
lowercase_ : int = num_replicas
# TODO(@stas00): add whatever metadata to metrics
lowercase_ : List[Any] = save_dir.joinpath(F'''{args.type_path}_{metric_name}.json''' )
save_json(UpperCAmelCase__ , UpperCAmelCase__ , indent=UpperCAmelCase__ )
print(UpperCAmelCase__ )
write_txt_file(UpperCAmelCase__ , save_dir.joinpath(F'''{args.type_path}_generations.txt''' ) )
if args.debug:
write_txt_file(UpperCAmelCase__ , save_dir.joinpath(F'''{args.type_path}.target''' ) )
else:
shutil.rmtree(UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : str ) -> List:
lowercase_ : Optional[int] = []
for partial_result in partial_results:
records.extend(UpperCAmelCase__ )
lowercase_ : Union[str, Any] = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : x["id"] )
lowercase_ : Optional[Any] = [x["""pred"""] for x in records]
return preds
def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] ) -> List[Dict[str, List]]:
# WAIT FOR lots of .json files
lowercase_ : Union[str, Any] = time.time()
logger.info("""waiting for all nodes to finish""" )
lowercase_ : Optional[Any] = None
while (time.time() - start_wait) < timeout:
lowercase_ : Dict = list(save_dir.glob("""rank_*.json""" ) )
if len(UpperCAmelCase__ ) < num_replicas:
continue
try:
# make sure all json files are fully saved
lowercase_ : List[str] = lmap(UpperCAmelCase__ , UpperCAmelCase__ )
return json_data
except JSONDecodeError:
continue
else:
raise TimeoutError("""Rank 0 gave up on waiting for other processes""" )
# Unreachable
if __name__ == "__main__":
# Usage for MT:
run_generate()
| 353 | '''simple docstring'''
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class __magic_name__ ( _UpperCAmelCase):
UpperCamelCase__ = DistilBertTokenizer
UpperCamelCase__ = DistilBertTokenizerFast
UpperCamelCase__ = True
@slow
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : int = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" )
lowercase_ : str = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ )
lowercase_ : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ )
lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowercase_ )
lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ )
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 21 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase : str = logging.get_logger(__name__)
_lowercase : Union[str, Any] = {
'''MIT/ast-finetuned-audioset-10-10-0.4593''': (
'''https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json'''
),
}
class __magic_name__ ( _UpperCAmelCase):
UpperCamelCase__ = 'audio-spectrogram-transformer'
def __init__( self : Optional[int] , lowercase_ : Tuple=768 , lowercase_ : Dict=12 , lowercase_ : Optional[Any]=12 , lowercase_ : List[Any]=3072 , lowercase_ : Tuple="gelu" , lowercase_ : Union[str, Any]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : Optional[int]=0.02 , lowercase_ : Optional[int]=1E-12 , lowercase_ : Optional[Any]=16 , lowercase_ : List[str]=True , lowercase_ : List[Any]=10 , lowercase_ : Dict=10 , lowercase_ : List[Any]=1024 , lowercase_ : int=128 , **lowercase_ : Any , ):
super().__init__(**SCREAMING_SNAKE_CASE_ )
lowercase_ : Optional[Any] = hidden_size
lowercase_ : Tuple = num_hidden_layers
lowercase_ : List[Any] = num_attention_heads
lowercase_ : Any = intermediate_size
lowercase_ : Optional[int] = hidden_act
lowercase_ : List[str] = hidden_dropout_prob
lowercase_ : Optional[int] = attention_probs_dropout_prob
lowercase_ : Union[str, Any] = initializer_range
lowercase_ : Tuple = layer_norm_eps
lowercase_ : Tuple = patch_size
lowercase_ : Tuple = qkv_bias
lowercase_ : Optional[Any] = frequency_stride
lowercase_ : Dict = time_stride
lowercase_ : Any = max_length
lowercase_ : Any = num_mel_bins
| 354 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
_lowercase : Union[str, Any] = {"tokenization_herbert": ["HerbertTokenizer"]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : str = ["HerbertTokenizerFast"]
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
_lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowercase : Dict = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : str = [
"IBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"IBertForMaskedLM",
"IBertForMultipleChoice",
"IBertForQuestionAnswering",
"IBertForSequenceClassification",
"IBertForTokenClassification",
"IBertModel",
"IBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ibert import (
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
IBertForMaskedLM,
IBertForMultipleChoice,
IBertForQuestionAnswering,
IBertForSequenceClassification,
IBertForTokenClassification,
IBertModel,
IBertPreTrainedModel,
)
else:
import sys
_lowercase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 355 | '''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
_lowercase : Union[str, Any] = {
"configuration_encodec": [
"ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP",
"EncodecConfig",
],
"feature_extraction_encodec": ["EncodecFeatureExtractor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] = [
"ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST",
"EncodecModel",
"EncodecPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_encodec import (
ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP,
EncodecConfig,
)
from .feature_extraction_encodec import EncodecFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encodec import (
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST,
EncodecModel,
EncodecPreTrainedModel,
)
else:
import sys
_lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21 | 0 |
'''simple docstring'''
from graphs.minimum_spanning_tree_kruskal import kruskal
def lowerCamelCase ( ) -> Optional[int]:
lowercase_ : Dict = 9
lowercase_ : Union[str, Any] = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
lowercase_ : Tuple = kruskal(A__ , A__ )
lowercase_ : Optional[Any] = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
assert sorted(A__ ) == sorted(A__ )
| 356 | '''simple docstring'''
import os
import numpy
import onnx
def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ) -> Tuple:
lowercase_ : Tuple = a.name
lowercase_ : Tuple = b.name
lowercase_ : Any = """"""
lowercase_ : List[Any] = """"""
lowercase_ : List[Any] = a == b
lowercase_ : Union[str, Any] = name_a
lowercase_ : Optional[Any] = name_b
return res
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]:
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(UpperCAmelCase__ , UpperCAmelCase__ )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ )
_graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase__ , UpperCAmelCase__ )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) -> int:
for n in graph_proto.node:
_node_replace_input_with(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ) -> List[str]:
lowercase_ : int = list(model.graph.initializer )
lowercase_ : List[str] = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
lowercase_ : Optional[Any] = inits[i].name
lowercase_ : List[str] = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : int ) -> List[str]:
lowercase_ : Dict = os.path.dirname(UpperCAmelCase__ )
lowercase_ : Optional[Any] = os.path.basename(UpperCAmelCase__ )
lowercase_ : str = onnx.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) )
lowercase_ : List[Any] = list(model.graph.initializer )
lowercase_ : int = set()
lowercase_ : int = {}
lowercase_ : str = []
lowercase_ : int = 0
for i in range(len(UpperCAmelCase__ ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(UpperCAmelCase__ ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(UpperCAmelCase__ )
dup_set.add(UpperCAmelCase__ )
lowercase_ : Dict = inits[j].data_type
lowercase_ : List[str] = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("""unexpected data type: """ , UpperCAmelCase__ )
total_reduced_size += mem_size
lowercase_ : int = inits[i].name
lowercase_ : List[str] = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(UpperCAmelCase__ )
else:
lowercase_ : Optional[int] = [name_j]
ind_to_replace.append((j, i) )
print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" )
lowercase_ : Tuple = sorted(UpperCAmelCase__ )
_remove_dup_initializers_from_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
lowercase_ : Union[str, Any] = """optimized_""" + model_file_name
lowercase_ : Optional[int] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ )
onnx.save(UpperCAmelCase__ , UpperCAmelCase__ )
return new_model
| 21 | 0 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
_lowercase : Tuple = logging.get_logger(__name__)
# General docstring
_lowercase : int = "RegNetConfig"
# Base docstring
_lowercase : Union[str, Any] = "facebook/regnet-y-040"
_lowercase : Tuple = [1, 1088, 7, 7]
# Image classification docstring
_lowercase : Tuple = "facebook/regnet-y-040"
_lowercase : List[str] = "tabby, tabby cat"
_lowercase : str = [
"facebook/regnet-y-040",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class __magic_name__ ( tf.keras.layers.Layer):
def __init__( self : Dict , lowercase_ : int , lowercase_ : int = 3 , lowercase_ : int = 1 , lowercase_ : int = 1 , lowercase_ : Optional[str] = "relu" , **lowercase_ : Optional[Any] , ):
super().__init__(**__lowerCAmelCase )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
lowercase_ : int = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
lowercase_ : Optional[Any] = tf.keras.layers.ConvaD(
filters=__lowerCAmelCase , kernel_size=__lowerCAmelCase , strides=__lowerCAmelCase , padding="""VALID""" , groups=__lowerCAmelCase , use_bias=__lowerCAmelCase , name="""convolution""" , )
lowercase_ : Any = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" )
lowercase_ : Any = ACTaFN[activation] if activation is not None else tf.identity
def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : Optional[int] ):
lowercase_ : str = self.convolution(self.padding(__lowerCAmelCase ) )
lowercase_ : Optional[Any] = self.normalization(__lowerCAmelCase )
lowercase_ : List[str] = self.activation(__lowerCAmelCase )
return hidden_state
class __magic_name__ ( tf.keras.layers.Layer):
def __init__( self : Optional[int] , lowercase_ : RegNetConfig , **lowercase_ : Dict ):
super().__init__(**__lowerCAmelCase )
lowercase_ : List[str] = config.num_channels
lowercase_ : Tuple = TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , )
def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Optional[int] ):
lowercase_ : Tuple = shape_list(__lowerCAmelCase )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"""Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
lowercase_ : Union[str, Any] = tf.transpose(__lowerCAmelCase , perm=(0, 2, 3, 1) )
lowercase_ : Optional[int] = self.embedder(__lowerCAmelCase )
return hidden_state
class __magic_name__ ( tf.keras.layers.Layer):
def __init__( self : str , lowercase_ : int , lowercase_ : int = 2 , **lowercase_ : List[str] ):
super().__init__(**__lowerCAmelCase )
lowercase_ : List[str] = tf.keras.layers.ConvaD(
filters=__lowerCAmelCase , kernel_size=1 , strides=__lowerCAmelCase , use_bias=__lowerCAmelCase , name="""convolution""" )
lowercase_ : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="""normalization""" )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : tf.Tensor , lowercase_ : bool = False ):
return self.normalization(self.convolution(__lowerCAmelCase ) , training=__lowerCAmelCase )
class __magic_name__ ( tf.keras.layers.Layer):
def __init__( self : Union[str, Any] , lowercase_ : int , lowercase_ : int , **lowercase_ : int ):
super().__init__(**__lowerCAmelCase )
lowercase_ : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCAmelCase , name="""pooler""" )
lowercase_ : List[Any] = [
tf.keras.layers.ConvaD(filters=__lowerCAmelCase , kernel_size=1 , activation="""relu""" , name="""attention.0""" ),
tf.keras.layers.ConvaD(filters=__lowerCAmelCase , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ),
]
def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Optional[int] ):
# [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels]
lowercase_ : Tuple = self.pooler(__lowerCAmelCase )
for layer_module in self.attention:
lowercase_ : Optional[Any] = layer_module(__lowerCAmelCase )
lowercase_ : str = hidden_state * pooled
return hidden_state
class __magic_name__ ( tf.keras.layers.Layer):
def __init__( self : Any , lowercase_ : RegNetConfig , lowercase_ : int , lowercase_ : int , lowercase_ : int = 1 , **lowercase_ : List[str] ):
super().__init__(**__lowerCAmelCase )
lowercase_ : Union[str, Any] = in_channels != out_channels or stride != 1
lowercase_ : Optional[Any] = max(1 , out_channels // config.groups_width )
lowercase_ : List[str] = (
TFRegNetShortCut(__lowerCAmelCase , stride=__lowerCAmelCase , name="""shortcut""" )
if should_apply_shortcut
else tf.keras.layers.Activation("""linear""" , name="""shortcut""" )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
lowercase_ : Dict = [
TFRegNetConvLayer(__lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ),
TFRegNetConvLayer(
__lowerCAmelCase , stride=__lowerCAmelCase , groups=__lowerCAmelCase , activation=config.hidden_act , name="""layer.1""" ),
TFRegNetConvLayer(__lowerCAmelCase , kernel_size=1 , activation=__lowerCAmelCase , name="""layer.2""" ),
]
lowercase_ : Optional[int] = ACTaFN[config.hidden_act]
def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Any ):
lowercase_ : Optional[int] = hidden_state
for layer_module in self.layers:
lowercase_ : Optional[Any] = layer_module(__lowerCAmelCase )
lowercase_ : Optional[int] = self.shortcut(__lowerCAmelCase )
hidden_state += residual
lowercase_ : int = self.activation(__lowerCAmelCase )
return hidden_state
class __magic_name__ ( tf.keras.layers.Layer):
def __init__( self : Tuple , lowercase_ : RegNetConfig , lowercase_ : int , lowercase_ : int , lowercase_ : int = 1 , **lowercase_ : List[Any] ):
super().__init__(**__lowerCAmelCase )
lowercase_ : Optional[Any] = in_channels != out_channels or stride != 1
lowercase_ : List[Any] = max(1 , out_channels // config.groups_width )
lowercase_ : Tuple = (
TFRegNetShortCut(__lowerCAmelCase , stride=__lowerCAmelCase , name="""shortcut""" )
if should_apply_shortcut
else tf.keras.layers.Activation("""linear""" , name="""shortcut""" )
)
lowercase_ : int = [
TFRegNetConvLayer(__lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ),
TFRegNetConvLayer(
__lowerCAmelCase , stride=__lowerCAmelCase , groups=__lowerCAmelCase , activation=config.hidden_act , name="""layer.1""" ),
TFRegNetSELayer(__lowerCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ),
TFRegNetConvLayer(__lowerCAmelCase , kernel_size=1 , activation=__lowerCAmelCase , name="""layer.3""" ),
]
lowercase_ : Optional[int] = ACTaFN[config.hidden_act]
def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : Dict ):
lowercase_ : Any = hidden_state
for layer_module in self.layers:
lowercase_ : Tuple = layer_module(__lowerCAmelCase )
lowercase_ : List[Any] = self.shortcut(__lowerCAmelCase )
hidden_state += residual
lowercase_ : Union[str, Any] = self.activation(__lowerCAmelCase )
return hidden_state
class __magic_name__ ( tf.keras.layers.Layer):
def __init__( self : Any , lowercase_ : RegNetConfig , lowercase_ : int , lowercase_ : int , lowercase_ : int = 2 , lowercase_ : int = 2 , **lowercase_ : Dict ):
super().__init__(**__lowerCAmelCase )
lowercase_ : int = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer
lowercase_ : Optional[Any] = [
# downsampling is done in the first layer with stride of 2
layer(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , stride=__lowerCAmelCase , name="""layers.0""" ),
*[layer(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )],
]
def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Optional[Any] ):
for layer_module in self.layers:
lowercase_ : Dict = layer_module(__lowerCAmelCase )
return hidden_state
class __magic_name__ ( tf.keras.layers.Layer):
def __init__( self : str , lowercase_ : RegNetConfig , **lowercase_ : Optional[Any] ):
super().__init__(**__lowerCAmelCase )
lowercase_ : List[Any] = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
__lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) )
lowercase_ : List[Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowerCAmelCase , config.depths[1:] ) ):
self.stages.append(TFRegNetStage(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , depth=__lowerCAmelCase , name=f'''stages.{i+1}''' ) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : tf.Tensor , lowercase_ : bool = False , lowercase_ : bool = True ):
lowercase_ : Any = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
lowercase_ : int = hidden_states + (hidden_state,)
lowercase_ : Any = stage_module(__lowerCAmelCase )
if output_hidden_states:
lowercase_ : List[Any] = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowerCAmelCase , hidden_states=__lowerCAmelCase )
@keras_serializable
class __magic_name__ ( tf.keras.layers.Layer):
UpperCamelCase__ = RegNetConfig
def __init__( self : Optional[int] , lowercase_ : Optional[int] , **lowercase_ : Optional[int] ):
super().__init__(**__lowerCAmelCase )
lowercase_ : Union[str, Any] = config
lowercase_ : Optional[int] = TFRegNetEmbeddings(__lowerCAmelCase , name="""embedder""" )
lowercase_ : int = TFRegNetEncoder(__lowerCAmelCase , name="""encoder""" )
lowercase_ : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCAmelCase , name="""pooler""" )
@unpack_inputs
def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : tf.Tensor , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None , lowercase_ : bool = False , ):
lowercase_ : Union[str, Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowercase_ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict
lowercase_ : Dict = self.embedder(__lowerCAmelCase , training=__lowerCAmelCase )
lowercase_ : Optional[int] = self.encoder(
__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , return_dict=__lowerCAmelCase , training=__lowerCAmelCase )
lowercase_ : List[str] = encoder_outputs[0]
lowercase_ : List[str] = self.pooler(__lowerCAmelCase )
# Change to NCHW output format have uniformity in the modules
lowercase_ : Any = tf.transpose(__lowerCAmelCase , perm=(0, 3, 1, 2) )
lowercase_ : Optional[int] = tf.transpose(__lowerCAmelCase , perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
lowercase_ : List[str] = tuple([tf.transpose(__lowerCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__lowerCAmelCase , pooler_output=__lowerCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class __magic_name__ ( lowerCAmelCase_):
UpperCamelCase__ = RegNetConfig
UpperCamelCase__ = 'regnet'
UpperCamelCase__ = 'pixel_values'
@property
def SCREAMING_SNAKE_CASE_ ( self : Any ):
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )}
_lowercase : str = r"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n"
_lowercase : Optional[int] = r"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
'''The bare RegNet model outputting raw features without any specific head on top.''', lowerCAmelCase_, )
class __magic_name__ ( lowerCAmelCase_):
def __init__( self : int , lowercase_ : RegNetConfig , *lowercase_ : Dict , **lowercase_ : List[str] ):
super().__init__(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase )
lowercase_ : str = TFRegNetMainLayer(__lowerCAmelCase , name="""regnet""" )
@unpack_inputs
@add_start_docstrings_to_model_forward(__lowerCAmelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : tf.Tensor , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None , lowercase_ : Any=False , ):
lowercase_ : List[str] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowercase_ : Any = return_dict if return_dict is not None else self.config.use_return_dict
lowercase_ : Optional[Any] = self.regnet(
pixel_values=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , return_dict=__lowerCAmelCase , training=__lowerCAmelCase , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
'''\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ''', lowerCAmelCase_, )
class __magic_name__ ( lowerCAmelCase_, lowerCAmelCase_):
def __init__( self : Dict , lowercase_ : RegNetConfig , *lowercase_ : List[Any] , **lowercase_ : List[Any] ):
super().__init__(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase )
lowercase_ : Optional[Any] = config.num_labels
lowercase_ : List[Any] = TFRegNetMainLayer(__lowerCAmelCase , name="""regnet""" )
# classification head
lowercase_ : Dict = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(__lowerCAmelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : tf.Tensor = None , lowercase_ : tf.Tensor = None , lowercase_ : bool = None , lowercase_ : bool = None , lowercase_ : str=False , ):
lowercase_ : Tuple = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowercase_ : Dict = return_dict if return_dict is not None else self.config.use_return_dict
lowercase_ : int = self.regnet(
__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , return_dict=__lowerCAmelCase , training=__lowerCAmelCase )
lowercase_ : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1]
lowercase_ : Any = self.classifier[0](__lowerCAmelCase )
lowercase_ : Union[str, Any] = self.classifier[1](__lowerCAmelCase )
lowercase_ : List[Any] = None if labels is None else self.hf_compute_loss(labels=__lowerCAmelCase , logits=__lowerCAmelCase )
if not return_dict:
lowercase_ : Optional[Any] = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=__lowerCAmelCase , logits=__lowerCAmelCase , hidden_states=outputs.hidden_states )
| 357 | '''simple docstring'''
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
_lowercase : str = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase)
class __magic_name__ ( _UpperCAmelCase):
def __init__( self : str , *lowercase_ : Dict , **lowercase_ : List[Any] ):
super().__init__(*lowercase_ , **lowercase_ )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None ):
lowercase_ : Optional[Any] = {}
lowercase_ : Tuple = {}
if prompt is not None:
lowercase_ : Tuple = prompt
if generate_kwargs is not None:
lowercase_ : List[str] = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
lowercase_ : List[Any] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,"""
""" please use only one""" )
lowercase_ : str = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : List[Any] , lowercase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ : Optional[int] ):
return super().__call__(lowercase_ , **lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[Any] , lowercase_ : Tuple=None ):
lowercase_ : List[Any] = load_image(lowercase_ )
if prompt is not None:
if not isinstance(lowercase_ , lowercase_ ):
raise ValueError(
f'''Received an invalid text input, got - {type(lowercase_ )} - but expected a single string. '''
"""Note also that one single text can be provided for conditional image to text generation.""" )
lowercase_ : List[Any] = self.model.config.model_type
if model_type == "git":
lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework )
lowercase_ : Union[str, Any] = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_ ).input_ids
lowercase_ : int = [self.tokenizer.cls_token_id] + input_ids
lowercase_ : List[Any] = torch.tensor(lowercase_ ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
lowercase_ : Union[str, Any] = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework )
lowercase_ : List[str] = self.tokenizer(lowercase_ , return_tensors=self.framework )
model_inputs.update(lowercase_ )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
lowercase_ : List[str] = self.image_processor(images=lowercase_ , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
lowercase_ : str = None
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Dict , lowercase_ : Optional[Any]=None ):
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , lowercase_ )
and all(x is None for x in model_inputs["""input_ids"""] )
):
lowercase_ : Any = None
if generate_kwargs is None:
lowercase_ : Optional[Any] = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
lowercase_ : Dict = model_inputs.pop(self.model.main_input_name )
lowercase_ : Any = self.model.generate(lowercase_ , **lowercase_ , **lowercase_ )
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[Any] ):
lowercase_ : List[str] = []
for output_ids in model_outputs:
lowercase_ : Union[str, Any] = {
"""generated_text""": self.tokenizer.decode(
lowercase_ , skip_special_tokens=lowercase_ , )
}
records.append(lowercase_ )
return records
| 21 | 0 |
'''simple docstring'''
import qiskit
def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> qiskit.result.counts.Counts:
lowercase_ : Tuple = qiskit.Aer.get_backend("""aer_simulator""" )
# Create a Quantum Circuit acting on the q register
lowercase_ : Optional[int] = qiskit.QuantumCircuit(_UpperCamelCase , _UpperCamelCase )
# Apply X (NOT) Gate to Qubits 0 & 1
circuit.x(0 )
circuit.x(1 )
# Map the quantum measurement to the classical bits
circuit.measure([0, 1] , [0, 1] )
# Execute the circuit on the qasm simulator
lowercase_ : Optional[Any] = qiskit.execute(_UpperCamelCase , _UpperCamelCase , shots=1000 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(_UpperCamelCase )
if __name__ == "__main__":
_lowercase : List[str] = single_qubit_measure(2, 2)
print(f"""Total count for various states are: {counts}""")
| 358 | '''simple docstring'''
class __magic_name__ :
def __init__( self : int , lowercase_ : list ):
lowercase_ : Dict = set_counts
lowercase_ : List[Any] = max(lowercase_ )
lowercase_ : str = len(lowercase_ )
lowercase_ : str = [1] * num_sets
lowercase_ : Dict = list(range(lowercase_ ) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : int ):
lowercase_ : List[Any] = self.get_parent(lowercase_ )
lowercase_ : Union[str, Any] = self.get_parent(lowercase_ )
if src_parent == dst_parent:
return False
if self.ranks[dst_parent] >= self.ranks[src_parent]:
self.set_counts[dst_parent] += self.set_counts[src_parent]
lowercase_ : List[str] = 0
lowercase_ : Optional[int] = dst_parent
if self.ranks[dst_parent] == self.ranks[src_parent]:
self.ranks[dst_parent] += 1
lowercase_ : int = self.set_counts[dst_parent]
else:
self.set_counts[src_parent] += self.set_counts[dst_parent]
lowercase_ : int = 0
lowercase_ : List[Any] = src_parent
lowercase_ : List[Any] = self.set_counts[src_parent]
lowercase_ : Tuple = max(self.max_set , lowercase_ )
return True
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : int ):
if self.parents[disj_set] == disj_set:
return disj_set
lowercase_ : int = self.get_parent(self.parents[disj_set] )
return self.parents[disj_set]
| 21 | 0 |
'''simple docstring'''
import gzip
import hashlib
import json
import multiprocessing
import os
import re
import shutil
import time
from pathlib import Path
import numpy as np
from arguments import PreprocessingArguments
from datasets import load_dataset
from minhash_deduplication import deduplicate_dataset
from transformers import AutoTokenizer, HfArgumentParser
_lowercase : Optional[Any] = re.compile(r"\s+")
def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ):
return {"hash": hashlib.mda(re.sub(lowerCAmelCase__ , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()}
def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] ):
lowercase_ : int = [len(lowerCAmelCase__ ) for line in example["""content"""].splitlines()]
return {"line_mean": np.mean(lowerCAmelCase__ ), "line_max": max(lowerCAmelCase__ )}
def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ):
lowercase_ : int = np.mean([c.isalnum() for c in example["""content"""]] )
return {"alpha_frac": alpha_frac}
def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] ):
if example["hash"] in uniques:
uniques.remove(example["""hash"""] )
return True
else:
return False
def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple=5 ):
lowercase_ : Any = ["""auto-generated""", """autogenerated""", """automatically generated"""]
lowercase_ : Optional[int] = example["""content"""].splitlines()
for _, line in zip(range(lowerCAmelCase__ ) , lowerCAmelCase__ ):
for keyword in keywords:
if keyword in line.lower():
return {"autogenerated": True}
else:
return {"autogenerated": False}
def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any]=5 , UpperCAmelCase__ : Dict=0.05 ):
lowercase_ : Optional[Any] = ["""unit tests""", """test file""", """configuration file"""]
lowercase_ : List[str] = example["""content"""].splitlines()
lowercase_ : Optional[Any] = 0
lowercase_ : List[str] = 0
# first test
for _, line in zip(range(lowerCAmelCase__ ) , lowerCAmelCase__ ):
for keyword in keywords:
if keyword in line.lower():
return {"config_or_test": True}
# second test
lowercase_ : List[Any] = example["""content"""].count("""\n""" )
lowercase_ : Tuple = int(coeff * nlines )
for line in lines:
count_config += line.lower().count("""config""" )
count_test += line.lower().count("""test""" )
if count_config > threshold or count_test > threshold:
return {"config_or_test": True}
return {"config_or_test": False}
def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ):
lowercase_ : Union[str, Any] = ["""def """, """class """, """for """, """while """]
lowercase_ : Any = example["""content"""].splitlines()
for line in lines:
for keyword in keywords:
if keyword in line.lower():
return {"has_no_keywords": False}
return {"has_no_keywords": True}
def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any]=4 ):
lowercase_ : Tuple = example["""content"""].splitlines()
lowercase_ : int = 0
for line in lines:
counter += line.lower().count("""=""" )
if counter > minimum:
return {"has_few_assignments": False}
return {"has_few_assignments": True}
def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ):
lowercase_ : Any = tokenizer(example["""content"""] , truncation=lowerCAmelCase__ )["""input_ids"""]
lowercase_ : Optional[int] = len(example["""content"""] ) / len(lowerCAmelCase__ )
return {"ratio": ratio}
def lowerCamelCase ( UpperCAmelCase__ : int ):
lowercase_ : Tuple = {}
results.update(get_hash(lowerCAmelCase__ ) )
results.update(line_stats(lowerCAmelCase__ ) )
results.update(alpha_stats(lowerCAmelCase__ ) )
results.update(char_token_ratio(lowerCAmelCase__ ) )
results.update(is_autogenerated(lowerCAmelCase__ ) )
results.update(is_config_or_test(lowerCAmelCase__ ) )
results.update(has_no_keywords(lowerCAmelCase__ ) )
results.update(has_few_assignments(lowerCAmelCase__ ) )
return results
def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] ):
if not check_uniques(lowerCAmelCase__ , lowerCAmelCase__ ):
return False
elif example["autogenerated"]:
return False
elif example["line_max"] > args.line_max:
return False
elif example["line_mean"] > args.line_mean:
return False
elif example["alpha_frac"] < args.alpha_frac:
return False
elif example["ratio"] < args.min_token_ratio:
return False
elif example["config_or_test"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_few_assignments"]:
return False
else:
return True
def lowerCamelCase ( UpperCAmelCase__ : Dict ):
with open(lowerCAmelCase__ , """rb""" ) as f_in:
with gzip.open(str(lowerCAmelCase__ ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out:
shutil.copyfileobj(lowerCAmelCase__ , lowerCAmelCase__ )
os.unlink(lowerCAmelCase__ )
# Settings
_lowercase : List[Any] = HfArgumentParser(PreprocessingArguments)
_lowercase : Union[str, Any] = parser.parse_args()
if args.num_workers is None:
_lowercase : Dict = multiprocessing.cpu_count()
_lowercase : List[str] = AutoTokenizer.from_pretrained(args.tokenizer_dir)
# Load dataset
_lowercase : Union[str, Any] = time.time()
_lowercase : Union[str, Any] = load_dataset(args.dataset_name, split="train")
print(f"""Time to load dataset: {time.time()-t_start:.2f}""")
# Run preprocessing
_lowercase : Tuple = time.time()
_lowercase : str = ds.map(preprocess, num_proc=args.num_workers)
print(f"""Time to preprocess dataset: {time.time()-t_start:.2f}""")
# Deduplicate hashes
_lowercase : int = set(ds.unique("hash"))
_lowercase : Union[str, Any] = len(uniques) / len(ds)
print(f"""Fraction of duplicates: {1-frac:.2%}""")
# Deduplicate data and apply heuristics
_lowercase : Union[str, Any] = time.time()
_lowercase : Tuple = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args})
print(f"""Time to filter dataset: {time.time()-t_start:.2f}""")
print(f"""Size of filtered dataset: {len(ds_filter)}""")
# Deduplicate with minhash and jaccard similarity
if args.near_deduplication:
_lowercase : str = time.time()
_lowercase : int = deduplicate_dataset(ds_filter, args.jaccard_threshold)
print(f"""Time to deduplicate dataset: {time.time()-t_start:.2f}""")
print(f"""Size of deduplicate dataset: {len(ds_filter)}""")
# Save data in batches of samples_per_file
_lowercase : Tuple = Path(args.output_dir)
output_dir.mkdir(exist_ok=True)
# save duplicate_clusters in the output_dir as artifacts
# not sure it is the right place the save it
if args.near_deduplication:
with open(output_dir / "duplicate_clusters.json", "w") as f:
json.dump(duplicate_clusters, f)
_lowercase : int = output_dir / """data"""
data_dir.mkdir(exist_ok=True)
_lowercase : Optional[int] = time.time()
for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)):
_lowercase : List[str] = str(data_dir / f"""file-{file_number+1:012}.json""")
_lowercase : Optional[Any] = min(len(ds_filter), index + args.samples_per_file)
ds_filter.select(list(range(index, end_index))).to_json(file_path)
compress_file(file_path)
print(f"""Time to save dataset: {time.time()-t_start:.2f}""")
| 359 | '''simple docstring'''
from io import BytesIO
from typing import List, Union
import requests
from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_decord_available():
import numpy as np
from decord import VideoReader
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
_lowercase : str = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase)
class __magic_name__ ( _UpperCAmelCase):
def __init__( self : str , *lowercase_ : int , **lowercase_ : Any ):
super().__init__(*lowercase_ , **lowercase_ )
requires_backends(self , """decord""" )
self.check_model_type(lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None ):
lowercase_ : Union[str, Any] = {}
if frame_sampling_rate is not None:
lowercase_ : Any = frame_sampling_rate
if num_frames is not None:
lowercase_ : Optional[Any] = num_frames
lowercase_ : Union[str, Any] = {}
if top_k is not None:
lowercase_ : Optional[Any] = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : str , lowercase_ : Union[str, List[str]] , **lowercase_ : str ):
return super().__call__(lowercase_ , **lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None , lowercase_ : Optional[int]=1 ):
if num_frames is None:
lowercase_ : List[Any] = self.model.config.num_frames
if video.startswith("""http://""" ) or video.startswith("""https://""" ):
lowercase_ : Union[str, Any] = BytesIO(requests.get(lowercase_ ).content )
lowercase_ : Optional[Any] = VideoReader(lowercase_ )
videoreader.seek(0 )
lowercase_ : Tuple = 0
lowercase_ : List[Any] = num_frames * frame_sampling_rate - 1
lowercase_ : Optional[int] = np.linspace(lowercase_ , lowercase_ , num=lowercase_ , dtype=np.intaa )
lowercase_ : Optional[int] = videoreader.get_batch(lowercase_ ).asnumpy()
lowercase_ : Union[str, Any] = list(lowercase_ )
lowercase_ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : str ):
lowercase_ : int = self.model(**lowercase_ )
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Dict=5 ):
if top_k > self.model.config.num_labels:
lowercase_ : List[Any] = self.model.config.num_labels
if self.framework == "pt":
lowercase_ : str = model_outputs.logits.softmax(-1 )[0]
lowercase_ , lowercase_ : Optional[Any] = probs.topk(lowercase_ )
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
lowercase_ : Union[str, Any] = scores.tolist()
lowercase_ : Tuple = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
| 21 | 0 |
def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> str:
if not (isinstance(a__ , a__ ) and isinstance(a__ , a__ )):
raise ValueError("""longest_common_substring() takes two strings for inputs""" )
lowercase_ : Optional[Any] = len(a__ )
lowercase_ : List[Any] = len(a__ )
lowercase_ : Dict = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )]
lowercase_ : Union[str, Any] = 0
lowercase_ : List[str] = 0
for i in range(1 , texta_length + 1 ):
for j in range(1 , texta_length + 1 ):
if texta[i - 1] == texta[j - 1]:
lowercase_ : Dict = 1 + dp[i - 1][j - 1]
if dp[i][j] > ans_length:
lowercase_ : str = i
lowercase_ : Optional[int] = dp[i][j]
return texta[ans_index - ans_length : ans_index]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 360 | '''simple docstring'''
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> List[str]:
if isinstance(UpperCAmelCase__ , collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class __magic_name__ :
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Any , lowercase_ : str ):
pass
def SCREAMING_SNAKE_CASE_ ( self : str ):
pass
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
pass
def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : np.ndarray , lowercase_ : float ):
lowercase_ : Optional[Any] = np.abs((a - b) ).max()
self.assertLessEqual(lowercase_ , lowercase_ , f'''Difference between torch and flax is {diff} (>= {tol}).''' )
def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple=None , **lowercase_ : Optional[int] ):
lowercase_ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ )
lowercase_ : Any = FlaxVisionTextDualEncoderModel(lowercase_ )
lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) )
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : List[Any]=None , **lowercase_ : Tuple ):
lowercase_ , lowercase_ : Any = self.get_vision_text_model(lowercase_ , lowercase_ )
lowercase_ : Optional[int] = {"""vision_model""": vision_model, """text_model""": text_model}
lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ )
lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ )
self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=None , **lowercase_ : int ):
lowercase_ , lowercase_ : Union[str, Any] = self.get_vision_text_model(lowercase_ , lowercase_ )
lowercase_ : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model}
lowercase_ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ )
lowercase_ : Tuple = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ )
lowercase_ : Any = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowercase_ )
lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ )
lowercase_ : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ )
lowercase_ : Union[str, Any] = after_output[0]
lowercase_ : str = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowercase_ , 1E-3 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Dict=None , **lowercase_ : Optional[Any] ):
lowercase_ , lowercase_ : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ )
lowercase_ : Dict = {"""vision_model""": vision_model, """text_model""": text_model}
lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ )
lowercase_ : Optional[int] = model(
input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ )
lowercase_ : Tuple = output.vision_model_output.attentions
self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
lowercase_ : List[str] = to_atuple(vision_model.config.image_size )
lowercase_ : Optional[Any] = to_atuple(vision_model.config.patch_size )
lowercase_ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
lowercase_ : Optional[Any] = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
lowercase_ : Union[str, Any] = output.text_model_output.attentions
self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int ):
pt_model.to(lowercase_ )
pt_model.eval()
# prepare inputs
lowercase_ : int = inputs_dict
lowercase_ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
lowercase_ : str = pt_model(**lowercase_ ).to_tuple()
lowercase_ : Optional[Any] = fx_model(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowercase_ )
lowercase_ : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ , from_pt=lowercase_ )
lowercase_ : Dict = fx_model_loaded(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowercase_ )
lowercase_ : Union[str, Any] = VisionTextDualEncoderModel.from_pretrained(lowercase_ , from_flax=lowercase_ )
pt_model_loaded.to(lowercase_ )
pt_model_loaded.eval()
with torch.no_grad():
lowercase_ : List[Any] = pt_model_loaded(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(lowercase_ , pt_output_loaded.numpy() , 4E-2 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Union[str, Any] ):
lowercase_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ )
lowercase_ : List[Any] = VisionTextDualEncoderModel(lowercase_ )
lowercase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel(lowercase_ )
lowercase_ : Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ )
lowercase_ : Tuple = fx_state
self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[Any] ):
lowercase_ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ )
lowercase_ : int = VisionTextDualEncoderModel(lowercase_ )
lowercase_ : Dict = FlaxVisionTextDualEncoderModel(lowercase_ )
lowercase_ : Optional[Any] = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params )
self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ : Tuple = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : List[Any] = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : List[Any] = self.prepare_config_and_inputs()
self.check_save_load(**lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : Union[str, Any] = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**lowercase_ )
@is_pt_flax_cross_test
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Tuple = self.prepare_config_and_inputs()
lowercase_ : List[Any] = config_inputs_dict.pop("""vision_config""" )
lowercase_ : int = config_inputs_dict.pop("""text_config""" )
lowercase_ : Optional[int] = config_inputs_dict
self.check_equivalence_pt_to_flax(lowercase_ , lowercase_ , lowercase_ )
self.check_equivalence_flax_to_pt(lowercase_ , lowercase_ , lowercase_ )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ , lowercase_ : str = self.get_pretrained_model_and_inputs()
lowercase_ : Dict = model_a(**lowercase_ )
lowercase_ : str = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(lowercase_ )
lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ )
lowercase_ : str = model_a(**lowercase_ )
lowercase_ : Union[str, Any] = after_outputs[0]
lowercase_ : Any = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowercase_ , 1E-5 )
@require_flax
class __magic_name__ ( _UpperCAmelCase, unittest.TestCase):
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
lowercase_ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
"""hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , )
lowercase_ : List[str] = 13
lowercase_ : Optional[Any] = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
lowercase_ : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
lowercase_ : str = random_attention_mask([batch_size, 4] )
lowercase_ : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Tuple ):
lowercase_ : Union[str, Any] = FlaxViTModel(lowercase_ )
lowercase_ : Dict = FlaxBertModel(lowercase_ )
return vision_model, text_model
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : Any = FlaxViTModelTester(self )
lowercase_ : Optional[Any] = FlaxBertModelTester(self )
lowercase_ : Dict = vit_model_tester.prepare_config_and_inputs()
lowercase_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs()
lowercase_ , lowercase_ : List[str] = vision_config_and_inputs
lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class __magic_name__ ( _UpperCAmelCase, unittest.TestCase):
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
"""hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , )
lowercase_ : List[str] = 13
lowercase_ : Optional[Any] = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
lowercase_ : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
lowercase_ : Tuple = random_attention_mask([batch_size, 4] )
lowercase_ : Union[str, Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask}
return model, inputs
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ):
lowercase_ : Tuple = FlaxCLIPVisionModel(lowercase_ )
lowercase_ : Any = FlaxBertModel(lowercase_ )
return vision_model, text_model
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : Union[str, Any] = FlaxCLIPVisionModelTester(self )
lowercase_ : Tuple = FlaxBertModelTester(self )
lowercase_ : Union[str, Any] = clip_model_tester.prepare_config_and_inputs()
lowercase_ : Any = bert_model_tester.prepare_config_and_inputs()
lowercase_ , lowercase_ : Optional[Any] = vision_config_and_inputs
lowercase_ , lowercase_ , lowercase_ , lowercase_ : str = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class __magic_name__ ( unittest.TestCase):
@slow
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 )
lowercase_ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" )
lowercase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
lowercase_ : Optional[int] = processor(
text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowercase_ , padding=lowercase_ , return_tensors="""np""" )
lowercase_ : List[str] = model(**lowercase_ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
lowercase_ : Optional[Any] = np.array([[1.2_28_47_27, 0.3_10_41_22]] )
self.assertTrue(np.allclose(outputs.logits_per_image , lowercase_ , atol=1E-3 ) )
| 21 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_lowercase : List[Any] = {
"configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"],
"tokenization_perceiver": ["PerceiverTokenizer"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : int = ["PerceiverFeatureExtractor"]
_lowercase : Union[str, Any] = ["PerceiverImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowercase : Union[str, Any] = [
"PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST",
"PerceiverForImageClassificationConvProcessing",
"PerceiverForImageClassificationFourier",
"PerceiverForImageClassificationLearned",
"PerceiverForMaskedLM",
"PerceiverForMultimodalAutoencoding",
"PerceiverForOpticalFlow",
"PerceiverForSequenceClassification",
"PerceiverLayer",
"PerceiverModel",
"PerceiverPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
_lowercase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 361 | '''simple docstring'''
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class __magic_name__ ( unittest.TestCase):
def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int=7 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[Any]=18 , lowercase_ : List[Any]=30 , lowercase_ : int=400 , lowercase_ : Dict=True , lowercase_ : List[Any]=None , lowercase_ : Dict=True , ):
lowercase_ : Tuple = size if size is not None else {"""height""": 18, """width""": 18}
lowercase_ : List[str] = parent
lowercase_ : Any = batch_size
lowercase_ : Optional[Any] = num_channels
lowercase_ : Tuple = image_size
lowercase_ : Optional[Any] = min_resolution
lowercase_ : Dict = max_resolution
lowercase_ : Optional[int] = do_resize
lowercase_ : Optional[Any] = size
lowercase_ : Union[str, Any] = do_normalize
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04],
[-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class __magic_name__ ( _UpperCAmelCase, unittest.TestCase):
UpperCamelCase__ = ImageGPTImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Optional[int] = ImageGPTImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : int = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase_ , """clusters""" ) )
self.assertTrue(hasattr(lowercase_ , """do_resize""" ) )
self.assertTrue(hasattr(lowercase_ , """size""" ) )
self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : int = self.image_processing_class(**self.image_processor_dict )
lowercase_ : Union[str, Any] = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase_ , obj[key] ) )
else:
self.assertEqual(obj[key] , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : str = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase_ : Union[str, Any] = os.path.join(lowercase_ , """image_processor.json""" )
image_processor_first.to_json_file(lowercase_ )
lowercase_ : Optional[Any] = self.image_processing_class.from_json_file(lowercase_ ).to_dict()
lowercase_ : Any = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowercase_ )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(lowercase_ )
lowercase_ : Any = self.image_processing_class.from_pretrained(lowercase_ ).to_dict()
lowercase_ : List[str] = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , lowercase_ )
@unittest.skip("""ImageGPT requires clusters at initialization""" )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
pass
def lowerCamelCase ( ) -> Any:
lowercase_ : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" )
lowercase_ : Any = Image.open(dataset[4]["""file"""] )
lowercase_ : Dict = Image.open(dataset[5]["""file"""] )
lowercase_ : int = [imagea, imagea]
return images
@require_vision
@require_torch
class __magic_name__ ( unittest.TestCase):
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ):
lowercase_ : Optional[Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" )
lowercase_ : Optional[int] = prepare_images()
# test non-batched
lowercase_ : str = image_processing(images[0] , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1024) )
lowercase_ : Tuple = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase_ )
# test batched
lowercase_ : List[str] = image_processing(lowercase_ , return_tensors="""pt""" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1024) )
lowercase_ : Union[str, Any] = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase_ )
| 21 | 0 |
'''simple docstring'''
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class __magic_name__ :
def __init__( self : Optional[Any] , lowercase_ : Any , lowercase_ : Tuple=sys.maxsize ):
lowercase_ : str = """bilinear"""
lowercase_ : Optional[Any] = max_size
lowercase_ : Any = short_edge_length
def __call__( self : Dict , lowercase_ : List[str] ):
lowercase_ : Any = []
for img in imgs:
lowercase_ , lowercase_ : Optional[Any] = img.shape[:2]
# later: provide list and randomly choose index for resize
lowercase_ : Any = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
lowercase_ : Optional[Any] = size * 1.0 / min(_a , _a )
if h < w:
lowercase_ , lowercase_ : Optional[Any] = size, scale * w
else:
lowercase_ , lowercase_ : int = scale * h, size
if max(_a , _a ) > self.max_size:
lowercase_ : Union[str, Any] = self.max_size * 1.0 / max(_a , _a )
lowercase_ : List[str] = newh * scale
lowercase_ : Any = neww * scale
lowercase_ : List[str] = int(neww + 0.5 )
lowercase_ : str = int(newh + 0.5 )
if img.dtype == np.uinta:
lowercase_ : Optional[Any] = Image.fromarray(_a )
lowercase_ : Optional[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
lowercase_ : Union[str, Any] = np.asarray(_a )
else:
lowercase_ : str = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
lowercase_ : int = nn.functional.interpolate(
_a , (newh, neww) , mode=self.interp_method , align_corners=_a ).squeeze(0 )
img_augs.append(_a )
return img_augs
class __magic_name__ :
def __init__( self : Optional[int] , lowercase_ : Optional[Any] ):
lowercase_ : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
lowercase_ : Tuple = cfg.INPUT.FORMAT
lowercase_ : Optional[int] = cfg.SIZE_DIVISIBILITY
lowercase_ : Tuple = cfg.PAD_VALUE
lowercase_ : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST
lowercase_ : int = cfg.MODEL.DEVICE
lowercase_ : Any = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
lowercase_ : Dict = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
lowercase_ : Optional[Any] = lambda lowercase_ : (x - self.pixel_mean) / self.pixel_std
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Tuple ):
lowercase_ : str = tuple(max(_a ) for s in zip(*[img.shape for img in images] ) )
lowercase_ : List[Any] = [im.shape[-2:] for im in images]
lowercase_ : List[str] = [
nn.functional.pad(
_a , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(_a , _a )
]
return torch.stack(_a ), torch.tensor(_a )
def __call__( self : int , lowercase_ : Optional[int] , lowercase_ : Optional[int]=False ):
with torch.no_grad():
if not isinstance(_a , _a ):
lowercase_ : List[Any] = [images]
if single_image:
assert len(_a ) == 1
for i in range(len(_a ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(_a , images.pop(_a ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
_a , torch.as_tensor(img_tensorize(images.pop(_a ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
lowercase_ : Dict = torch.tensor([im.shape[:2] for im in images] )
lowercase_ : List[str] = self.aug(_a )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
lowercase_ : List[Any] = [self.normalizer(_a ) for x in images]
# now pad them to do the following operations
lowercase_ , lowercase_ : Tuple = self.pad(_a )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
lowercase_ : Dict = torch.true_divide(_a , _a )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] ) -> Optional[Any]:
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple[int, int] ) -> Dict:
assert torch.isfinite(UpperCamelCase__ ).all(), "Box tensor contains infinite or NaN!"
lowercase_ , lowercase_ : List[Any] = box_size
tensor[:, 0].clamp_(min=0 , max=UpperCamelCase__ )
tensor[:, 1].clamp_(min=0 , max=UpperCamelCase__ )
tensor[:, 2].clamp_(min=0 , max=UpperCamelCase__ )
tensor[:, 3].clamp_(min=0 , max=UpperCamelCase__ )
| 362 | '''simple docstring'''
def lowerCamelCase ( ) -> Dict:
lowercase_ : Union[str, Any] = []
lowercase_ : Tuple = 1
while len(UpperCAmelCase__ ) < 1e6:
constant.append(str(UpperCAmelCase__ ) )
i += 1
lowercase_ : int = """""".join(UpperCAmelCase__ )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[999] )
* int(constant[9999] )
* int(constant[99999] )
* int(constant[999999] )
)
if __name__ == "__main__":
print(solution())
| 21 | 0 |
'''simple docstring'''
def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any ) -> List[Any]:
if height >= 1:
move_tower(height - 1 , _a , _a , _a )
move_disk(_a , _a )
move_tower(height - 1 , _a , _a , _a )
def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] ) -> str:
print("""moving disk from""" , _a , """to""" , _a )
def lowerCamelCase ( ) -> Union[str, Any]:
lowercase_ : Any = int(input("""Height of hanoi: """ ).strip() )
move_tower(_a , """A""" , """B""" , """C""" )
if __name__ == "__main__":
main()
| 363 | '''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
_lowercase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
class __magic_name__ ( _UpperCAmelCase):
def __init__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str ):
super().__init__()
self.register_modules(unet=lowercase_ , scheduler=lowercase_ )
@torch.no_grad()
def __call__( self : List[str] , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ):
if audio_length_in_s is None:
lowercase_ : List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate
lowercase_ : Dict = audio_length_in_s * self.unet.config.sample_rate
lowercase_ : Any = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to'''
f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' )
lowercase_ : List[Any] = int(lowercase_ )
if sample_size % down_scale_factor != 0:
lowercase_ : int = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled'''
f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising'''
""" process.""" )
lowercase_ : Any = int(lowercase_ )
lowercase_ : List[str] = next(iter(self.unet.parameters() ) ).dtype
lowercase_ : List[str] = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowercase_ : Any = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ )
# set step values
self.scheduler.set_timesteps(lowercase_ , device=audio.device )
lowercase_ : Optional[Any] = self.scheduler.timesteps.to(lowercase_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
lowercase_ : Dict = self.unet(lowercase_ , lowercase_ ).sample
# 2. compute previous image: x_t -> t_t-1
lowercase_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample
lowercase_ : str = audio.clamp(-1 , 1 ).float().cpu().numpy()
lowercase_ : Union[str, Any] = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=lowercase_ )
| 21 | 0 |
import tempfile
import unittest
import numpy as np
from diffusers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionPipeline,
PNDMScheduler,
)
from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __magic_name__ ( snake_case__, unittest.TestCase):
UpperCamelCase__ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline'''
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Optional[Any]=0 ):
lowercase_ : int = np.random.RandomState(UpperCAmelCase_ )
lowercase_ : Any = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
lowercase_ : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
lowercase_ : Optional[Any] = self.get_dummy_inputs()
lowercase_ : Union[str, Any] = pipe(**UpperCAmelCase_ ).images
lowercase_ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
lowercase_ : Optional[Any] = np.array([0.6_50_72, 0.5_84_92, 0.4_82_19, 0.5_55_21, 0.5_31_80, 0.5_59_39, 0.5_06_97, 0.3_98_00, 0.4_64_55] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
lowercase_ : Optional[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
lowercase_ : Union[str, Any] = self.get_dummy_inputs()
lowercase_ : Optional[int] = pipe(**UpperCAmelCase_ ).images
lowercase_ : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
lowercase_ : Any = np.array([0.6_58_63, 0.5_94_25, 0.4_93_26, 0.5_63_13, 0.5_38_75, 0.5_66_27, 0.5_10_65, 0.3_97_77, 0.4_63_30] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
lowercase_ : int = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
lowercase_ : str = self.get_dummy_inputs()
lowercase_ : Union[str, Any] = pipe(**UpperCAmelCase_ ).images
lowercase_ : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
lowercase_ : List[str] = np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
lowercase_ : int = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
lowercase_ : Dict = self.get_dummy_inputs()
lowercase_ : int = pipe(**UpperCAmelCase_ ).images
lowercase_ : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
lowercase_ : List[str] = np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
lowercase_ : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
lowercase_ : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
lowercase_ : List[Any] = self.get_dummy_inputs()
lowercase_ : str = pipe(**UpperCAmelCase_ ).images
lowercase_ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
lowercase_ : Tuple = np.array([0.5_38_17, 0.6_08_12, 0.4_73_84, 0.4_95_30, 0.5_18_94, 0.4_98_14, 0.4_79_84, 0.3_89_58, 0.4_42_71] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
lowercase_ : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
lowercase_ : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
lowercase_ : Dict = self.get_dummy_inputs()
lowercase_ : Tuple = pipe(**UpperCAmelCase_ ).images
lowercase_ : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
lowercase_ : List[Any] = np.array([0.5_38_95, 0.6_08_08, 0.4_79_33, 0.4_96_08, 0.5_18_86, 0.4_99_50, 0.4_80_53, 0.3_89_57, 0.4_42_00] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
lowercase_ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
lowercase_ : List[str] = self.get_dummy_inputs()
lowercase_ : Optional[int] = 3 * [inputs["prompt"]]
# forward
lowercase_ : List[str] = pipe(**UpperCAmelCase_ )
lowercase_ : Dict = output.images[0, -3:, -3:, -1]
lowercase_ : Optional[Any] = self.get_dummy_inputs()
lowercase_ : Tuple = 3 * [inputs.pop("""prompt""" )]
lowercase_ : List[str] = pipe.tokenizer(
UpperCAmelCase_ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=UpperCAmelCase_ , return_tensors="""np""" , )
lowercase_ : Tuple = text_inputs["input_ids"]
lowercase_ : List[Any] = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0]
lowercase_ : Tuple = prompt_embeds
# forward
lowercase_ : Optional[int] = pipe(**UpperCAmelCase_ )
lowercase_ : Any = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
lowercase_ : Dict = self.get_dummy_inputs()
lowercase_ : str = 3 * ["this is a negative prompt"]
lowercase_ : List[Any] = negative_prompt
lowercase_ : str = 3 * [inputs["prompt"]]
# forward
lowercase_ : Tuple = pipe(**UpperCAmelCase_ )
lowercase_ : Tuple = output.images[0, -3:, -3:, -1]
lowercase_ : Optional[int] = self.get_dummy_inputs()
lowercase_ : Dict = 3 * [inputs.pop("""prompt""" )]
lowercase_ : Optional[Any] = []
for p in [prompt, negative_prompt]:
lowercase_ : Any = pipe.tokenizer(
UpperCAmelCase_ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=UpperCAmelCase_ , return_tensors="""np""" , )
lowercase_ : Dict = text_inputs["input_ids"]
embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] )
lowercase_ : List[str] = embeds
# forward
lowercase_ : int = pipe(**UpperCAmelCase_ )
lowercase_ : Optional[Any] = output.images[0, -3:, -3:, -1]
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4
@nightly
@require_onnxruntime
@require_torch_gpu
class __magic_name__ ( unittest.TestCase):
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : Union[str, Any] = ort.SessionOptions()
lowercase_ : str = False
return options
def SCREAMING_SNAKE_CASE_ ( self : str ):
lowercase_ : Tuple = OnnxStableDiffusionPipeline.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
lowercase_ : List[str] = "A painting of a squirrel eating a burger"
np.random.seed(0 )
lowercase_ : int = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" )
lowercase_ : List[str] = output.images
lowercase_ : Tuple = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowercase_ : Tuple = np.array([0.04_52, 0.03_90, 0.00_87, 0.03_50, 0.06_17, 0.03_64, 0.05_44, 0.05_23, 0.07_20] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
lowercase_ : List[str] = DDIMScheduler.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" )
lowercase_ : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
lowercase_ : Optional[int] = "open neural network exchange"
lowercase_ : str = np.random.RandomState(0 )
lowercase_ : int = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCAmelCase_ , output_type="""np""" )
lowercase_ : List[Any] = output.images
lowercase_ : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowercase_ : str = np.array([0.28_67, 0.19_74, 0.14_81, 0.72_94, 0.72_51, 0.66_67, 0.41_94, 0.56_42, 0.64_86] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
lowercase_ : Any = LMSDiscreteScheduler.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" )
lowercase_ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
lowercase_ : Optional[Any] = "open neural network exchange"
lowercase_ : Union[str, Any] = np.random.RandomState(0 )
lowercase_ : Any = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCAmelCase_ , output_type="""np""" )
lowercase_ : int = output.images
lowercase_ : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowercase_ : List[Any] = np.array([0.23_06, 0.19_59, 0.15_93, 0.65_49, 0.63_94, 0.54_08, 0.50_65, 0.60_10, 0.61_61] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def SCREAMING_SNAKE_CASE_ ( self : int ):
lowercase_ : List[str] = 0
def test_callback_fn(lowercase_ : int , lowercase_ : int , lowercase_ : np.ndarray ) -> None:
lowercase_ : Tuple = True
nonlocal number_of_steps
number_of_steps += 1
if step == 0:
assert latents.shape == (1, 4, 64, 64)
lowercase_ : Optional[Any] = latents[0, -3:, -3:, -1]
lowercase_ : Tuple = np.array(
[-0.67_72, -0.38_35, -1.24_56, 0.19_05, -1.09_74, 0.69_67, -1.93_53, 0.01_78, 1.01_67] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3
elif step == 5:
assert latents.shape == (1, 4, 64, 64)
lowercase_ : Optional[Any] = latents[0, -3:, -3:, -1]
lowercase_ : Dict = np.array(
[-0.33_51, 0.22_41, -0.18_37, -0.23_25, -0.65_77, 0.33_93, -0.02_41, 0.58_99, 1.38_75] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3
lowercase_ : List[Any] = False
lowercase_ : str = OnnxStableDiffusionPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
lowercase_ : Union[str, Any] = "Andromeda galaxy in a bottle"
lowercase_ : Union[str, Any] = np.random.RandomState(0 )
pipe(
prompt=UpperCAmelCase_ , num_inference_steps=5 , guidance_scale=7.5 , generator=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=1 , )
assert test_callback_fn.has_been_called
assert number_of_steps == 6
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
lowercase_ : Any = OnnxStableDiffusionPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , )
assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
assert pipe.safety_checker is None
lowercase_ : List[Any] = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(UpperCAmelCase_ )
lowercase_ : str = OnnxStableDiffusionPipeline.from_pretrained(UpperCAmelCase_ )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
lowercase_ : Dict = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
| 364 | '''simple docstring'''
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
_lowercase : Union[str, Any] = "src/transformers"
_lowercase : str = "docs/source/en"
_lowercase : Union[str, Any] = "."
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int:
with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowercase_ : Union[str, Any] = f.readlines()
# Find the start prompt.
lowercase_ : Optional[Any] = 0
while not lines[start_index].startswith(UpperCAmelCase__ ):
start_index += 1
start_index += 1
lowercase_ : int = start_index
while not lines[end_index].startswith(UpperCAmelCase__ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
_lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration"
# Regexes that match TF/Flax/PT model names.
_lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
_lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
_lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# This is to make sure the transformers module imported is the one in the repo.
_lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH)
def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any:
lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ )
return [m.group(0 ) for m in matches]
def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]:
lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ )
lowercase_ : List[str] = (width - text_length) // 2
lowercase_ : Dict = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def lowerCamelCase ( ) -> Any:
lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
lowercase_ : Any = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ )
lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ )
# Let's lookup through all transformers object (once).
for attr_name in dir(UpperCAmelCase__ ):
lowercase_ : Union[str, Any] = None
if attr_name.endswith("""Tokenizer""" ):
lowercase_ : Optional[int] = slow_tokenizers
lowercase_ : Union[str, Any] = attr_name[:-9]
elif attr_name.endswith("""TokenizerFast""" ):
lowercase_ : Optional[Any] = fast_tokenizers
lowercase_ : Dict = attr_name[:-13]
elif _re_tf_models.match(UpperCAmelCase__ ) is not None:
lowercase_ : str = tf_models
lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0]
elif _re_flax_models.match(UpperCAmelCase__ ) is not None:
lowercase_ : List[str] = flax_models
lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0]
elif _re_pt_models.match(UpperCAmelCase__ ) is not None:
lowercase_ : Tuple = pt_models
lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0]
if lookup_dict is not None:
while len(UpperCAmelCase__ ) > 0:
if attr_name in model_name_to_prefix.values():
lowercase_ : int = True
break
# Try again after removing the last word in the name
lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] )
# Let's build that table!
lowercase_ : Dict = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""]
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns]
lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2
# Build the table per se
lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n"""
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n"
lowercase_ : int = {True: """✅""", False: """❌"""}
for name in model_names:
lowercase_ : str = model_name_to_prefix[name]
lowercase_ : Any = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n"
return table
def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str:
lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = _find_text_in_file(
filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , )
lowercase_ : Dict = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
"""The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" )
if __name__ == "__main__":
_lowercase : Any = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
_lowercase : Optional[Any] = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 21 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
_lowercase : List[str] = logging.get_logger(__name__)
_lowercase : int = {
"microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json",
}
class __magic_name__ ( lowerCamelCase_):
UpperCamelCase__ = """layoutlmv3"""
def __init__( self : List[Any] , lowercase_ : List[Any]=50265 , lowercase_ : Optional[Any]=768 , lowercase_ : Dict=12 , lowercase_ : List[str]=12 , lowercase_ : Union[str, Any]=3072 , lowercase_ : List[Any]="gelu" , lowercase_ : str=0.1 , lowercase_ : List[Any]=0.1 , lowercase_ : List[str]=512 , lowercase_ : Union[str, Any]=2 , lowercase_ : Optional[Any]=0.02 , lowercase_ : List[Any]=1E-5 , lowercase_ : Tuple=1 , lowercase_ : Any=0 , lowercase_ : List[str]=2 , lowercase_ : Dict=1024 , lowercase_ : int=128 , lowercase_ : List[Any]=128 , lowercase_ : Union[str, Any]=True , lowercase_ : Dict=32 , lowercase_ : Optional[int]=128 , lowercase_ : Optional[Any]=64 , lowercase_ : str=256 , lowercase_ : Optional[Any]=True , lowercase_ : Dict=True , lowercase_ : Dict=True , lowercase_ : List[Any]=224 , lowercase_ : str=3 , lowercase_ : List[str]=16 , lowercase_ : Tuple=None , **lowercase_ : List[str] , ):
super().__init__(
vocab_size=lowerCAmelCase__ , hidden_size=lowerCAmelCase__ , num_hidden_layers=lowerCAmelCase__ , num_attention_heads=lowerCAmelCase__ , intermediate_size=lowerCAmelCase__ , hidden_act=lowerCAmelCase__ , hidden_dropout_prob=lowerCAmelCase__ , attention_probs_dropout_prob=lowerCAmelCase__ , max_position_embeddings=lowerCAmelCase__ , type_vocab_size=lowerCAmelCase__ , initializer_range=lowerCAmelCase__ , layer_norm_eps=lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , )
lowercase_ : Any = max_ad_position_embeddings
lowercase_ : Any = coordinate_size
lowercase_ : Tuple = shape_size
lowercase_ : Any = has_relative_attention_bias
lowercase_ : Optional[int] = rel_pos_bins
lowercase_ : Optional[int] = max_rel_pos
lowercase_ : List[Any] = has_spatial_attention_bias
lowercase_ : Dict = rel_ad_pos_bins
lowercase_ : List[Any] = max_rel_ad_pos
lowercase_ : Any = text_embed
lowercase_ : List[str] = visual_embed
lowercase_ : List[Any] = input_size
lowercase_ : str = num_channels
lowercase_ : str = patch_size
lowercase_ : str = classifier_dropout
class __magic_name__ ( lowerCamelCase_):
UpperCamelCase__ = version.parse('''1.12''')
@property
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
# The order of inputs is different for question answering and sequence classification
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
("""attention_mask""", {0: """batch""", 1: """sequence"""}),
("""bbox""", {0: """batch""", 1: """sequence"""}),
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
else:
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
("""bbox""", {0: """batch""", 1: """sequence"""}),
("""attention_mask""", {0: """batch""", 1: """sequence"""}),
("""pixel_values""", {0: """batch""", 1: """num_channels"""}),
] )
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
return 1E-5
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
return 12
def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] = -1 , lowercase_ : int = -1 , lowercase_ : List[str] = False , lowercase_ : Any = None , lowercase_ : Dict = 3 , lowercase_ : Optional[int] = 40 , lowercase_ : int = 40 , ):
setattr(processor.image_processor , """apply_ocr""" , lowerCAmelCase__ )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
lowercase_ : int = compute_effective_axis_dimension(
lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowercase_ : Optional[int] = processor.tokenizer.num_special_tokens_to_add(lowerCAmelCase__ )
lowercase_ : Any = compute_effective_axis_dimension(
lowerCAmelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase__ )
# Generate dummy inputs according to compute batch and sequence
lowercase_ : Tuple = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
lowercase_ : List[Any] = [[[48, 84, 73, 128]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
lowercase_ : str = self._generate_dummy_images(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
lowercase_ : str = dict(
processor(
lowerCAmelCase__ , text=lowerCAmelCase__ , boxes=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , ) )
return inputs
| 365 | '''simple docstring'''
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class __magic_name__ ( ctypes.Structure):
# _fields is a specific attr expected by ctypes
UpperCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)]
def lowerCamelCase ( ) -> List[Any]:
if os.name == "nt":
lowercase_ : List[Any] = CursorInfo()
lowercase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
lowercase_ : List[str] = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
elif os.name == "posix":
sys.stdout.write("""\033[?25l""" )
sys.stdout.flush()
def lowerCamelCase ( ) -> str:
if os.name == "nt":
lowercase_ : int = CursorInfo()
lowercase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
lowercase_ : Optional[int] = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) )
elif os.name == "posix":
sys.stdout.write("""\033[?25h""" )
sys.stdout.flush()
@contextmanager
def lowerCamelCase ( ) -> Any:
try:
hide_cursor()
yield
finally:
show_cursor()
| 21 | 0 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
_lowercase : List[Any] = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l='
def lowerCamelCase ( UpperCAmelCase__ : str = "mumbai" ):
lowercase_ : List[Any] = BeautifulSoup(requests.get(url + location ).content , """html.parser""" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ):
lowercase_ : Optional[int] = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip()
lowercase_ : Union[str, Any] = job.find("""span""" , {"""class""": """company"""} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("Bangalore"), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 366 | '''simple docstring'''
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_torch_available():
import torch
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
_lowercase : int = logging.get_logger(__name__)
@dataclass
class __magic_name__ ( _UpperCAmelCase):
UpperCamelCase__ = [
'''no_inference''',
'''no_cuda''',
'''no_tpu''',
'''no_speed''',
'''no_memory''',
'''no_env_print''',
'''no_multi_process''',
]
def __init__( self : Optional[Any] , **lowercase_ : int ):
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
lowercase_ : Optional[int] = deprecated_arg[3:]
setattr(self , lowercase_ , not kwargs.pop(lowercase_ ) )
logger.warning(
f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or'''
f''' {positive_arg}={kwargs[positive_arg]}''' )
lowercase_ : Tuple = kwargs.pop("""torchscript""" , self.torchscript )
lowercase_ : List[Any] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics )
lowercase_ : List[Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level )
super().__init__(**lowercase_ )
UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Trace the models using torchscript'''})
UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''})
UpperCamelCase__ = field(
default='''O1''', metadata={
'''help''': (
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. '''
'''See details at https://nvidia.github.io/apex/amp.html'''
)
}, )
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
requires_backends(self , ["""torch"""] )
logger.info("""PyTorch: setting up devices""" )
if not self.cuda:
lowercase_ : Optional[Any] = torch.device("""cpu""" )
lowercase_ : Tuple = 0
elif is_torch_tpu_available():
lowercase_ : Optional[int] = xm.xla_device()
lowercase_ : str = 0
else:
lowercase_ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" )
lowercase_ : str = torch.cuda.device_count()
return device, n_gpu
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
return is_torch_tpu_available() and self.tpu
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
requires_backends(self , ["""torch"""] )
# TODO(PVP): currently only single GPU is supported
return torch.cuda.current_device()
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
requires_backends(self , ["""torch"""] )
return self._setup_devices[0]
@property
def SCREAMING_SNAKE_CASE_ ( self : int ):
requires_backends(self , ["""torch"""] )
return self._setup_devices[1]
@property
def SCREAMING_SNAKE_CASE_ ( self : int ):
return self.n_gpu > 0
| 21 | 0 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
_lowercase : Optional[int] = logging.get_logger(__name__)
_lowercase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
_lowercase : Tuple = {
"vocab_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json",
"roberta-large-openai-detector": (
"https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json"
),
},
"merges_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt",
"roberta-large-openai-detector": (
"https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt"
),
},
"tokenizer_file": {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/tokenizer.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/tokenizer.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json",
"roberta-base-openai-detector": (
"https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json"
),
"roberta-large-openai-detector": (
"https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json"
),
},
}
_lowercase : List[str] = {
"roberta-base": 512,
"roberta-large": 512,
"roberta-large-mnli": 512,
"distilroberta-base": 512,
"roberta-base-openai-detector": 512,
"roberta-large-openai-detector": 512,
}
class __magic_name__ ( A_):
UpperCamelCase__ = VOCAB_FILES_NAMES
UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase__ = ['''input_ids''', '''attention_mask''']
UpperCamelCase__ = RobertaTokenizer
def __init__( self : Dict , lowercase_ : Dict=None , lowercase_ : int=None , lowercase_ : Optional[int]=None , lowercase_ : int="replace" , lowercase_ : Optional[Any]="<s>" , lowercase_ : str="</s>" , lowercase_ : List[str]="</s>" , lowercase_ : str="<s>" , lowercase_ : Union[str, Any]="<unk>" , lowercase_ : List[str]="<pad>" , lowercase_ : List[str]="<mask>" , lowercase_ : int=False , lowercase_ : int=True , **lowercase_ : int , ):
super().__init__(
_lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , )
lowercase_ : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , _lowerCamelCase ) != add_prefix_space:
lowercase_ : Tuple = getattr(_lowerCamelCase , pre_tok_state.pop("""type""" ) )
lowercase_ : Optional[Any] = add_prefix_space
lowercase_ : Optional[Any] = pre_tok_class(**_lowerCamelCase )
lowercase_ : Optional[Any] = add_prefix_space
lowercase_ : Union[str, Any] = """post_processor"""
lowercase_ : Tuple = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase )
if tokenizer_component_instance:
lowercase_ : Union[str, Any] = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
lowercase_ : Optional[Any] = tuple(state["""sep"""] )
if "cls" in state:
lowercase_ : Optional[Any] = tuple(state["""cls"""] )
lowercase_ : int = False
if state.get("""add_prefix_space""" , _lowerCamelCase ) != add_prefix_space:
lowercase_ : List[Any] = add_prefix_space
lowercase_ : List[str] = True
if state.get("""trim_offsets""" , _lowerCamelCase ) != trim_offsets:
lowercase_ : Union[str, Any] = trim_offsets
lowercase_ : Tuple = True
if changes_to_apply:
lowercase_ : Any = getattr(_lowerCamelCase , state.pop("""type""" ) )
lowercase_ : List[Any] = component_class(**_lowerCamelCase )
setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase )
@property
def SCREAMING_SNAKE_CASE_ ( self : Any ):
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""" )
return None
return str(self._mask_token )
@mask_token.setter
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : Tuple ):
lowercase_ : Union[str, Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value
lowercase_ : Union[str, Any] = value
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , *lowercase_ : Dict , **lowercase_ : int ):
lowercase_ : Dict = kwargs.get("""is_split_into_words""" , _lowerCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : int , *lowercase_ : List[Any] , **lowercase_ : List[Any] ):
lowercase_ : Dict = kwargs.get("""is_split_into_words""" , _lowerCamelCase )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : str , lowercase_ : Optional[str] = None ):
lowercase_ : Union[str, Any] = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase )
return tuple(_lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Optional[int] , lowercase_ : Any=None ):
lowercase_ : Tuple = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ):
lowercase_ : Union[str, Any] = [self.sep_token_id]
lowercase_ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 367 | '''simple docstring'''
from __future__ import annotations
from typing import Any
def lowerCamelCase ( UpperCAmelCase__ : list ) -> int:
if not postfix_notation:
return 0
lowercase_ : Any = {"""+""", """-""", """*""", """/"""}
lowercase_ : list[Any] = []
for token in postfix_notation:
if token in operations:
lowercase_ , lowercase_ : Dict = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b )
elif token == "-":
stack.append(a - b )
elif token == "*":
stack.append(a * b )
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1 )
else:
stack.append(a // b )
else:
stack.append(int(UpperCAmelCase__ ) )
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 21 | 0 |
'''simple docstring'''
def lowerCamelCase ( UpperCAmelCase__ : int ) -> str:
lowercase_ : Any = int(_snake_case )
if decimal in (0, 1): # Exit cases for the recursion
return str(_snake_case )
lowercase_ : List[Any] = divmod(_snake_case , 2 )
return binary_recursive(_snake_case ) + str(_snake_case )
def lowerCamelCase ( UpperCAmelCase__ : str ) -> str:
lowercase_ : int = str(_snake_case ).strip()
if not number:
raise ValueError("""No input value was provided""" )
lowercase_ : Tuple = "-" if number.startswith("""-""" ) else ""
lowercase_ : Union[str, Any] = number.lstrip("""-""" )
if not number.isnumeric():
raise ValueError("""Input value is not an integer""" )
return F'''{negative}0b{binary_recursive(int(_snake_case ) )}'''
if __name__ == "__main__":
from doctest import testmod
testmod()
| 368 | '''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
_lowercase : List[Any] = logging.get_logger(__name__)
def lowerCamelCase ( UpperCAmelCase__ : Union[tf.Tensor, np.ndarray] ) -> List[int]:
if isinstance(UpperCAmelCase__ , np.ndarray ):
return list(tensor.shape )
lowercase_ : Tuple = tf.shape(UpperCAmelCase__ )
if tensor.shape == tf.TensorShape(UpperCAmelCase__ ):
return dynamic
lowercase_ : Dict = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase__ )]
def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[str] = None ) -> tf.Tensor:
return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCAmelCase__ , name=UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=1e-5 , UpperCAmelCase__ : List[str]=-1 ) -> List[str]:
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" )
# Get mean and variance on the axis to be normalized
lowercase_ , lowercase_ : List[str] = tf.nn.moments(UpperCAmelCase__ , axes=[axis] , keepdims=UpperCAmelCase__ )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
lowercase_ : List[Any] = [1] * inputs.shape.rank
lowercase_ : List[str] = shape_list(UpperCAmelCase__ )[axis]
lowercase_ : List[str] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ )
lowercase_ : List[Any] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ )
# Compute layer normalization using the batch_normalization
# function.
lowercase_ : str = tf.nn.batch_normalization(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , offset=UpperCAmelCase__ , scale=UpperCAmelCase__ , variance_epsilon=UpperCAmelCase__ , )
return outputs
def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Any=-1 ) -> Dict:
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
lowercase_ : List[Any] = tf.shape(UpperCAmelCase__ )
lowercase_ : Union[str, Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
lowercase_ : Dict = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor ) -> tf.Tensor:
if not isinstance(UpperCAmelCase__ , tf.Tensor ):
lowercase_ : List[Any] = tf.convert_to_tensor(UpperCAmelCase__ ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
lowercase_ : Any = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
lowercase_ : List[Any] = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
lowercase_ : Optional[Any] = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : int , UpperCAmelCase__ : str = "input_ids" ) -> None:
tf.debugging.assert_less(
UpperCAmelCase__ , tf.cast(UpperCAmelCase__ , dtype=tensor.dtype ) , message=(
F'''The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase__ )}) must be smaller than the embedding '''
F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> Any:
lowercase_ : int = 64512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
lowercase_ : Optional[Any] = [x for x in data if len(UpperCAmelCase__ ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
"""The following attributes cannot be saved to HDF5 file because """
F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
F'''bytes: {bad_attributes}''' )
lowercase_ : Any = np.asarray(UpperCAmelCase__ )
lowercase_ : Union[str, Any] = 1
lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(UpperCAmelCase__ ):
lowercase_ : Union[str, Any] = chunk_data
else:
lowercase_ : Any = data
def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] ) -> str:
if name in group.attrs:
lowercase_ : Optional[Any] = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs[name]]
else:
lowercase_ : int = []
lowercase_ : Optional[int] = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] )
chunk_id += 1
return data
def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> Any:
def _expand_single_ad_tensor(UpperCAmelCase__ : Optional[Any] ):
if isinstance(UpperCAmelCase__ , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(UpperCAmelCase__ , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase__ )
| 21 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.